1
|
Hau SJ, Luan SL, Weinert LA, Langford PR, Rycroft A, Wren BW, Maskell DJ, Tucker AWD, Brockmeier SL. Capsular immunity is necessary for protection against some but not all strains of Glaesserella parasuis. Vet Microbiol 2025; 305:110509. [PMID: 40250105 PMCID: PMC12094177 DOI: 10.1016/j.vetmic.2025.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Glaesserella parasuis is the causative agent of Glässer's disease in pigs and results in significant losses to the swine industry annually. Due to the serovar and strain specific response associated with many bacterin vaccines, there has been difficulty generating broad heterologous protection. Here, an unencapsulated G. parasuis mutant (HS069∆cap) was assessed as a bacterin vaccine and compared to a bacterin made from the encapsulated parent strain, against challenge with the homologous, parent strain (serovar 5) as well as four heterologous challenge strains (serovar 1, 4, 5, and 14). Both the HS069 and HS069∆cap bacterins generated high titers to the homologous and heterologous strains. The HS069∆cap bacterin was able to provide protection against the parent strain as well as 12939 (serovar 1), 2170B (serovar 4), and MN-H (serovar 13), but was unable to protect animals from challenge with Nagasaki (serovar 5). In contrast, the HS069 bacterin was able to provide protection against all challenge strains, showing the importance of serovar specific immunity against the challenge strain Nagasaki. This appears to be due to the production of a more abundant and well-organized capsule in Nagasaki as compared to HS069. This study indicates HS069∆cap is a good candidate strain for bacterin development; however, it may be less able to provide protection against highly encapsulated strains of G. parasuis.
Collapse
Affiliation(s)
- Samantha J Hau
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Shi-Lu Luan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, UK
| | - Andrew Rycroft
- The Royal Veterinary College, Hawkshead Campus, Hatfield, United Kingdom
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Alexander W Dan Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Susan L Brockmeier
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
2
|
Cheng Y, Shen R, Liu F, Li Y, Wang J, Hou Y, Liu Y, Zhou H, Hou F, Wang Y, Li X, Qiao R, Luo S. Humoral and cellular immune responses induced by serogroup W135 meningococcal conjugate and polysaccharide vaccines. Vaccine 2024; 42:2781-2792. [PMID: 38508928 DOI: 10.1016/j.vaccine.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Investigating the mechanisms by which W135 meningococcal conjugate (PSW135-TT) activates adaptive immune responses in mice can provide a comprehensive understanding of the immune mechanisms of bacterial polysaccharide conjugate vaccines. We compared B-cell and T-cell immune responses immunized with W135 meningococcal capsular polysaccharides (PSW135), tetanus toxoid (TT) and PSW135-TT in mice. The results showed that PSW135-TT could induce higher PSW135-specific and TT-specific IgG antibodies with a significant enhancement after two doses. All serum antibodies immunized with PSW135- TT had strong bactericidal activity, whereas none of the serum antibodies immunized with PSW135 had bactericidal activity. Besides, IgM and IgG antibodies immunized with PSW135-TT after two doses were positively correlated with the titer of bactericidal antibodies. We also found Th cells favored Th2 humoral immune responses in PSW135-TT, PSW135, and TT-immunized mice, especially peripheral blood lymphocytes. Furthermore, PSW135-TT and TT could effectively activate bone marrow derived dendritic cells (BMDCs) and promote BMDCs to highly express major histocompatibility complex Ⅱ (MHCⅡ), CD86 and CD40 molecules in mice, whereas PSW135 couldn't. These data verified the typical characteristics of PSW135-TT and TT as T cell dependent antigen (TD-Ag) and PSW135 as T cell independent antigen (TI-Ag), which will be very helpful for further exploration of the immune mechanism of polysaccharide-protein conjugate vaccines and improvement of the quality of bacterial polysaccharide conjugate vaccines in future.
Collapse
Affiliation(s)
- Yahui Cheng
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Rong Shen
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fanglei Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yanting Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Jing Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yali Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yueping Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Haifei Zhou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fengping Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yunjin Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Ruijie Qiao
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| | - Shuquan Luo
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| |
Collapse
|
3
|
Oldrini D, Di Benedetto R, Carducci M, De Simone D, Massai L, Alfini R, Galli B, Brunelli B, Przedpelski A, Barbieri JT, Rossi O, Giannelli C, Rappuoli R, Berti F, Micoli F. Testing a Recombinant Form of Tetanus Toxoid as a Carrier Protein for Glycoconjugate Vaccines. Vaccines (Basel) 2023; 11:1770. [PMID: 38140177 PMCID: PMC10747096 DOI: 10.3390/vaccines11121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Glycoconjugate vaccines play a major role in the prevention of infectious diseases worldwide, with significant impact on global health, enabling the polysaccharides to induce immunogenicity in infants and immunological memory. Tetanus toxoid (TT), a chemically detoxified bacterial toxin, is among the few carrier proteins used in licensed glycoconjugate vaccines. The recombinant full-length 8MTT was engineered in E. coli with eight individual amino acid mutations to inactivate three toxin functions. Previous studies in mice showed that 8MTT elicits a strong IgG response, confers protection, and can be used as a carrier protein. Here, we compared 8MTT to traditional carrier proteins TT and cross-reactive material 197 (CRM197), using different polysaccharides as models: Group A Streptococcus cell-wall carbohydrate (GAC), Salmonella Typhi Vi, and Neisseria meningitidis serogroups A, C, W, and Y. The persistency of the antibodies induced, the ability of the glycoconjugates to elicit booster response after re-injection at a later time point, the eventual carrier-induced epitopic suppression, and immune interference in multicomponent formulations were also evaluated. Overall, immunogenicity responses obtained with 8MTT glycoconjugates were compared to those obtained with corresponding TT and, in some cases, were higher than those induced by CRM197 glycoconjugates. Our results support the use of 8MTT as a good alternative carrier protein for glycoconjugate vaccines, with advantages in terms of manufacturability compared to TT.
Collapse
Affiliation(s)
- Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Daniele De Simone
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Barbara Galli
- GSK, via Fiorentina 1, 53100 Siena, Italy; (B.G.); (B.B.); (F.B.)
| | | | - Amanda Przedpelski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.P.); (J.T.B.)
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (A.P.); (J.T.B.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| | - Rino Rappuoli
- Fondazione Biotecnopolo, via Fiorentina 1, 53100 Siena, Italy;
| | - Francesco Berti
- GSK, via Fiorentina 1, 53100 Siena, Italy; (B.G.); (B.B.); (F.B.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), via Fiorentina 1, 53100 Siena, Italy; (D.O.); (R.D.B.); (M.C.); (D.D.S.); (L.M.); (R.A.); (O.R.); (C.G.)
| |
Collapse
|
4
|
Koj S, Lugowski C, Niedziela T. In-cell depolymerization of polysaccharide antigens. Exploring the processing pathways of glycans and why some glycoconjugate vaccines are less effective than expected: A review. Carbohydr Polym 2023; 315:120969. [PMID: 37230635 DOI: 10.1016/j.carbpol.2023.120969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Affiliation(s)
- Sabina Koj
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Czeslaw Lugowski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Tomasz Niedziela
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| |
Collapse
|
5
|
Toledo-Romaní ME, García-Carmenate M, Valenzuela-Silva C, Baldoquín-Rodríguez W, Martínez-Pérez M, Rodríguez-González M, Paredes-Moreno B, Mendoza-Hernández I, González-Mujica Romero R, Samón-Tabio O, Velazco-Villares P, Bacallao-Castillo JP, Licea-Martín E, Rodríguez-Ortega M, Herrera-Marrero N, Caballero-González E, Egües-Torres L, Duartes-González R, García-Blanco S, Pérez-Cabrera S, Huete-Ferreira S, Idalmis-Cisnero K, Fonte-Galindo O, Meliá-Pérez D, Rojas-Remedios I, Doroud D, Gouya MM, Biglari A, Fernández-Castillo S, Climent-Ruiz Y, Valdes-Balbín Y, García-Rivera D, Van der Stuyft P, Verez-Bencomo V, SOBERANA Phase 3 team. Safety and efficacy of the two doses conjugated protein-based SOBERANA-02 COVID-19 vaccine and of a heterologous three-dose combination with SOBERANA-Plus: a double-blind, randomised, placebo-controlled phase 3 clinical trial. LANCET REGIONAL HEALTH. AMERICAS 2022; 18:100423. [PMID: 36618081 PMCID: PMC9803910 DOI: 10.1016/j.lana.2022.100423] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023]
Abstract
Background SOBERANA-02 is a COVID-19 conjugate vaccine (recombinant RBD conjugated to tetanus toxoid). Phases 1/2 clinical trials demonstrated high immunogenicity, promoting neutralising IgG and specific T-cell response. A third heterologous dose of SOBERANA-Plus (RBD-dimer) further increased neutralising antibodies. The aim of this study is to evaluate the safety and efficacy of two immunisation regimes: two doses of SOBERANA-02 and a heterologous three-dose combination with SOBERANA-Plus added to it. Methods From March 8th to June 24th, 2021 we conducted in Havana, Cuba a multicentre randomised, double-blind, placebo-controlled, phase-3 trial evaluating a two doses SOBERANA-02 scheme and a heterologous scheme with one dose SOBERANA-Plus added to it (RPCEC00000354). Participants 19-80 years were randomly assigned to receiving 28 days apart either the two or three dose scheme or placebo. The main endpoint was vaccine efficacy in preventing the occurrence of RT-PCR confirmed symptomatic COVID-19 at least 14 days after the second or third dose in the per-protocol population. We also assessed efficacy against severe disease and, in all participants receiving at least one vaccine/placebo dose, safety for 28 days after each dose. Findings We included 44,031 participants (52.0% female, 48.0% male; median age 50 years, range 19-80 years; 7.0% black, 24.0% mixed-race, 59.0% white) in a context of initial Beta VOC predominance, with this variant being partially replaced by Delta near the trial's end. Vaccine efficacy in the heterologous combination was 92.0% (95%CI 80.4-96.7) against symptomatic disease. There were no severe COVID-19 cases in the vaccine group against 6 in the placebo group. Two doses of SOBERANA-02 was 69.7% (95%CI 56.5-78.9) and 74.9% (95%CI 33.7-90.5) efficacious against symptomatic and severe COVID-19, respectively. The occurrence of serious and severe adverse events (AE) was very rare and equally distributed between placebo and vaccine groups. Solicited AEs were slightly more frequent in the vaccine group but predominantly local and mostly mild and transient. Interpretation Our results indicate that the straightforward to manufacture SOBERANA vaccines are efficacious in a context of Beta and Delta VOC circulation, have a favourable safety profile, and may represent an attractive option for use in COVID-19 vaccination programmes. Funding This study received funds from the National Fund for Science and Technology (FONCI-CITMA-Cuba, contract 2020-20) of the Ministry of Science, Technology and Environment of Cuba.
Collapse
Affiliation(s)
- María Eugenia Toledo-Romaní
- “Pedro Kourí” Tropical Medicine Institute. Av “Novia del Mediodía”, Kv 6 1/2, La Lisa, Habana, 11400, Cuba,Corresponding author.
| | | | - Carmen Valenzuela-Silva
- Cybernetics, Mathematics and Physics Institute. 15th St #55, Vedado, Plaza de la Revolución, Havana, 10400, Cuba
| | | | - Marisel Martínez-Pérez
- Finlay Vaccine Institute. 21st Ave. N° 19810 between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Meiby Rodríguez-González
- Finlay Vaccine Institute. 21st Ave. N° 19810 between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Beatriz Paredes-Moreno
- Finlay Vaccine Institute. 21st Ave. N° 19810 between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Ivis Mendoza-Hernández
- National Coordinating Center for Clinical Trials. 5th Ave and 62, Miramar, Playa, Havana, Cuba
| | | | | | | | | | - Ernesto Licea-Martín
- Finlay Vaccine Institute. 21st Ave. N° 19810 between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Misladys Rodríguez-Ortega
- “Pedro Kourí” Tropical Medicine Institute. Av “Novia del Mediodía”, Kv 6 1/2, La Lisa, Habana, 11400, Cuba
| | - Nuris Herrera-Marrero
- “Pedro Kourí” Tropical Medicine Institute. Av “Novia del Mediodía”, Kv 6 1/2, La Lisa, Habana, 11400, Cuba
| | | | | | | | | | | | | | | | | | | | | | - Delaram Doroud
- Pasteur Institute of Iran. No. 69, Pasteur Ave., Tehran 1316943551, Islamic Republic of Iran
| | | | - Alireza Biglari
- Pasteur Institute of Iran. No. 69, Pasteur Ave., Tehran 1316943551, Islamic Republic of Iran
| | | | - Yanet Climent-Ruiz
- Finlay Vaccine Institute. 21st Ave. N° 19810 between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Yury Valdes-Balbín
- Finlay Vaccine Institute. 21st Ave. N° 19810 between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Dagmar García-Rivera
- Finlay Vaccine Institute. 21st Ave. N° 19810 between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | | | - Vicente Verez-Bencomo
- Finlay Vaccine Institute. 21st Ave. N° 19810 between 198 and 200 St, Atabey, Playa, Havana, Cuba,Corresponding author.
| | | |
Collapse
|
6
|
Hagan T, Gerritsen B, Tomalin LE, Fourati S, Mulè MP, Chawla DG, Rychkov D, Henrich E, Miller HER, Diray-Arce J, Dunn P, Lee A, Levy O, Gottardo R, Sarwal MM, Tsang JS, Suárez-Fariñas M, Sékaly RP, Kleinstein SH, Pulendran B. Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses. Nat Immunol 2022; 23:1788-1798. [PMID: 36316475 PMCID: PMC9869360 DOI: 10.1038/s41590-022-01328-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
Systems vaccinology has defined molecular signatures and mechanisms of immunity to vaccination. However, comparative analysis of immunity to different vaccines is lacking. We integrated transcriptional data of over 3,000 samples, from 820 adults across 28 studies of 13 vaccines and analyzed vaccination-induced signatures of antibody responses. Most vaccines induced signatures of innate immunity and plasmablasts at days 1 and 7, respectively, after vaccination. However, the yellow fever vaccine induced an early transient signature of T and B cell activation at day 1, followed by delayed antiviral/interferon and plasmablast signatures that peaked at days 7 and 14-21, respectively. Thus, there was no evidence for a 'universal signature' that predicted antibody response to all vaccines. However, accounting for the asynchronous nature of responses, we defined a time-adjusted signature that predicted antibody responses across vaccines. These results provide a transcriptional atlas of immunity to vaccination and define a common, time-adjusted signature of antibody responses.
Collapse
Affiliation(s)
- Thomas Hagan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bram Gerritsen
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lewis E Tomalin
- Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Slim Fourati
- Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID and Center for Human Immunology (CHI), NIH, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program, Cambridge University, Cambridge, UK
| | - Daniel G Chawla
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Dmitri Rychkov
- Division of Transplant Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Evan Henrich
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick Dunn
- ImmPort Curation Team, NG Health Solutions, Rockville, MD, USA
| | - Audrey Lee
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raphael Gottardo
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Minne M Sarwal
- Division of Transplant Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID and Center for Human Immunology (CHI), NIH, Bethesda, MD, USA
| | - Mayte Suárez-Fariñas
- Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Gupta S, Sharma N, Naorem LD, Jain S, Raghava GP. Collection, compilation and analysis of bacterial vaccines. Comput Biol Med 2022; 149:106030. [DOI: 10.1016/j.compbiomed.2022.106030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
|
8
|
Basu N, Ghosh R. Recent chemical syntheses of bacteria related oligosaccharides using modern expeditious approaches. Carbohydr Res 2021; 507:108295. [PMID: 34271477 DOI: 10.1016/j.carres.2021.108295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Apart from some essential and crucial roles in life processes carbohydrates also are involved in a few detrimental courses of action related to human health, like infections by pathogenic microbes, cancer metastasis, transplanted tissue rejection, etc. Regarding management of pathogenesis by microbes, keeping in mind of multi drug-resistant bacteria and epidemic or endemic incidents, preventive measure by vaccination is the best pathway as also recommended by the WHO; by vaccination, eradication of bacterial diseases is also possible. Although some valid vaccines based on attenuated bacterial cells or isolated pure polysaccharide-antigens or the corresponding conjugates thereof are available in the market for prevention of several bacterial diseases, but these are not devoid of some disadvantages also. In order to develop improved conjugate T-cell dependent vaccines oligosaccharides related to bacterial antigens are synthesized and converted to the corresponding carrier protein conjugates. Marketed Cuban Quimi-Hib is such a vaccine being used since 2004 to resist Haemophilus influenza b infections. During nearly the past two decades research is going on worldwide for improved synthesis of bacteria related oligosaccharides or polysaccharides towards development of such semisynthetic or synthetic glycoconjugate vaccines. The present dissertation is an endeavour to encompass the recent syntheses of several pathogenic bacterial oligosaccharides or polysaccharides, made during the past ten-eleven years with special reference to modern expeditious syntheses.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, Hoogly, West Bengal, 712246, India
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
9
|
Safadi MAP, Martinón-Torres F, Serra L, Burman C, Presa J. Translating meningococcal serogroup B vaccines for healthcare professionals. Expert Rev Vaccines 2021; 20:401-414. [PMID: 34151699 DOI: 10.1080/14760584.2021.1899820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Vaccination is an effective strategy to combat invasive meningococcal disease (IMD). Vaccines against the major disease-causing meningococcal serogroups are available; however, development of vaccines against serogroup B faced particular challenges, including the inability to target traditional meningococcal antigens (i.e. polysaccharide capsule) and limited alternative antigens due to serogroup B strain diversity. Two different recombinant, protein-based, serogroup B (MenB) vaccines that may address these challenges are currently available. These vaccines have been extensively evaluated in pre-licensure safety and immunogenicity trials, and recently in real-world studies on effectiveness, safety, and impact on disease burden. AREAS COVERED This review provides healthcare professionals, particularly pediatricians, an overview of currently available MenB vaccines, including development strategies and evaluation of coverage. EXPERT OPINION Overall, recombinant MenB vaccines are valuable tools for healthcare professionals to protect patients against IMD. Their development required innovative design approaches that overcame challenging hurdles and identified novel protein antigen targets; however, important distinctions in the approaches used in their development, evaluation, and administration exist and many unanswered questions remain. Healthcare providers frequently prescribing MenB vaccines are challenged to keep abreast of these differences to ensure patient protection against this serious disease.
Collapse
Affiliation(s)
- Marco Aurelio P Safadi
- Department of Pediatrics, Santa Casa De São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain.,Genetics, Vaccines and Pediatrics Research Group, Universitario De Santiago De Compostela, Instituto De Investigación Sanitaria De Santiago De Compostela, Santiago De Compostela, Spain
| | - Lidia Serra
- Pfizer Vaccine Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Cynthia Burman
- Pfizer Vaccine Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Jessica Presa
- Pfizer Vaccines, Medical and Scientific Affairs, Collegeville, PA, USA
| |
Collapse
|
10
|
Emami P, Fallahianbijan F, Dinse E, Motevalian SP, Conde BC, Reilly K, Zydney AL. Modified intermediate pore blockage model describes fouling behavior during sterile filtration of glycoconjugate vaccines. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Mettu R, Chen CY, Wu CY. Synthetic carbohydrate-based vaccines: challenges and opportunities. J Biomed Sci 2020; 27:9. [PMID: 31900143 PMCID: PMC6941340 DOI: 10.1186/s12929-019-0591-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
Glycoconjugate vaccines based on bacterial capsular polysaccharides (CPS) have been extremely successful in preventing bacterial infections. The glycan antigens for the preparation of CPS based glycoconjugate vaccines are mainly obtained from bacterial fermentation, the quality and length of glycans are always inconsistent. Such kind of situation make the CMC of glycoconjugate vaccines are difficult to well control. Thanks to the advantage of synthetic methods for carbohydrates syntheses. The well controlled glycan antigens are more easily to obtain, and them are conjugated to carrier protein to from the so-call homogeneous fully synthetic glycoconjugate vaccines. Several fully glycoconjugate vaccines are in different phases of clinical trial for bacteria or cancers. The review will introduce the recent development of fully synthetic glycoconjugate vaccine.
Collapse
Affiliation(s)
- Ravinder Mettu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chiang-Yun Chen
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Nangang District, Taipei, 11529, Taiwan.
| |
Collapse
|
12
|
Psarris A, Sindos M, Daskalakis G, Chondrogianni ME, Panayiotou S, Antsaklis P, Loutradis D. Immunizations during pregnancy: How, when and why. Eur J Obstet Gynecol Reprod Biol 2019; 240:29-35. [PMID: 31226574 DOI: 10.1016/j.ejogrb.2019.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 12/25/2022]
Abstract
Maternal immunization during pregnancy provide protection for the mother and the fetus against certain pathogens. Immunizations during pregnancy are divided to routine immunizations recommended for all pregnant women, immunizations for certain medical indications and vaccines that are potentially harmful during pregnancy and should be avoided. We conducted a comprehensive review of the literature regarding immunizations during pregnancy. The search terms used were immunization, vaccine, pregnancy, influenza, pertussis, safety and efficacy. We gathered all available guidelines on vaccination during pregnancy. Generally, vaccines are allowed during pregnancy when the benefits outweigh the risks. Tdap and inactivated flu vaccines are routinely recommended during pregnancy. Vaccines containing live attenuated viruses are contraindicated during pregnancy. These are LAIV influenza, MMR, Varicella, Zoster, BCG and smallpox pre-exposure. All other vaccines are given when medically indicated and the possible benefits outweigh the risks. Obstetricians and gynecologists should be familiar with the indications of vaccination during pregnancy. Vaccination coverage of pregnant women with routinely recommended vaccines has increased but further efforts are needed. Our aim is to review vaccination practices during pregnancy, demonstrate the benefits and dangers of different vaccines, evaluate their effectiveness and define the proper timing of vaccination.
Collapse
Affiliation(s)
- Alexandros Psarris
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece.
| | - Michael Sindos
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Georgios Daskalakis
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Maria Eleni Chondrogianni
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Stefani Panayiotou
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Panagiotis Antsaklis
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| | - Dimitrios Loutradis
- 1st Department of Obstetrics and Gynecology, "Alexandra" Maternity Hospital, National and Kapodistrian University of Athens, 80 Vas. Sophias Av., 115 28, Athens, Greece
| |
Collapse
|
13
|
Souliotis K, Golna C, Kotsopoulos N, Kapaki V, Dalucas C. Meningitis B vaccination: knowledge and attitudes of pediatricians and parents in Greece. Heliyon 2018; 4:e00902. [PMID: 30426102 PMCID: PMC6222974 DOI: 10.1016/j.heliyon.2018.e00902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/30/2018] [Accepted: 10/29/2018] [Indexed: 01/06/2023] Open
Abstract
Bexsero®, a meningitis B vaccine, was recently included in the National Immunization Programme (NIP) in Greece, with restricted access to high risk groups only. To map the need to expand coverage, this study assessed pediatricians and parents' perceptions and attitudes towards meningitis B, inclusion of Bexsero® in the NIP and vaccination uptake. We analyzed data from 201 private practice pediatricians questionnaires and 1003 parents phone interviews. Both (pediatricians 64.7%, parents 88.5%) considered meningitis B a critical challenge. 77.6% of pediatricians would prioritize meningitis B vaccination in the NIP and 90.3% would recommend Bexsero® to parents. Of those who would not, 47% feared civil liability challenges and 11.8% hesitated to impose vaccine cost on parents. Only 28.9% of parents had their child vaccinated. Non-reimbursement constituted a major access hurdle. It is critical to expand immunization coverage in Greece through expanded access in the NIP, in line with pediatrician recommendations.
Collapse
Affiliation(s)
- K Souliotis
- Faculty of Social and Political Sciences, University of Peloponnese, Corinth, Greece.,Health Policy Institute, Athens, Greece
| | - C Golna
- Policy Change, Innowth Ltd, Cyprus
| | | | - V Kapaki
- Health Policy Institute, Athens, Greece
| | | |
Collapse
|
14
|
Sharyan A, Gonzalez C, Ukaegbu O, Powell K, McCarthy PC. Determination of the binding affinities of Neisseria meningitidis serogroup W capsule polymerase with two nucleotide sugar substrates. BMC Res Notes 2018; 11:482. [PMID: 30012207 PMCID: PMC6048754 DOI: 10.1186/s13104-018-3596-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/12/2018] [Indexed: 01/22/2023] Open
Abstract
Objective Meningococcal meningitis is a public health burden. Immunization strategies have reduced global incidence of the disease. Glycoconjugate vaccines are the most effective type of vaccine to combat most causes of meningococcal meningitis. These vaccines contain capsular polysaccharide fragments from disease-causing serogroups of Neisseria meningitidis that are chemically attached to a carrier protein. The enzymes responsible for capsular polysaccharide synthesis can serve as tools to make these critical vaccine components. One such enzyme is the N. meningitidis serogroup W capsule polymerase. This enzyme is responsible for creating the galactose-sialic acid containing capsular polysaccharide of this serogroup. Our aim in this study was to determine the binding affinities of nucleotide sugar donors CMP-sialic acid and UDP-galactose using a coupled transferase assay to inform future work to modulate polysaccharide synthesis by this enzyme. Results We determined a Km of 66.8 µM for CMP-sialic acid and a Km for UDP-galactose of 3.9 µM. These values are lower than reported values for other retaining galactosyltransferases and inverting sialyltransferases respectively. There were difficulties obtaining reliable data for galactosyltransferase activity. An alternate strategy is needed to assess kinetic parameters of the separate transferase activities for this enzyme. Electronic supplementary material The online version of this article (10.1186/s13104-018-3596-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abeer Sharyan
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Cendy Gonzalez
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Ophelia Ukaegbu
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Kayla Powell
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA
| | - Pumtiwitt C McCarthy
- Department of Chemistry, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD, 21251, USA.
| |
Collapse
|
15
|
Christodoulides M, Heckels J. Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis 2018; 75:3078540. [PMID: 28369428 DOI: 10.1093/femspd/ftx033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
A range of vaccines is available for preventing life-threatening diseases caused by infection with Neisseria meningitidis (meningococcus, Men). Capsule polysaccharide (CPS)-conjugate vaccines are successful prophylactics for serogroup MenA, MenC, MenW and MenY infections, and outer membrane vesicle (OMV) vaccines have been used successfully for controlling clonal serogroup MenB infections. MenB vaccines based on recombinant proteins identified by reverse vaccinology (Bexsero™) and proteomics (Trumenba™) approaches have recently been licensed and Bexsero™ has been introduced into the UK infant immunisation programme. In this review, we chart the development of these licensed vaccines. In addition, we discuss the plethora of novel vaccinology approaches that have been applied to the meningococcus with varying success in pre-clinical studies, but which provide technological platforms for application to other pathogens. These strategies include modifying CPS, lipooligosaccharide and OMV; the use of recombinant proteins; structural vaccinology approaches of designing synthetic peptide/mimetope vaccines, DNA vaccines and engineered proteins; epitope presentation on biological and synthetic particles; through vaccination with live-attenuated pathogen(s), or with heterologous bacteria expressing vaccine antigens, or to competitive occupation of the nasopharyngeal niche by commensal bacterial spp. After close to a century of vaccine research, it is possible that meningococcal disease may be added, shortly, to the list of diseases to have been eradicated worldwide by rigorous vaccination campaigns.
Collapse
|
16
|
Yu H, An Y, Battistel MD, Cipollo JF, Freedberg DI. Improving Analytical Characterization of Glycoconjugate Vaccines through Combined High-Resolution MS and NMR: Application to Neisseria meningitidis Serogroup B Oligosaccharide-Peptide Glycoconjugates. Anal Chem 2018; 90:5040-5047. [DOI: 10.1021/acs.analchem.7b04748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Huifeng Yu
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Yanming An
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Marcos D. Battistel
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - John F. Cipollo
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| | - Darón I. Freedberg
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States
| |
Collapse
|
17
|
Meningococcal Vaccines: Current Status and Emerging Strategies. Vaccines (Basel) 2018; 6:vaccines6010012. [PMID: 29495347 PMCID: PMC5874653 DOI: 10.3390/vaccines6010012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis causes most cases of bacterial meningitis. Meningococcal meningitis is a public health burden to both developed and developing countries throughout the world. There are a number of vaccines (polysaccharide-based, glycoconjugate, protein-based and combined conjugate vaccines) that are approved to target five of the six disease-causing serogroups of the pathogen. Immunization strategies have been effective at helping to decrease the global incidence of meningococcal meningitis. Researchers continue to enhance these efforts through discovery of new antigen targets that may lead to a broadly protective vaccine and development of new methods of homogenous vaccine production. This review describes current meningococcal vaccines and discusses some recent research discoveries that may transform vaccine development against N. meningitidis in the future.
Collapse
|
18
|
Shaker R, Fayad D, Dbaibo G. Challenges and opportunities for meningococcal vaccination in the developing world. Hum Vaccin Immunother 2018; 14:1084-1097. [PMID: 29393729 DOI: 10.1080/21645515.2018.1434463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Meningococcal disease continues to be a life threatening infection with high morbidity and mortality even in appropriately treated patients. Meningococcal vaccination plays a major role in the control of the disease; however, implementing vaccination remains problematic in the developing world. The objective of this review is to identify the challenges facing the use of meningococcal vaccines in the developing world in order to discuss the opportunities and available solutions to improve immunization in these countries. Inadequate epidemiologic information necessary to implement vaccination and financial challenges predominate. Multiple measures are needed to achieve the successful implementation of meningococcal conjugate vaccination programs that protect against circulating serogroups in developing countries including enhanced surveillance systems, financial support and aid through grants, product development partnerships that are the end result of effective collaboration and communication between different interdependent stakeholders to develop affordable vaccines, and demonstration of the cost-effectiveness of new meningococcal vaccines.
Collapse
Affiliation(s)
- Rouba Shaker
- a Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, and Center for Infectious Diseases Research , American University of Beirut Medical Center , Beirut , Lebanon
| | - Danielle Fayad
- a Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, and Center for Infectious Diseases Research , American University of Beirut Medical Center , Beirut , Lebanon
| | - Ghassan Dbaibo
- a Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, and Center for Infectious Diseases Research , American University of Beirut Medical Center , Beirut , Lebanon.,b Department of Biochemistry and Molecular Genetics , American University of Beirut , Beirut , Lebanon
| |
Collapse
|
19
|
Abundance and co-occurrence of extracellular capsules increase environmental breadth: Implications for the emergence of pathogens. PLoS Pathog 2017; 13:e1006525. [PMID: 28742161 PMCID: PMC5542703 DOI: 10.1371/journal.ppat.1006525] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/03/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Extracellular capsules constitute the outermost layer of many bacteria, are major virulence factors, and affect antimicrobial therapies. They have been used as epidemiological markers and recently became vaccination targets. Despite the efforts to biochemically serotype capsules in a few model pathogens, little is known of their taxonomic and environmental distribution. We developed, validated, and made available a computational tool, CapsuleFinder, to identify capsules in genomes. The analysis of over 2500 prokaryotic genomes, accessible in a database, revealed that ca. 50% of them—including Archaea—encode a capsule. The Wzx/Wzy-dependent capsular group was by far the most abundant. Surprisingly, a fifth of the genomes encode more than one capsule system—often from different groups—and their non-random co-occurrence suggests the existence of negative and positive epistatic interactions. To understand the role of multiple capsules, we queried more than 6700 metagenomes for the presence of species encoding capsules and showed that their distribution varied between environmental categories and, within the human microbiome, between body locations. Species encoding capsules, and especially those encoding multiple capsules, had larger environmental breadths than the other species. Accordingly, capsules were more frequent in environmental bacteria than in pathogens and, within the latter, they were more frequent among facultative pathogens. Nevertheless, capsules were frequent in clinical samples, and were usually associated with fast-growing bacteria with high infectious doses. Our results suggest that capsules increase the environmental range of bacteria and make them more resilient to environmental perturbations. Capsules might allow opportunistic pathogens to profit from empty ecological niches or environmental perturbations, such as those resulting from antibiotic therapy, to colonize the host. Capsule-associated virulence might thus be a by-product of environmental adaptation. Understanding the role of capsules in natural environments might enlighten their function in pathogenesis. Extracellular capsules protect bacterial cells from external aggressions such as antibiotics or desiccation, but can also be targeted by vaccines. Since little was known about their frequency across Prokaryotes, we created and made freely available a computational tool, CapsuleFinder, to identify them from genomic data. Surprisingly, its use showed that many bacterial strains, especially those with the largest genomes, encode several capsules. The frequencies of the different combinations of capsule groups depended strongly on the phyla and the groups themselves, suggesting the existence of epistatic interactions between capsules. Bacteria encoding capsule systems were found in many natural environments, and were frequent in the human microbiome. In contrast to their frequent association with virulence, we found many more capsules in non-pathogens or facultative pathogens than among obligatory pathogens. We suggest that capsules increase the environmental breadth of bacteria thereby facilitating host colonization by opportunistic pathogens.
Collapse
|
20
|
Pashova S, Schneider C, von Gunten S, Pashov A. Antibody repertoire profiling with mimotope arrays. Hum Vaccin Immunother 2016; 13:314-322. [PMID: 27929733 DOI: 10.1080/21645515.2017.1264786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Large-scale profiling and monitoring of antibody repertoires is possible through next generation sequencing (NGS), phage display libraries and microarrays. These methods can be combined in a pipeline, which ultimately maps the antibody reactivities onto defined arrays of structures - peptides or carbohydrates. The arrays can help analyze the individual specificities or can be used as complex patterns. In any case, the targets recognized should formally be considered mimotopes unless they are proven to be epitopes driving the antibody synthesis. Here, the advantages and disadvantages of the major profiling techniques as well as their current and future application in disease prediction and vaccination are discussed.
Collapse
Affiliation(s)
- Shina Pashova
- a Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | | | | | - Anastas Pashov
- c Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| |
Collapse
|
21
|
Global Meningococcal Initiative: guidelines for diagnosis and confirmation of invasive meningococcal disease. Epidemiol Infect 2016; 144:3052-3057. [PMID: 27357022 PMCID: PMC5080665 DOI: 10.1017/s0950268816001308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Global Meningococcal Initiative (GMI) is an international group of scientists and clinicians with recognized expertise in meningococcal disease including microbiology, immunology, epidemiology, public health and vaccinology. The GMI was established to promote the global prevention of meningococcal disease through education, research and international cooperation. The GMI held its second summit meeting in 2013 to discuss the different aspects of existing meningococcal immunization programmes and surveillance systems. Laboratory confirmation and characterization were identified as essential for informing evidence-based vaccine implementation decisions. The relative merits of different confirmatory methodologies and their applications in different resource settings were a key component of the discussions. This paper summarizes the salient issues discussed, with special emphasis on the recommendations made and any deficiencies that were identified.
Collapse
|
22
|
Gasparini R, Landa P, Amicizia D, Icardi G, Ricciardi W, de Waure C, Tanfani E, Bonanni P, Lucioni C, Testi A, Panatto D. Vaccinating Italian infants with a new multicomponent vaccine (Bexsero®) against meningococcal B disease: A cost-effectiveness analysis. Hum Vaccin Immunother 2016; 12:2148-2161. [PMID: 27163398 PMCID: PMC4994748 DOI: 10.1080/21645515.2016.1160177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The European Medicines Agency has approved a multicomponent serogroup B meningococcal vaccine (Bexsero®) for use in individuals of 2 months of age and older. A cost-effectiveness analysis (CEA) from the societal and Italian National Health Service perspectives was performed in order to evaluate the impact of vaccinating Italian infants less than 1 y of age with Bexsero®, as opposed to non-vaccination. The analysis was carried out by means of Excel Version 2011 and the TreeAge Pro® software Version 2012. Two basal scenarios that differed in terms of disease incidence (official and estimated data to correct for underreporting) were considered. In the basal scenarios, we considered a primary vaccination cycle with 4 doses (at 2, 4, 6 and 12 months of age) and 1 booster dose at the age of 11 y, the societal perspective and no cost for death. Sensitivity analyses were carried out in which crucial variables were changed over probable ranges. In Italy, on the basis of official data on disease incidence, vaccination with Bexsero® could prevent 82.97 cases and 5.61 deaths in each birth cohort, while these figures proved to be three times higher on considering the estimated incidence. The results of the CEA showed that the Incremental Cost Effectiveness Ratio (ICER) per QALY was €109,762 in the basal scenario if official data on disease incidence are considered and €26,599 if estimated data are considered. The tornado diagram indicated that the most influential factor on ICER was the incidence of disease. The probability of sequelae, the cost of the vaccine and vaccine effectiveness also had an impact. Our results suggest that vaccinating infants in Italy with Bexsero® has the ability to significantly reduce meningococcal disease and, if the probable underestimation of disease incidence is considered, routine vaccination is advisable.
Collapse
Affiliation(s)
- Roberto Gasparini
- a Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Paolo Landa
- b Department of Economics , University of Genoa , Genoa , Italy.,c University of Exeter , Medical School , Exeter , UK
| | - Daniela Amicizia
- a Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Giancarlo Icardi
- a Department of Health Sciences , University of Genoa , Genoa , Italy
| | - Walter Ricciardi
- d Institute of Hygiene and Public Health , Catholic University of Sacred Heart , Rome , Italy
| | - Chiara de Waure
- d Institute of Hygiene and Public Health , Catholic University of Sacred Heart , Rome , Italy
| | - Elena Tanfani
- b Department of Economics , University of Genoa , Genoa , Italy
| | - Paolo Bonanni
- e Department of Health Sciences , University of Florence , Florence , Italy
| | | | - Angela Testi
- b Department of Economics , University of Genoa , Genoa , Italy
| | - Donatella Panatto
- a Department of Health Sciences , University of Genoa , Genoa , Italy
| |
Collapse
|
23
|
McCluskie MJ, Evans DM, Zhang N, Benoit M, McElhiney SP, Unnithan M, DeMarco SC, Clay B, Huber C, Deora A, Thorn JM, Stead DR, Merson JR, Davis HL. The effect of preexisting anti-carrier immunity on subsequent responses to CRM197 or Qb-VLP conjugate vaccines. Immunopharmacol Immunotoxicol 2016; 38:184-96. [PMID: 27121368 DOI: 10.3109/08923973.2016.1165246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Certain antigens, such as haptens (small molecules), short peptides, and carbohydrates (e.g. bacterial polysaccharides) are non- or poorly immunogenic unless conjugated to a carrier molecule that provides a structural scaffold for antigen presentation as well as T cell help required for B-cell activation and maturation. However, the carriers themselves are immunogenic and resulting carrier-specific immune responses may impact the immunogenicity of other conjugate vaccines using the same carrier that are administered subsequently. OBJECTIVE Herein, using two different carriers (cross-reactive material 197, CRM and Qb-VLP), we examined in mice the impact that preexisting anti-carrier antibodies (Ab) had on subsequent immune responses to conjugates with either the same or a different carrier. METHOD For this purpose, we used two nicotine hapten conjugates (NIC7-CRM or NIC-Qb), two IgE peptide conjugates (Y-CRM or Y-Qb), and a pneumococcal polysaccharide conjugate (Prevnar 13(®)). RESULTS Prior exposure to CRM or Qb-VLP significantly reduced subsequent responses to the conjugated antigen having the homologous carrier, with the exception of Prevnar 13® where anti-polysaccharide responses were similar to those in animals without preexisting anti-carrier Ab. CONCLUSION Collectively, the data suggest that the relative sizes of the antigen and carrier, as well as the conjugation density for a given conjugate impact the extent of anti-carrier suppression. All animals developed anti-carrier responses with repeat vaccination and the differences in Ab titer between groups with and without preexisting anti-carrier responses became less apparent; however, anti-carrier effects were more durable for Ab function.
Collapse
Affiliation(s)
- Michael J McCluskie
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Dana M Evans
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Ningli Zhang
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Michelle Benoit
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Susan P McElhiney
- b Pfizer Vaccine Research and Early Development , Pearl River , NY , USA
| | - Manu Unnithan
- b Pfizer Vaccine Research and Early Development , Pearl River , NY , USA
| | - Suzanne C DeMarco
- c Pfizer Biotherapeutics Pharmaceutical Sciences , St. Louis , MO , USA
| | - Bryan Clay
- d Pfizer Vaccine Immunotherapeutics , La Jolla , CA , USA
| | | | - Aparna Deora
- c Pfizer Biotherapeutics Pharmaceutical Sciences , St. Louis , MO , USA
| | - Jennifer M Thorn
- c Pfizer Biotherapeutics Pharmaceutical Sciences , St. Louis , MO , USA
| | - David R Stead
- d Pfizer Vaccine Immunotherapeutics , La Jolla , CA , USA
| | - James R Merson
- d Pfizer Vaccine Immunotherapeutics , La Jolla , CA , USA
| | - Heather L Davis
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| |
Collapse
|
24
|
Simple alternative to sialic acid determination in meningococcal polysaccharides W or Y. J Pharm Biomed Anal 2016; 120:283-9. [PMID: 26760246 DOI: 10.1016/j.jpba.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 11/21/2022]
Abstract
Physicochemical methods are the primary tests used to ensure that batches of meningococcal polysaccharide (PS) antigens are manufactured consistently to those shown to be safe and effective in clinical trials. Although modern physicochemical methods of analysis providing structural information about the antigens have been developed and used, simpler assays, which can be readily validated, are still in use for polysaccharide batch release. The simple and cheap method for Neisseria meningitidis serogroup W or Y polysaccharide (MenW or MenY PS) content quantification has been developed. This colorimetric method is based on the galactose or glucose quantification in MenW or MenY PS hydrolysate, respectively. Intra- and inter-assay precision and accuracy of the novel method have been demonstrated, in comparison to the same properties of the current regulatory approved method for the same purpose - sialic acid quantification. We provided the calculation of the possible future regulatory requirement for the galactose or glucose content in MenW or MenY PS, respectively, and revealed in detail the stoichiometric calculation behind it.
Collapse
|
25
|
Green LR, Eiden J, Hao L, Jones T, Perez J, McNeil LK, Jansen KU, Anderson AS. Approach to the Discovery, Development, and Evaluation of a Novel Neisseria meningitidis Serogroup B Vaccine. Methods Mol Biol 2016; 1403:445-469. [PMID: 27076147 DOI: 10.1007/978-1-4939-3387-7_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this chapter, we describe a research and development pathway to identify and demonstrate the efficacy of a Neisseria meningitidis non-capsular vaccine, the recently licensed N. meningitidis serogroup B (MnB) vaccine, Trumenba(®). While other approaches have been followed in the identification of a MnB vaccine (Pizza et al. Science 287:1816-1820, 2000), the methods described here reflect the distinctive approach and experiences in discovering and developing Trumenba(®). In contrast to the development and licensure of polysaccharide-conjugate vaccines against meningococcal serotypes A, C, W, and Y, the development of a vaccine to produce broadly protective antibodies against meningococcal serogroup B has proved difficult, due to the antigenic mimicry of the serogroup B polysaccharide capsule, which is composed of polysialic acid structures similar to those expressed on human neuronal cells. Early development efforts for these vaccines failed because the MnB polysaccharide structures resemble autoantigens and thus were poorly immunogenic. The development of an MnB vaccine has therefore focused on non-polysaccharide approaches. It was critical to identify MnB cell surface-exposed antigens capable of inducing a protective response against diverse, circulating strains of invasive MnB to ensure global coverage. Once candidate antigens were identified, it was important to characterize antigenic variation and expression levels, and subsequently to assure that antigens were expressed broadly among diverse clinical isolates. Prior to the initiation of clinical trials in humans, candidate vaccine antigens were tested in functional immunogenicity assays and yielded responses that were correlated with protection from meningococcal disease. These functional immunogenicity assays (serum bactericidal assays using human complement, hSBAs) measure the titer of complement-dependent bactericidal antibodies in serum from immunized test animals using diverse clinical MnB isolates as targets. Following optimization of vaccine antigenic components based on hSBA responses in preclinical models, animal toxicology tests were performed. Initial clinical studies (Phase 1 and 2) subsequently provided data to support (1) safety and immunogenicity of the vaccine formulation, and (2) the dose and schedule. Phase 3 clinical trials were carried out in the target populations to provide the clinical confirmation of safety and efficacy required for vaccine licensure.
Collapse
Affiliation(s)
- Luke R Green
- Pfizer Vaccine Research and Development Unit, 401 North Middletown Road, Pearl River, NY, USA
| | - Joseph Eiden
- Pfizer Vaccine Research and Development Unit, 401 North Middletown Road, Pearl River, NY, USA
| | - Li Hao
- Pfizer Vaccine Research and Development Unit, 401 North Middletown Road, Pearl River, NY, USA
| | - Tom Jones
- Pfizer Vaccine Research and Development Unit, 401 North Middletown Road, Pearl River, NY, USA
| | - John Perez
- Pfizer Vaccine Research and Development Unit, 401 North Middletown Road, Pearl River, NY, USA
| | - Lisa K McNeil
- Pfizer Vaccine Research and Development Unit, 401 North Middletown Road, Pearl River, NY, USA
| | - Kathrin U Jansen
- Pfizer Vaccine Research and Development Unit, 401 North Middletown Road, Pearl River, NY, USA
| | - Annaliesa S Anderson
- Pfizer Vaccine Research and Development Unit, 401 North Middletown Road, Pearl River, NY, USA.
| |
Collapse
|
26
|
Gasparini R, Panatto D, Bragazzi NL, Lai PL, Bechini A, Levi M, Durando P, Amicizia D. How the Knowledge of Interactions between Meningococcus and the Human Immune System Has Been Used to Prepare Effective Neisseria meningitidis Vaccines. J Immunol Res 2015; 2015:189153. [PMID: 26351643 PMCID: PMC4553322 DOI: 10.1155/2015/189153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/09/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decades, tremendous advancement in dissecting the mechanisms of pathogenicity of Neisseria meningitidis at a molecular level has been achieved, exploiting converging approaches of different disciplines, ranging from pathology to microbiology, immunology, and omics sciences (such as genomics and proteomics). Here, we review the molecular biology of the infectious agent and, in particular, its interactions with the immune system, focusing on both the innate and the adaptive responses. Meningococci exploit different mechanisms and complex machineries in order to subvert the immune system and to avoid being killed. Capsular polysaccharide and lipooligosaccharide glycan composition, in particular, play a major role in circumventing immune response. The understanding of these mechanisms has opened new horizons in the field of vaccinology. Nowadays different licensed meningococcal vaccines are available and used: conjugate meningococcal C vaccines, tetravalent conjugate vaccines, an affordable conjugate vaccine against the N. menigitidis serogroup A, and universal vaccines based on multiple antigens each one with a different and peculiar function against meningococcal group B strains.
Collapse
Affiliation(s)
- R. Gasparini
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Panatto
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - N. L. Bragazzi
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - P. L. Lai
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - A. Bechini
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - M. Levi
- Department of Health Sciences, University of Florence, Viale G.B. Morgagni 48, 50134 Florence, Italy
| | - P. Durando
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| | - D. Amicizia
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132 Genoa, Italy
| |
Collapse
|
27
|
Identification and therapeutic potential of a vitronectin binding region of meningococcal msf. PLoS One 2015; 10:e0124133. [PMID: 25826209 PMCID: PMC4380367 DOI: 10.1371/journal.pone.0124133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/13/2015] [Indexed: 01/06/2023] Open
Abstract
The human pathogen Neisseria meningitides (Nm) attains serum resistance via a number of mechanisms, one of which involves binding to the host complement regulator protein vitronectin. We have shown previously that the Meningococcal surface fibril (Msf), a trimeric autotransporter, binds to the activated form of vitronectin (aVn) to increase Nm survival in human serum. In this study, we aimed to identify the aVn-binding region of Msf to assess its potential as an antigen which can elicit antibodies that block aVn binding and/or possess bactericidal properties. Using several recombinant Msf fragments spanning its surface-exposed region, the smallest aVn-binding recombinants were found to span residues 1-86 and 39-124. The use of further deletion constructs and overlapping recombinant Msf fragments suggested that a region of Msf comprising residues 39-82 may be primarily important for aVn binding and that other regions may also be involved but to a lesser extent. Molecular modelling implicated K66 and K68, conserved in all available Msf sequences, to be involved in the interaction. Recombinant fragments which bound to aVn were able to reduce the survival advantage conveyed by aVn-interaction in serum bactericidal assays. Antibodies raised against one such fragment inhibited aVn binding to Msf. In addition, the antibodies enhanced specific killing of Msf-expressing Nm in a dose-dependent manner. Overall, this study identifies an aVn-binding region of Msf, an adhesin known to impart serum resistance properties to the pathogen; and shows that this region of Msf can elicit antibodies with dual properties which reduce pathogen survival within the host and thus has potential as a vaccine antigen.
Collapse
|
28
|
Abstract
INTRODUCTION Globally, the three main pathogens causing serious infections are Haemophilus influenzae type b, Streptococcus pneumoniae and Neisseria meningitidis. Over the last 5 years, new vaccines protecting against these bacteria have been developed and introduced in various countries. AREAS COVERED This review describes the recently licensed glycoconjugates being used to protect against these encapsulated bacteria. Immunogenicity and safety data that led to licensure or licensure expansion of these glycoconjugates are discussed in addition to the resultant impact on the disease burden. EXPERT OPINION The maintenance of robust immunisation programmes with high uptake rates is important in maintaining low rates of disease. Epidemiological surveillance systems are essential in monitoring any changes in infectious disease trends and in identifying emerging infections such as from non-typeable H. influenzae, pneumococcal serotype replacement disease and changes in the epidemiology of meningococcal serogroups. This is important to guide future vaccine development. Accessibility of these glycoconjugate vaccines in resource poor regions, which bear the highest disease burden from these pathogens, remains challenging largely due to high vaccine pricing. Recent aids from public and private funding, tiered vaccine pricing and the transfer of vaccine technology have helped in introducing these vaccines where they are most needed.
Collapse
Affiliation(s)
- Mairi Vella
- Mater Dei Hospital, Department of Paediatrics , Tal-Qroqq, Msida, MSD 2090 , Malta +356 2545 5567 ; +356 2545 4154 ;
| | | |
Collapse
|
29
|
Ladhani SN, Beebeejaun K, Lucidarme J, Campbell H, Gray S, Kaczmarski E, Ramsay ME, Borrow R. Increase in Endemic Neisseria meningitidis Capsular Group W Sequence Type 11 Complex Associated With Severe Invasive Disease in England and Wales. Clin Infect Dis 2014; 60:578-85. [DOI: 10.1093/cid/ciu881] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
30
|
Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc Natl Acad Sci U S A 2013; 110:19077-82. [PMID: 24191022 DOI: 10.1073/pnas.1314476110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neisseria meningitidis is a major cause of bacterial meningitis worldwide, especially in the African meningitis belt, and has a high associated mortality. The meningococcal serogroups A, W, and X have been responsible for epidemics and almost all cases of meningococcal meningitis in the meningitis belt over the past 12 y. Currently no vaccine is available against meningococcal X (MenX). Because the development of a new vaccine through to licensure takes many years, this leaves Africa vulnerable to new epidemics of MenX meningitis at a time when the epidemiology of meningococcal meningitis on the continent is changing rapidly, following the recent introduction of a glycoconjugate vaccine against serogroup A. Here, we report the development of candidate glycoconjugate vaccines against MenX and preclinical data from their use in animal studies. Following optimization of growth conditions of our seed MenX strain for polysaccharide (PS) production, a scalable purification process was developed yielding high amounts of pure MenX PS. Different glycoconjugates were synthesized by coupling MenX oligosaccharides of varying chain length to CRM197 as carrier protein. Analytical methods were developed for in-process control and determination of purity and consistency of the vaccines. All conjugates induced high anti-MenX PS IgG titers in mice. Antibodies were strongly bactericidal against African MenX isolates. These findings support the further development of glycoconjugate vaccines against MenX and their assessment in clinical trials to produce a vaccine against the one cause of epidemic meningococcal meningitis that currently cannot be prevented by available vaccines.
Collapse
|
31
|
Cox AD, St. Michael F, Aubry A, Cairns CM, Strong PCR, Hayes AC, Logan SM. Investigating the candidacy of a lipoteichoic acid-based glycoconjugate as a vaccine to combat Clostridium difficile infection. Glycoconj J 2013; 30:843-55. [DOI: 10.1007/s10719-013-9489-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
|
32
|
Quantitation of serogroups in multivalent polysaccharide-based meningococcal vaccines: Optimisation of hydrolysis conditions and chromatographic methods. Vaccine 2013; 31:3702-11. [DOI: 10.1016/j.vaccine.2013.05.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 01/01/2023]
|
33
|
Serogroup quantitation of multivalent polysaccharide and polysaccharide-conjugate meningococcal vaccines from China. Biologicals 2013; 41:261-8. [DOI: 10.1016/j.biologicals.2013.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/28/2013] [Accepted: 03/20/2013] [Indexed: 12/29/2022] Open
|
34
|
Pajon R, Fergus AM, Granoff DM. Mutant Native Outer Membrane Vesicles Combined with a Serogroup A Polysaccharide Conjugate Vaccine for Prevention of Meningococcal Epidemics in Africa. PLoS One 2013; 8:e66536. [PMID: 23805230 PMCID: PMC3689835 DOI: 10.1371/journal.pone.0066536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/07/2013] [Indexed: 11/24/2022] Open
Abstract
Background The meningococcal serogroup A (MenA) polysaccharide conjugate vaccine used in Sub-Saharan Africa does not prevent disease caused by MenW or MenX strains, which also cause epidemics in the region. We investigated the vaccine-potential of native outer membrane vesicles with over-expressed factor H-binding protein (NOMV-fHbp), which targeted antigens in African meningococcal strains, and was combined with a MenA polysaccharide conjugate vaccine. Methodology/Principal Findings The NOMV-fHbp vaccine was prepared from a mutant African MenW strain with PorA P1.5,2, attenuated endotoxin (ΔLpxL1), deleted capsular genes, and over-expressed fHbp in variant group 1. The NOMV-fHbp was adsorbed with Al(OH)3 and used to reconstitute a lyophilized MenA conjugate vaccine, which normally is reconstituted with liquid MenC, Y and W conjugates in a meningococcal quadrivalent conjugate vaccine (MCV4-CRM, Novartis). Mice immunized with the NOMV-fHbp vaccine alone developed serum bactericidal (human complement) activity against 13 of 15 African MenA strains tested; 10 of 10 African MenX strains, 7 of 7 African MenW strains, and 6 of 6 genetically diverse MenB strains with fHbp variant group 1 (including 1 strain from The Gambia). The combination NOMV-fHbp/MenA conjugate vaccine elicited high serum bactericidal titers against the two MenA strains tested that were resistant to bactericidal antibodies elicited by the NOMV-fHbp alone; the combination elicited higher titers against the MenA and MenW strains than those elicited by a control MCV4-CRM vaccine (P<0.05); and high titers against MenX and MenB strains. For most strains, the titers elicited by a control NOMV-fHbp knock out vaccine were <1∶10 except when the strain PorA matched the vaccine (titers >1∶000). Conclusion/Significance The NOMV-fHbp/MenA conjugate vaccine provided similar or higher coverage against MenA and MenW strains than a quadrivalent meningococcal conjugate vaccine, and extended protection against MenX strains responsible for epidemics in Africa, and MenB strains with fHbp in variant group 1.
Collapse
MESH Headings
- Africa South of the Sahara/epidemiology
- Animals
- Female
- Humans
- Meningitis, Meningococcal/epidemiology
- Meningitis, Meningococcal/genetics
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Mice
- Neisseria meningitidis, Serogroup A/genetics
- Neisseria meningitidis, Serogroup A/immunology
- Polysaccharides, Bacterial/genetics
- Polysaccharides, Bacterial/immunology
- Vaccines, Conjugate/genetics
- Vaccines, Conjugate/immunology
Collapse
Affiliation(s)
- Rolando Pajon
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Andrew M. Fergus
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Dan M. Granoff
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Antibody persistence and response to a booster dose of a quadrivalent conjugate vaccine for meningococcal disease in adolescents. Pediatr Infect Dis J 2013; 32:e170-7. [PMID: 23114372 DOI: 10.1097/inf.0b013e318279ac38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND In a previous randomized phase 2 study in adolescents, a CRM197 meningococcal conjugate vaccine against serogroups A, C, W-135 and Y (MenACWY-CRM) was well tolerated and immunogenic, compared with a plain polysaccharide vaccine (MenACWY-PS). METHODS This extension study assessed antibody persistence 5 years after primary vaccination with MenACWY-CRM (n = 50) or MenACWY-PS (n = 51), and the immunogenicity and reactogenicity of a dose of MenACWY-CRM given 5 years after primary vaccination; antibody response was also compared with vaccine-naive controls (n = 54). The primary endpoints were the percentage of subjects with titers ≥8 by serum bactericidal activity assay using human complement (hSBA) 5 years after primary vaccination and hSBA geometric mean titers 1 month after the MenACWY-CRM dose given in the current study. RESULTS Five years after primary vaccination, over 70% of subjects who had received MenACWY-CRM were seropositive (hSBA titers ≥8) for serogroups C, W-135 and Y; for serogroups C and Y, the percentages of seropositive subjects were significantly higher in subjects previously vaccinated with MenACWY-CRM than in subjects previously vaccinated with MenACWY-PS. The MenACWY-CRM dose given 5 years postprimary vaccination elicited an anamnestic response across serogroups in those previously vaccinated with MenACWY-CRM. Responses in those previously vaccinated with MenACWY-PS were less robust but adequate and similar to that seen in the vaccine-naive group, both in magnitude and kinetics. MenACWY-CRM was well tolerated in all 3 groups. CONCLUSION MenACWY-CRM provided a broad and persistent immune response in adolescents. A subsequent dose of MenACWY-CRM elicited an adequate antibody response, regardless of vaccine history.
Collapse
|
36
|
Holst J, Oster P, Arnold R, Tatley MV, Næss LM, Aaberge IS, Galloway Y, McNicholas A, O'Hallahan J, Rosenqvist E, Black S. Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV): lessons from past programs and implications for the future. Hum Vaccin Immunother 2013; 9:1241-53. [PMID: 23857274 PMCID: PMC3901813 DOI: 10.4161/hv.24129] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The utility of wild-type outer membrane vesicle (wtOMV) vaccines against serogroup B (MenB) meningococcal disease has been explored since the 1970s. Public health interventions in Cuba, Norway and New Zealand have demonstrated that these protein-based vaccines can prevent MenB disease. Data from large clinical studies and retrospective statistical analyses in New Zealand give effectiveness estimates of at least 70%. A consistent pattern of moderately reactogenic and safe vaccines has been seen with the use of approximately 60 million doses of three different wtOMV vaccine formulations. The key limitation of conventional wtOMV vaccines is their lack of broad protective activity against the large diversity of MenB strains circulating globally. The public health intervention in New Zealand (between 2004–2008) when MeNZB was used to control a clonal MenB epidemic, provided a number of new insights regarding international and public-private collaboration, vaccine safety surveillance, vaccine effectiveness estimates and communication to the public. The experience with wtOMV vaccines also provide important information for the next generation of MenB vaccines designed to give more comprehensive protection against multiple strains.
Collapse
Affiliation(s)
- Johan Holst
- Division of Infectious Disease Control; Norwegian Institute of Public Health; Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Caini S, Beck NS, Yacouba H, Maiga I, Chaibou I, Hinsa I, Adakal A, Issoufou A, Kim SH, Pezzoli L. From Agadez to Zinder: estimating coverage of the MenAfriVac™ conjugate vaccine against meningococcal serogroup A in Niger, September 2010 - January 2012. Vaccine 2013; 31:1597-603. [PMID: 23337027 DOI: 10.1016/j.vaccine.2013.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/29/2012] [Accepted: 01/07/2013] [Indexed: 01/11/2023]
Abstract
MenAfriVac™ is a conjugate vaccine against meningitis A specifically designed for Africa. In Niger, the MenAfriVac™ vaccination campaign was conducted in people aged 1-29 years in three phases. The third phase was conducted in November/December 2011 targeting more than 7 million people. We estimated vaccination coverage for the third phase; classified the 31 target districts according to vaccination coverage levels; analysed the factors associated with being vaccinated; described the reasons for non-vaccination; and estimated coverage of the MenAfriVac™ introduction in Niger by aggregating data from all three phases. We classified the districts by clustered lot quality assurance sampling according to a 75% lower threshold and a 90% upper threshold. We estimated coverage using a minimum cluster-sample of 30 x 10 in each region. Two criteria were used to document vaccination status: presentation of vaccination card only or by card and/or verbal history of vaccination (card+history). We surveyed 2390 persons. After the third phase, estimated coverage was 68.8% (95% CI 64.9-72.8) by card only and 90.9% (95% CI 88.6-93.2) by card+history. Five districts were accepted for coverage above 75% based on card only, whereas 25 were accepted based on card+history. Factors positively associated with being vaccinated were younger age (<15 years), female sex, residing in the same household for more than three months, and being informed about the vaccination campaign. The main reason for non-vaccination was not being at home during the campaign. Overall coverage for MenAfriVac™ introduction via 3 phases was 76.1% (95% CI: 72.5-79.6) by card only and 91.9% (95%CI: 89.7-94.1) by card+history.Although estimated coverage was high, pockets of non-vaccination probably still exist in the country; thus, the implementation of mop-up campaigns should be considered. Priorities for the future should include incorporating meningitis A vaccination into the existing immunization schedule and assessing its impact at a population level.
Collapse
Affiliation(s)
- Saverio Caini
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Steenbergen SM, Vimr ER. Chromatographic analysis of the Escherichia coli polysialic acid capsule. Methods Mol Biol 2013; 966:109-20. [PMID: 23299731 DOI: 10.1007/978-1-62703-245-2_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polysialic acid capsules are the major virulence factors in Escherichia coliK1, K92, and groups B and C meningococci. The sialic acid monomers (2-keto-3-deoxy-5-acetamido-7,8,9-D-glycero-D-galacto-nonulosonic acids) comprising these homopolymeric polysaccharide chains can be selectively modified with 1,2-diamino-4,5-methylenedioxy-benzene to produce highly fluorescent quinoxalinone derivatives distinguished by their elution times during reverse phase chromatography. Here, we describe methods to release the constituent capsular polysialic acid monomers, and to detect and quantify them by sensitive fluorometry. There are relatively few 2-keto acids in bacteria, making it possible to rapidly analyze samples even without prior purification of capsular polysaccharides.
Collapse
Affiliation(s)
- Susan M Steenbergen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
39
|
Greenwood B, Chiarot E, MacLennan CA, O'Ryan M. Can we defeat meningococcal disease in low and middle income countries? Vaccine 2012; 30 Suppl 2:B63-6. [PMID: 22607901 DOI: 10.1016/j.vaccine.2011.12.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/21/2022]
Abstract
The development of multivalent conjugate and protein-based meningococcal vaccines may make global control of meningococcal disease possible. However, achieving control of meningococcal disease in low and middle income countries will be challenging. In low income countries whose vaccination programmes receive financial support from the Global Alliance for Vaccination and Immunisation, the main challenge is lack of sufficient epidemiological information to allow rational decisions on vaccine introduction to be made and, in these countries, enhanced surveillance is needed. In middle income countries, financial challenges predominate. These could be met by demonstration of the cost effectiveness of new meningococcal vaccines and through the introduction of a tiered-pricing system.
Collapse
Affiliation(s)
- Brian Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London WC1E 7HT, UK.
| | | | | | | |
Collapse
|
40
|
Roux D, Pier GB, Skurnik D. Magic bullets for the 21st century: the reemergence of immunotherapy for multi- and pan-resistant microbes. J Antimicrob Chemother 2012; 67:2785-7. [PMID: 22899807 DOI: 10.1093/jac/dks335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In our current world, antibiotic resistance among pathogenic microbes keeps getting worse with few new antibiotics being pursued by pharmaceutical companies. Modern-day immunotherapies, reminiscent of the serotherapy approaches used in the early days of antimicrobial treatments, are a potential counter-measure, but are usually limited by the narrow spectrum against target antigens. Surprisingly, many multidrug-resistant (MDR) bacteria share a common surface polysaccharide, poly-β-1,6-N-acetylglucosamine (PNAG). Natural antibodies to PNAG are present in normal human sera, but are not protective. However, human monoclonal antibodies (MAbs) or polyclonal antisera raised to a deacetylated glycoform of PNAG mediate opsonic killing and protect mice against infections due to all PNAG-positive MDR pathogens tested. An MAb is currently in Phase II clinical trials. These discoveries could lead to utilization of antibodies to PNAG for either therapeutic use in patients infected by PNAG-producing MDR bacteria or prophylactic use in patients at risk of developing MDR infections.
Collapse
Affiliation(s)
- Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
41
|
|
42
|
Ladhani SN, Flood JS, Ramsay ME, Campbell H, Gray SJ, Kaczmarski EB, Mallard RH, Guiver M, Newbold LS, Borrow R. Invasive meningococcal disease in England and Wales: Implications for the introduction of new vaccines. Vaccine 2012; 30:3710-6. [DOI: 10.1016/j.vaccine.2012.03.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/13/2012] [Accepted: 03/05/2012] [Indexed: 01/06/2023]
|
43
|
|
44
|
Kaaijk P, van der Ende A, Berbers G, van den Dobbelsteen GPJM, Rots NY. Is a single dose of meningococcal serogroup C conjugate vaccine sufficient for protection? experience from the Netherlands. BMC Infect Dis 2012; 12:35. [PMID: 22316426 PMCID: PMC3293716 DOI: 10.1186/1471-2334-12-35] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 02/08/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The first meningococcal serogroup C (MenC) conjugate vaccine was licensed in 1999 and introduced in the United Kingdom. Countries that have implemented the MenC vaccine since then in their national immunisation programmes use different schedules. Nevertheless, all involved countries seem to experience substantial declines in the incidence of MenC disease. DISCUSSION Since 2001, the MenC conjugate vaccine has been implemented in the Netherlands by offering a single dose to all children aged 14 months. Prior to the introduction of the vaccine into the national immunisation programme, a catch-up vaccination campaign was initiated in which a single dose of the MenC conjugate vaccine was offered to all children aged from 14 months up to and including 18 years. Since then, there has been no report of any case of MenC disease among immunocompetent vaccinees. Administration of a single dose of MenC conjugate vaccine after infancy could be beneficial considering the already complex immunisation schedules with large numbers of vaccinations in the first year of life. The present paper deals with the advantages and critical aspects of a single dose of the MenC conjugate vaccine. SUMMARY A single dose of MenC conjugate vaccine at the age of 14 months in combination with a catch up vaccine campaign appeared to be a successful strategy to prevent MenC disease in the Netherlands, thereby confirming that a single dose of the vaccine could sufficiently protect against disease. Nevertheless, this approach can only be justified in countries with a relatively low incidence of serogroup C meningococcal disease in the first year of life. Furthermore, a good surveillance programme is recommended for timely detection of vaccine breakthroughs and outbreaks among non-vaccinees, since long-term protection after a single dose in the second year of life cannot currently be guaranteed.
Collapse
Affiliation(s)
- Patricia Kaaijk
- National Institute for Public Health and the Environment (RIVM), Centre for infectious Diseases Control Netherlands, Section Vaccinology, Bilthoven, the Netherlands
- National Institute for Public Health and the Environment (RIVM), Centre for infectious Diseases Control Netherlands, Section Vaccinology, Building A9, Mailbox 41, PO Box 1, 3720, BA Bilthoven, The Netherlands
| | - Arie van der Ende
- Academic Medical Centre (AMC), Department of medical Microbiology and the Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, the Netherlands
| | - Guy Berbers
- National Institute for Public Health and the Environment (RIVM), Centre for infectious Diseases Control Netherlands, Laboratorium for Infectious Diseases and Screening, Bilthoven, the Netherlands
| | - Germie PJM van den Dobbelsteen
- National Institute for Public Health and the Environment (RIVM), Centre for infectious Diseases Control Netherlands, Section Vaccinology, Bilthoven, the Netherlands
| | - Nynke Y Rots
- National Institute for Public Health and the Environment (RIVM), Centre for infectious Diseases Control Netherlands, Section Vaccinology, Bilthoven, the Netherlands
| |
Collapse
|
45
|
Halperin SA, Bettinger JA, Greenwood B, Harrison LH, Jelfs J, Ladhani SN, McIntyre P, Ramsay ME, Sáfadi MAP. The changing and dynamic epidemiology of meningococcal disease. Vaccine 2011; 30 Suppl 2:B26-36. [PMID: 22178525 DOI: 10.1016/j.vaccine.2011.12.032] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 01/05/2023]
Abstract
The epidemiology of invasive meningococcal disease continues to change rapidly, even in the three years since the first Meningococcal Exchange Meeting in 2008. Control of disease caused by serogroup C has been achieved in countries that have implemented meningococcal C or quadrivalent meningococcal ACWY conjugate vaccines. Initiation of mass immunization programs with meningococcal A conjugate vaccines across the meningitis belt of Africa may lead to the interruption of cyclical meningococcal epidemics. A meningococcal B vaccination program in New Zealand has led to a decreased incidence of high rates of endemic serogroup B disease. Increases in serogroup Y disease have been observed in certain Nordic countries which, if they persist, may require consideration of use of a multiple serogroup vaccine. The imminent availability of recombinant broadly protective serogroup B vaccines may provide the tools for further control of invasive meningococcal disease in areas where serogroup B disease predominates. Continued surveillance of meningococcal disease is essential; ongoing global efforts to improve the completeness of reporting are required.
Collapse
Affiliation(s)
- Scott A Halperin
- Canadian Center for Vaccinology, Dalhousie University, the IWK Health Centre, and Capital Health, Halifax, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|