1
|
Winter C, Springer A, Descamps JL, Hoefinghoff J, Mohammad-Sadegh S, Paudel A, Stankovic-Brandl M. Unraveling the Effects of Filtration, Process Interruptions, and Post-Process Agitation on Protein Aggregation. AAPS PharmSciTech 2025; 26:85. [PMID: 40087238 DOI: 10.1208/s12249-025-03076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/18/2025] [Indexed: 03/17/2025] Open
Abstract
Filtration is an essential process step for the manufacturing and filling of biopharmaceuticals. In filling operations, sterile filtration is typically achieved through dead-end filtration using fine membrane filters that completely retain colony-forming units per square centimeter of filter area. According to FDA and USP guidelines, sterilizing filters must be product-compatible and composed of non-fiber releasing materials, typically with a absolute pore size rating of 0.22 µm. However, it has been observed that protein interaction with filters and particle shedding from filter materials, can contribute to protein aggregation when exposed to routine stresses such as agitation during manufacturing, handling, storage or transportation. Since aggregates can cause severe immune responses upon parenteral application, it is crucial to understand the possible effects of various filter materials during different manufacturing and filling set-ups in order to choose the most suitable filter types and filtration processes. To address this, we investigated particle formation on the visible, subvisible and submicron scales as well as structural changes in a specific liquid glycoprotein (GP) formulation after constant and impulse filtration (i.e., stop and go mechanisms to assess possible film formation and film disruption on the filter material) with commonly used hydrophilic membrane materials, i.e., polyvinylidene fluoride (PVDF), polyether sulfone (PES), and cellulose acetate (CA) with a pore size of 0.22 μm. In addition, we exposed the material to stirring and heating to induce aggregation and investigate the filter performances in the case of initially high particle content.
Collapse
Affiliation(s)
| | - Anna Springer
- Research Center Pharmaceutical Engineering Gmbh, Graz, Austria
| | | | | | - Salehi Mohammad-Sadegh
- Research Center Pharmaceutical Engineering Gmbh, Graz, Austria
- Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering Gmbh, Graz, Austria
- Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
2
|
Kjellström A, Cederwall I, Martínez CS, Kwok S, Rosenthal F, Elofsson U, Paulsson M, Wahlgren M. Pneumatic tube transport of trastuzumab in IV bags-Effect of headspace and surfactant on subvisible particle formation. J Pharm Sci 2025; 114:1142-1151. [PMID: 39793760 DOI: 10.1016/j.xphs.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
In hospitals, IV bags can be prepared in advance for logistical and microbial safety reasons in a compounding unit and then transported to wards. Transport of protein drugs using a pneumatic tube system has been reported to result in high particle levels. In this study, pneumatic tube transport of trastuzumab in saline polyolefin bags was compared to delivery by hospital porters using an electric platform truck in an underground tunnel system. The transport was tracked using designed smart labels. Two strategies to prevent particle formation, removing headspace and adding the surfactant polysorbate 20 were evaluated. The transport by pneumatic tube had a higher level of shock and vibration than truck delivery. The total particle count measured using flow microscopy also increased more for pneumatic transport than for transport by vehicle. Removing the headspace decreased particle formation for both transports. Surfactant decreases particles over 10 µm for trastuzumab in saline IV bags but increases the total particle levels. Pneumatic tube transport of saline in polyolefin bags resulted in high particle levels and surfactant increased the total particle count. Removing headspace is a measure that can be incorporated into compounding practices to cover for inadequate surfactant levels in IV bags.
Collapse
Affiliation(s)
- Anna Kjellström
- Department of Process and Life Science Engineering, Div. Food and Pharma, Lund University, P.O. Box 124, 22100 Lund, Sweden.
| | - Ida Cederwall
- RISE, Research Institutes of Sweden, Div. Life Science, Chemical Process and Pharmaceutical Development, Stockholm, Sweden
| | | | - Stanley Kwok
- Late Stage Formulation Sciences, BioPharmaceuticals Development, Dosage Form Design & Development, AstraZeneca, Gaithersburg, USA
| | - Florian Rosenthal
- Pharmaceutical Development, F. Hoffmann-La Roche Ltd. Basel, Switzerland
| | - Ulla Elofsson
- RISE, Research Institutes of Sweden, Div. Life Science, Chemical Process and Pharmaceutical Development, Stockholm, Sweden
| | - Mattias Paulsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Marie Wahlgren
- Department of Process and Life Science Engineering, Div. Food and Pharma, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
3
|
Sreenivasan S, Patil SS, Rathore AS. Does Aggregation of Therapeutic IgGs in PBS Offer a True Picture of What Happens in Models Derived from Human Body Fluids? J Pharm Sci 2024; 113:596-603. [PMID: 37717637 DOI: 10.1016/j.xphs.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Therapeutic proteins such as monoclonal antibodies (mAb) are known to form aggregates due to various factors. Phosphate buffered saline (PBS), human serum, and human serum filtrate (HSF) are some of the models used to analyze mAb stability in physiologically relevant in-vitro conditions. In this study, aggregation of mAb in PBS and models derived from body fluids seeded with mAb samples subjected to various stresses were compared. Samples containing mAb subjected to pH, temperature, UV light, stirring, and interfacial agitation stress were seeded into different models for 2 case studies. In the first case study, %HMW (high molecular weight species) of mAb in PBS and HSF were compared using size exclusion chromatography. It was found that change in %HMW was higher in PBS compared to HSF. For example, PBS containing mAb that was subjected to UV light stress showed change in HMW by >10 % over 72 h, but the change was <5 % in HSF. In second case study, aggregates particles of FITC tagged mAb were monitored in PBS and serum using fluorescence microscope image processing. It was found that PBS and serum containing mAb subjected to stirring and interfacial agitation resulted in aggregates of >2 µm size, and average size and percentage number of particles having >10 µm size was higher in serum compared to PBS at all analysis time point. Overall, it was found that aggregation of mAb in PBS was different from that in human body fluids. Second case study also showed the importance of advanced strategies for further characterization of mAb in serum.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India
| | - Sanjeet S Patil
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas-110016, India.
| |
Collapse
|
4
|
Arvinte T, Poirier E, Cudd A, Ersayin N, Darpin G, Dowd J, Brokx S. Aggregation of human plasma and of human blood induced in vitro by filgrastim originator product; effect of PEGylation. Eur J Pharm Biopharm 2024; 194:148-158. [PMID: 38097022 DOI: 10.1016/j.ejpb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/31/2023]
Abstract
We herein report that filgrastim product Neupogen® and the filgrastim formulation buffer induced aggregate formation when mixed in vitro with human plasma, and formation of large membranous erythrocyte aggregates when mixed with human blood, similar to the aggregation induced by pegfilgrastim and by pegfilgrastim buffer [T. Arvinte, E. Poirier, N. Ersayin, G. Darpin, A. Cudd, J. Dowd, S. Brokx, Aggregation of human plasma and of human blood induced in vitro by pegfilgrastim originator formulation buffer and pegfilgrastim products, Eur. J. Pharmaceut. Biopharmaceut. (2023), doi: 10.1016/j.ejpb.2023.10.019]. The data identify the filgrastim buffer (which is practically the same in filgrastim and pegfilgrastim products) as the main driver of human plasma and blood aggregation. Kinetic experiments showed differences in the extent of plasma aggregation induced by a filgrastim product manufactured in EU and one manufactured in USA. Human donor variability in the plasma aggregation induced by filgrastim was observed. To study the effect of PEGylation of the filgrastim protein on plasma aggregation we compared filgrastim (Neupogen®) with pegfilgrastim (Neulasta®) solutions at the same protein concentration. These data show that PEGylation has a beneficial effect in inhibiting to an extent plasma aggregation. Interestingly, 20 kDa polyethylene glycol in the filgrastim buffer induced more plasma aggregation compared to the buffer, similar to the aggregation induced by pegfilgrastim. For intravenous infusion filgrastim solutions (300 µg/ml, vials only) may be diluted in 5 % dextrose from a concentration of 300 µg/ml to 5 µg/ml. Aggregation of human plasma was also induced by filgrastim solutions diluted in 5 % dextrose to 50 µg/ml, 15 µg/ml and 5 µg/ml filgrastim, as well as by the filgrastim buffer similarly diluted in 5 % dextrose (1:6, 1:20 and 1:60 dilution). These data show that filgrastim solutions used for intravenous administration in patients induce human plasma aggregation in vitro. Such aggregation phenomena may be related to known infusion side effects of filgrastim therapy.
Collapse
|
5
|
Arvinte T, Poirier E, Ersayin N, Darpin G, Cudd A, Dowd J, Brokx S. Aggregation of human plasma and of human blood induced in vitro by pegfilgrastim originator formulation buffer and pegfilgrastim products. Eur J Pharm Biopharm 2023; 193:S0939-6411(23)00285-0. [PMID: 39492447 DOI: 10.1016/j.ejpb.2023.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
PEGylated recombinant human granulocyte colony stimulating factor (pegfilgrastim) is used clinically to reduce the incidence and duration of severe neutropenia in patients who have received chemotherapy treatment. Pegfilgrastim products are administered by subcutaneous injection. We herein report that solutions of pegfilgrastim originator product Neulasta®, of a biosimilar product candidate, and also of the pegfilgrastim originator formulation buffer, induced aggregate formation when mixed in vitro with human plasma, and formation of large membranous aggregated structures when mixed with human blood. Human donor variability in the plasma aggregation induced by pegfilgrastim products was observed. In all donors less aggregation occurred in plasma mixtures with the biosimilar pegfilgrastim product candidate compared to the originator products. Instantaneous aggregation of erythrocytes and formation of large membranous aggregated structures of erythrocytes occurred in mixtures of human blood with pegfilgrastim buffer or pegfilgrastim products. The formation of the large membranous aggregated structures likely involved fusion of erythrocyte membranes; erythrocyte membrane fusion events were observed. Pegfilgrastim proteins in the products accelerated the formation of irreversible erythrocyte aggregated structures. Pegfilgrastim originator formulation buffer (10 mM Na-acetate pH 4.0, 274 mM sorbitol, 0.004% polysorbate 20) was identified as the main driver of the plasma and erythrocyte aggregation. Lipoprotein aggregation at low pH in the presence of sorbitol and erythrocyte membrane fusion induced by the lipoprotein aggregates, are proposed as the main mechanisms for the formation of plasma and blood aggregates. Such aggregation phenomena may also occur during pegfilgrastim clinical use and may be related to known side effects and individual variability in the efficacy of pegfilgrastim therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jason Dowd
- Bayer Pharmaceuticals, Toronto, Ontario, Canada
| | | |
Collapse
|
6
|
Elsayed A, Jaber N, Al-Remawi M, Abu-Salah K. From cell factories to patients: Stability challenges in biopharmaceuticals manufacturing and administration with mitigation strategies. Int J Pharm 2023; 645:123360. [PMID: 37657507 DOI: 10.1016/j.ijpharm.2023.123360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Active ingredients of biopharmaceuticals consist of a wide array of biomolecular structures, including those of enzymes, monoclonal antibodies, nucleic acids, and recombinant proteins. Recently, these molecules have dominated the pharmaceutical industry owing to their safety and efficacy. However, their manufacturing is hindered by high cost, inadequate batch-to-batch equivalence, inherent instability, and other quality issues. This article is an up-to-date review of the challenges encountered during different stages of biopharmaceutical production and mitigation of problems arising during their development, formulation, manufacturing, and administration. It is a broad overview discussion of stability issues encountered during product life cycle i.e., upstream processing (aggregation, solubility, host cell proteins, color change), downstream bioprocessing (aggregation, fragmentation), formulation, manufacturing, and delivery to patients.
Collapse
Affiliation(s)
- Amani Elsayed
- College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman 1196, Jordan.
| | - Khalid Abu-Salah
- King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Department of Nanomedicine, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Anaz A, Kadhim N, Sadoon O, Alwan G, Adhab M. Sustainable Utilization of Machine-Vision-Technique-Based Algorithm in Objective Evaluation of Confocal Microscope Images. SUSTAINABILITY 2023; 15:3726. [DOI: 10.3390/su15043726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and estimation. The current method (visual quantification methods) of image quantification is time-consuming and cumbersome, and manual measurement is imprecise because of the natural differences among human eyes’ abilities. Subsequently, objective outcome evaluation can obviate the drawbacks of the current methods and facilitate recording for documenting function and research purposes. To achieve a fast and valuable objective estimation of fluorescence in each image, an algorithm was designed based on machine vision techniques to extract the targeted objects in images that resulted from confocal images and then estimate the covered area to produce a percentage value similar to the outcome of the current method and is predicted to contribute to sustainable biotechnology image analyses by reducing time and labor consumption. The results show strong evidence that t-designed objective algorithm evaluations can replace the current method of manual and visual quantification methods to the extent that the Intraclass Correlation Coefficient (ICC) is 0.9.
Collapse
Affiliation(s)
- Aws Anaz
- Mechatronics Engineering Department, Engineering College, University of Mosul, Mosul 00964, Iraq
| | - Neamah Kadhim
- College of Science for Women, University of Baghdad, Baghdad 10071, Iraq
| | - Omar Sadoon
- Information Technology Center, University of Technology, Baghdad 10066, Iraq
| | - Ghazwan Alwan
- Mechanical Engineering Department, Engineering College, Tikrit University, Tikrit 34001, Iraq
| | - Mustafa Adhab
- Plant Protection Department, University of Baghdad, Baghdad 10071, Iraq
| |
Collapse
|
8
|
Kopp MRG, Grigolato F, Zürcher D, Das TK, Chou D, Wuchner K, Arosio P. Surface-Induced Protein Aggregation and Particle Formation in Biologics: Current Understanding of Mechanisms, Detection and Mitigation Strategies. J Pharm Sci 2023; 112:377-385. [PMID: 36223809 DOI: 10.1016/j.xphs.2022.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 01/12/2023]
Abstract
Protein stability against aggregation is a major quality concern for the production of safe and effective biopharmaceuticals. Amongst the different drivers of protein aggregation, increasing evidence indicates that interactions between proteins and interfaces represent a major risk factor for the formation of protein aggregates in aqueous solutions. Potentially harmful surfaces relevant to biologics manufacturing and storage include air-water and silicone oil-water interfaces as well as materials from different processing units, storage containers, and delivery devices. The impact of some of these surfaces, for instance originating from impurities, can be difficult to predict and control. Moreover, aggregate formation may additionally be complicated by the simultaneous presence of interfacial, hydrodynamic and mechanical stresses, whose contributions may be difficult to deconvolute. As a consequence, it remains difficult to identify the key chemical and physical determinants and define appropriate analytical methods to monitor and predict protein instability at these interfaces. In this review, we first discuss the main mechanisms of surface-induced protein aggregation. We then review the types of contact materials identified as potentially harmful or detected as potential triggers of proteinaceous particle formation in formulations and discuss proposed mitigation strategies. Finally, we present current methods to probe surface-induced instabilities, which represent a starting point towards assays that can be implemented in early-stage screening and formulation development of biologics.
Collapse
Affiliation(s)
- Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Bickel F, Griaud F, Kern W, Kroener F, Gritsch M, Dayer J, Barteau S, Denefeld B, Kao-Scharf CY, Lang M, Slupska-Muanza I, Schmidt C, Berg M, Sigg J, Boado L, Chelius D. Restoring the biological activity of crizanlizumab at physiological conditions through a pH-dependent aspartic acid isomerization reaction. MAbs 2023; 15:2151075. [PMID: 36519228 PMCID: PMC9762811 DOI: 10.1080/19420862.2022.2151075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we report the isomerization of an aspartic acid residue in the complementarity-determining region (CDR) of crizanlizumab as a major degradation pathway. The succinimide intermediate and iso-aspartic acid degradation products were successfully isolated by ion exchange chromatography for characterization. The isomerization site was identified at a DG motif in the CDR by peptide mapping. The biological characterization of the isolated variants showed that the succinimide variant exhibited a loss in target binding and biological activity compared to the aspartic acid and iso-aspartic acid variants of the molecule. The influence of pH on this isomerization reaction was investigated using capillary zone electrophoresis. Below pH 6.3, the succinimide formation was predominant, whereas at pH values above 6.3, iso-aspartic acid was formed and the initial amounts of succinimide dropped to levels even lower than those observed in the starting material. Importantly, while the succinimide accumulated at long-term storage conditions of 2 to 8°C at pH values below 6.3, a complete hydrolysis of succinimide was observed at physiological conditions (pH 7.4, 37°C), resulting in full recovery of the biological activity. In this study, we demonstrate that the critical quality attribute succinimide with reduced potency has little or no impact on the efficacy of crizanlizumab due to the full recovery of the biological activity within a few hours under physiological conditions.
Collapse
Affiliation(s)
- Fabian Bickel
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - François Griaud
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Wolfram Kern
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Frieder Kroener
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Manuela Gritsch
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Jérôme Dayer
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Samuel Barteau
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Blandine Denefeld
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Chi-Ya Kao-Scharf
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Manuel Lang
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Izabela Slupska-Muanza
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Carla Schmidt
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Matthias Berg
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Jürgen Sigg
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Lina Boado
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Dirk Chelius
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland,CONTACT Dirk Chelius Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
10
|
Lalchandani DS, Paritala S, Gupta PK, Porwal PK. Application of Supervised and Unsupervised Learning Approaches for Mapping Storage Conditions of Biopharmaceutical Product-A Case Study of Human Serum Albumin. J Chromatogr Sci 2022:6640002. [PMID: 35817343 DOI: 10.1093/chromsci/bmac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022]
Abstract
The stability of biopharmaceutical therapeutics over the storage period/shelf life has been a challenging concern for manufacturers. A noble strategy for mapping best and suitable storage conditions for recombinant human serum albumin (rHSA) in laboratory mixture was optimized using chromatographic data as per principal component analysis (PCA), and similarity was defined using hierarchical cluster analysis. In contrast, separability was defined using linear discriminant analysis (LDA) models. The quantitation was performed for rHSA peak (analyte of interest) and its degraded products, i.e., dimer, trimer, agglomerates and other degradation products. The chromatographic variables were calculated using validated stability-indicating assay method. The chromatographic data mapping was done for the above-mentioned peaks over three months at different temperatures, i.e., 20°C, 5-8°C and at room temperature (25°C). The PCA had figured out the ungrouped variable, whereas supervised mapping was done using LDA. As an outcome result of LDA, about 60% of data were correctly classified with the highest sensitivity for 25°C (Aq), 25°C and 5-8°C (Aq with 5% glucose as a stabilizer), whereas the highest specificity was observed for samples stored at 5-8°C (Aq with 5% glucose as a stabilizer).
Collapse
Affiliation(s)
- Dimple S Lalchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Guwahati, Assam 781101, India
| | - Sreeteja Paritala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Guwahati, Assam 781101, India
| | - Pawan Kumar Gupta
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Maharajpura, Gwalior, Madhya Pradesh 474 005, India
| | - Pawan Kumar Porwal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Guwahati, Assam 781101, India
| |
Collapse
|
11
|
Off-label use of plastic syringes with silicone oil for intravenous infusion bags of antibodies. Eur J Pharm Biopharm 2021; 166:205-215. [PMID: 34237379 DOI: 10.1016/j.ejpb.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022]
Abstract
The formation of particulates in post-manufacture biopharmaceuticals continues to be a major concern in medical treatment. This study was designed to evaluate the content of micro-sized particles using flow imaging of antibodies in intravenous infusion bags. Intravenous immunoglobulin (IVIG) and Avastin® were selected as model drugs and plastic syringes with and without silicone oil (SO) were used to transfer the drugs into the bags (0.9% saline or 5% dextrose). Antibodies exposed to SO had significantly increased levels of microparticles in both diluents, suggesting SO accelerates particle formation, especially at a higher antibody concentration. Even before the drop stress, their count exceeded the USP guideline. Dropping the bags in the presence of SO produced larger microparticles. Meanwhile, air bubbles were retained longer in saline suggesting more protein film formation on its air-water interface. Overall, both drugs were conformationally stable and produced less particles in dextrose than in saline.
Collapse
|
12
|
Sreenivasan S, Sonawat D, Mandal S, Khare K, Rathore AS. Novel semi-automated fluorescence microscope imaging algorithm for monitoring IgG aggregates in serum. Sci Rep 2021; 11:11375. [PMID: 34059715 PMCID: PMC8166854 DOI: 10.1038/s41598-021-90623-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
Analysis of therapeutic IgG aggregates in serum is a potential area of investigation as it can give deeper insights about the function, immunogenic issues and protein interaction associated with the aggregates. To overcome various complexities associated with the existing analytical techniques for analyzing aggregates in serum, a novel florescence microscopy-based image processing approach was developed. The monoclonal antibody (mAb) was tagged with a fluorescent dye, fluorescein isothiocyanate (FITC). Aggregates, generated by stirring, were spiked into serum and images were captured at various time points. After denoising, thresholding by weighted median, 1D Otsu, and 2D Otsu was attempted and a modified 2D Otsu, a new mode of thresholding, was developed. This thresholding method was found to be highly effective in removing noises and retaining analyte sizes. Out of 0–255, the optimized threshold value obtained for the images discussed in modified 2D Otsu was 9 while 2D Otsu’s overestimated values were 38 and 48. Other morphological operations were applied after thresholding and the area, perimeter, circularity, and radii of the aggregates in these images were calculated. The proposed algorithm offers an approach for analysis of aggregates in serum that is simpler to implement and is complementary to existing approaches.
Collapse
Affiliation(s)
- Shravan Sreenivasan
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Deepak Sonawat
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shyamapada Mandal
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kedar Khare
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
13
|
Schuster J, Mahler HC, Joerg S, Huwyler J, Mathaes R. Analytical Challenges Assessing Protein Aggregation and Fragmentation Under Physiologic Conditions. J Pharm Sci 2021; 110:3103-3110. [PMID: 33933436 DOI: 10.1016/j.xphs.2021.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Therapeutic proteins are administered by injection or infusion. After administration, the physiologic environment in the desired body compartment - fluid or tissue - can impact protein stability and lead to changes in the safety and/or efficacy profile. For example, protein aggregation and fragmentation are critical quality attributes of the drug product and can occur after administration to patients. In this context, the in vivo stability of therapeutic proteins has gained increasing attention. However, in vivo protein aggregation and fragmentation are difficult to assess and have been rarely investigated. This mini-review summarizes analytical approaches to assess the stability of therapeutic proteins using simulated physiologic conditions. Furthermore, we discuss factors potentially causing in vivo protein aggregation, precipitation, and fragmentation in complex biological fluids. Different analytical approaches are evaluated with respect to their applicability and possible shortcomings when it comes to these degradation events in biological fluids. Tracking protein stability in biological fluids typically requires purifying or labeling the protein of interest to circumvent matrix interference of biological fluids. Improved analytical methods are strongly needed to gain knowledge on in vivo protein aggregation and fragmentation. In vitro models can support the selection of lead candidates and accelerate the pre-clinical development of therapeutic proteins.
Collapse
Affiliation(s)
- Joachim Schuster
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland; University of Basel, Pharmacenter, Division of Pharmaceutical Technology, Basel, Switzerland
| | | | - Susanne Joerg
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland
| | - Joerg Huwyler
- University of Basel, Pharmacenter, Division of Pharmaceutical Technology, Basel, Switzerland
| | - Roman Mathaes
- Lonza Pharma and Biotech, Drug Product Services, Basel, Switzerland.
| |
Collapse
|
14
|
Luo S, McSweeney KM, Wang T, Bacot SM, Feldman GM, Zhang B. Defining the right diluent for intravenous infusion of therapeutic antibodies. MAbs 2021; 12:1685814. [PMID: 31774346 PMCID: PMC6927757 DOI: 10.1080/19420862.2019.1685814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are commonly administered to patients through intravenous (IV) infusion, which involves diluting the medication into an infusion solution (e.g., saline and 5% dextrose). Using the wrong diluent can cause product aggregation, which may compromise patient safety. We and others have shown that Herceptin® (trastuzumab) and Avastin® (bevacizumab) undergo rapid aggregation upon mixing with dextrose and human plasma in vitro. In this study, we evaluated the compatibility of a panel of 11 therapeutic mAbs with dextrose or saline and human serum. These mAbs were randomly selected for their distinct formulations and IgG isotypes (IgG1, IgG2, IgG4, and Fc-fusion protein). All the mAbs appeared to be compatible with saline and human serum. However, mAbs that were formulated at acidic pH (≤ 6.5) exclusively formed insoluble aggregates upon mixing with dextrose and serum. Such aggregation was not detected for the mAbs that are at neutral pH (7.2–7.5) or in buffers containing sodium chloride. Mass spectrometric analysis revealed that the insoluble aggregates were composed of mAb molecules and several serum proteins (e.g., complement proteins, apolipoprotein, fibronectin) that are characterized by an isoelectric point of pH 5.4–6.7. At proximate pH to the isoelectric point values, those abundant serum proteins appeared to undergo isoelectric precipitation with mAb molecules. Our observations highlight a potential risk of protein aggregation at the blood-IV interface if a diluent is incompatible with a specific mAb formulation. This information has implications in guiding the design of product formulations and the selection of the right diluent for intravenous infusion of therapeutic mAbs. Abbreviations: ADC: antibody-drug conjugate; D5W: 5% dextrose in water; IM: intramuscular; IV: intravenous; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mAb: monoclonal antibody; SC: subcutaneous; pI: isoelectric point
Collapse
Affiliation(s)
- Shen Luo
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Keisha Melodi McSweeney
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tao Wang
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Silvia M Bacot
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gerald M Feldman
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Baolin Zhang
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
15
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Micro-Heterogeneity of Antibody Molecules. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:1-26. [PMID: 34687006 DOI: 10.1007/978-3-030-76912-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapeutic monoclonal antibodies (mAbs) are mostly of the IgG class and constitute highly efficacious biopharmaceuticals for a wide range of clinical indications. Full-length IgG mAbs are large proteins that are subject to multiple posttranslational modifications (PTMs) during biosynthesis, purification, or storage, resulting in micro-heterogeneity. The production of recombinant mAbs in nonhuman cell lines may result in loss of structural fidelity and the generation of variants having altered stability, biological activities, and/or immunogenic potential. Additionally, even fully human therapeutic mAbs are of unique specificity, by design, and, consequently, of unique structure; therefore, structural elements may be recognized as non-self by individuals within an outbred human population to provoke an anti-therapeutic/anti-drug antibody (ATA/ADA) response. Consequently, regulatory authorities require that the structure of a potential mAb drug product is comprehensively characterized employing state-of-the-art orthogonal analytical technologies; the PTM profile may define a set of critical quality attributes (CQAs) for the drug product that must be maintained, employing quality by design parameters, throughout the lifetime of the drug. Glycosylation of IgG-Fc, at Asn297 on each heavy chain, is an established CQA since its presence and fine structure can have a profound impact on efficacy and safety. The glycoform profile of serum-derived IgG is highly heterogeneous while mAbs produced in mammalian cells in vitro is less heterogeneous and can be "orchestrated" depending on the cell line employed and the culture conditions adopted. Thus, the gross structure and PTM profile of a given mAb, established for the drug substance gaining regulatory approval, have to be maintained for the lifespan of the drug. This review outlines our current understanding of common PTMs detected in mAbs and endogenous IgG and the relationship between a variant's structural attribute and its impact on clinical performance.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Co Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Co Dublin, Ireland
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
16
|
Saggu M, Demeule B, Jiang L, Kammerer D, Nayak PK, Tai M, Xiao N, Tomlinson A. Extended Characterization and Impact of Visible Fatty Acid Particles - A Case Study With a mAb Product. J Pharm Sci 2020; 110:1093-1102. [PMID: 33271136 DOI: 10.1016/j.xphs.2020.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
In recent years, there has been increased scrutiny on the presence and formation of product-related particles in biopharmaceutical formulations. These types of particles, originating from the degradation of the active pharmaceutical ingredient or the excipients, can be challenging to identify and characterize due to their fragility. Additionally, the mechanisms of their formation as well as the impact of their presence on drug product safety can be complicated to elucidate. In this work, a case study is presented in which multiple batches of one formulated monoclonal antibody (mAb-A) were analyzed at different batch ages to better understand the formation of visible particles resulting from degradation of the surfactant polysorbate 20. The particle identity was determined by Raman spectroscopy as free fatty acid (FFA) and the particle composition over time was monitored by mass spectrometry. Further experimental work includes the counts and morphologies of subvisible particles by flow imaging microscopy. Finally, we evaluated the consequences of saline and human plasma exposure to the visible particles to better understand their fate upon dilution and/or administration which is routinely performed in the clinical setting. The experiments performed in this work can be used to support risk assessments of visible product-related particles.
Collapse
Affiliation(s)
- Miguel Saggu
- Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Barthélemy Demeule
- Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Linda Jiang
- Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA
| | - Daniel Kammerer
- Analytical Sciences and Technologies, Roche Diagnostics GmbH, Sandhofer Str. 116, 68305 Mannheim, Germany
| | | | - Michelle Tai
- Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nina Xiao
- Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anthony Tomlinson
- Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
17
|
Gobeaux F, Bizeau J, Samson F, Marichal L, Grillo I, Wien F, Yesylevsky SO, Ramseyer C, Rouquette M, Lepêtre-Mouelhi S, Desmaële D, Couvreur P, Guenoun P, Renault JP, Testard F. Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. NANOSCALE 2020; 12:2793-2809. [PMID: 31961354 DOI: 10.1039/c9nr06485k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the field of nanomedicine, nanostructured nanoparticles (NPs) made of self-assembling prodrugs emerged in the recent years with promising properties. In particular, squalene-based drug nanoparticles have already shown their efficiency through in vivo experiments. However, a complete pattern of their stability and interactions in the blood stream is still lacking. In this work we assess the behavior of squalene-adenosine (SQAd) nanoparticles - whose neuroprotective effect has already been demonstrated in murine models - in the presence of fetal bovine serum (FBS) and of bovine serum albumin (BSA), the main protein of blood plasma. Extensive physicochemical characterizations were performed using Small Angle Neutron Scattering (SANS), cryogenic transmission electron microscopy (Cryo-TEM), circular dichroism (CD), steady-state fluorescence spectroscopy (SSFS) and isothermal titration calorimetry (ITC) as well as in silico by means of ensemble docking simulations with human serum albumin (HSA). Significant changes in the colloidal stability of the nanoparticles in the presence of serum albumin were observed. SANS, CD and SSFS analyses demonstrated an interaction between SQAd and BSA, with a partial disassembly of the nanoparticles in the presence of BSA and the formation of a complex between SQAd and BSA. The interaction free energy of SQAd nanoparticles with BSA derived from ITC experiments, is about -8 kcal mol-1 which is further supported in silico by ensemble docking simulations. Overall, our results show that serum albumin partially disassembles SQAd nanoparticles by extracting individual SQAd monomers from them. As a consequence, the SQAd nanoparticles would act as a circulating reservoir in the blood stream. The approach developed in this study could be extended to other soft organic nanoparticles.
Collapse
Affiliation(s)
- Frédéric Gobeaux
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Joëlle Bizeau
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Firmin Samson
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Laurent Marichal
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France. and I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle Grillo
- Institut Laue Langevin, 71 avenue des martyrs, B.P. 156, 38042 Grenoble Cedex 9, France
| | | | - Semen O Yesylevsky
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Marie Rouquette
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Sinda Lepêtre-Mouelhi
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Didier Desmaële
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Patrick Guenoun
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Jean-Philippe Renault
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Fabienne Testard
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
18
|
Schuster J, Koulov A, Mahler HC, Detampel P, Huwyler J, Singh S, Mathaes R. In Vivo Stability of Therapeutic Proteins. Pharm Res 2020; 37:23. [DOI: 10.1007/s11095-019-2689-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 01/05/2023]
|
19
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
20
|
Arvinte T, Palais C, Poirier E, Cudd A, Rajendran S, Brokx S, Dowd J. Part 2: Physicochemical characterization of bevacizumab in 2 mg/mL antibody solutions as used in human i.v. administration: Comparison of originator with a biosimilar candidate. J Pharm Biomed Anal 2019; 176:112802. [DOI: 10.1016/j.jpba.2019.112802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 11/28/2022]
|
21
|
Tao A, Huang GL, Igarashi K, Hong T, Liao S, Stellacci F, Matsumoto Y, Yamasoba T, Kataoka K, Cabral H. Polymeric Micelles Loading Proteins through Concurrent Ion Complexation and pH-Cleavable Covalent Bonding for In Vivo Delivery. Macromol Biosci 2019; 20:e1900161. [PMID: 31310454 DOI: 10.1002/mabi.201900161] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/29/2019] [Indexed: 12/17/2022]
Abstract
Protein drugs have great potential as targeted therapies, yet their application suffers from several drawbacks, such as instability, short half-life, and adverse immune responses. Thus, protein delivery approaches based on stimuli-responsive nanocarriers can provide effective strategies for selectively enhancing the availability and activation of proteins in targeted tissues. Herein, polymeric micelles with the ability of encapsulating proteins are developed via concurrent ion complexation and pH-cleavable covalent bonding between proteins and block copolymers directed to pH-triggered release of the protein payload. Carboxydimethylmaleic anhydride (CDM) is selected as the pH-sensitive moiety, since the CDMamide bond is stable at physiological pH (pH 7.4), while it cleaves at pH 6.5, that is, the pathophysiological pH of tumors and inflammatory tissues. By using poly(ethylene glycol)-poly(l-lysine) block copolymers having 45% CDM addition, different proteins with various sizes and isoelectric points are loaded successfully. By using myoglobin-loaded micelles (myo/m) as a model, the stability of the micelles in physiological conditions and the dissociation and release of functional myoglobin at pH 6.5 are successfully confirmed. Moreover, myo/m shows extended half-life in blood compared to free myoglobin and micelles assembled solely by polyion complex, indicating the potential of this system for in vivo delivery of proteins.
Collapse
Affiliation(s)
- Anqi Tao
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - George Lo Huang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunori Igarashi
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taehun Hong
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Suiyang Liao
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Interfaculty Bioengineering Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Yu Matsumoto
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.,Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
22
|
Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches. Pharm Res 2018; 35:58. [DOI: 10.1007/s11095-017-2306-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
|
23
|
Durbin KR, Nottoli MS, Catron ND, Richwine N, Jenkins GJ. High-Throughput, Multispecies, Parallelized Plasma Stability Assay for the Determination and Characterization of Antibody-Drug Conjugate Aggregation and Drug Release. ACS OMEGA 2017; 2:4207-4215. [PMID: 30023717 PMCID: PMC6044903 DOI: 10.1021/acsomega.7b00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/20/2017] [Indexed: 06/08/2023]
Abstract
The stability of antibody-drug conjugates (ADCs) in circulation is critical for maximum efficacy and minimal toxicity. An ADC reaching the intended target intact can deliver the highest possible drug load to the tumor and reduce off-target toxicity from free drug in the blood. As such, assessment of ADC stability is a vital piece of data during development. However, traditional ADC stability assays can be manually intensive, low-throughput, and require large quantities of ADC material. Here, we introduce an automated, high-throughput plasma stability assay for screening drug release and aggregation over 144 h for up to 40 ADCs across five matrices simultaneously. The amount of ADC material during early drug development is often limited, so this assay was implemented in 384-well format to minimize material requirements to <100 μg of each ADC and 100 μL of plasma per species type. Drug release and aggregation output were modeled using nonlinear regression equations to calculate formation rates for each data type. A set of 15 ADCs with different antibodies and identical valine-citrulline-p-aminobenzylcarbamate-monomethylauristatin E linker-drug payloads was tested and formation rates were compared across ADCs and between species, revealing several noteworthy trends. In particular, a wide range in aggregation was found when altering only the antibody, suggesting a key role for plasma stability screening early in the development process to find and remove antibody candidates with the potential to create unstable ADCs. The assay presented here can be leveraged to provide stability data on new chemistry and antibody screening initiatives, select the best candidate for in vivo studies, and provide results that highlight stability issues inherent to particular ADC designs throughout all stages of ADC development.
Collapse
Affiliation(s)
- Kenneth R. Durbin
- Drug
Metabolism and Pharmacokinetics and Drug Product Development, AbbVie, Inc., 1 N. Waukegan
Drive, North Chicago, Illinois 60064, United
States
| | - M. Shannon Nottoli
- Drug
Metabolism and Pharmacokinetics and Drug Product Development, AbbVie, Inc., 1 N. Waukegan
Drive, North Chicago, Illinois 60064, United
States
| | - Nathaniel D. Catron
- Drug
Metabolism and Pharmacokinetics and Drug Product Development, AbbVie, Inc., 1 N. Waukegan
Drive, North Chicago, Illinois 60064, United
States
| | - Nicole Richwine
- Drug
Metabolism and Pharmacokinetics and Drug Product Development, AbbVie, Inc., 1 N. Waukegan
Drive, North Chicago, Illinois 60064, United
States
| | - Gary J. Jenkins
- Drug
Metabolism and Pharmacokinetics and Drug Product Development, AbbVie, Inc., 1 N. Waukegan
Drive, North Chicago, Illinois 60064, United
States
| |
Collapse
|
24
|
Mayer SA, Solimando DA, Waddell JA. Cancer Chemotherapy Update: Bevacizumab, Etoposide, and Cisplatin Regimen for Refractory Brain Metastases. Hosp Pharm 2017; 52:394-399. [PMID: 29276261 DOI: 10.1177/0018578717717622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complexity of cancer chemotherapy requires pharmacists be familiar with the complicated regimens and highly toxic agents used. This column reviews various issues related to preparation, dispensing, and administration of antineoplastic therapy, and the agents, both commercially available and investigational, used to treat malignant diseases. Questions or suggestions for topics should be addressed to Dominic A. Solimando, Jr, President, Oncology Pharmacy Services, Inc, 4201 Wilson Blvd #110-545, Arlington, VA 22203, email: OncRxSvc@comcast.net; or J. Aubrey Waddell, Professor, University of Tennessee College of Pharmacy; Oncology Pharmacist, Pharmacy Department, Blount Memorial Hospital, 907 E. Lamar Alexander Parkway, Maryville, TN 37804, email: waddfour@charter.net. Regimen Name: Bevacizumab, etoposide, and cisplatin (BEEP) Origin of Name: The regimen is named for the medications it contains: bevacizumab, etoposide, and cisplatin.
Collapse
Affiliation(s)
- Seth A Mayer
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - J Aubrey Waddell
- The University of Tennessee Health Science Center, Maryville, USA
| |
Collapse
|
25
|
Goulet DR, Zwolak A, Chiu ML, Nath A, Atkins WM. Diffusion of Soluble Aggregates of THIOMABs and Bispecific Antibodies in Serum. Biochemistry 2017; 56:2251-2260. [PMID: 28394577 DOI: 10.1021/acs.biochem.6b01097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Submicrometer aggregates are frequently present at low levels in antibody-based therapeutics. Although intuition suggests that the fraction of the aggregate or the size of the aggregate present might correlate with deleterious clinical properties or formulation difficulties, it has been challenging to demonstrate which aggregate states, if any, trigger specific biological effects. One source of uncertainty about the putative linkage between aggregation and safety or efficacy lies in the likelihood that noncovalent aggregation differs in ideal buffers versus in serum and biological tissues; self-association or association with other proteins may vary widely with environment. Therefore, methods for monitoring aggregation and aggregate behavior in biologically relevant matrices could provide a tool for better predicting aggregate-dependent clinical outcomes and provide a basis for antibody engineering prior to clinical studies. Here, we generate models for soluble aggregates of THIOMABs and a bispecific antibody (bsAb) of defined size and exploit fluorescence correlation spectroscopy to monitor their diffusion properties in serum and viscosity-matched buffers. The monomers, dimers, and trimers of both THIOMABs and a bsAb reveal a modest increase in diffusion time in serum greater than expected for an increase in viscosity alone. A mixture of larger aggregates containing mostly bsAb pentamers exhibits a marked increase in diffusion time in serum and much greater intrasample variability, consistent with significant aggregation or interactions with serum components. The results indicate that small aggregates of several IgG platforms are not likely to aggregate with serum components, but nanometer-scale aggregates larger than trimers can interact with the serum in an Ab-dependent manner.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195-7631, United States
| | - Adam Zwolak
- Biologics Research, Janssen Research & Development, LLC , Spring House, Pennsylvania 19477, United States
| | - Mark L Chiu
- Biologics Research, Janssen Research & Development, LLC , Spring House, Pennsylvania 19477, United States
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195-7631, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195-7631, United States
| |
Collapse
|
26
|
Abstract
The design and application of sensors for monitoring biomolecules in clinical samples is a common goal of the sensing research community. Surface plasmon resonance (SPR) and other plasmonic techniques such as localized surface plasmon resonance (LSPR) and imaging SPR are reaching a maturity level sufficient for their application in monitoring biomolecules in clinical samples. In recent years, the first examples for monitoring antibodies, proteins, enzymes, drugs, small molecules, peptides, and nucleic acids in biofluids collected from patients afflicted with a series of medical conditions (Alzheimer's, hepatitis, diabetes, leukemia, and cancers such as prostate and breast cancers, among others) demonstrate the progress of SPR sensing in clinical chemistry. This Perspective reviews the current status of the field, showcasing a series of early successes in the application of SPR for clinical analysis and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, and comparing SPR with ELISA, while providing an outlook of the challenges currently associated with plasmonic materials, instrumentation, microfluidics, bioreceptor selection, selection of a clinical market, and validation of a clinical assay for applying SPR sensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical applications.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for self-assembled chemical structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
27
|
Aubé A, Charbonneau DM, Pelletier JN, Masson JF. Response Monitoring of Acute Lymphoblastic Leukemia Patients Undergoing l-Asparaginase Therapy: Successes and Challenges Associated with Clinical Sample Analysis in Plasmonic Sensing. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexandra Aubé
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | - David M. Charbonneau
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
| | - Joelle N. Pelletier
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
| | - Jean-François Masson
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for Self-Assembled Chemical Structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Québec, H3A 2K6, Canada
| |
Collapse
|
28
|
Jefferis R. Posttranslational Modifications and the Immunogenicity of Biotherapeutics. J Immunol Res 2016; 2016:5358272. [PMID: 27191002 PMCID: PMC4848426 DOI: 10.1155/2016/5358272] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/20/2016] [Indexed: 12/23/2022] Open
Abstract
Whilst the amino acid sequence of a protein is determined by its gene sequence, the final structure and function are determined by posttranslational modifications (PTMs), including quality control (QC) in the endoplasmic reticulum (ER) and during passage through the Golgi apparatus. These processes are species and cell specific and challenge the biopharmaceutical industry when developing a production platform for the generation of recombinant biologic therapeutics. Proteins and glycoproteins are also subject to chemical modifications (CMs) both in vivo and in vitro. The individual is naturally tolerant to molecular forms of self-molecules but nonself variants can provoke an immune response with the generation of anti-drug antibodies (ADA); aggregated forms can exhibit enhanced immunogenicity and QC procedures are developed to avoid or remove them. Monoclonal antibody therapeutics (mAbs) are a special case because their purpose is to bind the target, with the formation of immune complexes (ICs), a particular form of aggregate. Such ICs may be removed by phagocytic cells that have antigen presenting capacity. These considerations may frustrate the possibility of ameliorating the immunogenicity of mAbs by rigorous exclusion of aggregates from drug product. Alternate strategies for inducing immunosuppression or tolerance are discussed.
Collapse
Affiliation(s)
- Roy Jefferis
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
29
|
|
30
|
Luo S, Zhang B. Dextrose-mediated aggregation of therapeutic monoclonal antibodies in human plasma: Implication of isoelectric precipitation of complement proteins. MAbs 2015; 7:1094-103. [PMID: 26338058 PMCID: PMC4966494 DOI: 10.1080/19420862.2015.1087636] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many therapeutic monoclonal antibodies (mAbs) are clinically administered through intravenous infusion after mixing with a diluent, e.g., saline, 5% dextrose. Such a clinical setting increases the likelihood of interactions among mAb molecules, diluent, and plasma components, which may adversely affect product safety and efficacy. Avastin® (bevacizumab) and Herceptin® (trastuzumab), but not Remicade® (infliximab), were shown to undergo rapid aggregation upon dilution into 5% dextrose when mixed with human plasma in vitro; however, the biochemical pathways leading to the aggregation were not clearly defined. Here, we show that dextrose-mediated aggregation of Avastin or Herceptin in plasma involves isoelectric precipitation of complement proteins. Using mass spectrometry, we found that dextrose-induced insoluble aggregates were composed of mAb itself and multiple abundant plasma proteins, namely complement proteins C3, C4, factor H, fibronectin, and apolipoprotein. These plasma proteins, which are characterized by an isoelectronic point of 5.5–6.7, lost solubility at the resulting pH in the mixture with formulated Avastin (pH 6.2) and Herceptin (pH 6.0). Notably, switching formulation buffers for Avastin (pH 6.2) and Remicade (pH 7.2) reversed their aggregation profiles. Avastin formed little, if any, insoluble aggregates in dextrose-plasma upon raising the buffer pH to 7.2 or above. Furthermore, dextrose induced pH-dependent precipitation of plasma proteins, with massive insoluble aggregates being detected at pH 6.5–6.8. These data show that isoelectric precipitation of complement proteins is a prerequisite of dextrose-induced aggregation of mAb in human plasma. This finding highlights the importance of assessing the compatibility of a therapeutic mAb with diluent and human plasma during product development.
Collapse
Affiliation(s)
- Shen Luo
- a Office of Biotechnology Products; Center for Drug Evaluation and Research; Food and Drug Administration ; Silver Spring ; MD 20993 , USA
| | - Baolin Zhang
- a Office of Biotechnology Products; Center for Drug Evaluation and Research; Food and Drug Administration ; Silver Spring ; MD 20993 , USA
| |
Collapse
|
31
|
Surface plasmon resonance-based methodology for anti-adalimumab antibody identification and kinetic characterization. Anal Bioanal Chem 2015. [DOI: 10.1007/s00216-015-8915-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Li X, Geng SB, Chiu ML, Saro D, Tessier PM. High-throughput assay for measuring monoclonal antibody self-association and aggregation in serum. Bioconjug Chem 2015; 26:520-8. [PMID: 25714504 DOI: 10.1021/acs.bioconjchem.5b00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subcutaneous delivery is one of the preferred administration routes for therapeutic monoclonal antibodies (mAbs). High antibody dosing requirements and small injection volumes necessitate formulation and delivery of highly concentrated mAb solutions. Such elevated antibody concentrations can lead to undesirable solution behaviors such as mAb self-association and aggregation, which are relatively straightforward to detect using various biophysical methods because of the high purity and concentration of antibody formulations. However, the biophysical properties of mAbs in serum can also impact antibody activity, but these properties are less well understood because of the difficulty characterizing mAbs in such a complex environment. Here we report a high-throughput assay for directly evaluating mAb self-association and aggregation in serum. Our approach involves immobilizing polyclonal antibodies specific for human mAbs on gold nanoparticles, and then using these conjugates to capture human antibodies at a range of subsaturating to saturating mAb concentrations in serum. Antibody aggregation is detected at subsaturating mAb concentrations via blue-shifted plasmon wavelengths due to the reduced efficiency of capturing mAb aggregates relative to monomers, which reduces affinity cross-capture of mAbs by multiple conjugates. In contrast, antibody self-association is detected at saturating mAb concentrations via red-shifted plasmon wavelengths due to attractive interparticle interactions between immobilized mAbs. The high-throughput nature of this assay along with its compatibility with unusually dilute mAb solutions (0.1-10 μg per mL) should make it useful for identifying antibody candidates with high serum stability during early antibody discovery.
Collapse
|
33
|
Prediction of Aggregation In Vivo by Studies of Therapeutic Proteins in Human Plasma. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
34
|
Sharma VK, Kelley RF. Molecular Assessment of Monoclonal Antibody-Based Therapeutics Enabling Lead Selection for Clinical Development. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Gong X, Sharma AK, Strano MS, Mukhopadhyay D. Selective assembly of DNA-conjugated single-walled carbon nanotubes from the vascular secretome. ACS NANO 2014; 8:9126-36. [PMID: 25184956 PMCID: PMC4174097 DOI: 10.1021/nn5026912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Colloidal dispersion of single-walled carbon nanotubes (SWCNTs) is often the first processing step to many of their unique applications. However, dispersed SWCNTs often exist in kinetically trapped states where aggregation can be of concern. Recent work revealed prominent DNA-SWCNT aggregation following intravascular injection. In this study, we performed detailed analysis of DNA-SWCNT aggregate formation, structure, and composition in the context of endothelial cell condition media. Interestingly, we found that aggregates formed within condition media from cells that have undergone a stress response differ in size and organization from that of the control. We also found that temperature increases also promote DNA-SWCNT associations. A mathematical model was developed to describe the kinetics of SWCNT extraction from solution. Through orthogonal optical analysis and imaging modalities, we verified that proteins form the bulk of the aggregate structure and dictate aggregate assembly at multiple levels of organization. Finally, physiochemical analysis indicated preferential extraction of low-abundance hydrophobic and charged proteins. The formed aggregates also remain relatively stable in solution, making them potential macroscopic indicators of solution content.
Collapse
Affiliation(s)
- Xun Gong
- Department of Physiology and Biomedical Engineering and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55904, United States
| | - Anil K. Sharma
- Department of Physiology and Biomedical Engineering and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55904, United States
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Debabrata Mukhopadhyay
- Department of Physiology and Biomedical Engineering and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55904, United States
- Address correspondence to
| |
Collapse
|
36
|
Nebija D, Noe CR, Urban E, Lachmann B. Quality control and stability studies with the monoclonal antibody, trastuzumab: application of 1D- vs. 2D-gel electrophoresis. Int J Mol Sci 2014; 15:6399-411. [PMID: 24739811 PMCID: PMC4013636 DOI: 10.3390/ijms15046399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/10/2014] [Accepted: 03/31/2014] [Indexed: 12/05/2022] Open
Abstract
Recombinant monoclonal antibodies (rmAbs) are medicinal products obtained by rDNA technology. Consequently, like other biopharmaceuticals, they require the extensive and rigorous characterization of the quality attributes, such as identity, structural integrity, purity and stability. The aim of this work was to study the suitability of gel electrophoresis for the assessment of charge heterogeneity, post-translational modifications and the stability of the therapeutic, recombinant monoclonal antibody, trastuzumab. One-dimensional, SDS-PAGE, under reducing and non-reducing conditions, and two-dimensional gel electrophoresis were used for the determination of molecular mass (Mr), the isoelectric point (pI), charge-related isoform patterns and the stability of trastuzumab, subjected to stressed degradation and long-term conditions. For the assessment of the influence of glycosylation in the charge heterogeneity pattern of trastuzumab, an enzymatic deglycosylation study has been performed using N-glycosidase F and sialidase, whereas carboxypeptidase B was used for the lysine truncation study. Experimental data documented that 1D and 2D gel electrophoresis represent fast and easy methods to evaluate the quality of biological medicinal products. Important stability parameters, such as the protein aggregation, can be assessed, as well.
Collapse
Affiliation(s)
- Dashnor Nebija
- Department of Pharmaceutical Chemistry, Medical Faculty, Rr. Bulevardi i Deshmoreve, n.n. 10000 Pristina, Kosovo.
| | - Christian R Noe
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Bodo Lachmann
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|