1
|
Aneed IK, Luaibi NM, Abdulqader SN. Investigating the clinical significance of immune and thyroid biomarkers in women with breast cancer and Hashimoto's thyroiditis. Reprod Biol 2025; 25:101011. [PMID: 40222067 DOI: 10.1016/j.repbio.2025.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/15/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Breast cancer with Hashimoto's thyroiditis (BC-HT) presents a unique immuno-thyroid interplay that remains poorly understood. This study investigates the relationships between thyroid function markers (TSH, T3, T4), immune markers (CD33, CD44), and thyroid autoantibodies (Anti-TPO, Anti-Tg) in BC-HT patients and healthy controls. Normality testing confirmed non-parametric data distribution, necessitating Mann-Whitney U tests for group comparisons. BC-HT patients exhibited significantly elevated TSH, CD33, Anti-TPO, and Anti-Tg levels, alongside reduced T3 and T4, compared to controls, indicating thyroid dysfunction. Spearman's correlation analysis revealed strong negative correlations between TSH and T3/T4 in controls, which were lost in BC-HT, suggesting disruption of normal thyroid feedback mechanisms. Additionally, CD33 and CD44 correlations with thyroid hormones were evident in controls but absent in BC-HT, highlighting altered immune-thyroid interactions. ROC analysis demonstrated high diagnostic performance for TSH, Anti-Tg, and Anti-TPO, with sensitivities exceeding 0.75, whereas CD33 and CD44 showed limited diagnostic utility. These findings suggest a distinct immuno-thyroid dysregulation in BC-HT patients and highlight the potential of thyroid-specific markers for disease stratification. Future research should focus on longitudinal studies and mechanistic investigations to further delineate the role of immune markers in breast cancer pathophysiology within the context of thyroid autoimmunity.
Collapse
Affiliation(s)
- Israa Khalaf Aneed
- Department of Biology, Mustansiriyah University, College of Science, Baghdad, Iraq.
| | | | - Sajid Nader Abdulqader
- National center for medical laboratories, Medical City, Ministry of Health, Baghdad, Iraq
| |
Collapse
|
2
|
Bhatia D, Dolcetti R, Mazzieri R. Are monocytes a preferable option to develop myeloid cell-based therapies for solid tumors? J Exp Clin Cancer Res 2025; 44:98. [PMID: 40089746 PMCID: PMC11909881 DOI: 10.1186/s13046-025-03359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
In the last two decades, novel and promising cell-based therapies have populated the treatment landscape for haematological tumors. However, commonly exploited T and NK cell-based therapies show limited applicability to solid tumors. This is mainly given by the impaired tumor trafficking capability and limited effector activity of these cells within a highly immunosuppressive tumor microenvironment. Myeloid cells spontaneously home to tumors and can thus be reprogrammed and/or engineered to directly attack tumor cells or locally and selectively deliver therapeutically relevant payloads that may improve the efficacy of immunotherapy against difficult-to-access solid tumors. In the context of myeloid cell-based therapies, adoptive transfer of monocytes has often been overshadowed by infusion of differentiated macrophages or hematopoietic stem cell transplantation despite their promising therapeutic potential. Here, we summarize the recent improvements and benefits of using monocytes for the treatment of solid tumors, their current clinical applications and the challenges of their use as well as some possible strategies to overcome them.
Collapse
Affiliation(s)
- Daisy Bhatia
- Swiss Federal Institute of Technology, Lausanne, Switzerland
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
3
|
Kabiljo J, Theophil A, Homola J, Renner AF, Stürzenbecher N, Ammon D, Zirnbauer R, Stang S, Tran L, Laengle J, Kulu A, Chen A, Fabits M, Atanasova VS, Pusch O, Weninger W, Walczak H, Herndler Brandstetter D, Egger G, Dolznig H, Kusienicka A, Farlik M, Bergmann M. Cancer-associated fibroblasts shape early myeloid cell response to chemotherapy-induced immunogenic signals in next generation tumor organoid cultures. J Immunother Cancer 2024; 12:e009494. [PMID: 39500527 PMCID: PMC11535717 DOI: 10.1136/jitc-2024-009494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Patient-derived colorectal cancer (CRC) organoids (PDOs) solely consisting of malignant cells led to major advances in the understanding of cancer treatments. Yet, a major limitation is the absence of cells from the tumor microenvironment, thereby prohibiting potential investigation of treatment responses on immune and structural cells. Currently there are sparse reports describing the interaction of PDOs, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) in complex primary co-culture assay systems. METHODS Primary PDOs and patient matched CAF cultures were generated from surgical resections. Co-culture systems of PDOs, CAFs and monocytic myeloid cells were set up to recapitulate features seen in patient tumors. Single-cell transcriptomics and flow cytometry was used to show effects of culture systems on TAM populations in the co-culture assays under chemotherapeutic and oncolytic viral treatment. RESULTS In contrast to co-cultures of tumor cells and monocytes, CAF/monocyte co-cultures and CAF/monocyte/tumor cell triple cultures resulted in a partial differentiation into macrophages and a phenotypic switch, characterized by the expression of major immunosuppressive markers comparable to TAMs in CRC. Oxaliplatin and 5-fluorouracil, the standard-of-care chemotherapy for CRC, induced polarization of macrophages to a pro-inflammatory phenotype comparable to the immunogenic effects of treatment with an oncolytic virus. Monitoring phagocytosis as a functional proxy to macrophage activation and subsequent onset of an immune response, revealed that chemotherapy-induced cell death, but not virus-mediated cell death, is necessary to induce phagocytosis of CRC cells. Moreover, CAFs enhanced the phagocytic activity in chemotherapy treated CRC triple cultures. CONCLUSIONS Primary CAF-containing triple cultures successfully model TAM-like phenotypes ex vivo and allow the assessment of their functional and phenotypic changes in response to treatments following a precision medicine approach.
Collapse
Affiliation(s)
- Julijan Kabiljo
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Theophil
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jakob Homola
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Annalena F Renner
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nathalie Stürzenbecher
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daphni Ammon
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rebecca Zirnbauer
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Simone Stang
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Johannes Laengle
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Askin Kulu
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Chen
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Markus Fabits
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Velina S Atanasova
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Oliver Pusch
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Dietmar Herndler Brandstetter
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Helmut Dolznig
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Anna Kusienicka
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
5
|
Wang L, Lynch C, Pitroda SP, Piffkó A, Yang K, Huser AK, Liang HL, Weichselbaum RR. Radiotherapy and immunology. J Exp Med 2024; 221:e20232101. [PMID: 38771260 PMCID: PMC11110906 DOI: 10.1084/jem.20232101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells, and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of clinical trials involving inhibition of these immune checkpoints and radiotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Connor Lynch
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - András Piffkó
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Amy K. Huser
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Wu K, Zhang G, Shen C, Zhu L, Yu C, Sartorius K, Ding W, Jiang Y, Lu Y. Role of T cells in liver metastasis. Cell Death Dis 2024; 15:341. [PMID: 38755133 PMCID: PMC11099083 DOI: 10.1038/s41419-024-06726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The liver is a major metastatic site (organ) for gastrointestinal cancers (such as colorectal, gastric, and pancreatic cancers) as well as non-gastrointestinal cancers (such as lung, breast, and melanoma cancers). Due to the innate anatomical position of the liver, the apoptosis of T cells in the liver, the unique metabolic regulation of hepatocytes and other potential mechanisms, the liver tends to form an immunosuppressive microenvironment and subsequently form a pre-metastatic niche (PMN), which can promote metastasis and colonization by various tumor cells(TCs). As a result, the critical role of immunoresponse in liver based metastasis has become increasingly appreciated. T cells, a centrally important member of adaptive immune response, play a significant role in liver based metastases and clarifying the different roles of the various T cells subsets is important to guide future clinical treatment. In this review, we first introduce the predisposing factors and related mechanisms of liver metastasis (LM) before introducing the PMN and its transition to LM. Finally, we detail the role of different subsets of T cells in LM and advances in the management of LM in order to identify potential therapeutic targets for patients with LM.
Collapse
Affiliation(s)
- Kejia Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guozhu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Emergency Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Changbing Shen
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Second People's Hospital Affiliated with Yangzhou University, Taizhou, China
| | - Li Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Emergency Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chongyuan Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kurt Sartorius
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
- Department of General Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Yong Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Africa Hepatopancreatobiliary Cancer Consortium, Mayo Clinic, Jacksonville, FL, USA.
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China.
| |
Collapse
|
7
|
Yang M, Yu T, Han L. Hsa_circ_0010882 facilitates hepatocellular carcinoma progression by modulating M1/M2 macrophage polarization. J Viral Hepat 2024; 31:189-196. [PMID: 38235909 DOI: 10.1111/jvh.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is one common malignant tumour with a high immunosuppressive tumour microenvironment and poor outcomes. This study investigated the influence of hsa_circ_0010882 on M1/M2 macrophage polarization in the progression of HCC. A total of 125 paired tissue specimens from HCC patients who underwent hepatectomy were collected. M1 and M2 phenotypes macrophages were induced using THP-1. After co-cultured with macrophages and transfected HCC cells, the viability, migration and invasion of HCC cells were detected by cellular experiments. Bioinformatic databases and dual-luciferase reporter assays were used to predict and validate the interaction between circ_0010882 and miR-382. Expression of circ_0010882 was increased in HCC tissues and associated with shorter overall survival outcomes. The mRNA expression of M2 macrophage markers Arg-1, CD163 and CD206 were elevated in HCC tissues. Interfering with circ_0010882 increased M1-type macrophage markers (TNF-α and iNOS) while decreasing M2-type macrophage markers (Arg-1 and CD206). Silencing of circ_0010882 strengthened the capacity of M1 macrophages to suppress HCC cell viability, migration capacities and invasion potential while reducing the ability of M2 macrophages to promote above cellular abilities. MiR-382 was a direct target miRNA of circ_0010882. The circ_0010882 expression was increased in HCC tissues and associated with poor prognosis of HCC patients. Silencing of circ_0010882 inhibits macrophage M2 polarization in HCC progression by regulating miR-382 expression. Circ_0010882 may serve as a biomarker to provide novel strategies for the treatment of HCC and patient rehabilitation, thereby improving the prognosis of patients.
Collapse
Affiliation(s)
- Ming Yang
- Department of Medical Oncology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tao Yu
- Department of Medical Oncology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Han
- Department of Medical Oncology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Reichardt CM, Muñoz-Becerra M, Rius Rigau A, Rückert M, Fietkau R, Schett G, Gaipl US, Frey B, Muñoz LE. Neutrophils seeking new neighbors: radiotherapy affects the cellular framework and the spatial organization in a murine breast cancer model. Cancer Immunol Immunother 2024; 73:67. [PMID: 38430241 PMCID: PMC10908631 DOI: 10.1007/s00262-024-03653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Neutrophils are known to contribute in many aspects of tumor progression and metastasis. The presence of neutrophils or neutrophil-derived mediators in the tumor microenvironment has been associated with poor prognosis in several types of solid tumors. However, the effects of classical cancer treatments such as radiation therapy on neutrophils are poorly understood. Furthermore, the cellular composition and distribution of immune cells in the tumor is of increasing interest in cancer research and new imaging technologies allow to perform more complex spatial analyses within tumor tissues. Therefore, we aim to offer novel insight into intra-tumoral formation of cellular neighborhoods and communities in murine breast cancer. To address this question, we performed image mass cytometry on tumors of the TS/A breast cancer tumor model, performed spatial neighborhood analyses of the tumor microenvironment and quantified neutrophil-extracellular trap degradation products in serum of the mice. We show that irradiation with 2 × 8 Gy significantly alters the cellular composition and spatial organization in the tumor, especially regarding neutrophils and other cells of the myeloid lineage. Locally applied radiotherapy further affects neutrophils in a systemic manner by decreasing the serum neutrophil extracellular trap concentrations which correlates positively with survival. In addition, the intercellular cohesion is maintained due to radiotherapy as shown by E-Cadherin expression. Radiotherapy, therefore, might affect the epithelial-mesenchymal plasticity in tumors and thus prevent metastasis. Our findings underscore the growing importance of the spatial organization of the tumor microenvironment, particularly with respect to radiotherapy, and provide insight into potential mechanisms by which radiotherapy affects epithelial-mesenchymal plasticity and tumor metastasis.
Collapse
Affiliation(s)
- C M Reichardt
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - M Muñoz-Becerra
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - A Rius Rigau
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - M Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - R Fietkau
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - G Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - U S Gaipl
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - B Frey
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - L E Muñoz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
- Deutsches Zentrum Für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
9
|
Pasha A, Tondo A, Favre C, Calvani M. Inside the Biology of the β3-Adrenoceptor. Biomolecules 2024; 14:159. [PMID: 38397396 PMCID: PMC10887351 DOI: 10.3390/biom14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Since the first discovery in 1989, the β3-adrenoceptor (β3-AR) has gained great attention because it showed the ability to regulate many physiologic and metabolic activities, such as thermogenesis and lipolysis in brown and white adipose tissue, respectively (BAT, WAT), negative inotropic effects in cardiomyocytes, and relaxation of the blood vessels and the urinary bladder. The β3-AR has been suggested as a potential target for cancer treatment, both in adult and pediatric tumors, since under hypoxia its upregulation in the tumor microenvironment (TME) regulates stromal cell differentiation, tumor growth and metastases, signifying that its agonism/antagonism could be useful for clinical benefits. Promising results in cancer research have proposed the β3-AR being targeted for the treatment of many conditions, with some drugs, at present, undergoing phase II and III clinical trials. In this review, we report the scientific journey followed by the research from the β3-Ars' discovery, with focus on the β3-Ars' role in cancer initiation and progression that elects it an intriguing target for novel antineoplastic approaches. The overview highlights the great potential of the β3-AR, both in physiologic and pathologic conditions, with the intention to display the possible benefits of β3-AR modulation in cancer reality.
Collapse
Affiliation(s)
- Amada Pasha
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Claudio Favre
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Maura Calvani
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| |
Collapse
|
10
|
Sharma P, Otto M. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy. Bioact Mater 2024; 31:440-462. [PMID: 37701452 PMCID: PMC10494322 DOI: 10.1016/j.bioactmat.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Cancer immunotherapy has gained momentum for treating malignant tumors over the past decade. Checkpoint blockade and chimeric antigen receptor cell therapy (CAR-T) have shown considerable potency against liquid and solid cancers. However, the tumor microenvironment (TME) is highly immunosuppressive and hampers the effect of currently available cancer immunotherapies on overall treatment outcomes. Advancements in the design and engineering of nanomaterials have opened new avenues to modulate the TME. Progress in the current nanocomposite technology can overcome immunosuppression and trigger robust immunotherapeutic responses by integrating synergistic functions of different molecules. We will review recent advancements in nanomedical applications and discuss specifically designed nanocomposites modulating the TME for cancer immunotherapy. In addition, we provide information on the current landscape of clinical-stage nanocomposites for cancer immunotherapy.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
| | - Mario Otto
- Department of Child Health, University of Arizona College of Medicine-Phoenix, ABC1 Building, 425 N 5th Street, Phoenix, AZ, 85004, USA
- Center for Cancer and Blood Disorders (CCBD), Phoenix Children's, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| |
Collapse
|
11
|
Cai S, Sun Z, Yan Y, Li W, Wu Q. COL10A1 is a potential immunotherapy biomarker associated with immune infiltration and deficient mismatch repair in colon cancer. Immunotherapy 2023; 15:1293-1308. [PMID: 37585671 DOI: 10.2217/imt-2023-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Aim: Our study aimed to identify the role of COL10A1 in colon cancer, including interaction with immune infiltrates and somatic mutations. Methods: COL10A1 expression and prognostic value were assessed. Correlations between COL10A1 and various immune parameters were conducted by bioinformatic analysis. Results: Our study demonstrated that COL10A1 is overexpressed in colon cancer and correlates with poor patient survival. The expression level of COL10A1 is significantly associated with mismatch repair deficiency and immune infiltration. High expression of COL10A1 may confer greater sensitivity to anti-PD-1 treatment in colon cancer patients. Conclusion: COL10A1 is a potential diagnostic biomarker associated with deficient mismatch repair and immune infiltration in colon cancer.
Collapse
Affiliation(s)
- Shuo Cai
- Department of Endoscopy Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhiwei Sun
- VIP-II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Yan
- Department of Endoscopy Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weifeng Li
- Department of Endoscopy Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Qi Wu
- Department of Endoscopy Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| |
Collapse
|
12
|
Krumm J, Petrova E, Lechner S, Mergner J, Boehm HH, Prestipino A, Steinbrunn D, Deline ML, Koetzner L, Schindler C, Helming L, Fromme T, Klingenspor M, Hahne H, Pieck JC, Kuster B. High-Throughput Screening and Proteomic Characterization of Compounds Targeting Myeloid-Derived Suppressor Cells. Mol Cell Proteomics 2023; 22:100632. [PMID: 37586548 PMCID: PMC10518717 DOI: 10.1016/j.mcpro.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of ∼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.
Collapse
Affiliation(s)
- Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Elissaveta Petrova
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Hans-Henning Boehm
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Alessandro Prestipino
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Marshall L Deline
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Lisa Koetzner
- Global Research & Development, Discovery and Development Technologies, Global Medicinal Chemistry, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Christina Schindler
- Global Research & Development, Discovery Technologies, Computational Chemistry & Biologics, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Laura Helming
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Jan-Carsten Pieck
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
13
|
Du Y, Dong S, Jiang W, Li M, Li W, Li X, Zhou W. Integration of Single-Cell RNA Sequencing and Bulk RNA Sequencing Reveals That TAM2-Driven Genes Affect Immunotherapeutic Response and Prognosis in Pancreatic Cancer. Int J Mol Sci 2023; 24:12787. [PMID: 37628967 PMCID: PMC10454560 DOI: 10.3390/ijms241612787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Tumor-associated macrophages M2 (TAM2), which are highly prevalent infiltrating immune cells in the stroma of pancreatic cancer (PC), have been found to induce an immunosuppressive tumor microenvironment, thus enhancing tumor initiation and progression. However, the immune therapy response and prognostic significance of regulatory genes associated with TAM2 in PC are currently unknown. Based on TCGA transcriptomic data and single-cell sequencing data from the GEO database, we identified TAM2-driven genes using the WGCNA algorithm. Molecular subtypes based on TAM2-driven genes were clustered using the ConsensusClusterPlus algorithm. The study constructed a prognostic model based on TAM2-driven genes through Lasso-COX regression analysis. A total of 178 samples obtained by accessing TCGA were accurately categorized into two molecular subtypes, including the high-TAM2 infiltration (HMI) cluster and the low-TAM2 infiltration (LMI) cluster. The HMI cluster exhibits a poor prognosis, a malignant tumor phenotype, immune-suppressive immune cell infiltration, resistance to immunotherapy, and a high number of genetic mutations, while the LMI cluster is the opposite. The prognostic model composed of six hub genes from TAM2-driven genes exhibits a high degree of accuracy in predicting the prognosis of patients with PC and serves as an independent risk factor. The induction of TAM2 was employed as a means of verifying these six gene expressions, revealing the significant up-regulation of BCAT1, BST2, and MERTK in TAM2 cells. In summary, the immunophenotype and prognostic model based on TAM2-driven genes offers a foundation for the clinical management of PC. The core TAM2-driven genes, including BCAT1, BST2, and MERTK, are involved in regulating tumor progression and TAM2 polarization, which are potential targets for PC therapy.
Collapse
Affiliation(s)
- Yan Du
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Wenkai Jiang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Mengyao Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
| | - Xin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; (Y.D.); (S.D.); (W.J.); (M.L.); (W.L.)
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
14
|
Diwanji R, O'Brien NA, Choi JE, Nguyen B, Laszewski T, Grauel AL, Yan Z, Xu X, Wu J, Ruddy DA, Piquet M, Pelletier MR, Savchenko A, Charette L, Rodrik-Outmezguine V, Baum J, Millholland JM, Wong CC, Martin AM, Dranoff G, Pruteanu-Malinici I, Cremasco V, Sabatos-Peyton C, Jayaraman P. Targeting the IL1β Pathway for Cancer Immunotherapy Remodels the Tumor Microenvironment and Enhances Antitumor Immune Responses. Cancer Immunol Res 2023; 11:777-791. [PMID: 37040466 DOI: 10.1158/2326-6066.cir-22-0290] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/14/2022] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
High levels of IL1β can result in chronic inflammation, which in turn can promote tumor growth and metastasis. Inhibition of IL1β could therefore be a promising therapeutic option in the treatment of cancer. Here, the effects of IL1β blockade induced by the mAbs canakinumab and gevokizumab were evaluated alone or in combination with docetaxel, anti-programmed cell death protein 1 (anti-PD-1), anti-VEGFα, and anti-TGFβ treatment in syngeneic and humanized mouse models of cancers of different origin. Canakinumab and gevokizumab did not show notable efficacy as single-agent therapies; however, IL1β blockade enhanced the effectiveness of docetaxel and anti-PD-1. Accompanying these effects, blockade of IL1β alone or in combination induced significant remodeling of the tumor microenvironment (TME), with decreased numbers of immune suppressive cells and increased tumor infiltration by dendritic cells (DC) and effector T cells. Further investigation revealed that cancer-associated fibroblasts (CAF) were the cell type most affected by treatment with canakinumab or gevokizumab in terms of change in gene expression. IL1β inhibition drove phenotypic changes in CAF populations, particularly those with the ability to influence immune cell recruitment. These results suggest that the observed remodeling of the TME following IL1β blockade may stem from changes in CAF populations. Overall, the results presented here support the potential use of IL1β inhibition in cancer treatment. Further exploration in ongoing clinical studies will help identify the best combination partners for different cancer types, cancer stages, and lines of treatment.
Collapse
Affiliation(s)
- Rohan Diwanji
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Neil A O'Brien
- Division of Hematology/Oncology, Department of Medicine, Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California
| | - Jiyoung E Choi
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Beverly Nguyen
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Tyler Laszewski
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Angelo L Grauel
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Zheng Yan
- Oncology Translational Research, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Xin Xu
- Oncology Data Sciences, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jincheng Wu
- Oncology Data Sciences, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - David A Ruddy
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Michelle Piquet
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Marc R Pelletier
- Oncology Translational Research, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | | | | | - Jason Baum
- Precision Medicine, Novartis Pharmaceuticals, Cambridge, Massachusetts
| | | | - Connie C Wong
- Precision Medicine, Novartis Pharmaceuticals, Cambridge, Massachusetts
| | - Anne-Marie Martin
- Precision Medicine, Novartis Pharmaceuticals, Cambridge, Massachusetts
| | - Glenn Dranoff
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Viviana Cremasco
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | - Pushpa Jayaraman
- Immuno Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| |
Collapse
|
15
|
Khan SU, Khan MU, Azhar Ud Din M, Khan IM, Khan MI, Bungau S, Hassan SSU. Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy. Front Immunol 2023; 14:1166487. [PMID: 37138860 PMCID: PMC10149956 DOI: 10.3389/fimmu.2023.1166487] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
In the last ten years, it has become increasingly clear that tumor-infiltrating myeloid cells drive not just carcinogenesis via cancer-related inflammatory processes, but also tumor development, invasion, and metastasis. Tumor-associated macrophages (TAMs) in particular are the most common kind of leucocyte in many malignancies and play a crucial role in establishing a favorable microenvironment for tumor cells. Tumor-associated macrophage (TAM) is vital as the primary immune cell subset in the tumor microenvironment (TME).In order to proliferate and spread to new locations, tumors need to be able to hide from the immune system by creating an immune-suppressive environment. Because of the existence of pro-tumoral TAMs, conventional therapies like chemotherapy and radiotherapy often fail to restrain cancer growth. These cells are also to blame for the failure of innovative immunotherapies premised on immune-checkpoint suppression. Understanding the series of metabolic changes and functional plasticity experienced by TAMs in the complex TME will help to use TAMs as a target for tumor immunotherapy and develop more effective tumor treatment strategies. This review summarizes the latest research on the TAMs functional status, metabolic changes and focuses on the targeted therapy in solid tumors.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Muhammad Azhar Ud Din
- Faculty of Pharmacy, Gomal University Dera Ismail Khan KPK, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering Fuyang Normal University, Fuyang, China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Role of lymphocytes, macrophages and immune receptors in suppression of tumor immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:269-310. [PMID: 36631195 DOI: 10.1016/bs.pmbts.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cancer is now the leading cause of mortality across the world. Inflammatory immune cells are functionally important in the genesis and progression of tumors, as demonstrated by their presence in human tumors. Numerous research has recently been conducted to determine if the innate and adaptive immune systems' cytotoxic cells can inhibit tumor growth and spread. Majority of cancers, when growing into identifiable tumors use multiple strategies to elude immune monitoring by lowering tumor immunity. Immunological suppression in the tumor microenvironment is achieved through interfering with antigen-presenting cells and effector T cells. Treatment of cancer requires managing both the tumor as well as tumor microenvironment (TME). Most patients will not be able to gain benefits from immunotherapy because of the immunosuppressive tumor microenvironment. The actions of many stromal myeloid and lymphoid cells are regulated to suppress tumor-specific T lymphocytes. These frequently exhibit inducible suppressive processes brought on by the same anti-tumor inflammatory response the immunotherapy aims to produce. Therefore, a deeper comprehensive understanding of how the immunosuppressive environment arises and endures is essential. Here in this chapter, we will talk about how immune cells, particularly macrophages and lymphocytes, and their receptors affect the ability of tumors to mount an immune response.
Collapse
|
17
|
Mödl B, Moritsch S, Zwolanek D, Eferl R. Type I and II interferon signaling in colorectal cancer liver metastasis. Cytokine 2023; 161:156075. [PMID: 36323190 DOI: 10.1016/j.cyto.2022.156075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Metastatic colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional chemotherapy extended the lifespan of cancer patients by only a few months, but targeted therapies and immunotherapy prolonged survival and led to long-term remissions in some cases. Type I and II interferons have direct pro-apoptotic and anti-proliferative effects on cancer cells and stimulate anti-cancer immunity. As a result, interferon production by cells in the tumor microenvironment is in the spotlight of immunotherapies as it affects the responses of anti-cancer immune cells. However, promoting effects of interferons on colorectal cancer metastasis have also been reported. Here we summarize our knowledge about pro- and anti-metastatic effects of type I and II interferons in colorectal cancer liver metastasis and discuss possible therapeutic implications.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Stefan Moritsch
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Daniela Zwolanek
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Sieow JL, Penny HL, Gun SY, Tan LQ, Duan K, Yeong JPS, Pang A, Lim D, Toh HC, Lim TKH, Engleman E, Rotzschke O, Ng LG, Chen J, Tan SM, Wong SC. Conditional Knockout of Hypoxia-Inducible Factor 1-Alpha in Tumor-Infiltrating Neutrophils Protects against Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24010753. [PMID: 36614196 PMCID: PMC9821271 DOI: 10.3390/ijms24010753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
Large numbers of neutrophils infiltrate tumors and comprise a notable component of the inflammatory tumor microenvironment. While it is established that tumor cells exhibit the Warburg effect for energy production, the contribution of the neutrophil metabolic state to tumorigenesis is unknown. Here, we investigated whether neutrophil infiltration and metabolic status promotes tumor progression in an orthotopic mouse model of pancreatic ductal adenocarcinoma (PDAC). We observed a large increase in the proportion of neutrophils in the blood and tumor upon orthotopic transplantation. Intriguingly, these tumor-infiltrating neutrophils up-regulated glycolytic factors and hypoxia-inducible factor 1-alpha (HIF-1α) expression compared to neutrophils from the bone marrow and blood of the same mouse. This enhanced glycolytic signature was also observed in human PDAC tissue samples. Strikingly, neutrophil-specific deletion of HIF-1α (HIF-1αΔNφ) significantly reduced tumor burden and improved overall survival in orthotopic transplanted mice, by converting the pro-tumorigenic neutrophil phenotype to an anti-tumorigenic phenotype. This outcome was associated with elevated reactive oxygen species production and activated natural killer cells and CD8+ cytotoxic T cells compared to littermate control mice. These data suggest a role for HIF-1α in neutrophil metabolism, which could be exploited as a target for metabolic modulation in cancer.
Collapse
Affiliation(s)
- Je Lin Sieow
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hweixian Leong Penny
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Ling Qiao Tan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Joe Poh Sheng Yeong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Angela Pang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Diana Lim
- Department of Pathology, National University Health System, Singapore 119074, Singapore
| | - Han Chong Toh
- Department of Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Edgar Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olaf Rotzschke
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Siew Cheng Wong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: ; Tel.: +65-64070030
| |
Collapse
|
19
|
He X, Chen H, Zhong X, Wang Y, Hu Z, Huang H, Zhao S, Wei P, Shi D, Li D. BST2 induced macrophage M2 polarization to promote the progression of colorectal cancer. Int J Biol Sci 2023; 19:331-345. [PMID: 36594082 PMCID: PMC9760448 DOI: 10.7150/ijbs.72538] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Tumor-associated macrophages (TAMs) are one of the most prominent tumor-infiltrating immune cells in the tumor microenvironment (TME) of CRC and play a vital role in the progression of CRC. BST2 was predicted to be associated with the infiltration of TAMs. However, its potential function by which CRC cells and TAMs interact with each other still needs further investigation. Methods: The target genes in CRC were selected by bioinformatics screening. The level of bone marrow stromal cell antigen 2 (BST2) in CRC cells and tissues was determined by qRT‒PCR, Western blotting, and immunohistochemistry staining. In vitro and in vivo assays were applied to clarify the function of BST2. Results: In this study, according to bioinformatics analysis, a nomogram based on the risk score (constructed by BST2 and CAV1 (caveolin-1)) and clinical features was built and displayed satisfactory prognostic value. Upregulated BST2 was significantly related to Braf mutation, dMMR/MSI-H, CMS1 subtype, and immune response and was a potential biomarker for predicting immune checkpoint blockade therapy. Silencing BST2 in CRC obviously restrained CRC progression and M2 TAM polarization. The infiltration of TAMs was positively correlated with the high expression of BST2, and depletion of TAMs alleviated the protumoural effect of BST2 in CRC in vivo. In vitro experiments revealed that a reduction in BST2 in CRC inhibited CRC proliferation and migration and also M2 polarization. Conclusion: These findings indicated that BST2 played a vital role in CRC progression and might be a predictable marker for immunotherapy.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Zhong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yaxian Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Zijuan Hu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China,Institute of Pathology, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Huixia Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China,Institute of Pathology, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China,Institute of Pathology, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China,✉ Corresponding authors: Dawei Li, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Debing Shi, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Ping Wei, Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China,✉ Corresponding authors: Dawei Li, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Debing Shi, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Ping Wei, Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China,✉ Corresponding authors: Dawei Li, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Debing Shi, Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. . Ping Wei, Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
20
|
Aghamajidi A, Farhangnia P, Pashangzadeh S, Damavandi AR, Jafari R. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell Int 2022; 22:327. [PMID: 36303138 PMCID: PMC9608890 DOI: 10.1186/s12935-022-02727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Collapse
Affiliation(s)
- Azin Aghamajidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- grid.411705.60000 0001 0166 0922Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- grid.411705.60000 0001 0166 0922Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- grid.412763.50000 0004 0442 8645Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Sun K, Xu R, Ma F, Yang N, Li Y, Sun X, Jin P, Kang W, Jia L, Xiong J, Hu H, Tian Y, Lan X. scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory. Nat Commun 2022; 13:4943. [PMID: 35999201 PMCID: PMC9399107 DOI: 10.1038/s41467-022-32627-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/10/2022] [Indexed: 11/15/2022] Open
Abstract
The tumor microenvironment (TME) in gastric cancer (GC) has been shown to be important for tumor control but the specific characteristics for GC are not fully appreciated. We generated an atlas of 166,533 cells from 10 GC patients with matched paratumor tissues and blood. Our results show tumor-associated stromal cells (TASCs) have upregulated activity of Wnt signaling and angiogenesis, and are negatively correlated with survival. Tumor-associated macrophages and LAMP3+ DCs are involved in mediating T cell activity and form intercellular interaction hubs with TASCs. Clonotype and trajectory analysis demonstrates that Tc17 (IL-17+CD8+ T cells) originate from tissue-resident memory T cells and can subsequently differentiate into exhausted T cells, suggesting an alternative pathway for T cell exhaustion. Our results indicate that IL17+ cells may promote tumor progression through IL17, IL22, and IL26 signaling, highlighting the possibility of targeting IL17+ cells and associated signaling pathways as a therapeutic strategy to treat GC. Gastric cancer can vary in tumour stage and immune cell involvement. Here the authors compare gene expression in immune cell types from the blood and the tumour site from GC patients using single cell and TCR sequencing and show that IL17+CD8+ T cells have a phenotype related to that seen with exhausted cells.
Collapse
Affiliation(s)
- Keyong Sun
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Runda Xu
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Fuhai Ma
- Department of Pancreatic and Gastric Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, 100021, Beijing, China.,Department of General Surgery, Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Naixue Yang
- School of Medicine, Tsinghua University, 100084, Beijing, China.,Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, 100084, Beijing, China
| | - Yang Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, 100021, Beijing, China
| | - Xiaofeng Sun
- School of Medicine, Tsinghua University, 100084, Beijing, China.,Centre for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Peng Jin
- Department of Pancreatic and Gastric Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, 100021, Beijing, China
| | - Wenzhe Kang
- Department of Pancreatic and Gastric Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, 100021, Beijing, China
| | - Lemei Jia
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Jianping Xiong
- Department of Pancreatic and Gastric Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, 100021, Beijing, China
| | - Haitao Hu
- Department of Pancreatic and Gastric Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, 100021, Beijing, China
| | - Yantao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, 100021, Beijing, China.
| | - Xun Lan
- School of Medicine, Tsinghua University, 100084, Beijing, China. .,Peking-Tsinghua-NIBS Joint Graduate Program, Tsinghua University, 100084, Beijing, China. .,Centre for Life Sciences, Tsinghua University, 100084, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
22
|
The Hepatic Pre-Metastatic Niche. Cancers (Basel) 2022; 14:cancers14153731. [PMID: 35954395 PMCID: PMC9367402 DOI: 10.3390/cancers14153731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The pre-metastatic niche is a recently established concept that could lead to targeted therapies that prevent metastasis before ever occurring. Considering that 90% of cancer mortality results from metastasis, the PMN is thus a salient opportunity for intervention. The purpose of the current review is to cover what is known specifically about the hepatic pre-metastatic niche, a topic that has garnered increasing research focus within the last decade. We discuss the methods of communication between primary tumors and the liver, the involved cell populations, the key changes within liver tissue, and perspectives on the future of the field. Abstract Primary tumors can communicate with the liver to establish a microenvironment that favors metastatic colonization prior to dissemination, forming what is termed the “pre-metastatic niche” (PMN). Through diverse signaling mechanisms, distant malignancies can both influence hepatic cells directly as well as recruit immune cells into the PMN. The result is a set of changes within the hepatic tissue that increase susceptibility of tumor cell invasion and outgrowth upon dissemination. Thus, the PMN offers a novel step in the traditional metastatic cascade that could offer opportunities for clinical intervention. The involved signaling molecules also offer promise as biomarkers. Ultimately, while the existence of the hepatic PMN is well-established, continued research effort and use of innovative models are required to reach a functional knowledge of PMN mechanisms that can be further targeted.
Collapse
|
23
|
Pathania AS, Prathipati P, Murakonda SP, Murakonda AB, Srivastava A, Avadhesh A, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. Immune checkpoint molecules in neuroblastoma: A clinical perspective. Semin Cancer Biol 2022; 86:247-258. [PMID: 35787940 DOI: 10.1016/j.semcancer.2022.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
Abstract
High-risk neuroblastoma (NB) is challenging to treat with 5-year long-term survival in patients remaining below 50% and low chances of survival after tumor relapse or recurrence. Different strategies are being tested or under evaluation to destroy resistant tumors and improve survival outcomes in NB patients. Immunotherapy, which uses certain parts of a person's immune system to recognize or kill tumor cells, effectively improves patient outcomes in several types of cancer, including NB. One of the immunotherapy strategies is to block immune checkpoint signaling in tumors to increase tumor immunogenicity and anti-tumor immunity. Immune checkpoint proteins put brakes on immune cell functions to regulate immune activation, but this activity is exploited in tumors to evade immune surveillance and attack. Immune checkpoint proteins play an essential role in NB biology and immune escape mechanisms, which makes these tumors immunologically cold. Therapeutic strategies to block immune checkpoint signaling have shown promising outcomes in NB but only in a subset of patients. However, combining immune checkpoint blockade with other therapies, including conjugated antibody-based immunotherapy, radioimmunotherapy, tumor vaccines, or cellular therapies like modified T or natural killer (NK) cells, has shown encouraging results in enhancing anti-tumor immunity in the preclinical setting. An analysis of publicly available dataset using computational tools has unraveled the complexity of multiple cancer including NB. This review comprehensively summarizes the current information on immune checkpoint molecules, their biology, role in immune suppression and tumor development, and novel therapeutic approaches combining immune checkpoint inhibitors with other therapies to combat high-risk NB.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Swati P Murakonda
- Sri Rajiv Gandhi College of Dental Sciences & Hospital, Bengaluru, Karnataka 560032, India
| | - Ajay B Murakonda
- Sree Sai Dental College & Research Institute, Srikakulam, Andhra Pradesh 532001, India
| | - Ankit Srivastava
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Avadhesh Avadhesh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India.
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
24
|
Kutoka PT, Seidu TA, Baye V, Khamis AM, Omonova CTQ, Wang B. Current nano-strategies to target tumor microenvironment (TME) to improve anti-tumor efficiency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Zhang Y, Lin Q, Wang T, Shi D, Fu Z, Si Z, Xu Z, Cheng Y, Shi H, Cheng D. Targeting Infiltrating Myeloid Cells in Gastric Cancer Using a Pretargeted Imaging Strategy Based on Bio-Orthogonal Diels-Alder Click Chemistry and Comparison with 89Zr-Labeled Anti-CD11b Positron Emission Tomography Imaging. Mol Pharm 2022; 19:246-257. [PMID: 34816721 DOI: 10.1021/acs.molpharmaceut.1c00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gastric cancer (GC) is a common cancer worldwide, with high incidence and mortality rates. Therefore, early and precise diagnosis is critical to improving GC prognosis. Tumor-associated myeloid cells infiltrate the tumor microenvironment (TME) and can produce immunosuppressive effects in the early stage of the tumor. The surface integrin receptor CD11b is widely expressed in the specific subsets of myeloid cells, and it has the characteristics of high abundance, high specificity, and high potential for targeted immunotherapy. In this study, two strategies for labeling anti-CD11b, including 89Zr-DFO-anti-CD11b and pretargeted imaging (68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO), were used to evaluate the value of early diagnosis of GC and confirm the advantages of the pretargeted strategy for the diagnosis of GC. Pretargeted molecular probe 68Ga-NOTA-polypeptide-PEG11-Tz was synthesized. The binding affinity of the Tz-radioligand to CD11b was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Moreover, the anti-CD11b antibody was conjugated with a p-isothiocyanatobenzyl-desferrioxamine (SCN-DFO) chelator and radiolabeled with zirconium-89. Biodistribution and positron-emission computed tomography imaging experiments were performed in MGC-803 tumor-bearing model mice to evaluate the value of the early diagnosis of GC. Histological evaluation of MGC-803 tumors was conducted to confirm the infiltration of the GC TME with CD11b+ myeloid cells. 68Ga-NOTA-polypeptide-PEG11-Tz was successfully radiosynthesized, with the radiochemical purity above 95%, as confirmed by reversed-phase high-performance liquid chromatography. The radioligand showed favorable stability in normal saline and phosphate-buffered saline, good affinity to RAW264.7 cells, and rapid blood clearance in mice. The results of biodistribution and imaging experiments using the pretargeted method showed that the tumor/muscle ratios were 5.17 ± 2.98, 5.94 ± 1.46, and 4.46 ± 2.73 at the pretargeting intervals of 24, 48, and 72 h, respectively. The experimental results using the method of the directly labeling antibody (89Zr-DFO-anti-CD11b) showed that, despite radioactive accumulation in the tumor, there was a higher level of radioactive accumulation in normal tissues. The tumor/muscle ratios were 1.09 ± 0.67, 1.66 ± 0.95, 2.94 ± 1.24, 3.64 ± 1.21, and 3.55 ± 1.64 at 1, 24, 48, 72, and 120 h. The current research proved the value of 68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO in the diagnosis of GC using the pretargeted strategy. Compared to 89Zr-DFO-anti-CD11b, the image contrast achieved by the pretargeted strategy was relatively improved, and the background accumulation of the probe was relatively low. These advantages can improve the diagnostic efficiency for GC and provide supporting evidence for radioimmunotherapy targeting CD11b receptors.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhan Xu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Yuan Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| |
Collapse
|
26
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
27
|
Ali H, Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. The myeloid cell biomarker EMR1 is ectopically expressed in colon cancer. Tumour Biol 2021; 43:209-223. [PMID: 34486997 DOI: 10.3233/tub-200082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The microenvironment of colon cancer (CC) is heterogeneous including cells of myeloid lineage affecting tumor growth and metastasis. Two functional subtypes of myeloid cells have been identified; one (M1) is tumor-inhibitory and the other one (M2) is tumor-promoting. Whether the three myeloid markers EMR1, CD206 and CD86 are expressed only in the infiltrating myeloid cells or also in the tumor cells was investigated. METHODS Expression of the myeloid markers was investigated in CC at the mRNA and protein levels in primary tumors and lymph nodes. mRNA expression was also determined in 5 CC cell lines. Protein expression was investigated by two-color immunofluorescence and consecutive-sections-immune-staining combined with morphometry using specific antibodies for the myeloid cell markers and the epithelial cell markers CEACAM5 and EpCAM. RESULTS EMR1 and CD86, but not CD206, mRNA levels were significantly higher in CC primary tumors compared to apparently normal colon tissue (P < 0.0001). EMR1 mRNA levels were significantly higher in both hematoxylin-eosin positive (H&E(+)) and H&E(-) lymph nodes of CC patients compared to control nodes (P = 0.03 and P = 0.01, respectively). EMR1 and CD206 mRNAs were expressed in 4/5 and 5/5 CC cell lines, respectively, while CD86 mRNA was not expressed. Immuno-morphometry revealed that about 20% of the tumor cells expressed EMR1 and CD206. Positive cells were tumor cells as revealed by anti-CEACAM5 and anti-EpCAM staining. The number of EMR1, CD206 and CD86 positive cells were significantly increased in CC primary tumors compared to normal colon tissue (P < 0.0001). However, CD206 was also expressed in normal colonocytes. Only EMR1 showed significantly increased numbers of positive tumor cells in H&E(+) nodes compared to H&E(-) nodes (P = 0.001). EMR1 expression in CC tumor cells correlated with CXCL17 expressing tumor cells. CONCLUSION EMR1, like the chemokine CXCL17, is ectopically expressed in colon cancer possibly in the same cancer cells.
Collapse
Affiliation(s)
- Haytham Ali
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden.,Department of Radiation Sciences, Oncology, Umeå University, SE-90185, Umeå, Sweden.,Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Lina Olsson
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden
| | - Gudrun Lindmark
- Institution of Clinical Sciences, Lund University, SE-25187, Lund, Sweden
| | - Marie-Louise Hammarström
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden
| | - Sten Hammarström
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185, Umeå, Sweden.,Department of Radiation Sciences, Oncology, Umeå University, SE-90185, Umeå, Sweden
| |
Collapse
|
28
|
Chong ZX, Ho WY, Yeap SK, Wang ML, Chien Y, Verusingam ND, Ong HK. Single-cell RNA sequencing in human lung cancer: Applications, challenges, and pathway towards personalized therapy. J Chin Med Assoc 2021; 84:563-576. [PMID: 33883467 DOI: 10.1097/jcma.0000000000000535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is one of the most prevalent human cancers, and single-cell RNA sequencing (scRNA-seq) has been widely used to study human lung cancer at the cellular, genetic, and molecular level. Even though there are published reviews, which summarized the applications of scRNA-seq in human cancers like breast cancer, there is lack of a comprehensive review, which could effectively highlight the broad use of scRNA-seq in studying lung cancer. This review, therefore, was aimed to summarize the various applications of scRNA-seq in human lung cancer research based on the findings from different published in vitro, in vivo, and clinical studies. The review would first briefly outline the concept and principle of scRNA-seq, followed by the discussion on the applications of scRNA-seq in studying human lung cancer. Finally, the challenges faced when using scRNA-seq to study human lung cancer would be discussed, and the potential applications and challenges of scRNA-seq to facilitate the development of personalized cancer therapy in the future would be explored.
Collapse
Affiliation(s)
- Zhi-Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Wan-Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Swee-Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Mong-Lien Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yueh Chien
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Nalini Devi Verusingam
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Han-Kiat Ong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| |
Collapse
|
29
|
Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021; 13:1743. [PMID: 33917501 PMCID: PMC8038814 DOI: 10.3390/cancers13071743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Despite multimodal treatment, survival chances for high-risk neuroblastoma patients remain poor. Immunotherapeutic approaches focusing on the activation and/or modification of host immunity for eliminating tumor cells, such as chimeric antigen receptor (CAR) T cells, are currently in development, however clinical trials have failed to reproduce the preclinical results. The tumor microenvironment is emerging as a major contributor to immune suppression and tumor evasion in solid cancers and thus has to be overcome for therapies relying on a functional immune response. Among the cellular components of the neuroblastoma tumor microenvironment, suppressive myeloid cells have been described as key players in inhibition of antitumor immune responses and have been shown to positively correlate with more aggressive disease, resistance to treatments, and overall poor prognosis. This review article summarizes how neuroblastoma-driven inflammation induces suppressive myeloid cells in the tumor microenvironment and how they in turn sustain the tumor niche through suppressor functions, such as nutrient depletion and generation of oxidative stress. Numerous preclinical studies have suggested a range of drug and cellular therapy approaches to overcome myeloid-derived suppression in neuroblastoma that warrant evaluation in future clinical studies.
Collapse
Affiliation(s)
| | | | - John Anderson
- UCL Institute of Child Health, Developmental Biology and Cancer Section, University College London, London WC1N 1EH, UK; (J.F.); (I.L.)
| |
Collapse
|
30
|
Suszczyk D, Skiba W, Jakubowicz-Gil J, Kotarski J, Wertel I. The Role of Myeloid-Derived Suppressor Cells (MDSCs) in the Development and/or Progression of Endometriosis-State of the Art. Cells 2021; 10:cells10030677. [PMID: 33803806 PMCID: PMC8003224 DOI: 10.3390/cells10030677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis (EMS) is a common gynecological disease characterized by the presence of endometrial tissue outside the uterus. Approximately 10% of women around the world suffer from this disease. Recent studies suggest that endometriosis has potential to transform into endometriosis-associated ovarian cancer (EAOC). Endometriosis is connected with chronic inflammation and changes in the phenotype, activity, and function of immune cells. The underlying mechanisms include quantitative and functional disturbances of neutrophils, monocytes/macrophages (MO/MA), natural killer cells (NK), and T cells. A few reports have shown that immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) may promote the progression of endometriosis. MDSCs are a heterogeneous population of immature myeloid cells (dendritic cells, granulocytes, and MO/MA precursors), which play an important role in the development of immunological diseases such as chronic inflammation and cancer. The presence of MDSCs in pathological conditions correlates with immunosuppression, angiogenesis, or release of growth factors and cytokines, which promote progression of these diseases. In this paper, we review the impact of MDSCs on different populations of immune cells, focusing on their immunosuppressive role in the immune system, which may be related with the pathogenesis and/or progression of endometriosis and its transformation into ovarian cancer.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Jan Kotarski
- Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
- Correspondence:
| |
Collapse
|
31
|
Correlation between Tumour Associated Macrophage (TAM) Infiltration and Mitotic Activity in Canine Soft Tissue Sarcomas. Animals (Basel) 2021; 11:ani11030684. [PMID: 33806407 PMCID: PMC8000832 DOI: 10.3390/ani11030684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022] Open
Abstract
Tumour-associated macrophages (TAMs) are an important part of the tumour microenvironment but knowledge of their distribution in canine soft tissue sarcomas (STSs) is limited to absent. We analysed 38 STSs retrieved from the veterinary pathology archive; oral and visceral STSs, synovial cell sarcoma, tumours of histiocytic origin, haemangiosarcoma, carcinosarcomas, and undifferentiated tumours were excluded. Iba-1 positive, non-neoplastic tumour infiltrating cells (morphologically indicative of macrophages) were classified as TAMs and were counted in 10 consecutive tumours areas, where no necrosis or other inflammatory cells could be identified. Associations between numbers of TAMs and mitoses, differentiation, and necrosis scores or grade were investigated. TAMs were evident in all STSs and ranged between 6% to 62% of the cells in the microscopic field. The number of TAMs positively correlated with the STSs' histologic grade. When the components of the grade were analysed separately, TAMs were statistically correlated with mitoses, but not with differentiation or necrosis score. The present findings suggest that TAMs are present in higher numbers when STS proliferation is the predominant feature that drives tumour grade. The abundant presence of TAMs in high-grade STSs may also increase the likelihood of a pathologist misdiagnosing STS for histiocytic sarcoma.
Collapse
|
32
|
Lahmar Q, Schouppe E, Morias Y, Van Overmeire E, De Baetselier P, Movahedi K, Laoui D, Sarukhan A, Van Ginderachter JA. Monocytic myeloid-derived suppressor cells home to tumor-draining lymph nodes via CCR2 and locally modulate the immune response. Cell Immunol 2021; 362:104296. [PMID: 33556903 DOI: 10.1016/j.cellimm.2021.104296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Efficient priming of anti-tumor T cells requires the uptake and presentation of tumor antigens by immunogenic dendritic cells (DCs) and occurs mainly in lymph nodes draining the tumor (tdLNs). However, tumors expand and activate myeloid-derived suppressor cells (MDSCs) that inhibit CTL functions by several mechanisms. While the immune-suppressive nature of the tumor microenvironment is largely documented, it is not known whether similar immune-suppressive mechanisms operate in the tdLNs. In this study, we analyzed MDSC characteristics within tdLNs. We show that, in a metastasis-free context, MO-MDSCs are the dominant MDSC population within tdLNs, that they are highly suppressive and that tumor proximity enhances their recruitment to tdLN via a CCR2/CCL2-dependent pathway. Altogether our results uncover a mechanism by which tumors evade the immune system that involves MDSC-mediated recruitment to the tdLN and the inhibition of T-cell activation even before reaching the highly immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Qods Lahmar
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elio Schouppe
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick Morias
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Van Overmeire
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrick De Baetselier
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adelaida Sarukhan
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; INSERM, 101 rue Tolbiac, Paris 75013, France
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
33
|
Busse A, Mochmann LH, Spenke C, Arsenic R, Briest F, Jöhrens K, Lammert H, Sipos B, Kühl AA, Wirtz R, Pavel M, Hummel M, Kaemmerer D, Baum RP, Grabowski P. Immunoprofiling in Neuroendocrine Neoplasms Unveil Immunosuppressive Microenvironment. Cancers (Basel) 2020; 12:E3448. [PMID: 33228231 PMCID: PMC7699546 DOI: 10.3390/cancers12113448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Checkpoint inhibitors have shown promising results in a variety of tumors; however, in neuroendocrine tumors (NET) and neuroendocrine carcinomas (NEC), low response rates were reported. We aimed herein to investigate the tumor immune microenvironment in NET/NEC to determine whether checkpoint pathways like programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) might play a role in immune escape and whether other escape mechanisms might need to be targeted to enable a functional antitumor response. Forty-eight NET and thirty NEC samples were analyzed by immunohistochemistry (IHC) and mRNA immunoprofiling including digital spatial profiling. Through IHC, both NET/NEC showed stromal, but less intratumoral CD3+ T cell infiltration, although this was significantly higher in NEC compared to NET. Expression of PD1, PD-L1, and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) on immune cells was low or nearly absent. mRNA immunoprofiling revealed low expression of IFNγ inducible genes in NET and NEC without any spatial heterogeneity. However, we observed an increased mRNA expression of chemokines, which attract myeloid cells in NET and NEC, and a high abundance of genes related to immunosuppressive myeloid cells and genes with immunosuppressive functions like CD47 and CD74. In conclusion, NET and NEC lack signs of an activation of the adaptive immune system, but rather show abundance of several immunosuppressive genes that represent potential targets for immunomodulation.
Collapse
Affiliation(s)
- Antonia Busse
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
- German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Liliana H. Mochmann
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
| | - Christiane Spenke
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
| | - Ruza Arsenic
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (R.A.); (K.J.); (H.L.); (M.H.)
- Institute für histologische und zytologische Diagnostik AG Aarau, 5000 Aarau, Switzerland
| | - Franziska Briest
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
| | - Korinna Jöhrens
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (R.A.); (K.J.); (H.L.); (M.H.)
- Institute of Pathology, Carl Gustav Carus University Hospital Dresden, 01307 Dresden, Germany
| | - Hedwig Lammert
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (R.A.); (K.J.); (H.L.); (M.H.)
| | - Bence Sipos
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, 72076 Tübingen, Germany;
- Private Practice of Pathology and Molecular Pathology, 70176 Stuttgart, Germany
| | - Anja A. Kühl
- iPATH Berlin—Immunopathology for Experimental Models, Core Unit of the Charité, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany;
| | - Ralph Wirtz
- Stratifyer Molecular Oncology GmbH, 50935 Cologne, Germany;
| | - Marianne Pavel
- Department of Endocrinology, Universitatsklinikum Erlangen, 91054 Erlangen, Germany;
| | - Michael Hummel
- Institute of Pathology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (R.A.); (K.J.); (H.L.); (M.H.)
- Central Biobank, Berlin Institute of Health, 10178 Berlin, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, 99437 Bad Berka, Germany;
| | - Richard P. Baum
- CURANOSTICUM Wiesbaden-Frankfurt in der DKD HELIOS Klinik, 65191 Wiesbaden, Germany;
| | - Patricia Grabowski
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany; (L.H.M.); (C.S.); (F.B.); (P.G.)
- Institute of Medical Immunology, Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
34
|
Liu KX, Joshi S. "Re-educating" Tumor Associated Macrophages as a Novel Immunotherapy Strategy for Neuroblastoma. Front Immunol 2020; 11:1947. [PMID: 32983125 PMCID: PMC7493646 DOI: 10.3389/fimmu.2020.01947] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is the most common extracranial pediatric tumor and often presents with metastatic disease, and patients with high-risk neuroblastoma have survival rates of ~50%. Neuroblastoma tumorigenesis is associated with the infiltration of various types of immune cells, including myeloid derived suppressor cells, tumor associated macrophages (TAMs), and regulatory T cells, which foster tumor growth and harbor immunosuppressive functions. In particular, TAMs predict poor clinical outcomes in neuroblastoma, and among these immune cells, TAMs with an M2 phenotype comprise an immune cell population that promotes tumor metastasis, contributes to immunosuppression, and leads to failure of radiation or checkpoint inhibitor therapy. This review article summarizes the role of macrophages in tumor angiogenesis, metastasis, and immunosuppression in neuroblastoma and discusses the recent advances in "macrophage-targeting strategies" in neuroblastoma with a focus on three aspects: (1) inhibition of macrophage recruitment, (2) targeting macrophage survival, and (3) reprogramming of macrophages into an immunostimulatory phenotype.
Collapse
Affiliation(s)
- Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UCSD Rady's Children's Hospital, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
35
|
Huang H, Brekken RA. Recent advances in understanding cancer-associated fibroblasts in pancreatic cancer. Am J Physiol Cell Physiol 2020; 319:C233-C243. [PMID: 32432930 DOI: 10.1152/ajpcell.00079.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a devastating disease with a poor survival rate. It is resistant to therapy in part due to its unique tumor microenvironment, characterized by a desmoplastic reaction resulting in a dense stroma that constitutes a large fraction of the tumor volume. A major contributor to the desmoplastic reaction are cancer-associated fibroblasts (CAFs). CAFs actively interact with cancer cells and promote tumor progression by different mechanisms, including extracellular matrix deposition, remodeling, and secretion of tumor promoting factors, making CAFs an attractive target for PDA. However, emerging evidences indicate significant tumor-suppressive functions of CAFs, highlighting the complexity of CAF biology. CAFs were once considered as a uniform cell type within the cancer stroma. Recently, the existence of CAF heterogeneity in PDA has become appreciated. Due to advances in single cell technology, distinct subtypes of CAFs have been identified in PDA. Here we review recent updates in CAF biology in PDA, which may help develop effective CAF-targeted therapies in the future.
Collapse
Affiliation(s)
- Huocong Huang
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, Department of Pharmacology, University of Texas Southwestern, Dallas, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, Department of Pharmacology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
36
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
37
|
Obrador E, Salvador R, López-Blanch R, Jihad-Jebbar A, Alcácer J, Benlloch M, Pellicer JA, Estrela JM. Melanoma in the liver: Oxidative stress and the mechanisms of metastatic cell survival. Semin Cancer Biol 2020; 71:109-121. [PMID: 32428715 DOI: 10.1016/j.semcancer.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 12/16/2022]
Abstract
Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascularization. Surviving melanoma cells attached to the endothelium of pre-capillary arterioles or sinusoids may follow two mechanisms of extravasation: a) migration through vessel fenestrae or b) intravascular proliferation followed by vessel rupture and microinflammation. Invading melanoma cells first form micrometastases within the normal lobular hepatic architecture via a mechanism regulated by cross-talk with the stroma and multiple microenvironment-related molecular signals. In this review special emphasis is placed on neuroendocrine (systemic) mechanisms as potential promoters of liver metastatic growth. Growing metastatic cells undergo functional and metabolic changes that increase their capacity to withstand oxidative/nitrosative stress, which favors their survival. This adaptive process also involves upregulation of Bcl-2-related antideath mechanisms, which seems to lead to the generation of more resistant cell subclones.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | | | - Ali Jihad-Jebbar
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - María Benlloch
- Department of Health & Functional Valorization, San Vicente Martir Catholic University, 46001, Valencia, Spain
| | - José A Pellicer
- Department of Physiology, University of Valencia, 46010, Valencia, Spain
| | - José M Estrela
- Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
38
|
Wong AY, Whited JL. Parallels between wound healing, epimorphic regeneration and solid tumors. Development 2020; 147:147/1/dev181636. [PMID: 31898582 DOI: 10.1242/dev.181636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Striking similarities between wound healing, epimorphic regeneration and the progression of solid tumors have been uncovered by recent studies. In this Review, we discuss systemic effects of tumorigenesis that are now being appreciated in epimorphic regeneration, including genetic, cellular and metabolic heterogeneity, changes in circulating factors, and the complex roles of immune cells and immune modulation at systemic and local levels. We suggest that certain mechanisms enabling regeneration may be co-opted by cancer to promote growth at primary and metastatic sites. Finally, we advocate that working with a unified approach could complement research in both fields.
Collapse
Affiliation(s)
- Alan Y Wong
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02138, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Abstract
Colorectal cancer (CRC) is one of the most common cancers in the world. About two third of patients with CRC will develop distant recurrence at some point in time. Liver is the most common site where distant metastasis takes place. While the overall survival (OS) of patients with metastatic CRC was poor about 3 decades ago, there has been tremendous improvement in this area in the recent years. With the advent of effective systemic chemotherapy and biologic agents and better understanding of the biological behaviour of the tumour, aggressive treatment strategies such as metastatectomy of the liver metastases (or lung metastases) are now acceptable. More importantly, it has transformed the way how stage IV CRCs are being managed. From predominantly palliative as the primary aim, a comprehensive multidisciplinary approach is now the mainstay of treatment with very successful outcomes. Combination of systemic therapies with liver resection has been shown to be effective in providing promising survival benefits. In addition, other adjunctive modalities in targeting the liver metastases such as ablation, combining resection and ablation, transarterial chemoembolization, stereotactic body radiotherapy (SBRT), hepatic artery perfusion, etc. have also been demonstrated variable outcome in treating colorectal liver metastasis (CRLM). Very recently, transplant oncologists have also explored using liver transplantation as a treatment modality for unresectable CRLM, which has demonstrated very good long-term survival in well selected cases. The new paradigm in the treatment of metastatic CRC has dawned.
Collapse
Affiliation(s)
- Alfred Wei Chieh Kow
- Division of Hepatopancreaticobiliary Surgery and Liver Transplantation, Department of Surgery, National University Health System, Singapore, Singapore.,Department of Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
40
|
Could Increased Expression of Hsp27, an "Anti-Inflammatory" Chaperone, Contribute to the Monocyte-Derived Dendritic Cell Bias towards Tolerance Induction in Breast Cancer Patients? Mediators Inflamm 2019; 2019:8346930. [PMID: 31827382 PMCID: PMC6885848 DOI: 10.1155/2019/8346930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are the most efficient antigen-presenting cells and link the innate immune sensing of the environment to the initiation of adaptive immune responses, which may be directed to either acceptance or elimination of the recognized antigen. In cancer patients, though DCs would be expected to present tumor antigens to T lymphocytes and induce tumor-eliminating responses, this is frequently not the case. The complex tumor microenvironment subverts the immune response, blocks some effector mechanisms, and drives others to support tumor growth. Chronic inflammation in a tumor microenvironment is believed to contribute to the induction of such regulatory/tolerogenic response. Among the various mediators of the modulatory switch in chronic inflammation is the “antidanger signal” chaperone, heat shock protein 27 (Hsp27), that has been described, interestingly, to be associated with cell migration and drug resistance of breast cancer cells. Thus, here, we investigated the expression of Hsp27 during the differentiation of monocyte-derived DCs (Mo-DCs) from healthy donors and breast cancer patients and evaluated their surface phenotype, cytokine secretion pattern, and lymphostimulatory activity. Surface phenotype and lymphocyte proliferation were evaluated by flow cytometry, interferon- (IFN-) γ, and interleukin- (IL-) 10 secretion, by ELISA and Hsp27 expression, by quantitative polymerase chain reaction (qPCR). Mo-DCs from cancer patients presented decreased expression of DC maturation markers, decreased ability to induce allogeneic lymphocyte proliferation, and increased IL-10 secretion. In coculture with breast cancer cell lines, healthy donors' Mo-DCs showed phenotype changes similar to those found in patients' cells. Interestingly, patients' monocytes expressed less GM-CSF and IL-4 receptors than healthy donors' monocytes and Hsp27 expression was significantly higher in patients' Mo-DCs (and in tumor samples). Both phenomena could contribute to the phenotypic bias of breast cancer patients' Mo-DCs and might prove potential targets for the development of new immunotherapeutic approaches for breast cancer.
Collapse
|
41
|
Gravbrot N, Gilbert-Gard K, Mehta P, Ghotmi Y, Banerjee M, Mazis C, Sundararajan S. Therapeutic Monoclonal Antibodies Targeting Immune Checkpoints for the Treatment of Solid Tumors. Antibodies (Basel) 2019; 8:E51. [PMID: 31640266 PMCID: PMC6963985 DOI: 10.3390/antib8040051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022] Open
Abstract
Recently, modulation of immune checkpoints has risen to prominence as a means to treat a number of solid malignancies, given the durable response seen in many patients and improved side effect profile compared to conventional chemotherapeutic agents. Several classes of immune checkpoint modulators have been developed. Here, we review current monoclonal antibodies directed against immune checkpoints that are employed in practice today. We discuss the history, mechanism, indications, and clinical data for each class of therapies. Furthermore, we review the challenges to durable tumor responses that are seen in some patients and discuss possible interventions to circumvent these barriers.
Collapse
Affiliation(s)
- Nicholas Gravbrot
- Division of Hematology-Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Kacy Gilbert-Gard
- Division of Hematology-Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Paras Mehta
- Division of Hematology-Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Yarah Ghotmi
- Division of Hematology-Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Madhulika Banerjee
- Division of Hematology-Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Christopher Mazis
- Division of Hematology-Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Srinath Sundararajan
- Division of Hematology-Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
- Texas Oncology, Dallas, TX 75251, USA.
| |
Collapse
|
42
|
Gulubova M. Myeloid and Plasmacytoid Dendritic Cells and Cancer - New Insights. Open Access Maced J Med Sci 2019; 7:3324-3340. [PMID: 31949539 PMCID: PMC6953922 DOI: 10.3889/oamjms.2019.735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) use effective mechanisms to combat antigens and to bring about adaptive immune responses through their ability to stimulate näive T cells. At present, four major cell types are categorised as DCs: Classical or conventional (cDCs), Plasmacytoid (pDCs), Langerhans cells (LCs), and monocyte-derived DCs (Mo-DCs). It was suggested that pDCs, CD1c+ DCs and CD141+ DCs in humans are equivalent to mouse pDCs, CD11b+ DCs and CD8α+ DCs, respectively. Human CD141+ DCs compared to mouse CD8α+ DCs have remarkable functional and transcriptomic similarities. Characteristic markers, transcription factors, toll-like receptors, T helpers (Th) polarisation, cytokines, etc. of DCs are discussed in this review. Major histocompatibility complex (MHC) I and II antigen presentation, cross-presentation and Th polarisation are defined, and the dual role of DCs in the tumour is discussed. Human DCs are the main immune cells that orchestrate the immune response in the tumour microenvironment.
Collapse
Affiliation(s)
- Maya Gulubova
- Department of General and Clinical Pathology, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
43
|
Pötgens AJG, Conibear AC, Altdorf C, Hilzendeger C, Becker CFW. Tumor-Targeting Immune System Engagers (ISErs) Activate Human Neutrophils after Binding to Cancer Cells. Biochemistry 2019; 58:2642-2652. [PMID: 31117386 DOI: 10.1021/acs.biochem.9b00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Immune system engagers (ISErs) make up a new class of immunotherapeutics against cancer. They comprise two or more tumor-targeting peptides and an immune-stimulating effector peptide connected by inert polymer linkers. They are produced by solid phase peptide synthesis and share the specific targeting activities of antibodies (IgGs) but are much smaller in size and exploit a different immune-stimulating mechanism. Two ISErs (Y-9 and Y-59) that bind to the cancer cell markers integrin α3 and EphA2, respectively, are analyzed here with respect to their immune cell stimulation. We have previously shown that they activate formyl peptide receptors on myeloid immune cells and induce respiratory burst in neutrophils and myeloid chemotaxis in solution. It remained, however, unclear whether these molecules can stimulate immune cells while bound to tumor cells, an essential step in the hypothesized mode of action. Here, we demonstrate that ISEr Y-9 induced respiratory burst and caused a change in the shape of neutrophils when bound to the surface of protein A beads as a model of tumor cells. More importantly, tumor cell lines carrying receptor-bound Y-9 or Y-59 also activated neutrophils, evidenced by a significant change in shape. Interestingly, similar activation was induced by the supernatants of the cells incubated with ISEr, indicating that ISErs released from tumor cells, intact or degraded into fragments, significantly contributed to immune stimulation. These findings provide new evidence for the mode of action of ISErs, namely by targeting cancer cells and subsequently provoking an innate immune response against them.
Collapse
Affiliation(s)
| | - Anne C Conibear
- Faculty of Chemistry, Institute of Biological Chemistry , University of Vienna , 1090 Vienna , Austria
| | | | | | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry , University of Vienna , 1090 Vienna , Austria
| |
Collapse
|
44
|
Calvani M, Bruno G, Dal Monte M, Nassini R, Fontani F, Casini A, Cavallini L, Becatti M, Bianchini F, De Logu F, Forni G, la Marca G, Calorini L, Bagnoli P, Chiarugi P, Pupi A, Azzari C, Geppetti P, Favre C, Filippi L. β 3 -Adrenoceptor as a potential immuno-suppressor agent in melanoma. Br J Pharmacol 2019; 176:2509-2524. [PMID: 30874296 DOI: 10.1111/bph.14660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Stress-related catecholamines have a role in cancer and β-adrenoceptors; specifically, β2 -adrenoceptors have been identified as new targets in treating melanoma. Recently, β3 -adrenoceptors have shown a pleiotropic effect on melanoma micro-environment leading to cancer progression. However, the mechanisms by which β3 -adrenoceptors promote this progression remain poorly understood. Catecholamines affect the immune system by modulating several factors that can alter immune cell sub-population homeostasis. Understanding the mechanisms of cancer immune-tolerance is one of the most intriguing challenges in modern research. This study investigates the potential role of β3 -adrenoceptors in immune-tolerance regulation. EXPERIMENTAL APPROACH A mouse model of melanoma in which syngeneic B16-F10 cells were injected in C57BL-6 mice was used to evaluate the effect of β-adrenoceptor blockade on the number and activity of immune cell sub-populations (Treg, NK, CD8, MDSC, macrophages, and neutrophils). Pharmacological and molecular approaches with β-blockers (propranolol and SR59230A) and specific β-adrenoceptor siRNAs targeting β2 - or β3 -adrenoceptors were used. KEY RESULTS Only β3 -, but not β2 -adrenoceptors, were up-regulated under hypoxia in peripheral blood mononuclear cells and selectively expressed in immune cell sub-populations including Treg, MDSC, and NK. SR59230A and β3 -adrenoceptor siRNAs increased NK and CD8 number and cytotoxicity, while they attenuated Treg and MDSC sub-populations in the tumour mass, blood, and spleen. SR59230A and β3 -adrenoceptor siRNAs increased the ratio of M1/M2 macrophages and N1 granulocytes. CONCLUSIONS AND IMPLICATIONS Our data suggest that β3 -adrenoceptors are involved in immune-tolerance, which opens the way for new strategic therapies to overcome melanoma growth. LINKED ARTICLES This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Maura Calvani
- Oncohematology Unit, Department of Pediatric Oncology, Meyer University Children's University Hospital, Florence, Italy
| | - Gennaro Bruno
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Massimo Dal Monte
- Department of Biology, Unit of General Physiology, University of Pisa, Pisa, Italy
| | - Romina Nassini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Fontani
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Arianna Casini
- Division of Immunology, Section of Pediatrics, Meyer University Children's Hospital, Florence, Italy
| | - Lorenzo Cavallini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Giulia Forni
- Metabolic and Newborn Screening Clinical Unit, Department of Neurosciences, Meyer University Children's University Hospital, Florence, Italy
| | - Giancarlo la Marca
- Metabolic and Newborn Screening Clinical Unit, Department of Neurosciences, Meyer University Children's University Hospital, Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, Unit of General Physiology, University of Pisa, Pisa, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alberto Pupi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Chiara Azzari
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Claudio Favre
- Oncohematology Unit, Department of Pediatric Oncology, Meyer University Children's University Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children's Hospital, Florence, Italy
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Insight into the metabolic changes in cancer has become so important that cancer is regarded as a disease entity full of metabolic implications. We summarize the recent findings pertaining to cancer cell-derived metabolic changes that regulate the function of macrophages to favor cancer cell survival, and the reported approaches to reverse these changes. RECENT FINDINGS Since the observation and dramatic revitalization of the Warburg effect, metabolic changes were thought to be confined in cancer cells. However, the Warburg effect has recently been proven to exist in various types of immune cells in tumor tissue. A growing number of publications now indicate that cancer cells interact with other cells in the tumor microenvironment, not only through traditional inflammatory mediators, but also through oncometabolites, and that metabolic changes in immune cells by oncometabolites are the key factors favoring the survival of cancer cells and pro-tumoral function of immune cells. Notably, these metabolic changes do not occur uniformly in tumor progression. SUMMARY Understanding of the complex metabolic interactions in the tumor microenvironment can not only set a new paradigm for tumor progression, but also provide new breakthroughs to control cancer by modulation of function in tumor-associated macrophages.
Collapse
|
46
|
Okla K, Wertel I, Wawruszak A, Bobiński M, Kotarski J. Blood-based analyses of cancer: Circulating myeloid-derived suppressor cells - is a new era coming? Crit Rev Clin Lab Sci 2018; 55:376-407. [PMID: 29927668 DOI: 10.1080/10408363.2018.1477729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Progress in cancer treatment made by the beginning of the 21st century has shifted the paradigm from one-size-fits-all to tailor-made treatment. The popular vision, to study solid tumors through the relatively noninvasive sampling of blood, is one of the most thrilling and rapidly advancing fields in global cancer diagnostics. From this perspective, immune-cell analysis in cancer could play a pivotal role in oncology practice. This approach is driven both by rapid technological developments, including the analysis of circulating myeloid-derived suppressor cells (cMDSCs), and by the increasing application of (immune) therapies, the success or failure of which may depend on effective and timely measurements of relevant biomarkers. Although the implementation of these powerful noninvasive diagnostic capabilities in guiding precision cancer treatment is poised to change the ways in which we select and monitor cancer therapy, challenges remain. Here, we discuss the challenges associated with the analysis and clinical aspects of cMDSCs and assess whether the problems in implementing tumor-evolution monitoring as a global tool in personalized oncology can be overcome.
Collapse
Affiliation(s)
- Karolina Okla
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Iwona Wertel
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Anna Wawruszak
- b Department of Biochemistry and Molecular Biology , Medical University of Lublin , Lublin , Poland
| | - Marcin Bobiński
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Jan Kotarski
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
47
|
Alvarez R, Oliver L, Valdes A, Mesa C. Cancer-induced systemic myeloid dysfunction: Implications for treatment and a novel nanoparticle approach for its correction. Semin Oncol 2018; 45:84-94. [PMID: 30318088 DOI: 10.1053/j.seminoncol.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 02/08/2023]
Abstract
Unlike other regulatory circuits, cancer-induced myeloid dysfunction involves more than an accumulation of impaired dendritic cells, protumoral macrophages, and myeloid derived suppressor cells in the tumor microenvironment. It is also characterized by "aberrant" myelopoiesis that results in the accumulation and expansion of immature myeloid precursors with a suppressive phenotype in the systemic circulation. The first part of this review briefly describes the evidence for and consequences of this systemic dysfunctional myelopoiesis and the possible reinforcement of this phenomenon by conventional treatments used in patients with cancer, in particular chemotherapy and granulocyte-colony stimulating factor. The second half of this review describes very small size particles, a novel immune-modulatory nanoparticle, and the evidence indicating a possible role of this agent in correcting or re-programming the dysfunctional myelopoiesis in different scenarios.
Collapse
Affiliation(s)
- Rydell Alvarez
- Immunobiology Division, Institute of Molecular Immunology, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Liliana Oliver
- Immunobiology Division, Institute of Molecular Immunology, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Anet Valdes
- Immunobiology Division, Institute of Molecular Immunology, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Circe Mesa
- Immunobiology Division, Institute of Molecular Immunology, Center of Molecular Immunology (CIM), Havana, Cuba.
| |
Collapse
|
48
|
Rayes RF, Milette S, Fernandez MC, Ham B, Wang N, Bourdeau F, Perrino S, Yakar S, Brodt P. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency. Oncotarget 2018; 9:15691-15704. [PMID: 29644002 PMCID: PMC5884657 DOI: 10.18632/oncotarget.24593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.
Collapse
Affiliation(s)
- Roni F. Rayes
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Simon Milette
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Maria Celia Fernandez
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Boram Ham
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Ni Wang
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - France Bourdeau
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Stephanie Perrino
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| | - Shoshana Yakar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Pnina Brodt
- Departments of Surgery, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Medicine, McGill University and the McGill University Health Centre, Montréal, QC, Canada
- Department of Oncology, McGill University and the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
49
|
Handl M, Hermanova M, Hotarkova S, Jarkovsky J, Mudry P, Shatokhina T, Vesela M, Sterba J, Zambo I. Clinicopathological correlation of tumor-associated macrophages in Ewing sarcoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 162:54-60. [PMID: 29170560 DOI: 10.5507/bp.2017.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023] Open
Abstract
AIMS Tumor-associated macrophages (TAMs) are known markers playing complex roles in tumorigenesis. However, the function of TAMs in a variety of malignancies is not yet fully understood. The aim of this pilot study was to quantify the density of TAMs in Ewing sarcoma and to determine the correlation between TAMs and clinicopathological parameters. METHODS Using immunohistochemistry, the expressions of CD68 and CD163 were examined in 24 tissue samples of Ewing sarcoma of bone. The density of CD68 and CD163-positive TAMs was analyzed quantitatively and semi-quantitatively and statistically correlated with clinical parameters. RESULTS CD163-positive TAMs outnumbered CD68-positive cells (median of 130 vs 96, respectively). No statistically significant relatio nship was found between density of CD68-positive cells, clinical parameters or prognosis. However, high levels of CD163-positive TAMs were associated with localized disease (P=0.008). In cases with a higher density of CD163-positive cells, a trend toward longer survival was revealed (P=0.063). CONCLUSION This is the first study that has quantified CD163 expression in TAMs in Ewing sarcoma and showed its possible prognostic value. CD163 was confirmed to be a more specific marker of macrophages than CD68. CD163 is not an exclusive hallmark of M2 macrophages.
Collapse
Affiliation(s)
- Marek Handl
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marketa Hermanova
- 1st Department of Pathological Anatomy, Faculty of Medicine, Masaryk University, Brno and St. Anne's University Hospital, Brno, Czech Republic
| | - Sylva Hotarkova
- 1st Department of Pathological Anatomy, Faculty of Medicine, Masaryk University, Brno and St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Jarkovsky
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Peter Mudry
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tetiana Shatokhina
- 1st Department of Pathological Anatomy, Faculty of Medicine, Masaryk University, Brno and St. Anne's University Hospital, Brno, Czech Republic
| | - Marcela Vesela
- 1st Department of Pathological Anatomy, Faculty of Medicine, Masaryk University, Brno and St. Anne's University Hospital, Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Zambo
- 1st Department of Pathological Anatomy, Faculty of Medicine, Masaryk University, Brno and St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
50
|
Milette S, Sicklick JK, Lowy AM, Brodt P. Molecular Pathways: Targeting the Microenvironment of Liver Metastases. Clin Cancer Res 2017; 23:6390-6399. [PMID: 28615370 PMCID: PMC5668192 DOI: 10.1158/1078-0432.ccr-15-1636] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/27/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
Curative treatment for metastatic solid cancers remains elusive. The liver, which is nourished by a rich blood supply from both the arterial and portal venous systems, is the most common site of visceral metastases, particularly from cancers arising in the gastrointestinal tract, with colorectal cancer being the predominant primary site in Western countries. A mounting body of evidence suggests that the liver microenvironment (LME) provides autocrine and paracrine signals originating from both parenchymal and nonparenchymal cells that collectively create both pre- and prometastatic niches for the development of hepatic metastases. These resident cells and their molecular mediators represent potential therapeutic targets for the prevention and/or treatment of liver metastases (LM). This review summarizes: (i) the current therapeutic options for treating LM, with a particular focus on colorectal cancer LM; (ii) the role of the LME in LM at each of its phases; (iii) potential targets in the LME identified through preclinical and clinical investigations; and (iv) potential therapeutic approaches for targeting elements of the LME before and/or after the onset of LM as the basis for future clinical trials. Clin Cancer Res; 23(21); 6390-9. ©2017 AACR.
Collapse
Affiliation(s)
- Simon Milette
- Departments of Surgery, Medicine, and Oncology McGill University and the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jason K. Sicklick
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Andrew M. Lowy
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Pnina Brodt
- Departments of Surgery, Medicine, and Oncology McGill University and the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|