1
|
Lavi I, Bhattacharya S, Awase A, Orgil O, Avital N, Journo G, Gurevich V, Shamay M. Unidirectional recruitment between MeCP2 and KSHV-encoded LANA revealed by CRISPR/Cas9 recruitment assay. PLoS Pathog 2025; 21:e1012972. [PMID: 40063648 PMCID: PMC11913271 DOI: 10.1371/journal.ppat.1012972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2025] [Accepted: 02/11/2025] [Indexed: 03/18/2025] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) is associated with several human malignancies. During latency, the viral genomes reside in the nucleus of infected cells as large non-integrated plasmids, known as episomes. To ensure episome maintenance, the latency protein LANA tethers the viral episomes to the cell chromosomes during cell division. Directional recruitment of protein complexes is critical for the proper function of many nuclear processes. To test for recruitment directionality between LANA and cellular proteins, we directed LANA via catalytically inactive Cas9 (dCas9) to a repeat sequence to obtain easily detectable dots. Then, the recruitment of nuclear proteins to these dots can be evaluated. We termed this assay CRISPR-PITA for Protein Interaction and Telomere Recruitment Assay. Using this protein recruitment assay, we found that LANA recruits its known interactors ORC2 and SIN3A. Interestingly, LANA was unable to recruit MeCP2, but MeCP2 recruited LANA. Both LANA and histone deacetylase 1 (HDAC1) interact with the transcriptional-repression domain (TRD) and the methyl-CpG-binding domain (MBD) of MeCP2. Similar to LANA, HDAC1 was unable to recruit MeCP2. While heterochromatin protein 1 (HP1), which interacts with the N-terminal of MeCP2, can recruit MeCP2. We propose that available interacting domains force this recruitment directionality. We hypothesized that the tandem repeats in the SunTag may force MeCP2 dimerization and mimic the form of DNA-bound MeCP2. Indeed, providing only the tandem epitopes of SunTag allows LANA to recruit MeCP2 in infected cells. Therefore, CRISPR-PITA revealed the rules of unidirectional recruitment and allowed us to break this directionality.
Collapse
Affiliation(s)
- Ido Lavi
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Supriya Bhattacharya
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ankita Awase
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ola Orgil
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Avital
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Guy Journo
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Vyacheslav Gurevich
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Meir Shamay
- Daniella Lee Casper Laboratory in Viral Oncology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
2
|
Lacen A, Lee HT. Tracing the Chromatin: From 3C to Live-Cell Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:659-682. [PMID: 39483638 PMCID: PMC11523001 DOI: 10.1021/cbmi.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 11/03/2024]
Abstract
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| | - Hui-Ting Lee
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
3
|
Clark FE, Greenberg NL, Silva DMZA, Trimm E, Skinner M, Walton RZ, Rosin LF, Lampson MA, Akera T. An egg-sabotaging mechanism drives non-Mendelian transmission in mice. Curr Biol 2024; 34:3845-3854.e4. [PMID: 39067449 PMCID: PMC11387149 DOI: 10.1016/j.cub.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Selfish genetic elements drive in meiosis to distort their transmission ratio and increase their representation in gametes, violating Mendel's law of segregation. The two established paradigms for meiotic drive, gamete killing and biased segregation, are fundamentally different. In gamete killing, typically observed with male meiosis, selfish elements sabotage gametes that do not contain them. By contrast, killing is predetermined in female meiosis, and selfish elements bias their segregation to the single surviving gamete (i.e., the egg in animal meiosis). Here, we show that a selfish element on mouse chromosome 2, Responder to drive 2 (R2d2), drives using a hybrid mechanism in female meiosis, incorporating elements of both killing and biased segregation. We propose that if R2d2 is destined for the polar body, it manipulates segregation to sabotage the egg by causing aneuploidy, which is subsequently lethal in the embryo, ensuring that surviving progeny preferentially contain R2d2. In heterozygous females, R2d2 orients randomly on the metaphase spindle but lags during anaphase and preferentially remains in the egg, regardless of its initial orientation. Thus, the egg genotype is either euploid with R2d2 or aneuploid with both homologs of chromosome 2, with only the former generating viable embryos. Consistent with this model, R2d2 heterozygous females produce eggs with increased aneuploidy for chromosome 2, increased embryonic lethality, and increased transmission of R2d2. In contrast to typical gamete killing of sisters produced as daughter cells in a single meiosis, R2d2 prevents production of any viable gametes from meiotic divisions in which it should have been excluded from the egg.
Collapse
Affiliation(s)
- Frances E Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Naomi L Greenberg
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Duilio M Z A Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Morgan Skinner
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - R Zaak Walton
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Leah F Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
4
|
Steinek C, Guirao-Ortiz M, Stumberger G, Tölke AJ, Hörl D, Carell T, Harz H, Leonhardt H. Generation of densely labeled oligonucleotides for the detection of small genomic elements. CELL REPORTS METHODS 2024; 4:100840. [PMID: 39137784 PMCID: PMC11384094 DOI: 10.1016/j.crmeth.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The genome contains numerous regulatory elements that may undergo complex interactions and contribute to the establishment, maintenance, and change of cellular identity. Three-dimensional genome organization can be explored with fluorescence in situ hybridization (FISH) at the single-cell level, but the detection of small genomic loci remains challenging. Here, we provide a rapid and simple protocol for the generation of bright FISH probes suited for the detection of small genomic elements. We systematically optimized probe design and synthesis, screened polymerases for their ability to incorporate dye-labeled nucleotides, and streamlined purification conditions to yield nanoscopy-compatible oligonucleotides with dyes in variable arrays (NOVA probes). With these probes, we detect genomic loci ranging from genome-wide repetitive regions down to non-repetitive loci below the kilobase scale. In conclusion, we introduce a simple workflow to generate densely labeled oligonucleotide pools that facilitate detection and nanoscopic measurements of small genomic elements in single cells.
Collapse
Affiliation(s)
- Clemens Steinek
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Miguel Guirao-Ortiz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriela Stumberger
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Annika J Tölke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David Hörl
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
5
|
Goto N, Suke K, Yonezawa N, Nishihara H, Handa T, Sato Y, Kujirai T, Kurumizaka H, Yamagata K, Kimura H. ISWI chromatin remodeling complexes recruit NSD2 and H3K36me2 in pericentromeric heterochromatin. J Cell Biol 2024; 223:e202310084. [PMID: 38709169 PMCID: PMC11076809 DOI: 10.1083/jcb.202310084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Histone H3 lysine36 dimethylation (H3K36me2) is generally distributed in the gene body and euchromatic intergenic regions. However, we found that H3K36me2 is enriched in pericentromeric heterochromatin in some mouse cell lines. We here revealed the mechanism of heterochromatin targeting of H3K36me2. Among several H3K36 methyltransferases, NSD2 was responsible for inducing heterochromatic H3K36me2. Depletion and overexpression analyses of NSD2-associating proteins revealed that NSD2 recruitment to heterochromatin was mediated through the imitation switch (ISWI) chromatin remodeling complexes, such as BAZ1B-SMARCA5 (WICH), which directly binds to AT-rich DNA via a BAZ1B domain-containing AT-hook-like motifs. The abundance and stoichiometry of NSD2, SMARCA5, and BAZ1B could determine the localization of H3K36me2 in different cell types. In mouse embryos, H3K36me2 heterochromatin localization was observed at the two- to four-cell stages, suggesting its physiological relevance.
Collapse
Affiliation(s)
- Naoki Goto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuma Suke
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Nao Yonezawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Tetsuya Handa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuko Sato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Pessoa J, Carvalho C. Human RNA Polymerase II Segregates from Genes and Nascent RNA and Transcribes in the Presence of DNA-Bound dCas9. Int J Mol Sci 2024; 25:8411. [PMID: 39125980 PMCID: PMC11312690 DOI: 10.3390/ijms25158411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
RNA polymerase II (Pol II) dysfunction is frequently implied in human disease. Understanding its functional mechanism is essential for designing innovative therapeutic strategies. To visualize its supra-molecular interactions with genes and nascent RNA, we generated a human cell line carrying ~335 consecutive copies of a recombinant β-globin gene. Confocal microscopy showed that Pol II was not homogeneously concentrated around these identical gene copies. Moreover, Pol II signals partially overlapped with the genes and their nascent RNA, revealing extensive compartmentalization. Using a cell line carrying a single copy of the β-globin gene, we also tested if the binding of catalytically dead CRISPR-associated system 9 (dCas9) to different gene regions affected Pol II transcriptional activity. We assessed Pol II localization and nascent RNA levels using chromatin immunoprecipitation and droplet digital reverse transcription PCR, respectively. Some enrichment of transcriptionally paused Pol II accumulated in the promoter region was detected in a strand-specific way of gRNA binding, and there was no decrease in nascent RNA levels. Pol II preserved its transcriptional activity in the presence of DNA-bound dCas9. Our findings contribute further insight into the complex mechanism of mRNA transcription in human cells.
Collapse
Affiliation(s)
- João Pessoa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal;
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Célia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
7
|
Clark FE, Greenberg NL, Silva DM, Trimm E, Skinner M, Walton RZ, Rosin LF, Lampson MA, Akera T. An egg sabotaging mechanism drives non-Mendelian transmission in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581453. [PMID: 38903120 PMCID: PMC11188085 DOI: 10.1101/2024.02.22.581453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
During meiosis, homologous chromosomes segregate so that alleles are transmitted equally to haploid gametes, following Mendel's Law of Segregation. However, some selfish genetic elements drive in meiosis to distort the transmission ratio and increase their representation in gametes. The established paradigms for drive are fundamentally different for female vs male meiosis. In male meiosis, selfish elements typically kill gametes that do not contain them. In female meiosis, killing is predetermined, and selfish elements bias their segregation to the single surviving gamete (i.e., the egg in animal meiosis). Here we show that a selfish element on mouse chromosome 2, R2d2, drives using a hybrid mechanism in female meiosis, incorporating elements of both male and female drivers. If R2d2 is destined for the polar body, it manipulates segregation to sabotage the egg by causing aneuploidy that is subsequently lethal in the embryo, so that surviving progeny preferentially contain R2d2. In heterozygous females, R2d2 orients randomly on the metaphase spindle but lags during anaphase and preferentially remains in the egg, regardless of its initial orientation. Thus, the egg genotype is either euploid with R2d2 or aneuploid with both homologs of chromosome 2, with only the former generating viable embryos. Consistent with this model, R2d2 heterozygous females produce eggs with increased aneuploidy for chromosome 2, increased embryonic lethality, and increased transmission of R2d2. In contrast to a male meiotic driver, which kills its sister gametes produced as daughter cells in the same meiosis, R2d2 eliminates "cousins" produced from meioses in which it should have been excluded from the egg.
Collapse
Affiliation(s)
- Frances E. Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Naomi L. Greenberg
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Duilio M.Z.A. Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Morgan Skinner
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - R Zaak Walton
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| | - Leah F. Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20894 USA
| | - Michael A. Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health; Bethesda, Maryland 20894, USA
| |
Collapse
|
8
|
Bischof J, Hierl M, Koller U. Emerging Gene Therapeutics for Epidermolysis Bullosa under Development. Int J Mol Sci 2024; 25:2243. [PMID: 38396920 PMCID: PMC10889532 DOI: 10.3390/ijms25042243] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenetic disease epidermolysis bullosa (EB) is characterised by the formation of extended blisters and lesions on the patient's skin upon minimal mechanical stress. Causal for this severe condition are genetic mutations in genes, leading to the functional impairment, reduction, or absence of the encoded protein within the skin's basement membrane zone connecting the epidermis to the underlying dermis. The major burden of affected families justifies the development of long-lasting and curative therapies operating at the genomic level. The landscape of causal therapies for EB is steadily expanding due to recent breakthroughs in the gene therapy field, providing promising outcomes for patients suffering from this severe disease. Currently, two gene therapeutic approaches show promise for EB. The clinically more advanced gene replacement strategy was successfully applied in severe EB forms, leading to a ground-breaking in vivo gene therapy product named beremagene geperpavec (B-VEC) recently approved from the US Food and Drug Administration (FDA). In addition, the continuous innovations in both designer nucleases and gene editing technologies enable the efficient and potentially safe repair of mutations in EB in a potentially permanent manner, inspiring researchers in the field to define and reach new milestones in the therapy of EB.
Collapse
Affiliation(s)
- Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| | - Markus Hierl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.B.); (M.H.)
| |
Collapse
|
9
|
Chen K, Wang Y. CRISPR/Cas systems for in situ imaging of intracellular nucleic acids: Concepts and applications. Biotechnol Bioeng 2023; 120:3446-3464. [PMID: 37641170 DOI: 10.1002/bit.28543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Accurate and precise localization of intracellular nucleic acids is crucial for regulating genetic information transcription and diagnosing diseases. Although intracellular nucleic acid imaging methods are available for various cell types, their widespread utilization is impeded by the intricate nature of the process and its exorbitant cost. Recently, numerous intracellular nucleic acid labeling techniques based on clustered regularly interspaced short palindromic repeats (CRISPR) have been established due to their modularity, flexibility, and specificity. In this work, we present various CRISPR methods that are currently employed for visualizing intracellular genomic sequences and RNA, based on their detection principles and application scenarios. Furthermore, we discuss the advantages and drawbacks of the existing CRISPR imaging methods, as well as future research directions. We anticipate that with continued refinement, more advanced CRISPR-based imaging techniques can be developed to better elucidate the localization and dynamics of intracellular nucleic acids, thereby providing a powerful tool for molecular biology research and clinical molecular pathology diagnosis.
Collapse
Affiliation(s)
- Kun Chen
- Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Yufei Wang
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, NMPA Key Laboratory for Quality Control of In Vitro Diagnostics, Beijing Engineering Research Center of Immunological Reagents Clinical Research, Beijing, China
| |
Collapse
|
10
|
Takata H, Masuda Y, Ohmido N. CRISPR imaging reveals chromatin fluctuation at the centromere region related to cellular senescence. Sci Rep 2023; 13:14609. [PMID: 37670098 PMCID: PMC10480159 DOI: 10.1038/s41598-023-41770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
The human genome is spatially and temporally organized in the nucleus as chromatin, and the dynamic structure of chromatin is closely related to genome functions. Cellular senescence characterized by an irreversible arrest of proliferation is accompanied by chromatin reorganisation in the nucleus during senescence. However, chromatin dynamics in chromatin reorganisation is poorly understood. Here, we report chromatin dynamics at the centromere region during senescence in cultured human cell lines using live imaging based on the clustered regularly interspaced short palindromic repeat/dCas9 system. The repetitive sequence at the centromere region, alpha-satellite DNA, was predominantly detected on chromosomes 1, 12, and 19. Centromeric chromatin formed irregular-shaped domains with high fluctuation in cells undergoing 5'-aza-2'-deoxycytidine-induced senescence. Our findings suggest that the increased fluctuation of the chromatin structure facilitates centromere disorganisation during cellular senescence.
Collapse
Affiliation(s)
- Hideaki Takata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, 563-8577, Japan.
| | - Yumena Masuda
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
11
|
Recoules L, Tanguy Le Gac N, Moutahir F, Bystricky K, Lavigne AC. Recruitment of the Histone Variant MacroH2A1 to the Pericentric Region Occurs upon Chromatin Relaxation and Is Responsible for Major Satellite Transcriptional Regulation. Cells 2023; 12:2175. [PMID: 37681907 PMCID: PMC10486525 DOI: 10.3390/cells12172175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Heterochromatin formation plays a pivotal role in regulating chromatin organization and influences nuclear architecture and genome stability and expression. Amongst the locations where heterochromatin is found, the pericentric regions have the capability to attract the histone variant macroH2A1. However, the factors and mechanisms behind macroH2A1 incorporation into these regions have not been explored. In this study, we probe different conditions that lead to the recruitment of macroH2A1 to pericentromeric regions and elucidate its underlying functions. Through experiments conducted on murine fibroblastic cells, we determine that partial chromatin relaxation resulting from DNA damage, senescence, or histone hyper-acetylation is necessary for the recruitment of macroH2A1 to pericentric regions. Furthermore, macroH2A1 is required for upregulation of noncoding pericentric RNA expression but not for pericentric chromatin organization. Our findings shed light on the functional rather than structural significance of macroH2A1 incorporation into pericentric chromatin.
Collapse
Affiliation(s)
- Ludmila Recoules
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Nicolas Tanguy Le Gac
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Fatima Moutahir
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Kerstin Bystricky
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
- Institut Universitaire de France (IUF), F-75231 Paris, France
| | - Anne-Claire Lavigne
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| |
Collapse
|
12
|
Fukuda K, Shimi T, Shimura C, Ono T, Suzuki T, Onoue K, Okayama S, Miura H, Hiratani I, Ikeda K, Okada Y, Dohmae N, Yonemura S, Inoue A, Kimura H, Shinkai Y. Epigenetic plasticity safeguards heterochromatin configuration in mammals. Nucleic Acids Res 2023; 51:6190-6207. [PMID: 37178005 PMCID: PMC10325917 DOI: 10.1093/nar/gkad387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes critical for cell type-specific gene expression and genome stability. In the mammalian nucleus, heterochromatin segregates from transcriptionally active genomic regions and exists in large, condensed, and inactive nuclear compartments. However, the mechanisms underlying the spatial organization of heterochromatin need to be better understood. Histone H3 lysine 9 trimethylation (H3K9me3) and lysine 27 trimethylation (H3K27me3) are two major epigenetic modifications that enrich constitutive and facultative heterochromatin, respectively. Mammals have at least five H3K9 methyltransferases (SUV39H1, SUV39H2, SETDB1, G9a and GLP) and two H3K27 methyltransferases (EZH1 and EZH2). In this study, we addressed the role of H3K9 and H3K27 methylation in heterochromatin organization using a combination of mutant cells for five H3K9 methyltransferases and an EZH1/2 dual inhibitor, DS3201. We showed that H3K27me3, which is normally segregated from H3K9me3, was redistributed to regions targeted by H3K9me3 after the loss of H3K9 methylation and that the loss of both H3K9 and H3K27 methylation resulted in impaired condensation and spatial organization of heterochromatin. Our data demonstrate that the H3K27me3 pathway safeguards heterochromatin organization after the loss of H3K9 methylation in mammalian cells.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
- School of Biosciences, The University of Melbourne, Royal Parade, 3010 Parkville, Australia
| | - Takeshi Shimi
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
| | - Takao Ono
- Chromosome Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Satoko Okayama
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
| | - Kazuho Ikeda
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo113-0033, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka565-0874, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo113-0033, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako 351-0198, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe650-0047, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima770-8503, Japan
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama230-0045, Japan
- Tokyo Metropolitan University, Hachioji192-0397, Japan
| | - Hiroshi Kimura
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama226-8501, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako351-0198, Japan
| |
Collapse
|
13
|
Tian M, Zhang R, Li J. Emergence of CRISPR/Cas9-mediated bioimaging: A new dawn of in-situ detection. Biosens Bioelectron 2023; 232:115302. [PMID: 37086563 DOI: 10.1016/j.bios.2023.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
In-situ detection provides deep insights into the function of genes and their relationship with diseases by directly visualizing their spatiotemporal behavior. As an emerging in-situ imaging tool, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated bioimaging can localize targets in living and fixed cells. CRISPR-mediated bioimaging has inherent advantages over the gold standard of fluorescent in-situ hybridization (FISH), including fast imaging, cost-effectiveness, and ease of preparation. Existing reviews have provided a detailed classification and overview of the principles of CRISPR-mediated bioimaging. However, the exploitation of potential clinical applicability of this bioimaging technique is still limited. Therefore, analyzing the potential value of CRISPR-mediated in-situ imaging is of great significance to the development of bioimaging. In this review, we initially discuss the available CRISPR-mediated imaging systems from the following aspects: summary of imaging substances, the design and optimization of bioimaging strategies, and factors influencing CRISPR-mediated in-situ detection. Subsequently, we highlight the potential of CRISPR-mediated bioimaging for application in biomedical research and clinical practice. Furthermore, we outline the current bottlenecks and future perspectives of CRISPR-based bioimaging. We believe that this review will facilitate the potential integration of bioimaging-related research with current clinical workflow.
Collapse
Affiliation(s)
- Meng Tian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, People's Republic of China; Peking University Fifth School of Clinical Medicine, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, People's Republic of China; Peking University Fifth School of Clinical Medicine, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, People's Republic of China; Peking University Fifth School of Clinical Medicine, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Li Y, Matsunaga S. Various Strategies for Improved Signal-to-Noise Ratio in CRISPR-Based Live Cell Imaging. CYTOLOGIA 2023. [DOI: 10.1508/cytologia.88.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
15
|
Contiliani DF, Moraes VN, Passos GA, Pereira TC. What Is the CRISPR System and How It Is Used? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:1-11. [PMID: 37486513 DOI: 10.1007/978-3-031-33325-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
CRISPR is a revolutionary gene editing technology that has enabled scientists worldwide to explore the cell's genetic blueprint in an unprecedented easy way. In this chapter, we will briefly present the history behind the development of this innovative tool, how it emerged from a natural bacterial mechanism for antiviral defense, its key components (Cas9 endonuclease and single guide RNA), mode of action (DNA cleavage and repair via NHEJ or HDR), and versatility (acting on single- or double-stranded DNA or RNA) for diverse purposes beyond gene editing such as stochastic marking, digital encoding, high-fidelity SNP genotyping, programmed chromosome fission/fusion, gene mapping, nucleic acid detection, regulation of gene expression, DNA/RNA labeling or tracking, and more.
Collapse
Affiliation(s)
- Danyel F Contiliani
- Centro de Cana, Instituto Agronômico de Campinas, Ribeirão Preto, SP, Brazil
- Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vitor N Moraes
- Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto Campus, SP, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto Campus, SP, Brazil
| | - Tiago Campos Pereira
- Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Maloshenok LG, Abushinova GA, Ryazanova AY, Bruskin SA, Zherdeva VV. Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo. BIOCHEMISTRY (MOSCOW) 2023; 88:S123-S149. [PMID: 37069118 PMCID: PMC9940691 DOI: 10.1134/s0006297923140080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR-Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR-Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR-Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.
Collapse
Affiliation(s)
- Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gerel A Abushinova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
17
|
Potlapalli BP, Ishii T, Nagaki K, Somasundaram S, Houben A. CRISPR-FISH: A CRISPR/Cas9-Based In Situ Labeling Method. Methods Mol Biol 2023; 2672:315-335. [PMID: 37335486 DOI: 10.1007/978-1-0716-3226-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Fluorescence in situ hybridization (FISH) has been widely used to visualize target DNA sequences in fixed chromosome samples by denaturing the dsDNA to allow complementary probe hybridization, thus damaging the chromatin structure by harsh treatments. To overcome this limitation, a CRISPR/Cas9-based in situ labeling method was developed, termed CRISPR-FISH. This method is also known as RNA-guided endonuclease-in situ labeling (RGEN-ISL). Here we present different protocols for the application of CRISPR-FISH on acetic acid: ethanol or formaldehyde-fixed nuclei and chromosomes as well as tissue sections for labeling repetitive sequences in a range of plant species. In addition, methods on how immunostaining can be combined with CRISPR-FISH are provided.
Collapse
Affiliation(s)
- Bhanu Prakash Potlapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany
| | - Takayoshi Ishii
- Arid Land Research Center (ALRC), Tottori University, Hamasaka, Tottori, Japan
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Chuo, Kurashiki, Japan
| | | | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany.
| |
Collapse
|
18
|
Viushkov VS, Lomov NA, Rubtsov MA, Vassetzky YS. Visualizing the Genome: Experimental Approaches for Live-Cell Chromatin Imaging. Cells 2022; 11:cells11244086. [PMID: 36552850 PMCID: PMC9776900 DOI: 10.3390/cells11244086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over the years, our vision of the genome has changed from a linear molecule to that of a complex 3D structure that follows specific patterns and possesses a hierarchical organization. Currently, genomics is becoming "four-dimensional": our attention is increasingly focused on the study of chromatin dynamics over time, in the fourth dimension. Recent methods for visualizing the movements of chromatin loci in living cells by targeting fluorescent proteins can be divided into two groups. The first group requires the insertion of a special sequence into the locus of interest, to which proteins that recognize the sequence are recruited (e.g., FROS and ParB-INT methods). In the methods of the second approach, "programmed" proteins are targeted to the locus of interest (i.e., systems based on CRISPR/Cas, TALE, and zinc finger proteins). In the present review, we discuss these approaches, examine their strengths and weaknesses, and identify the key scientific problems that can be studied using these methods.
Collapse
Affiliation(s)
- Vladimir S. Viushkov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikolai A. Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail A. Rubtsov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Center for Industrial Technologies and Entrepreneurship, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Yegor S. Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence:
| |
Collapse
|
19
|
Arora UP, Dumont BL. Meiotic drive in house mice: mechanisms, consequences, and insights for human biology. Chromosome Res 2022; 30:165-186. [PMID: 35829972 PMCID: PMC9509409 DOI: 10.1007/s10577-022-09697-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Meiotic drive occurs when one allele at a heterozygous site cheats its way into a disproportionate share of functional gametes, violating Mendel's law of equal segregation. This genetic conflict typically imposes a fitness cost to individuals, often by disrupting the process of gametogenesis. The evolutionary impact of meiotic drive is substantial, and the phenomenon has been associated with infertility and reproductive isolation in a wide range of organisms. However, cases of meiotic drive in humans remain elusive, a finding that likely reflects the inherent challenges of detecting drive in our species rather than unique features of human genome biology. Here, we make the case that house mice (Mus musculus) present a powerful model system to investigate the mechanisms and consequences of meiotic drive and facilitate translational inferences about the scope and potential mechanisms of drive in humans. We first detail how different house mouse resources have been harnessed to identify cases of meiotic drive and the underlying mechanisms utilized to override Mendel's rules of inheritance. We then summarize the current state of knowledge of meiotic drive in the mouse genome. We profile known mechanisms leading to transmission bias at several established drive elements. We discuss how a detailed understanding of meiotic drive in mice can steer the search for drive elements in our own species. Lastly, we conclude with a prospective look into how new technologies and molecular tools can help resolve lingering mysteries about the prevalence and mechanisms of selfish DNA transmission in mammals.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
20
|
Nishiga M, Liu C, Qi LS, Wu JC. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 2022; 19:505-521. [PMID: 35145236 PMCID: PMC10283450 DOI: 10.1038/s41569-021-00669-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Many novel CRISPR-based genome-editing tools, with a wide variety of applications, have been developed in the past few years. The original CRISPR-Cas9 system was developed as a tool to alter genomic sequences in living organisms in a simple way. However, the functions of new CRISPR tools are not limited to conventional genome editing mediated by non-homologous end-joining or homology-directed repair but expand into gene-expression control, epigenome editing, single-nucleotide editing, RNA editing and live-cell imaging. Furthermore, genetic perturbation screening by multiplexing guide RNAs is gaining popularity as a method to identify causative genes and pathways in an unbiased manner. New CRISPR tools can also be applied to ex vivo or in vivo therapeutic genome editing for the treatment of conditions such as hyperlipidaemia. In this Review, we first provide an overview of the diverse new CRISPR tools that have been developed to date. Second, we summarize how these new CRISPR tools are being used to study biological processes and disease mechanisms in cardiovascular research and medicine. Finally, we discuss the prospect of therapeutic genome editing by CRISPR tools to cure genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Nagano M, Hu B, Yokobayashi S, Yamamura A, Umemura F, Coradin M, Ohta H, Yabuta Y, Ishikura Y, Okamoto I, Ikeda H, Kawahira N, Nosaka Y, Shimizu S, Kojima Y, Mizuta K, Kasahara T, Imoto Y, Meehan K, Stocsits R, Wutz G, Hiraoka Y, Murakawa Y, Yamamoto T, Tachibana K, Peters J, Mirny LA, Garcia BA, Majewski J, Saitou M. Nucleome programming is required for the foundation of totipotency in mammalian germline development. EMBO J 2022; 41:e110600. [PMID: 35703121 PMCID: PMC9251848 DOI: 10.15252/embj.2022110600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.
Collapse
|
22
|
Hübner B, von Otter E, Ahsan B, Wee ML, Henriksson S, Ludwig A, Sandin S. Ultrastructure and nuclear architecture of telomeric chromatin revealed by correlative light and electron microscopy. Nucleic Acids Res 2022; 50:5047-5063. [PMID: 35489064 PMCID: PMC9122609 DOI: 10.1093/nar/gkac309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Telomeres, the ends of linear chromosomes, are composed of repetitive DNA sequences, histones and a protein complex called shelterin. How DNA is packaged at telomeres is an outstanding question in the field with significant implications for human health and disease. Here, we studied the architecture of telomeres and their spatial association with other chromatin domains in different cell types using correlative light and electron microscopy. To this end, the shelterin protein TRF1 or TRF2 was fused in tandem to eGFP and the peroxidase APEX2, which provided a selective and electron-dense label to interrogate telomere organization by transmission electron microscopy, electron tomography and scanning electron microscopy. Together, our work reveals, for the first time, ultrastructural insight into telomere architecture. We show that telomeres are composed of a dense and highly compacted mesh of chromatin fibres. In addition, we identify marked differences in telomere size, shape and chromatin compaction between cancer and non-cancer cells and show that telomeres are in direct contact with other heterochromatin regions. Our work resolves the internal architecture of telomeres with unprecedented resolution and advances our understanding of how telomeres are organized in situ.
Collapse
Affiliation(s)
- Barbara Hübner
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Eric von Otter
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Bilal Ahsan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Mei Ling Wee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Sara Henriksson
- Umeå Centre for Electron Microscopy, Umeå University, Chemical Biological Centre (KBC) Building, Linnaeus väg 6, SE-90736 Umeå, Sweden
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
23
|
Hatano Y, Mashiko D, Tokoro M, Yao T, Yamagata K. Chromosome counting in the mouse zygote using low-invasive super-resolution live-cell imaging. Genes Cells 2022; 27:214-228. [PMID: 35114033 DOI: 10.1111/gtc.12925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
In preimplantation embryos, an abnormal chromosome number causes developmental failure and a reduction in the pregnancy rate. Conventional chromosome testing methods requiring biopsy reduce the risk of associated genetic diseases; nevertheless, the reduction in cell number also reduces the pregnancy rate. Therefore, we attempted to count the chromosomes in mouse embryos using super-resolution live-cell imaging as a new method of chromosome counting that does not reduce the cell number or viability. We counted the forty chromosomes at the first mitosis by injecting embryos with histone H2B-mCherry mRNA under conditions by which pups could be obtained; however, the results were often an underestimation of chromosome number and varied by embryo and time point. Therefore, we developed a method to count the chromosomes via CRISPR/dCas-mediated live-cell fluorescence in situ hybridization targeting the sequence of the centromere region, enabling us to count the chromosomes more accurately in mouse embryos. The methodology presented here may provide useful information for assisted reproductive technologies, such as those used in livestock animals/humans, as a technique for assessing the chromosomal integrity of embryos prior to transfer.
Collapse
Affiliation(s)
- Yu Hatano
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
| | - Daisuke Mashiko
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
| | - Mikiko Tokoro
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan.,Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Aichi, Japan
| | - Tatsuma Yao
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan.,Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Kinokawa, Wakayama, Japan
| |
Collapse
|
24
|
Zhang M, Seitz C, Chang G, Iqbal F, Lin H, Liu J. A guide for single-particle chromatin tracking in live cell nuclei. Cell Biol Int 2022; 46:683-700. [PMID: 35032142 PMCID: PMC9035067 DOI: 10.1002/cbin.11762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Abstract
The emergence of labeling strategies and live cell imaging methods enables the imaging of chromatin in living cells at single digit nanometer resolution as well as milliseconds temporal resolution. These technical breakthroughs revolutionize our understanding of chromatin structure, dynamics and functions. Single molecule tracking algorithms are usually preferred to quantify the movement of these intranucleus elements to interpret the spatiotemporal evolution of the chromatin. In this review, we will first summarize the fluorescent labeling strategy of chromatin in live cells which will be followed by a sys-tematic comparison of live cell imaging instrumentation. With the proper microscope, we will discuss the image analysis pipelines to extract the biophysical properties of the chromatin. Finally, we expect to give practical suggestions to broad biologists on how to select methods and link to the model properly according to different investigation pur-poses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Clayton Seitz
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fadil Iqbal
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hua Lin
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
25
|
Javaid N, Choi S. CRISPR/Cas System and Factors Affecting Its Precision and Efficiency. Front Cell Dev Biol 2021; 9:761709. [PMID: 34901007 PMCID: PMC8652214 DOI: 10.3389/fcell.2021.761709] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The diverse applications of genetically modified cells and organisms require more precise and efficient genome-editing tool such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas). The CRISPR/Cas system was originally discovered in bacteria as a part of adaptive-immune system with multiple types. Its engineered versions involve multiple host DNA-repair pathways in order to perform genome editing in host cells. However, it is still challenging to get maximum genome-editing efficiency with fewer or no off-targets. Here, we focused on factors affecting the genome-editing efficiency and precision of CRISPR/Cas system along with its defense-mechanism, orthologues, and applications.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University Campus Plaza, Suwon, South Korea
| |
Collapse
|
26
|
Liehr T. Molecular Cytogenetics in the Era of Chromosomics and Cytogenomic Approaches. Front Genet 2021; 12:720507. [PMID: 34721522 PMCID: PMC8548727 DOI: 10.3389/fgene.2021.720507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 02/04/2023] Open
Abstract
Here the role of molecular cytogenetics in the context of yet available all other cytogenomic approaches is discussed. A short introduction how cytogenetics and molecular cytogenetics were established is followed by technical aspects of fluorescence in situ hybridization (FISH). The latter contains the methodology itself, the types of probe- and target-DNA, as well as probe sets. The main part deals with examples of modern FISH-applications, highlighting unique possibilities of the approach, like the possibility to study individual cells and even individual chromosomes. Different variants of FISH can be used to retrieve information on genomes from (almost) base pair to whole genomic level, as besides only second and third generation sequencing approaches can do. Here especially highlighted variations of FISH are molecular combing, chromosome orientation-FISH (CO-FISH), telomere-FISH, parental origin determination FISH (POD-FISH), FISH to resolve the nuclear architecture, multicolor-FISH (mFISH) approaches, among other applied in chromoanagenesis studies, Comet-FISH, and CRISPR-mediated FISH-applications. Overall, molecular cytogenetics is far from being outdated and actively involved in up-to-date diagnostics and research.
Collapse
Affiliation(s)
- Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
27
|
Chaudhary N, Im JK, Nho SH, Kim H. Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques. Mol Cells 2021; 44:627-636. [PMID: 34588320 PMCID: PMC8490199 DOI: 10.14348/molcells.2021.2254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022] Open
Abstract
The three-dimensional organization of chromatin and its time-dependent changes greatly affect virtually every cellular function, especially DNA replication, genome maintenance, transcription regulation, and cell differentiation. Sequencing-based techniques such as ChIP-seq, ATAC-seq, and Hi-C provide abundant information on how genomic elements are coupled with regulatory proteins and functionally organized into hierarchical domains through their interactions. However, visualizing the time-dependent changes of such organization in individual cells remains challenging. Recent developments of CRISPR systems for site-specific fluorescent labeling of genomic loci have provided promising strategies for visualizing chromatin dynamics in live cells. However, there are several limiting factors, including background signals, off-target binding of CRISPR, and rapid photobleaching of the fluorophores, requiring a large number of target-bound CRISPR complexes to reliably distinguish the target-specific foci from the background. Various modifications have been engineered into the CRISPR system to enhance the signal-to-background ratio and signal longevity to detect target foci more reliably and efficiently, and to reduce the required target size. In this review, we comprehensively compare the performances of recently developed CRISPR designs for improved visualization of genomic loci in terms of the reliability of target detection, the ability to detect small repeat loci, and the allowed time of live tracking. Longer observation of genomic loci allows the detailed identification of the dynamic characteristics of chromatin. The diffusion properties of chromatin found in recent studies are reviewed, which provide suggestions for the underlying biological processes.
Collapse
Affiliation(s)
- Narendra Chaudhary
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jae-Kyeong Im
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Si-Hyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
28
|
Liu Y, Zhao N, Kanemaki MT, Yamamoto Y, Sadamura Y, Ito Y, Tokunaga M, Stasevich TJ, Kimura H. Visualizing looping of two endogenous genomic loci using synthetic zinc-finger proteins with anti-FLAG and anti-HA frankenbodies in living cells. Genes Cells 2021; 26:905-926. [PMID: 34465007 PMCID: PMC8893316 DOI: 10.1111/gtc.12893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
In eukaryotic nuclei, chromatin loops mediated through cohesin are critical structures that regulate gene expression and DNA replication. Here, we demonstrate a new method to see endogenous genomic loci using synthetic zinc-finger proteins harboring repeat epitope tags (ZF probes) for signal amplification via binding of tag-specific intracellular antibodies, or frankenbodies, fused with fluorescent proteins. We achieve this in two steps: First, we develop an anti-FLAG frankenbody that can bind FLAG-tagged proteins in diverse live-cell environments. The anti-FLAG frankenbody complements the anti-HA frankenbody, enabling two-color signal amplification from FLAG- and HA-tagged proteins. Second, we develop a pair of cell-permeable ZF probes that specifically bind two endogenous chromatin loci predicted to be involved in chromatin looping. By coupling our anti-FLAG and anti-HA frankenbodies with FLAG- and HA-tagged ZF probes, we simultaneously see the dynamics of the two loci in single living cells. This shows a close association between the two loci in the majority of cells, but the loci markedly separate from the triggered degradation of the cohesin subunit RAD21. Our ability to image two endogenous genomic loci simultaneously in single living cells provides a proof of principle that ZF probes coupled with frankenbodies are useful new tools for exploring genome dynamics in multiple colors.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Yotaro Yamamoto
- Life Science Research Laboratories, Fujifilm Wako Pure Chemical, Amagasaki, Japan
| | - Yoshifusa Sadamura
- Life Science Research Laboratories, Fujifilm Wako Pure Chemical, Amagasaki, Japan
| | - Yuma Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Makio Tokunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center and World Research Hub Initiative, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
29
|
Abstract
The imaging of chromatin, genomic loci, RNAs, and proteins is very important to study their localization, interaction, and coordinated regulation. Recently, several clustered regularly interspaced short palindromic repeats (CRISPR) based imaging methods have been established. The refurbished tool kits utilizing deactivated Cas9 (dCas9) and dCas13 have been established to develop applications of CRISPR-Cas technology beyond genome editing. Here, we review recent advancements in CRISPR-based methods that enable efficient imaging and visualization of chromatin, genomic loci, RNAs, and proteins. RNA aptamers, Pumilio, SuperNova tagging system, molecular beacons, halotag, bimolecular fluorescence complementation, RNA-guided endonuclease in situ labeling, and oligonucleotide-based imaging methods utilizing fluorescent proteins, organic dyes, or quantum dots have been developed to achieve improved fluorescence and signal-to-noise ratio for the imaging of chromatin or genomic loci. RNA-guided RNA targeting CRISPR systems (CRISPR/dCas13) and gene knock-in strategies based on CRISPR/Cas9 mediated site-specific cleavage and DNA repair mechanisms have been employed for efficient RNA and protein imaging, respectively. A few CRISPR-Cas-based methods to investigate the coordinated regulation of DNA-protein, DNA-RNA, or RNA-protein interactions for understanding chromatin dynamics, transcription, and protein function are also available. Overall, the CRISPR-based methods offer a significant improvement in elucidating chromatin organization and dynamics, RNA visualization, and protein imaging. The current and future advancements in CRISPR-based imaging techniques can revolutionize genome biology research for various applications.
Collapse
Affiliation(s)
- Vikram Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
30
|
Duan N, Arroyo M, Deng W, Cardoso MC, Leonhardt H. Visualization and characterization of RNA-protein interactions in living cells. Nucleic Acids Res 2021; 49:e107. [PMID: 34313753 PMCID: PMC8501972 DOI: 10.1093/nar/gkab614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/14/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
RNA–protein interactions are the structural and functional basis of significant numbers of RNA molecules. RNA–protein interaction assays though, still mainly depend on biochemical tests in vitro. Here, we establish a convenient and reliable RNA fluorescent three-hybrid (rF3H) method to detect/interrogate the interactions between RNAs and proteins in cells. A GFP tagged highly specific RNA trap is constructed to anchor the RNA of interest to an artificial or natural subcellular structure, and RNA–protein interactions can be detected and visualized by the enrichment of RNA binding proteins (RBPs) at these structures. Different RNA trapping systems are developed and detection of RNA–protein complexes at multiple subcellular structures are assayed. With this new toolset, interactions between proteins and mRNA or noncoding RNAs are characterized, including the interaction between a long noncoding RNA and an epigenetic modulator. Our approach provides a flexible and reliable method for the characterization of RNA–protein interactions in living cells.
Collapse
Affiliation(s)
- Ningjun Duan
- Department of Biology II, Ludwig Maximilians University Munich, Munich 81377, Germany.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Maria Arroyo
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Wen Deng
- Department of Biology II, Ludwig Maximilians University Munich, Munich 81377, Germany.,College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig Maximilians University Munich, Munich 81377, Germany
| |
Collapse
|
31
|
Geng Y, Pertsinidis A. Simple and versatile imaging of genomic loci in live mammalian cells and early pre-implantation embryos using CAS-LiveFISH. Sci Rep 2021; 11:12220. [PMID: 34108610 PMCID: PMC8190065 DOI: 10.1038/s41598-021-91787-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
Visualizing the 4D genome in live cells is essential for understanding its regulation. Programmable DNA-binding probes, such as fluorescent clustered regularly interspaced short palindromic repeats (CRISPR) and transcription activator-like effector (TALE) proteins have recently emerged as powerful tools for imaging specific genomic loci in live cells. However, many such systems rely on genetically-encoded components, often requiring multiple constructs that each must be separately optimized, thus limiting their use. Here we develop efficient and versatile systems, based on in vitro transcribed single-guide-RNAs (sgRNAs) and fluorescently-tagged recombinant, catalytically-inactivated Cas9 (dCas9) proteins. Controlled cell delivery of pre-assembled dCas9-sgRNA ribonucleoprotein (RNP) complexes enables robust genomic imaging in live cells and in early mouse embryos. We further demonstrate multiplex tagging of up to 3 genes, tracking detailed movements of chromatin segments and imaging spatial relationships between a distal enhancer and a target gene, with nanometer resolution in live cells. This simple and effective approach should facilitate visualizing chromatin dynamics and nuclear architecture in various living systems.
Collapse
Affiliation(s)
- Yongtao Geng
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandros Pertsinidis
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Miriklis EL, Rozario AM, Rothenberg E, Bell TDM, Whelan DR. Understanding DNA organization, damage, and repair with super-resolution fluorescence microscopy. Methods Appl Fluoresc 2021; 9. [PMID: 33765677 DOI: 10.1088/2050-6120/abf239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 11/12/2022]
Abstract
Super-resolution microscopy (SRM) comprises a suite of techniques well-suited to probing the nanoscale landscape of genomic function and dysfunction. Offering the specificity and sensitivity that has made conventional fluorescence microscopy a cornerstone technique of biological research, SRM allows for spatial resolutions as good as 10 nanometers. Moreover, single molecule localization microscopies (SMLMs) enable examination of individual molecular targets and nanofoci allowing for the characterization of subpopulations within a single cell. This review describes how key advances in both SRM techniques and sample preparation have enabled unprecedented insights into DNA structure and function, and highlights many of these new discoveries. Ongoing development and application of these novel, highly interdisciplinary SRM assays will continue to expand the toolbox available for research into the nanoscale genomic landscape.
Collapse
Affiliation(s)
| | | | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, United States of America
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Donna R Whelan
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
33
|
Fortuny A, Chansard A, Caron P, Chevallier O, Leroy O, Renaud O, Polo SE. Imaging the response to DNA damage in heterochromatin domains reveals core principles of heterochromatin maintenance. Nat Commun 2021; 12:2428. [PMID: 33893291 PMCID: PMC8065061 DOI: 10.1038/s41467-021-22575-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Heterochromatin is a critical chromatin compartment, whose integrity governs genome stability and cell fate transitions. How heterochromatin features, including higher-order chromatin folding and histone modifications associated with transcriptional silencing, are maintained following a genotoxic stress challenge is unknown. Here, we establish a system for targeting UV damage to pericentric heterochromatin in mammalian cells and for tracking the heterochromatin response to UV in real time. We uncover profound heterochromatin compaction changes during repair, orchestrated by the UV damage sensor DDB2, which stimulates linker histone displacement from chromatin. Despite massive heterochromatin unfolding, heterochromatin-specific histone modifications and transcriptional silencing are maintained. We unveil a central role for the methyltransferase SETDB1 in the maintenance of heterochromatic histone marks after UV. SETDB1 coordinates histone methylation with new histone deposition in damaged heterochromatin, thus protecting cells from genome instability. Our data shed light on fundamental molecular mechanisms safeguarding higher-order chromatin integrity following DNA damage.
Collapse
Affiliation(s)
- Anna Fortuny
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Audrey Chansard
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Pierre Caron
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Odile Chevallier
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Olivier Leroy
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Olivier Renaud
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
34
|
Saifaldeen M, Al-Ansari DE, Ramotar D, Aouida M. Dead Cas9-sgRNA Complex Shelters Vulnerable DNA Restriction Enzyme Sites from Cleavage for Cloning Applications. CRISPR J 2021; 4:275-289. [PMID: 33876957 DOI: 10.1089/crispr.2020.0134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The creation of the nuclease-dead Cas protein (dCas9) offers a new platform for a plethora of new discoveries. Diverse dCas9 tools have been developed for transcription regulation, epigenetic engineering, base editing, genome imaging, genetic screens, and chromatin immunoprecipitation. Here, we show that dCas9 and single-guide RNA preassembled to form ribonucleoprotein dCas9-sgRNA (referred to as dRNP) is capable of specifically and reversibly blocking the activity of DNA cleavage by restriction enzymes (REs). We show that the inhibition of RE activities occurs when the recognition or the cleavage site of the DNA is overlapped by the sgRNA or the protospacer adjacent motif sequence. Furthermore, we show that multiple dRNPs can be used simultaneously to inhibit more than one RE sites. As such, we exploited this novel finding as a method to demonstrate that inserts can be ligated into vectors, and vice versa, whereby selective RE sites are temporarily sheltered to allow the desired cloning.
Collapse
Affiliation(s)
- Maryam Saifaldeen
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Dana E Al-Ansari
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Dindial Ramotar
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
35
|
Hoffmann MD, Mathony J, Upmeier Zu Belzen J, Harteveld Z, Aschenbrenner S, Stengl C, Grimm D, Correia BE, Eils R, Niopek D. Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein. Nucleic Acids Res 2021; 49:e29. [PMID: 33330940 PMCID: PMC7969004 DOI: 10.1093/nar/gkaa1198] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Optogenetic control of CRISPR–Cas9 systems has significantly improved our ability to perform genome perturbations in living cells with high precision in time and space. As new Cas orthologues with advantageous properties are rapidly being discovered and engineered, the need for straightforward strategies to control their activity via exogenous stimuli persists. The Cas9 from Neisseria meningitidis (Nme) is a particularly small and target-specific Cas9 orthologue, and thus of high interest for in vivo genome editing applications. Here, we report the first optogenetic tool to control NmeCas9 activity in mammalian cells via an engineered, light-dependent anti-CRISPR (Acr) protein. Building on our previous Acr engineering work, we created hybrids between the NmeCas9 inhibitor AcrIIC3 and the LOV2 blue light sensory domain from Avena sativa. Two AcrIIC3-LOV2 hybrids from our collection potently blocked NmeCas9 activity in the dark, while permitting robust genome editing at various endogenous loci upon blue light irradiation. Structural analysis revealed that, within these hybrids, the LOV2 domain is located in striking proximity to the Cas9 binding surface. Together, our work demonstrates optogenetic regulation of a type II-C CRISPR effector and might suggest a new route for the design of optogenetic Acrs.
Collapse
Affiliation(s)
- Mareike D Hoffmann
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - Jan Mathony
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.,Department of Biology, Technical University of Darmstadt,64287 Darmstadt, Germany.,PhD Student, BZH graduate school, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Zander Harteveld
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Sabine Aschenbrenner
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.,Department of Biology, Technical University of Darmstadt,64287 Darmstadt, Germany
| | | | - Dirk Grimm
- Dept. of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany.,BioQuant, Cluster of Excellence CellNetworks, University of Heidelberg, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Roland Eils
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, Berlin 10178, Germany.,Health Data Science Unit, BioQuant and Medical Faculty of Heidelberg University, Heidelberg 69120, Germany
| | - Dominik Niopek
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany.,Department of Biology, Technical University of Darmstadt,64287 Darmstadt, Germany
| |
Collapse
|
36
|
Nagpal H, Fierz B. The Elusive Structure of Centro-Chromatin: Molecular Order or Dynamic Heterogenetity? J Mol Biol 2021; 433:166676. [PMID: 33065112 DOI: 10.1016/j.jmb.2020.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023]
Abstract
The centromere is an essential chromatin domain required for kinetochore recruitment and chromosome segregation in eukaryotes. To perform this role, centro-chromatin adopts a unique structure that provides access to kinetochore proteins and maintains stability under tension during mitosis. This is achieved by the presence of nucleosomes containing the H3 variant CENP-A, which also acts as the epigenetic mark defining the centromere. In this review, we discuss the role of CENP-A on the structure and dynamics of centromeric chromatin. We further discuss the impact of the CENP-A binding proteins CENP-C, CENP-N, and CENP-B on modulating centro-chromatin structure. Based on these findings we provide an overview of the higher order structure of the centromere.
Collapse
Affiliation(s)
- Harsh Nagpal
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
37
|
Tjalsma SJD, Hori M, Sato Y, Bousard A, Ohi A, Raposo AC, Roensch J, Le Saux A, Nogami J, Maehara K, Kujirai T, Handa T, Bagés‐Arnal S, Ohkawa Y, Kurumizaka H, da Rocha ST, Żylicz JJ, Kimura H, Heard E. H4K20me1 and H3K27me3 are concurrently loaded onto the inactive X chromosome but dispensable for inducing gene silencing. EMBO Rep 2021; 22:e51989. [PMID: 33605056 PMCID: PMC7926250 DOI: 10.15252/embr.202051989] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non-coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2-dependent H3K27me3 and SETD8-dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3-specific intracellular antibody or H3K27me3-mintbody. By combining live-cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP-seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.
Collapse
Affiliation(s)
- Sjoerd J D Tjalsma
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Mayako Hori
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yuko Sato
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Aurelie Bousard
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Akito Ohi
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Ana Cláudia Raposo
- Faculdade de MedicinaInstituto de Medicina MolecularJoão Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Julia Roensch
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Agnes Le Saux
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
| | - Jumpei Nogami
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kazumitsu Maehara
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Tomoya Kujirai
- Institute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Tetsuya Handa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Sandra Bagés‐Arnal
- The Novo Nordisk Foundation Center for Stem Cell BiologyCopenhagenDenmark
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | | | - Simão Teixeira da Rocha
- Faculdade de MedicinaInstituto de Medicina MolecularJoão Lobo AntunesUniversidade de LisboaLisboaPortugal
| | - Jan J Żylicz
- Mammalian Developmental Epigenetics GroupInstitut CurieCNRS UMR3215, INSERM U934PSL UniversityParisFrance
- The Novo Nordisk Foundation Center for Stem Cell BiologyCopenhagenDenmark
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Hiroshi Kimura
- Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Edith Heard
- EMBL HeidelbergHeidelbergGermany
- Collège de FranceParisFrance
| |
Collapse
|
38
|
Programmable tools for targeted analysis of epigenetic DNA modifications. Curr Opin Chem Biol 2021; 63:1-10. [PMID: 33588304 DOI: 10.1016/j.cbpa.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 11/21/2022]
Abstract
Modifications of the cytosine 5-position are dynamic epigenetic marks of mammalian DNA with important regulatory roles in development and disease. Unraveling biological functions of such modified nucleobases is tightly connected with the potential of available methods for their analysis. Whereas genome-wide nucleobase quantification and mapping are first-line analyses, targeted analyses move into focus the more genomic sites with high biological significance are identified. We here review recent developments in an emerging field that addresses such targeted analyses via probes that combine a programmable, sequence-specific DNA-binding domain with the ability to directly recognize or cross-link an epigenetically modified nucleobase of interest. We highlight how such probes offer simple, high-resolution nucleobase analyses in vitro and enable in situ correlations between a nucleobase and other chromatin regulatory elements at user-defined loci on the single-cell level by imaging.
Collapse
|
39
|
Renzl C, Kakoti A, Mayer G. Aptamer‐Mediated Reversible Transactivation of Gene Expression by Light. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christian Renzl
- LIMES University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Ankana Kakoti
- LIMES University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Günter Mayer
- LIMES University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
- Center of Aptamer Research & Development University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
40
|
Renzl C, Kakoti A, Mayer G. Aptamer-Mediated Reversible Transactivation of Gene Expression by Light. Angew Chem Int Ed Engl 2020; 59:22414-22418. [PMID: 32865316 PMCID: PMC7756287 DOI: 10.1002/anie.202009240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Indexed: 12/11/2022]
Abstract
The investigation and manipulation of cellular processes with subcellular resolution requires non-invasive tools with spatiotemporal precision and reversibility. Building on the interaction of the photoreceptor PAL with an RNA aptamer, we describe a variation of the CRISPR/dCAS9 system for light-controlled activation of gene expression. This platform significantly reduces the coding space required for genetic manipulation and provides a strong on-switch with almost no residual activity in the dark. It adds to the current set of modular building blocks for synthetic biological circuit design and is broadly applicable.
Collapse
Affiliation(s)
- Christian Renzl
- LIMESUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Ankana Kakoti
- LIMESUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Günter Mayer
- LIMESUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
- Center of Aptamer Research & DevelopmentUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|
41
|
Chaudhary N, Nho SH, Cho H, Gantumur N, Ra JS, Myung K, Kim H. Background-suppressed live visualization of genomic loci with an improved CRISPR system based on a split fluorophore. Genome Res 2020; 30:1306-1316. [PMID: 32887690 PMCID: PMC7545142 DOI: 10.1101/gr.260018.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
The higher-order structural organization and dynamics of the chromosomes play a central role in gene regulation. To explore this structure–function relationship, it is necessary to directly visualize genomic elements in living cells. Genome imaging based on the CRISPR system is a powerful approach but has limited applicability due to background signals and nonspecific aggregation of fluorophores within nuclei. To address this issue, we developed a novel visualization scheme combining tripartite fluorescent proteins with the SunTag system and demonstrated that it strongly suppressed background fluorescence and amplified locus-specific signals, allowing long-term tracking of genomic loci. We integrated the multicomponent CRISPR system into stable cell lines to allow quantitative and reliable analysis of dynamic behaviors of genomic loci. Due to the greatly elevated signal-to-background ratio, target loci with only small numbers of sequence repeats could be successfully tracked, even under a conventional fluorescence microscope. This feature enables the application of CRISPR-based imaging to loci throughout the genome and opens up new possibilities for the study of nuclear processes in living cells.
Collapse
Affiliation(s)
- Narendra Chaudhary
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Si-Hyeong Nho
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hayoon Cho
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Narangerel Gantumur
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Hajin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
42
|
Santos AP, Gaudin V, Mozgová I, Pontvianne F, Schubert D, Tek AL, Dvořáčková M, Liu C, Fransz P, Rosa S, Farrona S. Tidying-up the plant nuclear space: domains, functions, and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5160-5178. [PMID: 32556244 PMCID: PMC8604271 DOI: 10.1093/jxb/eraa282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/12/2020] [Indexed: 05/07/2023]
Abstract
Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.
Collapse
Affiliation(s)
- Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova
de Lisboa, Oeiras, Portugal
| | - Valérie Gaudin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, Versailles, France
| | - Iva Mozgová
- Biology Centre of the Czech Academy of Sciences, České
Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České
Budějovice, Czech Republic
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP), Université de
Perpignan Via Domitia, Perpignan, France
| | - Daniel Schubert
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Ahmet L Tek
- Agricultural Genetic Engineering Department, Niğde Ömer Halisdemir
University, Niğde, Turkey
| | | | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of
Tübingen, Tübingen, Germany
- Institute of Biology, University of Hohenheim, Stuttgart,
Germany
| | - Paul Fransz
- University of Amsterdam, Amsterdam, The
Netherlands
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway,
Galway, Ireland
| |
Collapse
|
43
|
Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020; 8:692. [PMID: 32671050 PMCID: PMC7326781 DOI: 10.3389/fbioe.2020.00692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell culture methods have been widely used on a range of cell types, including stem cells to modulate precisely the cellular biophysical and biochemical microenvironment and control various cell signaling cues. As a result, more in vivo-like microenvironments are recapitulated, particularly through the formation of multicellular spheroids and organoids, which may yield more valid mechanisms of disease. Recently, genome-engineering tools such as CRISPR Cas9 have expanded the repertoire of techniques to control gene expression, which complements external signaling cues with intracellular control elements. As a result, the combination of CRISPR Cas9 and 3D cell culture methods enhance our understanding of the molecular mechanisms underpinning several disease phenotypes and may lead to developing new therapeutics that may advance more quickly and effectively into clinical candidates. In addition, using CRISPR Cas9 tools to rescue genes brings us one step closer to its use as a gene therapy tool for various degenerative diseases. Herein, we provide an overview of bridging of CRISPR Cas9 genome editing with 3D spheroid and organoid cell culture to better understand disease progression in both patient and non-patient derived cells, and we address potential remaining gaps that must be overcome to gain widespread use.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - André Lopes Rodrigues
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
44
|
Shaban HA, Seeber A. Monitoring the spatio-temporal organization and dynamics of the genome. Nucleic Acids Res 2020; 48:3423-3434. [PMID: 32123910 PMCID: PMC7144944 DOI: 10.1093/nar/gkaa135] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/22/2022] Open
Abstract
The spatio-temporal organization of chromatin in the eukaryotic cell nucleus is of vital importance for transcription, DNA replication and genome maintenance. Each of these activities is tightly regulated in both time and space. While we have a good understanding of chromatin organization in space, for example in fixed snapshots as a result of techniques like FISH and Hi-C, little is known about chromatin dynamics in living cells. The rapid development of flexible genomic loci imaging approaches can address fundamental questions on chromatin dynamics in a range of model organisms. Moreover, it is now possible to visualize not only single genomic loci but the whole genome simultaneously. These advances have opened many doors leading to insight into several nuclear processes including transcription and DNA repair. In this review, we discuss new chromatin imaging methods and how they have been applied to study transcription.
Collapse
Affiliation(s)
- Haitham A Shaban
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Andrew Seeber
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
45
|
Ugur E, Bartoschek MD, Leonhardt H. Locus-Specific Chromatin Proteome Revealed by Mass Spectrometry-Based CasID. Methods Mol Biol 2020; 2175:109-121. [PMID: 32681487 DOI: 10.1007/978-1-0716-0763-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biotin proximity labeling has largely extended the toolbox of mass spectrometry-based interactomics. To date, BirA, engineered BirA variants, or other biotinylating enzymes have been widely applied to characterize protein interactions. By implementing chromatin purification-based methods the genome-wide interactome of proteins can be defined. However, acquiring a high-resolution interactome of a single genomic locus preferably by multiplexed measurements of several distinct genomic loci in parallel remains challenging. We recently developed CasID, a novel approach where the catalytically inactive Cas9 (dCas9) is coupled to the promiscuous biotin ligase BirA (BirA∗). With CasID, first the local proteome at repetitive telomeric, major satellite, and minor satellite regions was determined. With more efficient biotin ligases and sensitive mass spectrometry, others have successfully identified the chromatin composition at even smaller genomic, non-repetitive regions of a few hundred base pairs in length. Here, we summarize the most recent developments towards interactomics at a single genomic locus and provide a step-by-step protocol based on the CasID approach.
Collapse
Affiliation(s)
- Enes Ugur
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael D Bartoschek
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
46
|
Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells. Chromosome Res 2019; 28:7-17. [PMID: 31792795 DOI: 10.1007/s10577-019-09622-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
The 3D organization of chromatin plays an important role in genome stability and many other pivotal biological programs. Therefore, the establishment of imaging methods, which enable us to study the dynamics of chromatin in living cells, is necessary. Although primary live cell imaging methods were a breakthrough, there is a need to develop more specific labeling techniques. With the discovery of programmable DNA binding proteins, such zinc finger proteins (ZFP), transcription activator-like effectors (TALE), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a major leap forward was made. Here, we review the applications and potential of fluorescent repressor-operator systems, programmable DNA binding proteins with an emphasis on CRISPR-based chromatin imaging in living and fixed cells, and their potential application in plant science.
Collapse
|
47
|
Němečková A, Wäsch C, Schubert V, Ishii T, Hřibová E, Houben A. CRISPR/Cas9-Based RGEN-ISL Allows the Simultaneous and Specific Visualization of Proteins, DNA Repeats, and Sites of DNA Replication. Cytogenet Genome Res 2019; 159:48-53. [PMID: 31610539 DOI: 10.1159/000502600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2019] [Indexed: 11/19/2022] Open
Abstract
Visualizing the spatiotemporal organization of the genome will improve our understanding of how chromatin structure and function are intertwined. Here, we describe a further development of the CRISPR/Cas9-based RNA-guided endonuclease-in situ labeling (RGEN-ISL) method. RGEN-ISL allowed the differentiation between vertebrate-type (TTAGGG)n and Arabidopsis-type (TTTAGGG)n telomere repeats. Using maize as an example, we established a combination of RGEN-ISL, immunostaining, and EdU labeling to visualize in situ specific repeats, histone marks, and DNA replication sites, respectively. The effects of the non-denaturing RGEN-ISL and standard denaturing FISH on the chromatin structure were compared using super-resolution microscopy. 3D structured illumination microscopy revealed that denaturation and acetic acid fixation impaired and flattened the chromatin. The broad range of adaptability of RGEN-ISL to different combinations of methods has the potential to advance the field of chromosome biology.
Collapse
|
48
|
Heinz KS, Casas-Delucchi CS, Török T, Cmarko D, Rapp A, Raska I, Cardoso MC. Peripheral re-localization of constitutive heterochromatin advances its replication timing and impairs maintenance of silencing marks. Nucleic Acids Res 2019; 46:6112-6128. [PMID: 29750270 PMCID: PMC6158597 DOI: 10.1093/nar/gky368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
The replication of the genome is a highly organized process, both spatially and temporally. Although a lot is known on the composition of the basic replication machinery, how its activity is regulated is mostly unknown. Several chromatin properties have been proposed as regulators, but a potential role of the nuclear DNA position remains unclear. We made use of the prominent structure and well-defined heterochromatic landscape of mouse pericentric chromosome domains as a well-studied example of late replicating constitutive heterochromatin. We established a method to manipulate its nuclear position and evaluated the effect on replication timing, DNA compaction and epigenetic composition. Using time-lapse microscopy, we observed that constitutive heterochromatin, known to replicate during late S-phase, was replicated in mid S-phase when repositioned to the nuclear periphery. Out-of-schedule replication resulted in deficient post-replicative maintenance of chromatin modifications, namely silencing marks. We propose that repositioned constitutive heterochromatin was activated in trans according to the domino model of origin firing by nearby (mid S) firing origins. In summary, our data provide, on the one hand, a novel approach to manipulate nuclear DNA position and, on the other hand, establish nuclear DNA position as a novel mechanism regulating DNA replication timing and epigenetic maintenance.
Collapse
Affiliation(s)
- Kathrin S Heinz
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Timea Török
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Alexander Rapp
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ivan Raska
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
49
|
Ishii T, Schubert V, Khosravi S, Dreissig S, Metje‐Sprink J, Sprink T, Fuchs J, Meister A, Houben A. RNA-guided endonuclease - in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. THE NEW PHYTOLOGIST 2019; 222:1652-1661. [PMID: 30847946 PMCID: PMC6593734 DOI: 10.1111/nph.15720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/24/2019] [Indexed: 06/02/2023]
Abstract
Visualising the spatio-temporal organisation of the genome will improve our understanding of how chromatin structure and function are intertwined. We developed a tool to visualise defined genomic sequences in fixed nuclei and chromosomes based on a two-part guide RNA with a recombinant Cas9 endonuclease complex. This method does not require any special construct or transformation method. In contrast to classical fluorescence in situ hybridiaztion, RGEN-ISL (RNA-guided endonuclease - in situ labelling) does not require DNA denaturation, and therefore permits a better structural chromatin preservation. The application of differentially labelled trans-activating crRNAs allows the multiplexing of RGEN-ISL. Moreover, this technique is combinable with immunohistochemistry. Real-time visualisation of the CRISPR/Cas9-mediated DNA labelling process revealed the kinetics of the reaction. The broad range of adaptability of RGEN-ISL to different temperatures and combinations of methods has the potential to advance the field of chromosome biology.
Collapse
Affiliation(s)
- Takayoshi Ishii
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
- Arid Land Research Center (ALRC)Tottori University1390 HamasakaTottori680‐0001Japan
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Janina Metje‐Sprink
- Julius Kühn‐InstituteInstitute of Biosafety in Plant BiotechnologyQuedlinburgD‐06484Germany
| | - Thorben Sprink
- Julius Kühn‐InstituteInstitute of Biosafety in Plant BiotechnologyQuedlinburgD‐06484Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| |
Collapse
|
50
|
Xu X, Qi LS. A CRISPR–dCas Toolbox for Genetic Engineering and Synthetic Biology. J Mol Biol 2019; 431:34-47. [DOI: 10.1016/j.jmb.2018.06.037] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
|