1
|
Watson MJ, Mundorff CC, Lynch EM, Kollman JM, Kearney JF, Guttman M. Defining the Features of Complement-Active IgM. J Mol Biol 2025; 437:169104. [PMID: 40154915 PMCID: PMC12040574 DOI: 10.1016/j.jmb.2025.169104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Immunoglobulin M (IgM) is a class of mammalian antibody that is critical for the early stages of adaptive immunity, and is the most potent Ig-activator of the classical complement cascade. While the relationship between IgM and complement has been appreciated for decades, the structural transitions within IgM upon antigen binding that promote the activation of complement component C1 remain unresolved. Here we examine in vitro complement activation, C1 binding kinetics, and conformational changes within IgM in different antigen-bound states. Binding studies using biolayer interferometry revealed that only in a multivalent complex with a surface-displayed antigen was IgM fully capable of initiating complement activation. Hydrogen/Deuterium exchange with mass spectrometry revealed the predominant structural changes within the Fc domains during transition to the active conformation. Collectively, this work establishes key structural and functional qualities that define the complement-active form of IgM.
Collapse
Affiliation(s)
- Michael J Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Charlie C Mundorff
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
2
|
Zhou X, Zeng L, Huang Z, Ruan Z, Yan H, Zou C, Xu S, Zhang Y. Strategies Beyond 3rd EGFR-TKI Acquired Resistance: Opportunities and Challenges. Cancer Med 2025; 14:e70921. [PMID: 40322930 PMCID: PMC12051098 DOI: 10.1002/cam4.70921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
The seminal identification of epidermal growth factor receptor (EGFR) mutations as pivotal oncogenic drivers in non-small cell lung cancer (NSCLC) has catalyzed the evolution of biomarker-guided therapeutic paradigms for advanced disease. Currently, third-generation EGFR tyrosine kinase inhibitors (EGFR-TKI) have revolutionized first-line treatment for advanced EGFR-mutated NSCLC, yet acquired resistance remains an inevitable and formidable clinical challenge. This review systematically summarizes molecular mechanisms underlying treatment resistance, with a focus on clinical challenges associated with central nervous system (CNS) metastases. Therapeutic resistance mechanisms are categorized into EGFR-dependent (on-target) pathways, typified by acquired kinase domain mutations (e.g., C797S), and EGFR-independent (off-target) pathways, involving compensatory activation of parallel signaling effectors (e.g., MET amplification, HER2 activation) or phenotypic transformation. We further evaluated contemporary diagnostic modalities for identifying resistance drivers and appraised emerging therapeutic strategies, including fourth-generation EGFR-TKI, various combination therapies, and antibody-drug conjugates (ADCs), and so forth, with emphasis on ongoing clinical trials that may transform the existing treatment paradigm. By synthesizing preclinical and clinical insights, this review aims to advance mechanistic understanding and propose therapeutic strategies to overcome acquired resistance to third-generation EGFR-TKI in first-line treatment.
Collapse
Affiliation(s)
- Xuexue Zhou
- Medical CollegeJishou UniversityJishouChina
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Zhe Huang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Zhaohui Ruan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Huan Yan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Chun Zou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Shidong Xu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Yongchang Zhang
- Medical CollegeJishou UniversityJishouChina
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Department of Pathology and Pathophysiology, School of Basic Medical SciencesCentral South UniversityChangshaChina
| |
Collapse
|
3
|
Ge S, Dang M, Pires Dias AC, Zhang X. Engineered IgG Fc-conjugation prolongs the half-life of florfenicol and alleviates pneumonia in mice. Biochimie 2025; 229:105-113. [PMID: 39427834 DOI: 10.1016/j.biochi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Small molecule drugs often exhibit short half-lives, requiring frequent administrations to maintain therapeutic concentrations over an extended period. To address this issue, the fragment crystallizable (Fc) region of IgG, known to prolong the half-life of antibodies via its interaction with the Fc neonatal receptor, was harnessed as a carrier protein to extend the half-life of a small molecule drug, florfenicol. Florfenicol, was chemically coupled to a recombinant Fc protein expressed using the eukaryotic expression system in HEK293 cells. The Fc-florfenicol conjugate exhibited a substantially prolonged half-life of from 3.8 to 9.1 h compared to unconjugated florfenicol and demonstrated excellent therapeutic properties in treating pneumonia in a mouse model. Our results, combined with the literature analysis on Fc-small molecule conjugates, show that Fc can substantially enhance the drug's half-life and suggest the potential for its use as a carrier in novel delivery systems.
Collapse
Affiliation(s)
- Shikun Ge
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mei Dang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260, Singapore
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Xiaoying Zhang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada.
| |
Collapse
|
4
|
Zaleski MH, Chase LS, Hood ED, Wang Z, Nong J, Espy CL, Zamora ME, Wu J, Morrell LJ, Muzykantov VR, Myerson JW, Brenner JS. Conjugation Chemistry Markedly Impacts Toxicity and Biodistribution of Targeted Nanoparticles, Mediated by Complement Activation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409945. [PMID: 39663706 PMCID: PMC11795710 DOI: 10.1002/adma.202409945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Conjugation chemistries are a major enabling technology for the development of drug delivery systems, from antibody-drug conjugates to antibody-targeted lipid nanoparticles inspired by the success of the COVID-19 vaccine. However, here it is shown that for antibody-targeted nanoparticles, the most popular conjugation chemistries directly participate in the activation of the complement cascade of plasma proteins. Their activation of complement leads to large changes in the biodistribution of nanoparticles (up to 140-fold increased uptake into phagocytes of the lungs) and multiple toxicities, including a 50% drop in platelet count. It is founded that the mechanism of complement activation varies dramatically between different conjugation chemistries. Dibenzocyclooctyne, a commonly used click-chemistry, caused aggregation of conjugated antibodies, but only on the surface of nanoparticles (not in bulk solution). By contrast, thiol-maleimide chemistry do not activate complement via its effects on antibodies, but rather because free maleimide bonded to albumin in plasma, and clustered albumin is then attacked by complement. Using these mechanistic insights, solutions are engineered that reduced the activation of complement for each class of conjugation chemistry. These results highlight that while conjugation chemistry is essential for the future of nanomedicine, it is not innocuous and must be designed with opsonins like complement in mind.
Collapse
Affiliation(s)
- Michael H. Zaleski
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Liam S. Chase
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Elizabeth D. Hood
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Zhicheng Wang
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Jia Nong
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Carolann L. Espy
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Marco E. Zamora
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Jichuan Wu
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Lianne J. Morrell
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Jacob W. Myerson
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational TherapeuticsThe Perelman School of MedicineUniversity of Pennsylvania421 Curie Blvd., 354 BRB II/IIIPhiladelphiaPA19104USA
- Department of MedicineUniversity of Pennsylvania3400 Civic Center BoulevardPhiladelphiaPA19104USA
| |
Collapse
|
5
|
Parashar AK, Saraogi GK, Jain PK, Kurmi B, Shrivastava V, Arora V. Polymer-drug conjugates: revolutionizing nanotheranostic agents for diagnosis and therapy. Discov Oncol 2024; 15:641. [PMID: 39527173 PMCID: PMC11554983 DOI: 10.1007/s12672-024-01509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Nanotheranostics, an amalgamation of therapeutic and diagnostic capabilities at the nanoscale, is revolutionizing personalized medicine. Polymer-drug conjugates (PDCs) stand at the forefront of this arena, offering a multifaceted approach to treat complex diseases such as cancer. This review explores the recent advancements in PDCs, highlighting their design principles, working mechanisms, and the therapeutic applications. We discuss the incorporation of imaging agents into PDCs that allow for real-time monitoring of drug delivery and treatment efficacy. With the aim of improving patient care, the review examines how PDCs enable targeted drug delivery, minimize side effects, and provide valuable diagnostic data, hence enhancing the precision of medical interventions. We also address the challenges facing the clinical translation of PDCs, such as scalability, regulatory hurdles, and cost-effectiveness, providing a comprehensive outlook on the future of nanotheranostics in patient management.
Collapse
Affiliation(s)
- Ashish Kumar Parashar
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India, 201306.
| | | | | | - Balakdas Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | | | - Vandana Arora
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India, 201306
| |
Collapse
|
6
|
Jiao J, Qian Y, Lv Y, Wei W, Long Y, Guo X, Buerliesi A, Ye J, Han H, Li J, Zhu Y, Zhang W. Overcoming limitations and advancing the therapeutic potential of antibody-oligonucleotide conjugates (AOCs): Current status and future perspectives. Pharmacol Res 2024; 209:107469. [PMID: 39433169 DOI: 10.1016/j.phrs.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As cancer incidence rises due to an aging population, the importance of precision medicine continues to grow. Antibody-drug conjugates (ADCs) exemplify targeted therapies by delivering cytotoxic agents to specific antigens. Building on this concept, researchers have developed antibody-oligonucleotide conjugates (AOCs), which combine antibodies with oligonucleotides to regulate gene expression. This review highlights the mechanism of AOCs, emphasizing their unique ability to selectively target and modulate disease-causing proteins. It also explores the components of AOCs and their application in tumor therapy while addressing key challenges such as manufacturing complexities, endosomal escape, and immune response. The article underscores the significance of AOCs in precision oncology and discusses future directions, highlighting their potential in treating cancers driven by genetic mutations and abnormal protein expression.
Collapse
Affiliation(s)
- Jinlan Jiao
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Qian
- Dermatologic Surgery Department, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing 210042, China
| | - Yinhua Lv
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Wenqian Wei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yongxuan Long
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoling Guo
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Anya Buerliesi
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Hao Han
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
7
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
8
|
Aoyama M, Tada M, Yokoo H, Ito T, Misawa T, Demizu Y, Ishii-Watabe A. Linker and Conjugation Site Synergy in Antibody-Drug Conjugates: Impacts on Biological Activity. Bioconjug Chem 2024; 35. [PMID: 39363433 PMCID: PMC11488503 DOI: 10.1021/acs.bioconjchem.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Antibody-drug conjugates (ADCs) produced using general conjugation methods yield heterogeneous products containing mixtures of species with different numbers of payloads per antibody (drug-antibody ratios) conjugated at multiple sites. This heterogeneity affects the stability, efficacy, and safety of ADCs. Thus, various site-specific conjugation methods have been developed to achieve homogeneity in ADCs. It was reported that linker structures and conjugation sites generally affected the characteristics of site-specific ADCs such as stability, efficacy, and safety. However, the combined effects of conjugation sites and linker structures on the physicochemical and biological characteristics of site-specific ADCs have remained unclear. In this study, we generated 30 homogeneous site-specific ADCs with a combination of six conjugation sites and five linker structures using THIOMAB technology and evaluated the characteristics of these homogeneous ADCs. We found that both conjugation sites and linker structures affected characteristics unique to ADCs (linker stability as well as target-dependent and target-independent cytotoxicity) in site-specific ADCs. Especially, conjugation to the constant regions of the light chain and the presence of polyethylene glycol structures in the linker are important for those ADC-specific characteristics. Interestingly, we also found that the effects of linker structures on the target-independent cytotoxicity of homogeneous ADCs at certain conjugation sites differed from those seen in conventional heterogeneous ADCs. Our results suggest that optimizing linker structures based on the conjugation site may be necessary for site-specific ADCs.
Collapse
Affiliation(s)
- Michihiko Aoyama
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Minoru Tada
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Hidetomo Yokoo
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takahito Ito
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takashi Misawa
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Yosuke Demizu
- Division
of Organic Chemistry, National Institute
of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Akiko Ishii-Watabe
- Division
of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tonomachi Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
9
|
Choules MP, Zuo P, Otsuka Y, Garg A, Tang M, Bonate P. Physiologically based pharmacokinetic model to predict drug-drug interactions with the antibody-drug conjugate enfortumab vedotin. J Pharmacokinet Pharmacodyn 2024; 51:417-428. [PMID: 37632598 DOI: 10.1007/s10928-023-09877-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/13/2023] [Indexed: 08/28/2023]
Abstract
Enfortumab vedotin is an antibody-drug conjugate (ADC) comprised of a Nectin-4-directed antibody and monomethyl auristatin E (MMAE), which is primarily eliminated through P-glycoprotein (P-gp)-mediated excretion and cytochrome P450 3A4 (CYP3A4)-mediated metabolism. A physiologically based pharmacokinetic (PBPK) model was developed to predict effects of combined P-gp with CYP3A4 inhibitor/inducer (ketoconazole/rifampin) on MMAE exposure when coadministered with enfortumab vedotin and study enfortumab vedotin with CYP3A4 (midazolam) and P-gp (digoxin) substrate exposure. A PBPK model was built for enfortumab vedotin and unconjugated MMAE using the PBPK simulator ADC module. A similar model was developed with brentuximab vedotin, an ADC with the same valine-citrulline-MMAE linker as enfortumab vedotin, for MMAE drug-drug interaction (DDI) verification using clinical data. The DDI simulation predicted a less-than-2-fold increase in MMAE exposure with enfortumab vedotin plus ketoconazole (MMAE geometric mean ratio [GMR] for maximum concentration [Cmax], 1.15; GMR for area under the time-concentration curve from time 0 to last quantifiable concentration [AUClast], 1.38). Decreased MMAE exposure above 50% but below 80% was observed with enfortumab vedotin plus rifampin (MMAE GMR Cmax, 0.72; GMR AUClast, 0.47). No effect of enfortumab vedotin on midazolam or digoxin systemic exposure was predicted. Results suggest that combination enfortumab vedotin, P-gp, and a CYP3A4 inhibitor may result in increased MMAE exposure and patients should be monitored for potential adverse effects. Combination P-gp and a CYP3A4 inducer may result in decreased MMAE exposure. No exposure change is expected for CYP3A4 or P-gp substrates when combined with enfortumab vedotin.ClinicalTrials.gov identifier Not applicable.
Collapse
Affiliation(s)
- Mary P Choules
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global, Inc., One Astellas Way, Northbrook, IL, 60062, USA.
| | - Peiying Zuo
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global, Inc., One Astellas Way, Northbrook, IL, 60062, USA
| | - Yukio Otsuka
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global, Inc., Tokyo, Japan
| | - Amit Garg
- Quantitative Pharmacology and Disposition, Seagen Inc., South San Francisco, CA, USA
| | - Mei Tang
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global, Inc., One Astellas Way, Northbrook, IL, 60062, USA
| | - Peter Bonate
- Clinical Pharmacology and Exploratory Development, Astellas Pharma Global, Inc., One Astellas Way, Northbrook, IL, 60062, USA
| |
Collapse
|
10
|
Hobbs KJ, Bayless R, Sheats MK. A Comparative Review of Cytokines and Cytokine Targeting in Sepsis: From Humans to Horses. Cells 2024; 13:1489. [PMID: 39273060 PMCID: PMC11394191 DOI: 10.3390/cells13171489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
With the emergence of COVID-19, there is an increased focus in human literature on cytokine production, the implications of cytokine overproduction, and the development of novel cytokine-targeting therapies for use during sepsis. In addition to viral infections such as COVID-19, bacterial infections resulting in exposure to endotoxins and exotoxins in humans can also lead to sepsis, resulting in organ failure and death. Like humans, horses are exquisitely sensitive to endotoxin and are among the veterinary species that develop clinical sepsis similar to humans. These similarities suggest that horses may serve as a naturally occurring model of human sepsis. Indeed, evidence shows that both species experience cytokine dysregulation, severe neutropenia, the formation of neutrophil extracellular traps, and decreased perfusion parameters during sepsis. Sepsis treatments that target cytokines in both species include hemoperfusion therapy, steroids, antioxidants, and immunomodulation therapy. This review will present the shared cytokine physiology across humans and horses as well as historical and updated perspectives on cytokine-targeting therapy. Finally, this review will discuss the potential benefits of increased knowledge of equine cytokine mechanisms and their potential positive impact on human medicine.
Collapse
Affiliation(s)
- Kallie J. Hobbs
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27526, USA;
| | - Rosemary Bayless
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27526, USA;
| | - M. Katie Sheats
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27526, USA;
| |
Collapse
|
11
|
Rudd SE, Noor A, Morgan KA, Donnelly PS. Diagnostic Positron Emission Tomography Imaging with Zirconium-89 Desferrioxamine B Squaramide: From Bench to Bedside. Acc Chem Res 2024; 57:1421-1433. [PMID: 38666539 DOI: 10.1021/acs.accounts.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Molecular imaging with antibodies radiolabeled with positron-emitting radionuclides combines the affinity and selectivity of antibodies with the sensitivity of Positron Emission Tomography (PET). PET imaging allows the visualization and quantification of the biodistribution of the injected radiolabeled antibody, which can be used to characterize specific biological interactions in individual patients. This characterization can provide information about the engagement of the antibody with a molecular target such as receptors present in elevated levels in tumors as well as providing insight into the distribution and clearance of the antibody. Potential applications of clinical PET with radiolabeled antibodies include identifying patients for targeted therapies, characterization of heterogeneous disease, and monitoring treatment response.Antibodies often take several days to clear from the blood pool and localize in tumors, so PET imaging with radiolabeled antibodies requires the use of a radionuclide with a similar radioactive half-life. Zirconium-89 is a positron-emitting radionuclide that has a radioactive half-life of 78 h and relatively low positron emission energy that is well suited to radiolabeling antibodies. It is essential that the zirconium-89 radionuclide be attached to the antibody through chemistry that provides an agent that is stable in vivo with respect to the dissociation of the radionuclide without compromising the biological activity of the antibody.This Account focuses on our research using a simple derivative of the bacterial siderophore desferrioxamine (DFO) with a squaramide ester functional group, DFO-squaramide (DFOSq), to link the chelator to antibodies. In our work, we produce conjugates with an average ∼4 chelators per antibody, and this does not compromise the binding of the antibody to the target. The resulting antibody conjugates of DFOSq are stable and can be easily radiolabeled with zirconium-89 in high radiochemical yields and purity. Automated methods for the radiolabeling of DFOSq-antibody conjugates have been developed to support multicenter clinical trials. Evaluation of several DFOSq conjugates with antibodies and low molecular weight targeting agents in tumor mouse models gave PET images with high tumor uptake and low background. The promising preclinical results supported the translation of this chemistry to human clinical trials using two different radiolabeled antibodies. The potential clinical impact of these ongoing clinical trials is discussed.The use of DFOSq to radiolabel relatively low molecular weight targeting molecules, peptides, and peptide mimetics is also presented. Low molecular weight molecules typically clear the blood pool and accumulate in target tissue more rapidly than antibodies, so they are usually radiolabeled with positron-emitting radionuclides with shorter radioactive half-lives such as fluorine-18 (t1/2 ∼ 110 min) or gallium-68 (t1/2 ∼ 68 min). Radiolabeling peptides and peptide mimetics with zirconium-89, with its longer radioactive half-life (t1/2 = 78 h), could facilitate the centralized manufacture and distribution of radiolabeled tracers. In addition, the ability to image patients at later time points with zirconium-89 based agents (e.g. 4-24 h after injection) may also allow the delineation of small or low-uptake disease sites as the delayed imaging results in increased clearance of the tracer from nontarget tissue and lower background signal.
Collapse
Affiliation(s)
- Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
12
|
Johann F, Wöll S, Winzer M, Gieseler H. Agitation-Induced Aggregation of Lysine- And Interchain Cysteine-Linked Antibody-Drug Conjugates. J Pharm Sci 2024; 113:1265-1274. [PMID: 38070776 DOI: 10.1016/j.xphs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 04/19/2024]
Abstract
Drug conjugation to an antibody can affect its stability, which depends on factors such as the conjugation technique used, drug-linker properties, and stress encountered. This study focused on the effects of agitation stress on the physical stability of two lysine (ADC-K) and two interchain cysteine (ADC-C) conjugates of an IgG1 monoclonal antibody (mAb) linked to either ∼4 MMAE or DM1 payloads. During agitation, all antibody-drug conjugates (ADCs) exhibited higher aggregation than the mAb, which was dependent on the conjugation technique (aggregation of ADC-Ks > ADC-Cs) and drug-linker (aggregation of ADCs with MMAE > ADCs with DM1). The aggregation propensities correlated well with higher self-interaction, hydrophobicity, and surface activity of ADCs relative to the mAb. The intermediate reduced mAb (mAb-SH) showed even higher aggregation than the final product ADC-Cs. However, blocking mAb-SH's free thiols with N-ethylmaleimide (NEM) strongly reduced its aggregation, suggesting that free thiols should be minimized in cysteine ADCs. Further, this study demonstrates that a low-volume surface tension method can be used for estimating agitation-induced aggregation of ADCs in early development phases. Identifying liabilities to agitation stress and their relationship to biophysical properties may help optimize ADC stability.
Collapse
Affiliation(s)
- Florian Johann
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Steffen Wöll
- Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Matthias Winzer
- Merck KGaA, Global CMC Development, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Henning Gieseler
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Department of Pharmaceutics, Freeze Drying Focus Group (FDFG), Cauerstraße 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
13
|
Go EB, Lee JH, Cho JH, Kwon NH, Choi JI, Kwon I. Enhanced therapeutic potential of antibody fragment via IEDDA-mediated site-specific albumin conjugation. J Biol Eng 2024; 18:23. [PMID: 38576037 PMCID: PMC10996255 DOI: 10.1186/s13036-024-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The use of single-chain variable fragments (scFvs) for treating human diseases, such as cancer and immune system disorders, has attracted significant attention. However, a critical drawback of scFv is its extremely short serum half-life, which limits its therapeutic potential. Thus, there is a critical need to prolong the serum half-life of the scFv for clinical applications. One promising serum half-life extender for therapeutic proteins is human serum albumin (HSA), which is the most abundant protein in human serum, known to have an exceptionally long serum half-life. However, conjugating a macromolecular half-life extender to a small protein, such as scFv, often results in a significant loss of its critical properties. RESULTS In this study, we conjugated the HSA to a permissive site of scFv to improve pharmacokinetic profiles. To ensure minimal damage to the antigen-binding capacity of scFv upon HSA conjugation, we employed a site-specific conjugation approach using a heterobifunctional crosslinker that facilitates thiol-maleimide reaction and inverse electron-demand Diels-Alder reaction (IEDDA). As a model protein, we selected 4D5scFv, derived from trastuzumab, a therapeutic antibody used in human epithermal growth factor 2 (HER2)-positive breast cancer treatment. We introduced a phenylalanine analog containing a very reactive tetrazine group (frTet) at conjugation site candidates predicted by computational methods. Using the linker TCO-PEG4-MAL, a single HSA molecule was site-specifically conjugated to the 4D5scFv (4D5scFv-HSA). The 4D5scFv-HSA conjugate exhibited HER2 binding affinity comparable to that of unmodified 4D5scFv. Furthermore, in pharmacokinetic profile in mice, the serum half-life of 4D5scFv-HSA was approximately 12 h, which is 85 times longer than that of 4D5scFv. CONCLUSIONS The antigen binding results and pharmacokinetic profile of 4D5scFv-HSA demonstrate that the site-specifically albumin-conjugated scFv retained its binding affinity with a prolonged serum half-life. In conclusion, we developed an effective strategy to prepare site-specifically albumin-conjugated 4D5scFv, which can have versatile clinical applications with improved efficacy.
Collapse
Affiliation(s)
- Eun Byeol Go
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae Hun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jeong Haeng Cho
- ProAbTech, Gwangju, 61005, Republic of Korea
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Na Hyun Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy and Biomaterials, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
14
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
15
|
Postupalenko V, Marx L, Pantin M, Viertl D, Gsponer N, Giudice G, Gasilova N, Schottelius M, Lévy F, Garrouste P, Segura JM, Nyanguile O. Site-selective template-directed synthesis of antibody Fc conjugates with concomitant ligand release. Chem Sci 2024; 15:1324-1337. [PMID: 38274063 PMCID: PMC10806771 DOI: 10.1039/d3sc04324j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Template-directed methods are emerging as some of the most effective means to conjugate payloads at selective sites of monoclonal antibodies (mAbs). We have previously reported a method based on an engineered Fc-III reactive peptide to conjugate a radionuclide chelator to K317 of antibodies with the concomitant release of the Fc-III peptide ligand. Here, our method was redesigned to target two lysines proximal to the Fc-III binding site, K248 and K439. Using energy minimization predictions and a semi-combinatorial synthesis approach, we sampled multiple Fc-III amino acid substituents of A3, H5, L6 and E8, which were then converted into Fc-III reactive conjugates. Middle-down MS/MS subunit analysis of the resulting trastuzumab conjugates revealed that K248 and K439 can be selectively targeted using the Fc-III reactive variants L6Dap, L6Orn, L6Y and A3K or A3hK, respectively. Across all variants tested, L6Orn-carbonate appeared to be the best candidate, yielding a degree and yield of conjugation of almost 2 and 100% for a broad array of payloads including radionuclide chelators, fluorescent dyes, click-chemistry reagents, pre-targeted imaging reagents, and some cytotoxic small molecules. Furthermore, L6Orn carbonate appeared to yield similar conjugation results across multiple IgG subtypes. In vivo proof of concept was achieved by conjugation of NODAGA to the PD1/PD-L1 immune checkpoint inhibitor antibody atezolizumab, followed by PET imaging of PD-L1 expression in mice bearing PD-L1 expressing tumor xenograft using radiolabeled [64Cu]Cu-atezolizumab.
Collapse
Affiliation(s)
- Viktoriia Postupalenko
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Léo Marx
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - Mathilde Pantin
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - David Viertl
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and of Oncology, CHUV/UNIL 1011 Lausanne Switzerland
- In Vivo Imaging Facility, Department of Research and Training, University of Lausanne CH-1011 Lausanne
| | - Nadège Gsponer
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Gaëlle Giudice
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Natalia Gasilova
- EPFL Valais Wallis, MSEAP, ISIC-GE-VS rue de l'Industrie 17 1951 Sion Switzerland
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Departments of Nuclear Medicine and of Oncology, CHUV/UNIL 1011 Lausanne Switzerland
- Agora, pôle de recherche sur le cancer 1011 Lausanne Switzerland
| | - Frédéric Lévy
- Debiopharm International SA Forum "après-demain", Chemin Messidor 5-7, Case postale 5911 1002 Lausanne Switzerland
| | - Patrick Garrouste
- Debiopharm Research & Manufacturing SA Campus "après-demain", Rue du Levant 146 1920 Martigny Switzerland
| | - Jean-Manuel Segura
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| | - Origène Nyanguile
- Institute of Life Technologies, HES-SO Valais-Wallis Rue de l'Industrie 23 CH-1950 Sion Switzerland
| |
Collapse
|
16
|
Strickland S, Jorns M, Fourroux L, Heyd L, Pappas D. Cancer Cell Targeting Via Selective Transferrin Receptor Labeling Using Protein-Derived Carbon Dots. ACS OMEGA 2024; 9:2707-2718. [PMID: 38250381 PMCID: PMC10795060 DOI: 10.1021/acsomega.3c07744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Carbon dot (CD) nanoparticles offer tremendous advantages as fluorescent probes in bioimaging and biosensing; however, they lack specific affinity for biomolecules, limiting their practical applications in selective targeting. Nanoparticles with intrinsic affinity for a target have applications in imaging, cytometry, therapeutics, etc. Toward that end, we report the transferrin receptor (CD71) targeting CDs, synthesized for the first time. The formation of these particles is truly groundbreaking, as direct tuning of nanoparticle affinity was achieved by simple and careful precursor selection of a protein, which has the targeting characteristic of interest. We hypothesized that the retention of the original protein's peptides on the nanoparticle surface provides the CDs with some of the function of the precursor protein, enabling selective binding to the protein's receptor. This was confirmed with FTIR (Fourier transform infrared) data and subsequent affinity-based cell assays. These transferrin (Tf)-derived CDs have been shown to possess an affinity for CD71, a cancer biomarker that is ubiquitously expressed in nearly every cancer cell line due to its central role mediating the uptake of cellular iron. The CDs were tested using the human leukemia cell line HL60 and demonstrated the selective targeting of CD71 and specific triggering of transferrin-mediated endocytosis via clathrin-coated pits. The particle characterization results reflect a carbon-based nanoparticle with bright violet fluorescence and 7.9% quantum yield in aqueous solution. These unpresented CDs proved to retain the functional properties of the precursor protein. Indicating that this process can be repeated for other disease biomarkers for applications ranging from biosensing and diagnostic bioimaging to targeted therapeutics.
Collapse
Affiliation(s)
- Sara Strickland
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Mychele Jorns
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Luke Fourroux
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Lindsey Heyd
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Dimitri Pappas
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
17
|
Hejmady S, Pradhan R, Kumari S, Pandey M, Dubey SK, Taliyan R. Pharmacokinetics and toxicity considerations for antibody-drug conjugates: an overview. Bioanalysis 2023; 15:1193-1202. [PMID: 37724472 DOI: 10.4155/bio-2023-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is one of the fastest-growing drug-delivery systems. It involves a monoclonal antibody conjugated with payload via a ligand that directly targets the expressive protein of diseased cell. Hence, it reduces systemic exposure and provides site-specific delivery along with reduced toxicity. Because of this advantage, researchers have gained interest in this novel system. ADCs have displayed great promise in drug delivery and biomedical applications. However, a lack of understanding exists on their mechanisms of biodistribution, metabolism and side effects. To gain a better understanding of the therapeutics, careful consideration of the pharmacokinetics and toxicity needs to be undertaken. In this review, different pharmacokinetics parameters including distribution, bioanalysis and heterogeneity are discussed for developing novel therapeutics.
Collapse
Affiliation(s)
- Siddhanth Hejmady
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Shobha Kumari
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Meghna Pandey
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd, Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Pilani Campus, Rajasthan, 333031, India
| |
Collapse
|
18
|
Zhao Y, Kim S, Zheng X, Kim SH, Han A, Chen TH, Wang S, Zhong J, Qiu H, Li N. Investigation of High Molecular Weight Size Variant Formation in Antibody-Drug Conjugates: Microbial Transglutaminase-Mediated Crosslinking. J Pharm Sci 2023; 112:2629-2636. [PMID: 37586591 DOI: 10.1016/j.xphs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Microbial transglutaminase (mTG) has become a powerful tool for manufacturing antibody-drug conjugates (ADCs). It enables site-specific conjugation by catalyzing formation of stable isopeptide bond between glutamine (Q) side chain and primary amine. However, the downstream impact of mTG-mediated conjugation on ADC product quality, especially on high molecular weight (HMW) size variant formation has not been studied in a systematic manner. This study investigates the mechanisms underlying the formation of HMW size variants in mTG-mediated ADCs using size exclusion chromatography (SEC) and liquid chromatography-mass spectrometry (LC-MS). Our findings revealed that the mTG-mediated glutamine and lysine (K) crosslinking is the primary source of the increased level of HMW size variants in the ADCs. In the study, two monoclonal antibodies (mAbs) with glutamine engineered for site-specific conjugation were used as model systems. Based on the LC-MS analysis, a single lysine (K56) in the heavy chain (HC) was identified as the major Q-K crosslinking site in one of the two mAbs. The HC C-terminal K was observed to crosslink to the target Q in both mAbs. Quantitative correlation was established between the percentage of HMW size variants determined by SEC and the percentage of crosslinked peptides quantified by MS peptide mapping. Importantly, it was demonstrated that the level of HMW size variants in the second ADC was substantially reduced by the complete removal of HC C-terminal K before conjugation. The current work demonstrates that crosslinking and other side reactions during mTG-mediated conjugation needs to be carefully monitored and controlled to ensure process consistency and high product quality of the final ADC drug product.
Collapse
Affiliation(s)
- Yimeng Zhao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Sunnie Kim
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Xiang Zheng
- Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Se Hyun Kim
- Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Amy Han
- Therapeutic Proteins, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Tse-Hong Chen
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Serena Wang
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Jieqiang Zhong
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
19
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
20
|
Passaro A, Jänne PA, Peters S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J Clin Oncol 2023:JCO2300013. [PMID: 37224424 DOI: 10.1200/jco.23.00013] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest-growing oncology therapeutics, merging the cytotoxic effect of conjugated payload with the high specific ability and selectivity of monoclonal antibody targeted on a specific cancer cell membrane antigen. The main targets for ADC development are antigens commonly expressed by lung cancer cells, but not in normal tissues. They include human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, trophoblast cell surface antigen 2, c-MET, carcinoembryonic antigen-related cell adhesion molecule 5, and B7-H3, each with one or more specific ADCs that showed encouraging results in the lung cancer field, more in non-small-cell lung cancer than in small-cell lung cancer histology. To date, multiple ADCs are under evaluation, alone or in combination with different molecules (eg, chemotherapy agents or immune checkpoint inhibitors), and the optimal strategy for selecting patients who may benefit from the treatment is evolving, including an improvement of biomarker understanding, involving markers of resistance or response to the payload, besides the antibody target. In this review, we discuss the available evidence and future perspectives on ADCs for lung cancer treatment, including a comprehensive discussion on structure-based drug design, mechanism of action, and resistance concepts. Data were summarized by specific target antigen, biology, efficacy, and safety, differing among ADCs according to the ADC payload and their pharmacokinetics and pharmacodynamics properties.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| |
Collapse
|
21
|
Huysamen A, Fadeyi OE, Mayuni G, Dogbey DM, Mungra N, Biteghe FAN, Hardcastle N, Ramamurthy D, Akinrinmade OA, Naran K, Cooper S, Lang D, Richter W, Hunter R, Barth S. Click Chemistry-Generated Auristatin F-Linker-Benzylguanine for a SNAP-Tag-Based Recombinant Antibody-Drug Conjugate Demonstrating Selective Cytotoxicity toward EGFR-Overexpressing Tumor Cells. ACS OMEGA 2023; 8:4026-4037. [PMID: 36743041 PMCID: PMC9893251 DOI: 10.1021/acsomega.2c06844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Antibody-drug conjugates (ADCs) are bifunctional molecules combining the targeting potential of monoclonal antibodies with the cancer-killing ability of cytotoxic drugs. This simple yet intelligently designed system directly addresses the lack of specificity encountered with conventional anti-cancer treatment regimes. However, despite their initial success, the generation of clinically sustainable and effective ADCs has been plagued by poor tumor penetration, undefined chemical linkages, unpredictable pharmacokinetic profiles, and heterogeneous mixtures of products. To this end, we generated a SNAP-tag-based fusion protein targeting the epidermal growth factor receptor (EGFR)-a biomarker of aggressive and drug-resistant cancers. Here, we demonstrate the use of a novel click coupling strategy to engineer a benzylguanine (BG)-linker-auristatin F (AuriF) piece that can be covalently tethered to the EGFR-targeting SNAP-tag-based fusion protein in an irreversible 1:1 stoichiometric reaction to form a homogeneous product. Furthermore, using these recombinant ADCs to target EGFR-overexpressing tumor cells, we provide a proof-of-principle for generating biologically active antimitotic therapeutic proteins capable of inducing cell death in a dose-dependent manner, thus alleviating some of the challenges of early ADC development.
Collapse
Affiliation(s)
- Allan
M. Huysamen
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Olaolu E. Fadeyi
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Grace Mayuni
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Dennis M. Dogbey
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Neelakshi Mungra
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
- Centre
for Immunity and Immunotherapies, Seattle
Children’s Research Institute, Seattle, Washington 98101, United States
| | - Fleury A. N. Biteghe
- Department
of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, California 90048, United States
| | - Natasha Hardcastle
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Dharanidharan Ramamurthy
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Olusiji A. Akinrinmade
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| | - Krupa Naran
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Susan Cooper
- Division
of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | - Dirk Lang
- Division
of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | | | - Roger Hunter
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Stefan Barth
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
- South
African Research Chair in Cancer Biotechnology, Department of Integrative
Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape
Town 7700, South Africa
| |
Collapse
|
22
|
Glover ZK, Wecksler A, Aryal B, Mehta S, Pegues M, Chan W, Lehtimaki M, Luo A, Sreedhara A, Rao VA. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species. MAbs 2022; 14:2122957. [PMID: 36151884 PMCID: PMC9519010 DOI: 10.1080/19420862.2022.2122957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Biotherapeutics are exposed to common transition metal ions such as Cu(II) and Fe(II) during manufacturing processes and storage. IgG1 biotherapeutics are vulnerable to reactive oxygen species (ROS) generated via the metal-catalyzed oxidation reactions. Exposure to these metal ions can lead to potential changes to structure and function, ultimately influencing efficacy, potency, and potential immunogenicity of the molecules. Here, we stress four biotherapeutics of the IgG1 subclass (trastuzumab, trastuzumab emtansine, anti-NaPi2b, and anti-NaPi2b-vc-MMAE) with two common pharmaceutically relevant metal-induced oxidizing systems, Cu(II)/ ascorbic acid and Fe(II)/ H2O2, and evaluated oxidation, size distribution, carbonylation, Fc effector functions, antibody-dependent cellular cytotoxicity (ADCC) activity, cell anti-proliferation and autophaghic flux. Our study demonstrates that the extent of oxidation was metal ion-dependent and site-specific, leading to decreased FcγRIIIa and FcRn receptor binding and subsequently potentially reduced bioactivity, though antigen binding was not affected to a great extent. In general, the monoclonal antibody (mAb) and corresponding antibody-drug conjugate (ADC) showed similar impacts to product quality when exposed to the same metal ion, either Cu(II) or Fe(II). Our study clearly demonstrates that transition metal ion binding to therapeutic IgG1 mAbs and ADCs is not random and that oxidation products show unique structural and functional ramifications. A critical outcome from this study is our highlighting of key process parameters, route of degradation, especially oxidation (metal catalyzed or via ROS), on the CH1 and Fc region of full-length mAbs and ADCs. Abbreviations: DNPH 2,4-dinitrophenylhydrazine; ADC Antibody drug conjugate; ADCC Antibody-dependent cellular cytotoxicity; CDR Complementary determining region; DTT Dithiothreitol; HMWF high molecular weight form; LC-MS Liquid chromatography–mass spectrometry; LMWF low molecular weight forms; MOA Mechanism of action; MCO Metal-catalyzed oxidation; MetO Methionine sulfoxide; mAbs Monoclonal antibodies; MyBPC Myosin binding protein C; ROS Reactive oxygen species; SEC Size exclusion chromatography
Collapse
Affiliation(s)
| | - Aaron Wecksler
- Analytical Development, Genentech Inc, South San Francisco, CA, USA
| | - Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| | - Shrenik Mehta
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Melissa Pegues
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| | - Wayman Chan
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Mari Lehtimaki
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| | - Allen Luo
- Biological Technologies, Genentech Inc, South San Francisco, CA, USA
| | | | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Maryland, USA
| |
Collapse
|
23
|
Advances with antibody-drug conjugates in breast cancer treatment. Eur J Pharm Biopharm 2021; 169:241-255. [PMID: 34748933 DOI: 10.1016/j.ejpb.2021.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/21/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Antibody-drug conjugate-based therapy for treatment of cancer has attracted much attention because of its enhanced efficacy against numerous cancer types. Commonly, an ADC includes a mAb linked to a therapeutic payload. Antibody, linker and payload are the three main components of ADCs. The high specificity of antibodies is integrated with the strong potency of payloads in ADCs. ADCs with potential cytotoxic small molecules as payloads, generate antibody-mediated cancer therapy. Recently, ADCs with DNA-damaging agents have shown favor over microtubule-targeting agents as payloads. Although ADC resistance can be a barrier to effectiveness, several ADC therapies have been either approved or are in clinical trials for cancer treatment. The ADC-based treatments of breast cancers, particularly TNBC, MDR and metastatic breast cancers, have shown promise in recent years. This review discusses ADC drug designs, and developed for different types of breast cancer including TNBC, MDR and metastatic breast cancer.
Collapse
|
24
|
Giese M, Davis PD, Woodman RH, Hermanson G, Pokora A, Vermillion M. Linker Architectures as Steric Auxiliaries for Altering Enzyme-Mediated Payload Release from Bioconjugates. Bioconjug Chem 2021; 32:2257-2267. [PMID: 34587447 DOI: 10.1021/acs.bioconjchem.1c00429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-activated prodrugs leverage the increased activity of proteases in the tumor microenvironment and the tight regulation in healthy tissues to provide selective activation of cytotoxins in the tumor while minimizing toxicity to normal tissues. One of the largest classes of protease-activated prodrugs are composed of therapeutic agents conjugated to macromolecular carriers via peptide motifs that are substrates for cathepsin B, and antibody-drug conjugates are one of the most successful designs within this class. However, many of these peptide motifs are also cleaved by extracellular enzymes such as elastase and carboxylesterase 1C. Additionally, some peptide sequences have little selectivity for other lysosomal cathepsins, which have also been found to have extracellular activity in normal physiological processes. A lack of selectivity or oversensitivity to other extracellular enzymes can lead to off-target release of the cytotoxic payload and subsequent toxicities. In this report, we describe an approach for modulating cathepsin-mediated release of the cytotoxic payload through steric shielding provided by the synergistic effects of appropriately designed hydrophilic linkers and the conjugated carrier. We prepared a fluorogenic model payload with a Val-Cit cleavable trigger and attached the trigger-payload to a variety of PEG-based linker architectures with different numbers of PEG arms (y), different numbers of ethylene oxide units in each arm (n), and different distances between the cleavable trigger and PEG branch point (D'). These linker-payloads were then used to prepare DAR2 conjugates with the cleavable triggers at three different distances (D) from the antibody, and cathepsin-mediated payload release was monitored with in vitro assays. The results show that structural variables of the linker architectures can be manipulated to effectively shield enzymatically labile trigger-payloads from enzymes with readily accessible binding sites, and may offer an additional strategy for balancing off-target and tumor-targeted payload release.
Collapse
Affiliation(s)
- Matthew Giese
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Paul D Davis
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Robert H Woodman
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Greg Hermanson
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Alex Pokora
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| | - Melissa Vermillion
- Quanta BioDesign, 7470 Montgomery Drive, Plain City, Ohio 43064, United States
| |
Collapse
|
25
|
Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release 2021; 340:1-34. [PMID: 34673122 DOI: 10.1016/j.jconrel.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The antibody-drug conjugates (ADCs) are one the fastest growing biotherapeutics in oncology and are still in their infancy in gastrointestinal (GI) cancer for clinical applications to improve patient survival. The ADC based approach is developed with tumor specific antigen, antibody carrying cytotoxic agents to precisely target and deliver chemotherapeutics at the tumor site. To date, 11 ADCs have been approved by US-FDA, and more than 80 are in the clinical development phase for different oncological indications. However, The ADCs based therapies in GI cancers are still far from having high-efficient clinical outcomes. The limited success of these ADCs and lessons learned from the past are now being used to develop a newer generation of ADC against GI cancers. In this review, we did a comprehensive assessment of the key components of ADCs, including tumor marker, antibody, cytotoxic payload, and linkage strategy, with a focus on technical improvement and some future trends in the pipeline for clinical translation. The various preclinical and clinical ADCs used in gastrointestinal malignancies, their target, composition and bioconjugation, along with preclinical and clinical outcomes, are discussed. The emphasis is also given to new generation ADCs employing novel mAb, payload, linker, and bioconjugation methods are also included.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Dheer
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Samykutty
- Stephenson Comprehensive Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
26
|
Saricay Y, de Kort BJ, Yigit Gercek H, Dirksen EHC. A multi-angular view on the impact of protein unfolding on biophysical structural data. Anal Biochem 2021; 630:114331. [PMID: 34389298 DOI: 10.1016/j.ab.2021.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
The performance of biophysical methods used for the characterization of protein higher order structure (HOS) is key to ensure reliable structural data for drug applications, as these methods are not routinely validated. To assess the analytical performance characteristics, the impact of increasing amounts of heat-denatured material (HDM) on HOS data obtained for a monoclonal antibody (mAb) and its cysteine-conjugated antibody-drug conjugate (ADC) by a set of biophysical methods routinely used in the pharmaceutical industry was evaluated. Relationships between structural data generated by these methods were established using statistical correlation analysis. Most individual methods revealed a linear correlation with increasing amounts of HDM, in the presence of intact mAb or ADC. Overall, Pearson correlation analysis showed strong correlations between the biophysical data obtained. Moreover, biophysical methods that are generally claimed to be orthogonal, were confirmed to provide similar structural insights based on the data obtained. Some methods were capable of differentiating the impact of structural change and/or onset of protein aggregation between the mAb and the ADC. Our results underline the capabilities and performance of the biophysical characterization methods investigated, thereby substantiating these are 'scientifically sound' and 'fit for purpose': the interrogation of protein HOS as part of pharmaceutical development.
Collapse
Affiliation(s)
- Yunus Saricay
- Byondis B.V., Microweg 22, 6545 CM, Nijmegen, the Netherlands
| | | | | | - Eef H C Dirksen
- Byondis B.V., Microweg 22, 6545 CM, Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Jin Y, Liu B, Younis MH, Huang G, Liu J, Cai W, Wei W. Next-Generation Molecular Imaging of Thyroid Cancer. Cancers (Basel) 2021; 13:3188. [PMID: 34202358 PMCID: PMC8268517 DOI: 10.3390/cancers13133188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
An essential aspect of thyroid cancer (TC) management is personalized and precision medicine. Functional imaging of TC with radioiodine and [18F]FDG has been frequently used in disease evaluation for several decades now. Recently, advances in molecular imaging have led to the development of novel tracers based on aptamer, peptide, antibody, nanobody, antibody fragment, and nanoparticle platforms. The emerging targets-including HER2, CD54, SHP2, CD33, and more-are promising targets for clinical translation soon. The significance of these tracers may be realized by outlining the way they support the management of TC. The provided examples focus on where preclinical investigations can be translated. Furthermore, advances in the molecular imaging of TC may inspire the development of novel therapeutic or theranostic tracers. In this review, we summarize TC-targeting probes which include transporter-based and immuno-based imaging moieties. We summarize the most recent evidence in this field and outline how these emerging strategies may potentially optimize clinical practice.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Beibei Liu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliatede to Shanghai Jiao Tong University, Shanghai 200233, China;
| | - Muhsin H. Younis
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| |
Collapse
|
28
|
Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol 2021; 18:327-344. [PMID: 33558752 PMCID: PMC8287784 DOI: 10.1038/s41571-021-00470-8] [Citation(s) in RCA: 645] [Impact Index Per Article: 161.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Nine different antibody-drug conjugates (ADCs) are currently approved as cancer treatments, with dozens more in preclinical and clinical development. The primary goal of ADCs is to improve the therapeutic index of antineoplastic agents by restricting their systemic delivery to cells that express the target antigen of interest. Advances in synthetic biochemistry have ushered in a new generation of ADCs, which promise to improve upon the tissue specificity and cytotoxicity of their predecessors. Many of these drugs have impressive activity against treatment-refractory cancers, although hurdles impeding their broader use remain, including systemic toxicity, inadequate biomarkers for patient selection, acquired resistance and unknown benefit in combination with other cancer therapies. Emerging evidence indicates that the efficacy of a given ADC depends on the intricacies of how the antibody, linker and payload components interact with the tumour and its microenvironment, all of which have important clinical implications. In this Review, we discuss the current state of knowledge regarding the design, mechanism of action and clinical efficacy of ADCs as well as the apparent limitations of this treatment class. We then propose a path forward by highlighting several hypotheses and novel strategies to maximize the potential benefit that ADCs can provide to patients with cancer.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weil Cornell Medicine, New York, NY, USA.
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weil Cornell Medicine, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
29
|
Zhong X, D’Antona AM. Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics. Antibodies (Basel) 2021; 10:13. [PMID: 33808165 PMCID: PMC8103270 DOI: 10.3390/antib10020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein-based biotherapeutics drugs have transformed clinical pipelines of the biopharmaceutical industry since the launch of recombinant insulin nearly four decades ago. These biologic drugs are structurally more complex than small molecules, and yet share a similar principle for rational drug discovery and development: That is to start with a pre-defined target and follow with the functional modulation with a therapeutic agent. Despite these tremendous successes, this "one target one drug" paradigm has been challenged by complex disease mechanisms that involve multiple pathways and demand new therapeutic routes. A rapidly evolving wave of multispecific biotherapeutics is coming into focus. These new therapeutic drugs are able to engage two or more protein targets via distinct binding interfaces with or without the chemical conjugation to large or small molecules. They possess the potential to not only address disease intricacy but also exploit new therapeutic mechanisms and assess undruggable targets for conventional monospecific biologics. This review focuses on the recent advances in molecular design and applications of major classes of multispecific biotherapeutics drugs, which include immune cells engagers, antibody-drug conjugates, multispecific tetherbodies, biologic matchmakers, and small-scaffold multispecific modalities. Challenges posed by the multispecific biotherapeutics drugs and their future outlooks are also discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | | |
Collapse
|
30
|
Lehot V, Kuhn I, Nothisen M, Erb S, Kolodych S, Cianférani S, Chaubet G, Wagner A. Non-specific interactions of antibody-oligonucleotide conjugates with living cells. Sci Rep 2021; 11:5881. [PMID: 33723336 PMCID: PMC7961061 DOI: 10.1038/s41598-021-85352-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/29/2021] [Indexed: 11/15/2022] Open
Abstract
Antibody-Oligonucleotide Conjugates (AOCs) represent an emerging class of functionalized antibodies that have already been used in a wide variety of applications. While the impact of dye and drug conjugation on antibodies' ability to bind their target has been extensively studied, little is known about the effect caused by the conjugation of hydrophilic and charged payloads such as oligonucleotides on the functions of an antibody. Previous observations of non-specific interactions of nucleic acids with untargeted cells prompted us to further investigate their impact on AOC binding abilities and cell selectivity. We synthesized a series of single- and double-stranded AOCs, as well as a human serum albumin-oligonucleotide conjugate, and studied their interactions with both targeted and non-targeted living cells using a time-resolved analysis of ligand binding assay. Our results indicate that conjugation of single strand oligonucleotides to proteins induce consistent non-specific interactions with cell surfaces while double strand oligonucleotides have little or no effect, depending on the preparation method.
Collapse
Affiliation(s)
- Victor Lehot
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Isabelle Kuhn
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Marc Nothisen
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Stéphane Erb
- BioOrganicMass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France
| | - Sergii Kolodych
- Syndivia SAS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Sarah Cianférani
- BioOrganicMass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden, France.
| |
Collapse
|
31
|
Yang MC, Shia CS, Li WF, Wang CC, Chen IJ, Huang TY, Chen YJ, Chang HW, Lu CH, Wu YC, Wang NH, Lai JS, Yu CD, Lai MT. Preclinical Studies of OBI-999: A Novel Globo H-Targeting Antibody-Drug Conjugate. Mol Cancer Ther 2021; 20:1121-1132. [PMID: 33722855 DOI: 10.1158/1535-7163.mct-20-0763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Globo H (GH), a hexasaccharide, is expressed at low levels in normal tissues but is highly expressed in multiple cancer types, rendering it a promising target for cancer immunotherapy. OBI-999, a novel antibody-drug conjugate, is derived from a conjugation of a GH-specific mAb with a monomethyl auristatin E (MMAE) payload through a site-specific ThioBridge and a cleavable linker. OBI-999 high homogeneity with a drug-to-antibody ratio of 4 (>95%) was achieved using ThioBridge. OBI-999 displayed GH-dependent cellular internalization and trafficked to endosome and lysosome within 1 and 5 hours, respectively. Furthermore, OBI-999 showed low nanomolar cytotoxicity in the assay with high GH expression on tumor cells and exhibited a bystander killing effect on tumor cells with minimal GH expression. Tissue distribution indicated that OBI-999 and free MMAE gradually accumulated in the tumor, reaching maximum level at 168 hours after treatment, whereas OBI-999 and free MMAE decreased quickly at 4 hours after treatment in normal organs. Maximum MMAE level in the tumor was 16-fold higher than in serum, suggesting that OBI-999 is stable during circulation and MMAE is selectively released in the tumor. Excellent tumor growth inhibition of OBI-999 was demonstrated in breast, gastric, and pancreatic cancer xenograft or lung patient-derived xenograft models in a dose-dependent manner. The highest nonseverely toxic dose in cynomolgus monkeys is 10 mg/kg determined by a 3-week repeated-dose toxicology study demonstrating an acceptable safety margin. Taken together, these results support further clinical development of OBI-999, which is currently in a phase I/II clinical study in multiple solid tumors (NCT04084366). OBI-999, the first GH-targeting ADC, displayed excellent tumor inhibition in animal models across multiple cancer types, including breast, gastric, pancreatic, and lung cancers, warranting further investigation in the treatment of solid tumors.
Collapse
|
32
|
Merkul E, Muns JA, Sijbrandi NJ, Houthoff H, Nijmeijer B, Rheenen G, Reedijk J, Dongen GAMS. An Efficient Conjugation Approach for Coupling Drugs to Native Antibodies via the Pt
II
Linker
Lx
for Improved Manufacturability of Antibody–Drug Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eugen Merkul
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Joey A. Muns
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Niels J. Sijbrandi
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Hendrik‐Jan Houthoff
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Bart Nijmeijer
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Gerro Rheenen
- Chemistry Department LinXis BV De Boelelaan 1085c Amsterdam 1081 HV The Netherlands
| | - Jan Reedijk
- Leiden Institute of Chemistry Leiden University PO Box 9502 2300 RA Leiden The Netherlands
| | - Guus A. M. S. Dongen
- Department of Radiology and Nuclear Medicine Amsterdam UMC, location VU medical center Amsterdam The Netherlands
| |
Collapse
|
33
|
Merkul E, Muns JA, Sijbrandi NJ, Houthoff H, Nijmeijer B, van Rheenen G, Reedijk J, van Dongen GAMS. An Efficient Conjugation Approach for Coupling Drugs to Native Antibodies via the Pt II Linker Lx for Improved Manufacturability of Antibody-Drug Conjugates. Angew Chem Int Ed Engl 2021; 60:3008-3015. [PMID: 33185916 PMCID: PMC7986738 DOI: 10.1002/anie.202011593] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Indexed: 12/20/2022]
Abstract
The PtII linker [ethylenediamineplatinum(II)]2+ , coined Lx, has emerged as a novel non-conventional approach to antibody-drug conjugates (ADCs) and has shown its potential in preclinical in vitro and in vivo benchmark studies. A crucial improvement of the Lx conjugation reaction from initially <15 % to ca. 75-90 % conjugation efficiency is described, resulting from a systematic screening of all relevant reaction parameters. NaI, a strikingly simple inorganic salt additive, greatly improves the conjugation efficiency as well as the conjugation selectivity simply by exchanging the leaving chloride ligand on Cl-Lx-drug complexes (which are direct precursors for Lx-ADCs) for iodide, thus generating I-Lx-drug complexes as more reactive species. Using this iodide effect, we developed a general and highly practical conjugation procedure that is scalable: our lead Lx-ADC was produced on a 5 g scale with an outstanding conjugation efficiency of 89 %.
Collapse
Affiliation(s)
- Eugen Merkul
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Joey A. Muns
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Niels J. Sijbrandi
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | | | - Bart Nijmeijer
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Gerro van Rheenen
- Chemistry DepartmentLinXis BVDe Boelelaan 1085cAmsterdam1081HVThe Netherlands
| | - Jan Reedijk
- Leiden Institute of ChemistryLeiden UniversityPO Box 95022300RALeidenThe Netherlands
| | - Guus A. M. S. van Dongen
- Department of Radiology and Nuclear MedicineAmsterdam UMC, location VU medical centerAmsterdamThe Netherlands
| |
Collapse
|
34
|
Nadkarni DV, Lee J, Jiang Q, Patel V, Sriskanda V, Dutta K, Meyer DM. Impact of Drug Conjugation and Loading on Target Antigen Binding and Cytotoxicity in Cysteine Antibody-Drug Conjugates. Mol Pharm 2021; 18:889-897. [PMID: 33470823 DOI: 10.1021/acs.molpharmaceut.0c00873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibody-drug conjugates (ADCs) consist of a target-specific antibody that is covalently conjugated to a drug via a linker. ADCs are designed to deliver cytotoxic drugs (payloads), specifically to cancer cells, while minimizing systemic toxicity. Conventional cysteine conjugation typically results in the formation of ADC molecules containing a heterogeneous mixture of 2, 4, 6, and 8 drug-loaded species. The drug-to-antibody ratio (DAR) of the mixture represents the weighted average of these species. In this report, we have investigated the impact of the hydrophobicity of payloads and the overall drug loading on the in vitro binding and cytotoxicity of ADC species. Several ADCs were prepared by conventional cysteine conjugation using different payloads. ADC species with different DAR values were purified from the ADC mixture and characterized by standard analytical techniques. These ADC species were evaluated for target antigen binding using an immunoassay, enzyme-linked immunosorbent assay (ELISA). The potency was assessed using a cell-based cytotoxicity assay. These structure-function studies lead to a better understanding of factors that impact the in vitro target binding and cytotoxicity of ADC species. ADC species containing hydrophobic payloads with high DAR were found to have lower target binding by ELISA compared to that of the unconjugated antibody or the heterogeneous reference ADC with DAR ∼4. Under similar assay conditions, the ADCs conjugated to hydrophilic payloads did not show a significant impact on the target binding. The cytotoxic potency of ADC species increased with increasing level of drug loading in the cell-based cytotoxicity assay.
Collapse
Affiliation(s)
- Durgesh V Nadkarni
- Bioprocess Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, New York 10965, United States
| | - Jamie Lee
- Analytical Research and Development, Pfizer Inc., 875 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Qingping Jiang
- Analytical Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, New York 10965, United States
| | - Vimalkumar Patel
- Bioprocess Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, New York 10965, United States
| | - Verl Sriskanda
- Analytical Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, New York 10965, United States
| | - Kaushik Dutta
- Bioprocess Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, New York 10965, United States
| | - Debra M Meyer
- Analytical Research and Development, Pfizer Inc., 875 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| |
Collapse
|
35
|
Hu Y, Chen Y, Lin L, Zhang J, Lan R, Wu B. Studies on antimicrobial peptide-loaded nanomaterial for root caries restorations to inhibit periodontitis related pathogens in periodontitis care. J Microencapsul 2021; 38:89-99. [PMID: 33153344 DOI: 10.1080/02652048.2020.1842528] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS To prepare a novel antimicrobial peptide Nal-P-113 loaded poly (ethylene glycol) combined chitosan nanoparticles (Nal-P-113-PEG-CSNPs) for root caries restorations to control the periodontitis related pathogens in periodontitis care. METHODS Nanoparticles were prepared by simple polymerisation method and characterised using effective analytical methods (TEM, UV, etc.). The antimicrobial activity and biofilm formation of Nal-P-113-PEG-CSNPs was tested against periodontal bacterial pathogens by different in vitro methods. RESULTS The size of Nal-P-113 loaded PEG-Chitosn nanoparticles was 216.2 ± 1.6 nm. The drug encapsulation efficiency (%EE (w/w) of Nal-P-113-PEG-CSNPs was found to be 89.33 ± 1.67% (w/w). The antimicrobial examination showed that prepared NPs have effectively inhibited the growth of Fusobacterium nucleatum, Streptococcus gordonii, and Porphyromonas gingivalis with the MIC of 23 µg/mL, 6 µg/mL and 31 µg/mL, respectively. CONCLUSIONS The prepared antimicrobial peptide-loaded PEG-CSNPs provide excellent in vitro efficiency but, further studies are necessary to confirm its therapeutic efficacy on periodontitis care.
Collapse
Affiliation(s)
- Yuqian Hu
- Department of Stomatology, College of Stomatology, Southern Medical University, Guangzhou, China.,Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, China
| | - Yan Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Lin
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, China
| | - Jinhui Zhang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, China
| | - Rengang Lan
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, China
| | - Buling Wu
- Department of Stomatology, College of Stomatology, Southern Medical University, Guangzhou, China.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Bailey DL, Sabanathan D, Aslani A, Campbell DH, Walsh BJ, Lengkeek NA. RetroSPECT: Gallium-67 as a Long-Lived Imaging Agent for Theranostics. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2021; 9:1-8. [PMID: 33392343 PMCID: PMC7701228 DOI: 10.22038/aojnmb.2020.51714.1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 11/06/2022]
Abstract
A limitation to the wider introduction of personalised dosimetry in theranostics is the relative paucity of imaging radionuclides with suitable physical and chemical properties to be paired with a long-lived therapeutic partner. As most of the beta-emitting therapeutic radionuclides emit gamma radiation as well they could potentially be used as the imaging radionuclide as well as the therapeutic radionuclide. However, the downsides are that the beta radiation will deliver a significant radiation dose as part of the treatment planning procedure, and the gamma radiation branching ratio is often quite low. Gallium-67 has been in use in nuclear medicine for over 50 years. However, the tremendous interest in gallium imaging in theranostics in recent times has focused on the PET radionuclide gallium-68. In this article it is suggested that the longer-lived gallium-67, which has desirable characteristics for imaging with the gamma camera and a suitably long half-life to match biological timescales for drug uptake and turnover, has been overlooked, in particular, for treatment planning with radionuclide therapy. Gallium-67 could also allow non-PET facilities to participate in theranostic imaging prior to treatment or for monitoring response after therapy. Gallium-67 could play a niche role in the future development of personalised medicine with theranostics.
Collapse
Affiliation(s)
- Dale L. Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, Australia
| | | | - Alireza Aslani
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, Australia
| | | | | | - Nigel A. Lengkeek
- Biosciences, Australian Nuclear Science & Technology Organisation (ANSTO), Sydney, Australia
| |
Collapse
|
37
|
Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: Promises and challenges. MAbs 2021; 13:1951427. [PMID: 34291723 PMCID: PMC8300931 DOI: 10.1080/19420862.2021.1951427] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly expanding class of biotherapeutics that utilize antibodies to selectively deliver cytotoxic drugs to the tumor site. As of May 2021, the U.S. Food and Drug Administration (FDA) has approved ten ADCs, namely Adcetris®, Kadcyla®, Besponsa®, Mylotarg®, Polivy®, Padcev®, Enhertu®, Trodelvy®, Blenrep®, and Zynlonta™ as monotherapy or combinational therapy for breast cancer, urothelial cancer, myeloma, acute leukemia, and lymphoma. In addition, over 80 investigational ADCs are currently being evaluated in approximately 150 active clinical trials. Despite the growing interest in ADCs, challenges remain to expand their therapeutic index (with greater efficacy and less toxicity). Recent advances in the manufacturing technology for the antibody, payload, and linker combined with new bioconjugation platforms and state-of-the-art analytical techniques are helping to shape the future development of ADCs. This review highlights the current status of marketed ADCs and those under clinical investigation with a focus on translational strategies to improve product quality, safety, and efficacy.
Collapse
Affiliation(s)
- Alexis Q. Dean
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shen Luo
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Julianne D. Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
38
|
Sharma A, Liaw K, Sharma R, Thomas AG, Slusher BS, Kannan S, Kannan RM. Targeting Mitochondria in Tumor-Associated Macrophages using a Dendrimer-Conjugated TSPO Ligand that Stimulates Antitumor Signaling in Glioblastoma. Biomacromolecules 2020; 21:3909-3922. [PMID: 32786523 PMCID: PMC8022998 DOI: 10.1021/acs.biomac.0c01033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria mediate critical cellular processes, including proliferation, apoptosis, and immune responses; as such, their dysfunction is pathogenic in many neurodegenerative disorders and cancers. In glioblastoma, targeted delivery of mitochondria-focused anticancer therapies has failed to translate into clinical success due to the nonspecific cellular localization, heterogeneity of receptor expression across patients, poor transport across biological barriers to reach the brain, tumor, and mitochondria, and systemic side effects. Strategies that can overcome brain and solid tumor barriers and selectively target mitochondria within specific cell types may lead to improvements in glioblastoma treatment. Developments in dendrimer-mediated nanomedicines have shown promise targeting tumor-associated macrophages (TAMs) in glioblastoma, following systemic administration. Here, we present a novel dendrimer conjugated to the translocator protein (18 kDa) (TSPO) ligand 5,7-dimethylpyrazolo[1,5-α]pyrimidin-3-ylacetamide (DPA). We developed a clickable DPA for conjugation on the dendrimer surface and demonstrated in vitro that the dendrimer-DPA conjugate (D-DPA) significantly increases dendrimer colocalization with mitochondria. Compared to free TSPO ligand PK11195, D-DPA stimulates greater antitumor immune signaling. In vivo, we show that D-DPA targets mitochondria specifically within TAMs following systemic administration. Our results demonstrate that dendrimers can achieve TAM-specific targeting in glioblastoma and can be further modified to target specific intracellular compartments for organelle-specific drug delivery.
Collapse
|
39
|
Ueda A, Umetsu M, Nakanishi T, Hashikami K, Nakazawa H, Hattori S, Asano R, Kumagai I. Chemically Crosslinked Bispecific Antibodies for Cancer Therapy: Breaking from the Structural Restrictions of the Genetic Fusion Approach. Int J Mol Sci 2020; 21:ijms21030711. [PMID: 31973200 PMCID: PMC7037651 DOI: 10.3390/ijms21030711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/02/2022] Open
Abstract
Antibodies are composed of structurally and functionally independent domains that can be used as building blocks to construct different types of chimeric protein-format molecules. However, the generally used genetic fusion and chemical approaches restrict the types of structures that can be formed and do not give an ideal degree of homogeneity. In this study, we combined mutation techniques with chemical conjugation to construct a variety of homogeneous bivalent and bispecific antibodies. First, building modules without lysine residues—which can be chemical conjugation sites—were generated by means of genetic mutation. Specific mutated residues in the lysine-free modules were then re-mutated to lysine residues. Chemical conjugation at the recovered lysine sites enabled the construction of homogeneous bivalent and bispecific antibodies from block modules that could not have been so arranged by genetic fusion approaches. Molecular evolution and bioinformatics techniques assisted in finding viable alternatives to the lysine residues that did not deactivate the block modules. Multiple candidates for re-mutation positions offer a wide variety of possible steric arrangements of block modules, and appropriate linkages between block modules can generate highly bioactive bispecific antibodies. Here, we propose the effectiveness of the lysine-free block module design for site-specific chemical conjugation to form a variety of types of homogeneous chimeric protein-format molecule with a finely tuned structure and function.
Collapse
Affiliation(s)
| | - Mitsuo Umetsu
- Correspondence: (M.U.); (I.K.); Tel.: +81-22-795-7274 (M.U.); +81-22-795-7275 (I.K.)
| | | | | | | | | | | | - Izumi Kumagai
- Correspondence: (M.U.); (I.K.); Tel.: +81-22-795-7274 (M.U.); +81-22-795-7275 (I.K.)
| |
Collapse
|
40
|
Amani N, Dorkoosh FA, Mobedi H. ADCs, as Novel Revolutionary Weapons for Providing a Step Forward in Targeted Therapy of Malignancies. Curr Drug Deliv 2020; 17:23-51. [DOI: 10.2174/1567201816666191121145109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
:Antibody drug conjugates (ADCs), as potent pharmaceutical trojan horses for cancer treatment, provide superior efficacy and specific targeting along with low risk of adverse reactions compared to traditional chemotherapeutics. In fact, the development of these agents combines the selective targeting capability of monoclonal antibody (mAb) with high cytotoxicity of chemotherapeutics for controlling the neoplastic mass growth. Different ADCs (more than 60 ADCs) in preclinical and clinical trials were introduced in this novel pharmaceutical field. Various design-based factors must be taken into account for improving the functionality of ADC technology, including selection of appropriate target antigen and high binding affinity of fragment (miniaturized ADCs) or full mAbs (preferentially use of humanized or fully human antibodies compared to murine and chimeric ones), use of bispecific antibodies for dual targeting effect, linker engineering and conjugation method efficacy to obtain more controlled drug to antibody ratio (DAR). Challenging issues affecting therapeutic efficacy and safety of ADCs, including bystander effect, on- and off-target toxicities, multi drug resistance (MDR) are also addressed. 4 FDA-approved ADCs in the market, including ADCETRIS ®, MYLOTARG®, BESPONSA ®, KADCYLA®. The goal of the current review is to evaluate the key parameters affecting ADCs development.
Collapse
Affiliation(s)
- Nooshafarin Amani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mobedi
- Novel Drug Delivery Systems (NDDS) Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
41
|
Alteration of Physicochemical Properties for Antibody-Drug Conjugates and Their Impact on Stability. J Pharm Sci 2020; 109:161-168. [DOI: 10.1016/j.xphs.2019.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
|
42
|
In Vitro Characterization and Stability Profiles of Antibody-Fluorophore Conjugates Derived from Interchain Cysteine Cross-Linking or Lysine Bioconjugation. Pharmaceuticals (Basel) 2019; 12:ph12040176. [PMID: 31810248 PMCID: PMC6958397 DOI: 10.3390/ph12040176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
Fluorescent labelling of monoclonal antibodies (mAbs) is classically performed by chemical bioconjugation methods. The most frequent labelling technique to generate antibody–fluorophore conjugates (AFCs) involves the bioconjugation onto the mAb lysines of a dye bearing an N-hydroxysuccinimide ester or an isothiocyanate group. However, discrepancies between labelling experiments or kits can be observed, related to reproducibility issues, alteration of antigen binding, or mAb properties. The lack of information on labelling kits and the incomplete characterization of the obtained labelled mAbs largely contribute to these issues. In this work, we generated eight AFCs through either lysine or interchain cysteine cross-linking bioconjugation of green-emitting fluorophores (fluorescein or BODIPY) onto either trastuzumab or rituximab. This strategy allowed us to study the influence of fluorophore solubility, bioconjugation technology, and antibody nature on two known labelling procedures. The structures of these AFCs were thoroughly analyzed by mass spectroscopy, and their antigen binding properties were studied. We then compared these AFCs in vitro by studying their respective spectral properties and stabilities. The shelf stability profiles and sensibility to pH variation of these AFCs prove to be dye-, antibody- and labelling-technology-dependent. Fluorescence emission in AFCs was higher when lysine labelling was used, but cross-linked AFCs were revealed to be more stable. This must be taken into account for the design of any biological study involving antibody labelling.
Collapse
|
43
|
Hannachi E, Bouratbine A, Mousli M. Enhancing the detection of Toxoplasma gondii via an anti-SAG1 scFv-alkaline phosphatase immunoconjugate. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 23:e00360. [PMID: 31341791 PMCID: PMC6630058 DOI: 10.1016/j.btre.2019.e00360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to implement a fluorometric method for enhancing the detection sensitivity of Toxoplasma gondii in biological fluids. To address this challenge, we designed and produced a recombinant immunoconjugate tool based on a single-chain antibody fragment anti-T. gondii SAG1 antigen (scFvSG15) genetically fused to the bacterial alkaline phosphatase (AP) using 4-methyl-umbelliferyl-phosphate as fluorogenic substrate. The anti-SAG1 scFv-AP conjugate was fully bifunctional and was used successfully in different assays including immunoblot, fluorometric ELISA and direct immunofluorescence. The fluorometric immunoassay afforded an extremely low detection limit (1 tachyzoite/well), which was in agreement with the real-time PCR control test. The immunofluorescence imaging has provided captivating visual evidence of T. gondii detection. These results strongly suggest that the recombinant anti-SAG1-AP conjugate generated here might serve as useful and highly sensitive immunoassay probe to direct detect T. gondii in a one-step procedure, opening up new perspectives for diagnosis of toxoplasmosis.
Collapse
Affiliation(s)
| | | | - Mohamed Mousli
- Laboratoire de Parasitologie Médicale, Biotechnologies et Biomolécules, LR11-IPT06, Institut Pasteur de Tunis, Université Tunis El-Manar, 13 Place Pasteur -BP74, 1002 Tunis-Belvédère, Tunisia
| |
Collapse
|
44
|
Merkul E, Sijbrandi NJ, Muns JA, Aydin I, Adamzek K, Houthoff HJ, Nijmeijer B, Van Dongen GAMS. First platinum(II)-based metal-organic linker technology (Lx®) for a plug-and-play development of antibody-drug conjugates (ADCs). Expert Opin Drug Deliv 2019; 16:783-793. [PMID: 31327255 DOI: 10.1080/17425247.2019.1645118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: Compared to the antibody and drug components of an ADC, the linker part has been somewhat neglected. However, its importance for the reduction of failures in ADC approvals is increasingly recognized. Next of being a stable glue between drug and antibody, an ideal linker should improve the manufacturability and widen the therapeutic window of ADCs. Areas covered: The biopharmaceutical company LinXis started an ADC development program in which platinum(II) is the key element of the first metal-organic linker. The cationic complex [ethylenediamineplatinum(II)]2+, herein called 'Lx®', is used successfully for conjugation of drugs to antibodies. Expert opinion: Based on lessons learned from ADC development, Lx linker technology fulfills most of the desirable linker characteristics. Lx allows large-scale cost-effective manufacturing of ADCs via a straightforward two-step 'plug-and-play' process. First clinical candidate trastuzumab-Lx-auristatin F shows favorable preclinical safety as well as outstanding in vivo tumor targeting performance and therapeutic efficacy.
Collapse
Affiliation(s)
- Eugen Merkul
- a Research and Development Department, LinXis BV , Amsterdam , The Netherlands
| | - Niels J Sijbrandi
- a Research and Development Department, LinXis BV , Amsterdam , The Netherlands
| | - Joey A Muns
- a Research and Development Department, LinXis BV , Amsterdam , The Netherlands
| | - Ibrahim Aydin
- a Research and Development Department, LinXis BV , Amsterdam , The Netherlands
| | - Kevin Adamzek
- a Research and Development Department, LinXis BV , Amsterdam , The Netherlands
| | | | - Bart Nijmeijer
- a Research and Development Department, LinXis BV , Amsterdam , The Netherlands
| | - Guus A M S Van Dongen
- b Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit , Amsterdam , The Netherlands
| |
Collapse
|
45
|
Duerr C, Friess W. Antibody-drug conjugates- stability and formulation. Eur J Pharm Biopharm 2019; 139:168-176. [DOI: 10.1016/j.ejpb.2019.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023]
|
46
|
White JB, Fleming R, Masterson L, Ruddle BT, Zhong H, Fazenbaker C, Strout P, Rosenthal K, Reed M, Muniz-Medina V, Howard P, Dixit R, Wu H, Hinrichs MJ, Gao C, Dimasi N. Design and characterization of homogenous antibody-drug conjugates with a drug-to-antibody ratio of one prepared using an engineered antibody and a dual-maleimide pyrrolobenzodiazepine dimer. MAbs 2019; 11:500-515. [PMID: 30835621 DOI: 10.1080/19420862.2019.1578611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.
Collapse
Affiliation(s)
- Jason B White
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Ben T Ruddle
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Haihong Zhong
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | | | - Patrick Strout
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | - Kim Rosenthal
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Molly Reed
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | | | - Philip Howard
- b Spirogen Ltd , QMB Innovation Center , London , UK
| | - Rakesh Dixit
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Changshou Gao
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
47
|
Buecheler JW, Winzer M, Weber C, Gieseler H. Oxidation-Induced Destabilization of Model Antibody-Drug Conjugates. J Pharm Sci 2019; 108:1236-1245. [DOI: 10.1016/j.xphs.2018.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 11/25/2022]
|
48
|
Healey GD, Frostell A, Fagge T, Gonzalez D, Conlan RS. A RAGE-Targeted Antibody-Drug Conjugate: Surface Plasmon Resonance as a Platform for Accelerating Effective ADC Design and Development. Antibodies (Basel) 2019; 8:antib8010007. [PMID: 31544813 PMCID: PMC6640708 DOI: 10.3390/antib8010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
Antibodies, antibody-like molecules, and therapeutics incorporating antibodies as a targeting moiety, such as antibody-drug conjugates, offer significant potential for the development of highly efficacious drugs against a wide range of disorders. Despite some success, truly harnessing the superior targeting properties of these molecules requires a platform from which to effectively identify the best candidates for drug development. To streamline the development of antibody-drug conjugates targeting gynecological cancers within our laboratory, we incorporated surface plasmon resonance analysis (Biacore™ T200) into our development toolkit. Antibodies, selected based on positive ELISA screens as suitable for development as antibody-drug conjugates, were evaluated using surface plasmon resonance to determine a wide range of characteristics including specificity, kinetics/affinity, the effect of linker binding, the impact of the drug to antibody ratio, and the effect of endosomal pH on antibody-antigen binding. Analysis revealed important kinetics data and information regarding the effect of conjugation and endosomal pH on our antibody candidates that correlated with cell toxicity and antibody internalization data. As well as explaining observations from cell-based assays regarding antibody-drug conjugate efficacies, these data also provide important information regarding intelligent antibody selection and antibody-drug conjugate design. This study demonstrates the application of surface plasmon resonance technology as a platform, where detailed information can be obtained, supporting the requirements for rapid and high-throughput screening that will enable enhanced antibody-drug conjugate development.
Collapse
Affiliation(s)
- Gareth D Healey
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK.
| | - Asa Frostell
- GE Healthcare Bio-Sciences, SE-751 84 Uppsala, Sweden.
| | - Tim Fagge
- GE Healthcare, Little Chalfont, Buckinghamshire, HP7 9NA, UK.
| | - Deyarina Gonzalez
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK.
| | - R Steven Conlan
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
49
|
Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R, Zarnani AH. Antibody-Drug Conjugates: Possibilities and Challenges. Avicenna J Med Biotechnol 2019; 11:3-23. [PMID: 30800238 PMCID: PMC6359697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022] Open
Abstract
The design of Antibody Drug Conjugates (ADCs) as efficient targeting agents for tumor cell is still in its infancy for clinical applications. This approach incorporates the antibody specificity and cell killing activity of chemically conjugated cytotoxic agents. Antibody in ADC structure acts as a targeting agent and a nanoscale carrier to deliver a therapeutic dose of cytotoxic cargo into desired tumor cells. Early ADCs encountered major obstacles including, low blood residency time, low penetration capacity to tumor microenvironment, low payload potency, immunogenicity, unusual off-target toxicity, drug resistance, and the lack of stable linkage in blood circulation. Although extensive studies have been conducted to overcome these issues, the ADCs based therapies are still far from having high-efficient clinical outcomes. This review outlines the key characteristics of ADCs including tumor marker, antibody, cytotoxic payload, and linkage strategy with a focus on technical improvement and some future trends in the pipeline.
Collapse
Affiliation(s)
- Mohammad-Reza Nejadmoghaddam
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Morteza Mahmoudi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, IUMS, Tehran, Iran
| |
Collapse
|
50
|
Tian Y, Lippens JL, Netirojjanakul C, Campuzano IDG, Ruotolo BT. Quantitative collision-induced unfolding differentiates model antibody-drug conjugates. Protein Sci 2018; 28:598-608. [PMID: 30499138 DOI: 10.1002/pro.3560] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
Antibody-drug conjugates (ADCs) are antibody-based therapeutics that have proven to be highly effective cancer treatment platforms. They are composed of monoclonal antibodies conjugated with highly potent drugs via chemical linkers. Compared to cysteine-targeted chemistries, conjugation at native lysine residues can lead to a higher degree of structural heterogeneity, and thus it is important to evaluate the impact of conjugation on antibody conformation. Here, we present a workflow involving native ion mobility (IM)-MS and gas-phase unfolding for the structural characterization of lysine-linked monoclonal antibody (mAb)-biotin conjugates. Following the determination of conjugation states via denaturing Liquid Chromatography-Mass Spectrometry (LC-MS) measurements, we performed both size exclusion chromatography (SEC) and native IM-MS measurements in order to compare the structures of biotinylated and unmodified IgG1 molecules. Hydrodynamic radii (Rh) and collision cross-sectional (CCS) values were insufficient to distinguish the conformational changes in these antibody-biotin conjugates owing to their flexible structures and limited instrument resolution. In contrast, collision induced unfolding (CIU) analyses were able to detect subtle structural and stability differences in the mAb upon biotin conjugation, exhibiting a sensitivity to mAb conjugation that exceeds native MS analysis alone. Destabilization of mAb-biotin conjugates was detected by both CIU and differential scanning calorimetry (DSC) data, suggesting a previously unknown correlation between the two measurement tools. We conclude by discussing the impact of IM-MS and CIU technologies on the future of ADC development pipelines.
Collapse
Affiliation(s)
- Yuwei Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Jennifer L Lippens
- Amgen Discovery Research, Discovery Attribute Sciences, Amgen, Thousand Oaks, California, 91320
| | - Chawita Netirojjanakul
- Amgen Discovery Research, Hybrid Modality Engineering, Amgen, Thousand Oaks, California, 91320
| | - Iain D G Campuzano
- Amgen Discovery Research, Discovery Attribute Sciences, Amgen, Thousand Oaks, California, 91320
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|