1
|
De Oliveira AS, Versteeg L, Briggs N, Adhikari R, Villar MJ, Redd JR, Hotez P, Bottazzi ME, Pollet J. Altering the intracellular trafficking of Necator americanus GST-1 antigen yields novel hookworm mRNA vaccine candidates. PLoS Negl Trop Dis 2025; 19:e0012809. [PMID: 39792959 PMCID: PMC11756802 DOI: 10.1371/journal.pntd.0012809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/23/2025] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies. METHODOLOGY/FINDINGS By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens. After one immunization in mice, mRNA vaccines induced an earlier onset of antigen-specific antibodies compared to rNa-GST-1. Following two immunizations, mRNA vaccines induced similar or superior levels of antigen-specific antibodies compared to rNa-GST-1. Secretory Na-GST-1 was comparable to rNa-GST1 in producing neutralizing antibodies against Na-GST-1's thiol transferase activity, while native Na-GST-1 induced a more robust CD8+ T cell response due to its intracellular accumulation. Although PM Na-GST-1 elicited one of highest titers of antigen-specific antibody and a diverse set of memory T-cell populations, it resulted in a lower ratio of neutralizing antibodies after IgG purification compared to the other vaccine candidates. CONCLUSIONS/SIGNIFICANCE These findings emphasize the importance of antigen localization in tailoring immune responses and suggest that extracellular antigens are more effective for inducing humoral responses, whereas cytosolic antigen accumulation enhances MHC-1 peptide presentation. Future studies will determine if these in vitro and immunogenicity findings translate to in vivo efficacy. Altogether, mRNA vaccines offer numerous possibilities in the development of multivalent vaccines with single or multiple antigens.
Collapse
Affiliation(s)
- Athos Silva De Oliveira
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Leroy Versteeg
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Neima Briggs
- Departments of Immunobiology and Internal Medicine (Infectious Diseases), Yale University, New Haven, Connecticut, United States of America
| | - Rakesh Adhikari
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Maria Jose Villar
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - JeAnna R. Redd
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| | - Peter Hotez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
| | - Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Houston, Texas, United States of America
| |
Collapse
|
2
|
Jang SO, Lee JH, Chung YJ, Oh HS, Shin M, Kim SO, Hong SP. Chimeric adenovirus-based herpes zoster vaccine with the tPA signal peptide elicits a robust T-cell immune response. Virology 2024; 600:110243. [PMID: 39288613 DOI: 10.1016/j.virol.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Herpes zoster (HZ), or shingles, is caused by reactivation of the varicella-zoster virus (VZV), which remains latent in the sensory ganglia until immunity wanes with age. The representative HZ vaccine, Shingrix is efficacious but causes side effects due to vaccine adjuvants. Therefore, the development of highly efficacious vaccines with minimal side effects is required. We developed chimeric adenovirus vector (ChimAd)-based HZ vaccine candidates encoding the VZV glycoprotein E (gE). These candidates include ChimAd-tPAgE, in which the signal peptide is replaced with tissue plasminogen activator (tPA), and ChimAd-WTgE, which retains the original signal peptide. C57BL/6 mice were immunized with VZV-vaccine candidates, and cellular and humoral immune responses were evaluated using interferon-γ ELISPOT and ELISA. The ChimAd-based HZ vaccines induced high levels of gE-specific antibodies and cell-mediated immunity. ChimAd-tPAgE (optimal dose: 1 × 107 IFU) elicited a more robust gE-specific T-cell response than Shingrix and Zostavax, showing potential as HZ prophylactic vaccines.
Collapse
Affiliation(s)
- Sun Ok Jang
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Hyun Lee
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yong-Ju Chung
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyun-Seok Oh
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Myeongcheol Shin
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Soo-Ok Kim
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sun Pyo Hong
- R&D Center, GeneMatrix, Inc., Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Artarini A, Hadianti T, Giri-Rachman EA, Tan MI, Safitri IA, Hidayat NA, Retnoningrum DS, Natalia D. Development of Adenovirus-Based Covid-19 Vaccine Candidate in Indonesia. Mol Biotechnol 2024; 66:222-232. [PMID: 37076664 PMCID: PMC10115376 DOI: 10.1007/s12033-023-00749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Covid-19 pandemic has struck worldwide by end of 2019 and the use of various vaccine platforms was one of the main strategies to end this. To meet the needs for vaccine technology equality among many countries, we developed adenovirus-based Covid-19 vaccine candidate in Indonesia. SARS-CoV-2 Spike gene (S) was constructed into pAdEasy vector. The recombinant serotype 5 Adenovirus (AdV_S) genome was transfected into AD293 cells to produce recombinant adenovirus. Characterization using PCR confirmed the presence of spike gene. Transgene expression analysis showed the expression of S protein in AdV_S infected AD293 and A549 cells. Optimization of viral production showed the highest titer was obtained at MOI of 0.1 and 1 at 4 days. The in vivo study was performed by injecting Balb/c mice with 3.5 × 107 ifu of purified adenovirus. The result showed that S1-specific IgG was increased up to 56 days after single-dose administration of AdV_S. Interestingly, significant increase of S1 glycoprotein-specific IFN-γ ELISpot was observed in AdV_S treated Balb/c mice. In conclusion, the AdV_S vaccine candidate was successfully produced at laboratory scale, immunogenic, and did not cause severe inflammation in Balb/c mice. This study serves as initial step towards manufacturing of adenovirus-based vaccine in Indonesia.
Collapse
Affiliation(s)
- Anita Artarini
- School of Pharmacy, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia.
| | - Tia Hadianti
- School of Pharmacy, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | | | - Marselina Irasonia Tan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | - Intan A Safitri
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | - Nurhamidah A Hidayat
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | - Debbie S Retnoningrum
- School of Pharmacy, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| | - Dessy Natalia
- Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jln. Ganesha 10, Bandung, 40132, Indonesia
| |
Collapse
|
4
|
Dagotto G, Yu J, Barouch DH. Approaches and Challenges in SARS-CoV-2 Vaccine Development. Cell Host Microbe 2020; 28:364-370. [PMID: 32798444 PMCID: PMC7416703 DOI: 10.1016/j.chom.2020.08.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
The explosive spread of SARS-CoV-2 suggests that a vaccine will be required to end this global pandemic. Progress in SARS-CoV-2 vaccine development to date has been faster than for any other pathogen in history. Multiple SARS-CoV-2 vaccine candidates have been evaluated in preclinical models and are currently in clinical trials. In this Perspective, we discuss three topics that are critical for SARS-CoV-2 vaccine development: antigen selection and engineering, preclinical challenge studies in non-human primate models, and immune correlates of protection.
Collapse
MESH Headings
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Host Microbial Interactions/immunology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Innate
- Models, Animal
- Pandemics/prevention & control
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Primates
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Viral Vaccines/isolation & purification
Collapse
Affiliation(s)
- Gabriel Dagotto
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Obasa AE, Ashokkumar M, Neogi U, Jacobs GB. Mutations in Long Terminal Repeats κB Transcription Factor Binding Sites in Plasma Virus Among South African People Living with HIV-1. AIDS Res Hum Retroviruses 2019; 35:572-576. [PMID: 30793917 DOI: 10.1089/aid.2018.0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
HIV-1 subtype C (HIV-1C) is responsible for the majority of infections in sub-Saharan Africa. We selected 63 plasma-derived samples and generated long terminal repeats (LTRs) amplicons from people living with HIV in South Africa to identify transcription factor binding sites. NF-κB plays an important role in regulating the viral gene expression from the viral promoter and controlling viral latency. LTR amplicons were sequenced and phylogenetically analyzed. In our data set, we identified F-κB sites (n = 4; 6%) at position II and (n = 1; 1%) at position I among 63 sequences analyzed. The majority of the sequences identified with H-κB at position II (n = 50; 79%) and position I (n = 55; 87%). Forty-nine (n = 49; 78%) sequences were found to exhibit C-κB site. ZA_LTR052 was identified with a single point mutation. We identified all three NF-κB-binding sites in (n = 44; 70%) the viral promoter-enhancer regions in South African patients.
Collapse
Affiliation(s)
- Adetayo Emmanuel Obasa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
| | - Manickam Ashokkumar
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
- HIV/AIDS Division, Department of Clinical Research, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
6
|
Alharbi NK, Padron-Regalado E, Thompson CP, Kupke A, Wells D, Sloan MA, Grehan K, Temperton N, Lambe T, Warimwe G, Becker S, Hill AVS, Gilbert SC. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine 2017; 35:3780-3788. [PMID: 28579232 PMCID: PMC5516308 DOI: 10.1016/j.vaccine.2017.05.032] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/30/2017] [Accepted: 05/10/2017] [Indexed: 01/28/2023]
Abstract
Inserting tPA leader sequence enhanced humoral responses of ChAdOx1 MERS. ChAdOx1 MERS elicited cellular immunity and neutralising antibodies. ChAdOx1 MERS responses were boosted by MVA MERS. Immunogenicity of a single dose of ChAdOx1 MERS was equivalent to 2 doses of MVA MERS. In MVA, F11 promoter enhanced cellular, but not humoral, immunogenicity, comparing to mH5 promoter.
The Middle East respiratory syndrome coronavirus (MERS-CoV) has infected more than 1900 humans, since 2012. The syndrome ranges from asymptomatic and mild cases to severe pneumonia and death. The virus is believed to be circulating in dromedary camels without notable symptoms since the 1980s. Therefore, dromedary camels are considered the only animal source of infection. Neither antiviral drugs nor vaccines are approved for veterinary or medical use despite active research on this area. Here, we developed four vaccine candidates against MERS-CoV based on ChAdOx1 and MVA viral vectors, two candidates per vector. All vaccines contained the full-length spike gene of MERS-CoV; ChAdOx1 MERS vaccines were produced with or without the leader sequence of the human tissue plasminogen activator gene (tPA) where MVA MERS vaccines were produced with tPA, but either the mH5 or F11 promoter driving expression of the spike gene. All vaccine candidates were evaluated in a mouse model in prime only or prime-boost regimens. ChAdOx1 MERS with tPA induced higher neutralising antibodies than ChAdOx1 MERS without tPA. A single dose of ChAdOx1 MERS with tPA elicited cellular immune responses as well as neutralising antibodies that were boosted to a significantly higher level by MVA MERS. The humoral immunogenicity of a single dose of ChAdOx1 MERS with tPA was equivalent to two doses of MVA MERS (also with tPA). MVA MERS with mH5 or F11 promoter induced similar antibody levels; however, F11 promoter enhanced the cellular immunogenicity of MVA MERS to significantly higher magnitudes. In conclusion, our study showed that MERS-CoV vaccine candidates could be optimized by utilising different viral vectors, various genetic designs of the vectors, or different regimens to increase immunogenicity. ChAdOx1 and MVA vectored vaccines have been safely evaluated in camels and humans and these MERS vaccine candidates should now be tested in camels and in clinical trials.
Collapse
Affiliation(s)
- Naif Khalaf Alharbi
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | | | - Craig P Thompson
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; Department of Zoology, University of Oxford, Oxford, UK
| | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, TTU Emerging Infections, Germany
| | - Daniel Wells
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Megan A Sloan
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Keith Grehan
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - George Warimwe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, TTU Emerging Infections, Germany
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
7
|
Hu Y, Zhao Z, Ehrich M, Fuhrman K, Zhang C. In vitro controlled release of antigen in dendritic cells using pH-sensitive liposome-polymeric hybrid nanoparticles. POLYMER 2015; 80:171-179. [PMID: 26622069 DOI: 10.1016/j.polymer.2015.10.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A hybrid nanoparticle (NP) consisting of a pH sensitive lipid shell and a poly(lactic-co-glycolic) acid (PLGA) core was constructed. This hybrid NP has a mean size of 120.1 ± 8.8 nm and positively charged surface (zeta potential of 14.2 ± 1.4 mV). The lipid shell of the hybrid NP was quickly disintegrated in buffer with a pH of 5.5, which resembles the acidic environment of endosomes in dendritic cell (DC). Less than 20% of the antigen enclosed in pH-sensitive hybrid NP was released into human serum at physiological pH within 24 h, but more than 40% of the enclosed antigen was released within 8 h after pH was adjusted to 5.5. Fast uptake of the pH sensitive hybrid NP by DC was also observed. It was found that pH sensitive hybrid NP displayed faster degradation and antigen release compared to regular hybrid NPs after uptake by DC.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kristel Fuhrman
- Veterinary Medicine Experiment Station, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
9
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Chen Y, Wang S, Lu S. DNA Immunization for HIV Vaccine Development. Vaccines (Basel) 2014; 2:138-159. [PMID: 26344472 PMCID: PMC4494200 DOI: 10.3390/vaccines2010138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 01/10/2023] Open
Abstract
DNA vaccination has been studied in the last 20 years for HIV vaccine research. Significant experience has been accumulated in vector design, antigen optimization, delivery approaches and the use of DNA immunization as part of a prime-boost HIV vaccination strategy. Key historical data and future outlook are presented. With better understanding on the potential of DNA immunization and recent progress in HIV vaccine research, it is anticipated that DNA immunization will play a more significant role in the future of HIV vaccine development.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
11
|
Abstract
DNA immunization was discovered in early 1990s, and its use has been expanded from vaccine studies to a broader range of biomedical research areas, such as the generation of high-quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation, and gene gun. In addition, several common considerations related to DNA immunization are discussed.
Collapse
Affiliation(s)
- Shixia Wang
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shan Lu
- University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
12
|
Ugen K, Weiner DB. DNA vaccines onward and upward! 20 years and counting! Highlights of the DNA Vaccines 2012 Meeting. Hum Vaccin Immunother 2013; 9:2038-40. [DOI: 10.4161/hv.26628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|