1
|
Ghoraba HH, Sears J, Traboulsi EI. Hereditary Vitreoretinopathies: Molecular Diagnosis, Clinical Presentation and Management. Clin Exp Ophthalmol 2025; 53:281-291. [PMID: 39837650 PMCID: PMC11962705 DOI: 10.1111/ceo.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Hereditary vitreoretinopathies (HVRs), also known as hereditary vitreoretinal degenerations comprise a heterogeneous group of inherited disorders of the retina and vitreous, collectively and variably characterised by vitreal abnormalities, such as fibrillary condensations, liquefaction or membranes, as well as peripheral retinal abnormalities, vascular changes in some, an increased risk of retinal detachment and early-onset cataract formation. The pathology often involves the vitreoretinal interface in some, while the major underlying abnormality is vascular in others. Recent advances in molecular diagnosis and identification of the responsible genes and have improved our understanding of the pathogenesis, risks and management of the HVRs. Clinically, HVRs can be classified according to the presence or absence of skeletal or other systemic abnormalities, retinal dysfunction or retinal vascular abnormalities [2]. There are some discrepancies in the literature regarding which diseases are included under the overarching term 'hereditary vitreoretinopathies'. Conditions such as Stickler syndrome, Wagner syndrome and familial exudative vitreoretinopathy are generally included, while others such as autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) and autosomal dominant vitreoretinochoroidapathy (ADVIRC) may not. In this review, we will discuss some historical aspects, the molecular pathogenesis, clinical features and management of diseases and syndromes commonly considered as HVRs.
Collapse
|
2
|
Armstrong R, Marks NJ, Geary TG, Harrington J, Selzer PM, Maule AG. Wnt/β-catenin signalling underpins juvenile Fasciola hepatica growth and development. PLoS Pathog 2025; 21:e1012562. [PMID: 39919127 PMCID: PMC11805424 DOI: 10.1371/journal.ppat.1012562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
Infection by the liver fluke, Fasciola hepatica, places a substantial burden on the global agri-food industry and poses a significant threat to human health in endemic regions. Widespread resistance to a limited arsenal of chemotherapeutics, including the frontline flukicide triclabendazole (TCBZ), renders F. hepatica control unsustainable and accentuates the need for novel therapeutic target discovery. A key facet of F. hepatica biology is a population of specialised stem cells which drive growth and development - their dysregulation is hypothesised to represent an appealing avenue for control. The exploitation of this system as a therapeutic target is impeded by a lack of understanding of the molecular mechanisms underpinning F. hepatica growth and development. Wnt signalling pathways govern a myriad of stem cell processes during embryogenesis and drive tumorigenesis in adult tissues in animals. Here, we identify five putative Wnt ligands and five Frizzled receptors in liver fluke transcriptomic datasets and find that Wnt/β-catenin signalling is most active in juveniles, the most pathogenic life stage. FISH-mediated transcript localisation revealed partitioning of the five Wnt ligands, with each displaying a distinct expression pattern, consistent with each Wnt regulating the development of different cell/tissue types. The silencing of each individual Wnt or Frizzled gene yielded significant reductions in juvenile worm growth and, in select cases, blunted the proliferation of neoblast-like cells. Notably, silencing FhCTNNB1, the key effector of the Wnt/β-catenin signal cascade led to aberrant development of the neuromuscular system which ultimately proved lethal - the first report of a lethal RNAi-induced phenotype in F. hepatica. The absence of any discernible phenotypes following the silencing of the inhibitory Wnt/β-catenin destruction complex components is consistent with low destruction complex activity in rapidly developing juvenile worms, corroborates transcriptomic expression profiles and underscores the importance of Wnt signalling as a key molecular driver of growth and development in early-stage juvenile fluke. The putative pharmacological inhibition of Wnt/β-catenin signalling using commercially available inhibitors phenocopied RNAi results and provides impetus for drug repurposing. Taken together, these data functionally and chemically validate the targeting of Wnt signalling as a novel strategy to undermine the pathogenicity of juvenile F. hepatica.
Collapse
Affiliation(s)
- Rebecca Armstrong
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Nikki J. Marks
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Timothy G. Geary
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - John Harrington
- Parasitology, Boehringer Ingelheim Animal Health, Duluth, Georgia, United States of America
| | - Paul M. Selzer
- Parasitology, Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| | - Aaron G. Maule
- Understanding Health and Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
3
|
Guo Y, Wu W, Chen H, Wang X, Zhang Y, Li S, Yang X. Network analysis reveals potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis. Front Cell Dev Biol 2025; 13:1475334. [PMID: 39896421 PMCID: PMC11782130 DOI: 10.3389/fcell.2025.1475334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
During embryonic development, both corneal epithelial cells (CECs) and keratinocytes (KCs) originate from the surface ectoderm. As a result of this shared origin, corneal epithelial cells may exhibit the same characteristics as the skin epidermis in pathological situations, while keratinocytes are ideal seed cells for tissue-engineered corneas. However, how the identities of keratinocytes and corneal epithelial cells are determined is currently unclear. In this study, to investigate the molecular mechanisms determining the identity of keratinocytes and corneal epithelial cells, small RNA and mRNA sequencing analyses of these two cell types were performed. Analysis of the sequencing data revealed that almost all the miRNAs in the Gtl2-Dio3 imprinting region were highly expressed in keratinocytes and accounted for 30% of all differentially expressed miRNAs (DEMs). Since all the genes in the Gtl2-Dio3 imprinting region form a long polycistronic RNA under the control of the Gtl2 promoter, we next examined the expression of transcription factors and their binding near the Gtl2 locus. The findings indicated that the homeobox family dominated the differentially expressed transcription factors, and almost all Hox genes were silenced in corneal epithelial cells. Transcription binding site prediction and ChIP-seq revealed the binding of Hox proteins near the Gtl2 locus. Analysis of the Gtl-Dio3 miRNA target genes indicated that these miRNAs mainly regulate the Wnt signaling pathway and the PI3K-Akt signaling pathway. The crucial transcription factors in corneal epithelial cells, Pax6, Otx2, and Foxc1, are also targets of Gtl-Dio3 miRNAs. Our study revealed potential mechanisms that determine the cellular identity of keratinocytes and corneal epithelial cells through the Hox/Gtl2-Dio3 miRNA axis, which provides a new perspective for understanding the developmental regulation of corneal epithelial cells and the mechanisms of corneal opacity, as well as for establishing the groundwork for promoting the transdifferentiation of keratinocytes into corneal epithelial cells.
Collapse
Affiliation(s)
- Yanjie Guo
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| | | | | | | | | | | | - Xueyi Yang
- Life Science College, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
4
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
5
|
Zehra Z, von Bartheld CS, Agarwal AB, Vasquez-Gross H, Noorani Siddiqui S, Azam M, Qamar R. Exploring WNT2 polymorphisms in comitant strabismus: A genetic association study. Gene 2024; 928:148797. [PMID: 39068999 PMCID: PMC11774097 DOI: 10.1016/j.gene.2024.148797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Strabismus is a complex oculomotor condition characterized by a misalignment of the visual axis. The genetics of strabismus are poorly defined although a few candidate genes have been identified, among which is the WNT2 gene. Our study was designed to assess the association of single nucleotide polymorphisms (SNPs) of WNT2 in Pakistani strabismus patients. METHODS A total of six SNPs, three intronic and three in the 3́ untranslated region, were screened in the current study. Logistic regression was performed using a dominant, recessive and additive model to determine the association of SNPs with strabismus and its clinical subtypes: esotropia and exotropia. Furthermore, haplotype analysis was performed. RESULTS Regression analysis revealed an association of rs2896218, rs3779550, rs2285544 and rs4730775 with strabismus under the dominant model. When analyzed separately, rs2896218 and rs2285544 were found to be associated with both esotropia and exotropia, while rs4730775 was significantly associated only with exotropia under the dominant model. Based on clinical parameters, rs2896218, rs2285544 and rs4730775 were also found to be associated with the group of strabismus patients who were diagnosed at birth, but not in the group of patients who were diagnosed later in life. Haplotype analysis revealed that the haplotype A T T (corresponding to rs2896218, rs3779550 and rs2285544) was significantly more prevalent in the strabismus group. CONCLUSION Overall, the results of the present study suggest an association of WNT2 polymorphisms with strabismus and its subtypes in the Pakistani population, though further studies are needed to elucidate their role in strabismus etiology.
Collapse
Affiliation(s)
- Zainab Zehra
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
| | | | - Andrea B Agarwal
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Hans Vasquez-Gross
- Nevada Bioinformatics Center, RRID: SCR_017802, University of Nevada, Reno, USA
| | | | - Maleeha Azam
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan.
| | - Raheel Qamar
- Pakistan Academy of Sciences, Islamabad, Pakistan; Science and Technology Sector, ICESCO, Rabat, Kingdom of Morocco.
| |
Collapse
|
6
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. Cells 2024; 13:1390. [PMID: 39195278 PMCID: PMC11352439 DOI: 10.3390/cells13161390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development, including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and include regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
7
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.603187. [PMID: 39091861 PMCID: PMC11291033 DOI: 10.1101/2024.07.20.603187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA-sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and included regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno
| | | |
Collapse
|
8
|
Wang J, Xiao B, Kimura E, Mongan M, Hsu WW, Medvedovic M, Puga A, Xia Y. Crosstalk of MAP3K1 and EGFR signaling mediates gene-environment interactions that block developmental tissue closure. J Biol Chem 2024; 300:107486. [PMID: 38897570 PMCID: PMC11294703 DOI: 10.1016/j.jbc.2024.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Aberrant regulation of signal transduction pathways can adversely derail biological processes for tissue development. One such process is the embryonic eyelid closure that is dependent on the mitogen-activated protein kinase kinase kinase 1 (MAP3K1). Map3k1 KO in mice results in defective eyelid closure and an autosomal recessive eye-open at birth phenotype. We have shown that in utero exposure to dioxin, a persistent environmental toxicant, induces the same eye defect in Map3k1+/- heterozygous but not WT pups. Here, we explore the mechanisms of the Map3k1 (gene) and dioxin (environment) interactions (GxE) underlying defective eyelid closure. We show that, acting through the aryl hydrocarbon receptor, dioxin activates epidermal growth factor receptor signaling, which in turn depresses MAP3K1-dependent Jun N-terminal kinase (JNK) activity. The dioxin-mediated JNK repression is moderate but is exacerbated by Map3k1 heterozygosity. Therefore, dioxin exposed Map3k1+/- embryonic eyelids have a marked reduction of JNK activity, accelerated differentiation and impeded polarization in the epithelial cells. Knocking out Ahr or Egfr in eyelid epithelium attenuates the open-eye defects in dioxin-treated Map3k1+/- pups, whereas knockout of Jnk1 and S1pr that encodes the sphigosin-1-phosphate (S1P) receptors upstream of the MAP3K1-JNK pathway potentiates the dioxin toxicity. Our novel findings show that the crosstalk of aryl hydrocarbon receptor, epidermal growth factor receptor, and S1P-MAP3K1-JNK pathways determines the outcome of dioxin exposure. Thus, gene mutations targeting these pathways are potential risk factors for the toxicity of environmental chemicals.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Bo Xiao
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Eiki Kimura
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Maureen Mongan
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Wei-Wen Hsu
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Ying Xia
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
9
|
Eintracht J, Owen N, Harding P, Moosajee M. Disruption of common ocular developmental pathways in patient-derived optic vesicle models of microphthalmia. Stem Cell Reports 2024; 19:839-858. [PMID: 38821055 PMCID: PMC11390689 DOI: 10.1016/j.stemcr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.
Collapse
Affiliation(s)
| | | | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
10
|
Albano GA, Hackam AS. Repurposing development genes for axonal regeneration following injury: Examining the roles of Wnt signaling. Front Cell Dev Biol 2024; 12:1417928. [PMID: 38882059 PMCID: PMC11176474 DOI: 10.3389/fcell.2024.1417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
In this review, we explore the connections between developmental embryology and axonal regeneration. Genes that regulate embryogenesis and central nervous system (CNS) development are discussed for their therapeutic potential to induce axonal and cellular regeneration in adult tissues after neuronal injury. Despite substantial differences in the tissue environment in the developing CNS compared with the injured CNS, recent studies have identified multiple molecular pathways that promote axonal growth in both scenarios. We describe various molecular cues and signaling pathways involved in neural development, with an emphasis on the versatile Wnt signaling pathway. We discuss the capacity of developmental factors to initiate axonal regrowth in adult neural tissue within the challenging environment of the injured CNS. Our discussion explores the roles of Wnt signaling and also examines the potential of other embryonic genes including Pax, BMP, Ephrin, SOX, CNTF, PTEN, mTOR and STAT3 to contribute to axonal regeneration in various CNS injury model systems, including spinal cord and optic crush injuries in mice, Xenopus and zebrafish. Additionally, we describe potential contributions of Müller glia redifferentiation to neuronal regeneration after injury. Therefore, this review provides a comprehensive summary of the state of the field, and highlights promising research directions for the potential therapeutic applications of specific embryologic molecular pathways in axonal regeneration in adults.
Collapse
Affiliation(s)
- Gabrielle A Albano
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
11
|
Selvarajah K, Tan JJ, Shaharuddin B. Corneal Epithelial Development and the Role of Induced Pluripotent Stem Cells for Regeneration. Curr Stem Cell Res Ther 2024; 19:292-306. [PMID: 36915985 DOI: 10.2174/1574888x18666230313094121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
Severe corneal disorders due to infective aetiologies, trauma, chemical injuries, and chronic cicatricial inflammations, are among vision-threatening pathologies leading to permanent corneal scarring. The whole cornea or lamellar corneal transplantation is often used as a last resort to restore vision. However, limited autologous tissue sources and potential adverse post-allotransplantation sequalae urge the need for more robust and strategic alternatives. Contemporary management using cultivated corneal epithelial transplantation has paved the way for utilizing stem cells as a regenerative potential. Humaninduced pluripotent stem cells (hiPSCs) can generate ectodermal progenitors and potentially be used for ocular surface regeneration. This review summarizes the process of corneal morphogenesis and the signaling pathways underlying the development of corneal epithelium, which is key to translating the maturation and differentiation process of hiPSCs in vitro. The current state of knowledge and methodology for driving efficient corneal epithelial cell differentiation from pluripotent stem cells are highlighted.
Collapse
Affiliation(s)
- Komathi Selvarajah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Jun Jie Tan
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Bakiah Shaharuddin
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| |
Collapse
|
12
|
Santhanam A, Shihabeddin E, Wei H, Wu J, O'Brien J. Molecular basis of retinal remodeling in a zebrafish model of retinitis pigmentosa. Cell Mol Life Sci 2023; 80:362. [PMID: 37979052 PMCID: PMC10657301 DOI: 10.1007/s00018-023-05021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
A hallmark of inherited retinal degenerative diseases such as retinitis pigmentosa (RP) is progressive structural and functional remodeling of the remaining retinal cells as photoreceptors degenerate. Extensive remodeling of the retina stands as a barrier for the successful implementation of strategies to restore vision. To understand the molecular basis of remodeling, we performed analyses of single-cell transcriptome data from adult zebrafish retina of wild type AB strain (WT) and a P23H mutant rhodopsin transgenic model of RP with continuous degeneration and regeneration. Retinas from both female and male fish were pooled to generate each library, combining data from both sexes. We provide a benchmark atlas of retinal cell type transcriptomes in zebrafish and insight into how each retinal cell type is affected in the P23H model. Oxidative stress is found throughout the retina, with increases in reliance on oxidative metabolism and glycolysis in the affected rods as well as cones, bipolar cells, and retinal ganglion cells. There is also transcriptional evidence for widespread synaptic remodeling and enhancement of glutamatergic transmission in the inner retina. Notably, changes in circadian rhythm regulation are detected in cones, bipolar cells, and retinal pigmented epithelium. We also identify the transcriptomic signatures of retinal progenitor cells and newly formed rods essential for the regenerative process. This comprehensive transcriptomic analysis provides a molecular road map to understand how the retina remodels in the context of chronic retinal degeneration with ongoing regeneration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Eyad Shihabeddin
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Haichao Wei
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jiaqian Wu
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John O'Brien
- Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- University of Houston College of Optometry, Houston, TX, 77204, USA.
- MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Tse J, O’Keefe R, Rigopolous A, Carli ALE, Waaler J, Krauss S, Ernst M, Buchert M. A Mouse Model for the Rapid and Binomial Assessment of Putative WNT/β-Catenin Signalling Inhibitors. Biomedicines 2023; 11:2719. [PMID: 37893093 PMCID: PMC10604108 DOI: 10.3390/biomedicines11102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Specific signalling thresholds of the WNT/β-catenin pathway affect embryogenesis and tissue homeostasis in the adult, with mutations in this pathway frequently occurring in cancer. Excessive WNT/β-catenin activity inhibits murine anterior development associated with embryonic lethality and accounts for the driver event in 80% of human colorectal cancers. Uncontrolled WNT/β-catenin signalling arises primarily from impairment mutation in the tumour suppressor gene APC that otherwise prevents prolonged stabilisation of β-catenin. Surprisingly, no inhibitor compounds for WNT/β-catenin signalling have reached clinical use in part owing to the lack of specific in vivo assays that discriminate between on-target activities and dose-limiting toxicities. Here, we present a simple in vivo assay with a binary outcome whereby the administration of candidate compounds to pregnant and phenotypically normal Apcflox/flox mice can rescue in utero death of Apcmin/flox mutant conceptus without subsequent post-mortem assessment of WNT/β-catenin signalling. Indeed, the phenotypic plasticity of born Apcmin/flox conceptus enables future refinement of our assay to potentially enable dosage finding and cross-compound comparisons. Thus, we show for the first time the suitability of endogenous WNT/β-catenin signalling during embryonic development to provide an unambiguous and sensitive mammalian in vivo model to assess the efficacy and bioavailability of potential WNT/β-catenin antagonists.
Collapse
Affiliation(s)
- Janson Tse
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia (M.E.)
| | - Ryan O’Keefe
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia (M.E.)
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Angela Rigopolous
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Annalisa L. E. Carli
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia (M.E.)
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jo Waaler
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia (M.E.)
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Michael Buchert
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia (M.E.)
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
14
|
Ovadia S, Cui G, Elkon R, Cohen-Gulkar M, Zuk-Bar N, Tuoc T, Jing N, Ashery-Padan R. SWI/SNF complexes are required for retinal pigmented epithelium differentiation and for the inhibition of cell proliferation and neural differentiation programs. Development 2023; 150:dev201488. [PMID: 37522516 PMCID: PMC10482007 DOI: 10.1242/dev.201488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
During embryonic development, tissue-specific transcription factors and chromatin remodelers function together to ensure gradual, coordinated differentiation of multiple lineages. Here, we define this regulatory interplay in the developing retinal pigmented epithelium (RPE), a neuroectodermal lineage essential for the development, function and maintenance of the adjacent retina. We present a high-resolution spatial transcriptomic atlas of the developing mouse RPE and the adjacent ocular mesenchyme obtained by geographical position sequencing (Geo-seq) of a single developmental stage of the eye that encompasses young and more mature ocular progenitors. These transcriptomic data, available online, reveal the key transcription factors and their gene regulatory networks during RPE and ocular mesenchyme differentiation. Moreover, conditional inactivation followed by Geo-seq revealed that this differentiation program is dependent on the activity of SWI/SNF complexes, shown here to control the expression and activity of RPE transcription factors and, at the same time, inhibit neural progenitor and cell proliferation genes. The findings reveal the roles of the SWI/SNF complexes in controlling the intersection between RPE and neural cell fates and the coupling of cell-cycle exit and differentiation.
Collapse
Affiliation(s)
- Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guizhong Cui
- Guangzhou National Laboratory, Department of Basic Research, Guangzhou 510005, China
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitay Zuk-Bar
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Naihe Jing
- Guangzhou National Laboratory, Department of Basic Research, Guangzhou 510005, China
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Kim JM, Min KW, Kim YJ, Smits R, Basler K, Kim JW. Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium. Mol Cells 2023; 46:441-450. [PMID: 37190767 PMCID: PMC10336276 DOI: 10.14348/molcells.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023] Open
Abstract
β-Catenin (Ctnnb1) has been shown to play critical roles in the development and maintenance of epithelial cells, including the retinal pigment epithelium (RPE). Ctnnb1 is not only a component of intercellular junctions in the epithelium, it also functions as a transcriptional regulator in the Wnt signaling pathway. To identify which of its functional modalities is critically involved in mouse RPE development and maintenance, we varied Ctnnb1 gene content and activity in mouse RPE lineage cells and tested their impacts on mouse eye development. We found that a Ctnnb1 double mutant (Ctnnb1dm), which exhibits impaired transcriptional activity, could not replace Ctnnb1 in the RPE, whereas Ctnnb1Y654E, which has reduced affinity for the junctions, could do so. Expression of the constitutively active Ctnnb1∆ex3 mutant also suppressed the development of RPE, instead facilitating a ciliary cell fate. However, the post-mitotic or mature RPE was insensitive to the loss, inactivation, or constitutive activation of Ctnnb1. Collectively, our results suggest that Ctnnb1 should be maintained within an optimal range to specify RPE through transcriptional regulation of Wnt target genes in the optic neuroepithelium.
Collapse
Affiliation(s)
- Jong-Myeong Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kwang Wook Min
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - You-Joung Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Jin Woo Kim
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
16
|
Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res 2023; 95:101149. [PMID: 36443219 PMCID: PMC10209355 DOI: 10.1016/j.preteyeres.2022.101149] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Ghiam
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Seese SE, Muheisen S, Gath N, Gross JM, Semina EV. Identification of HSPA8 as an interacting partner of MAB21L2 and an important factor in eye development. Dev Dyn 2023; 252:510-526. [PMID: 36576422 PMCID: PMC10947772 DOI: 10.1002/dvdy.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pathogenic variants in human MAB21L2 result in microphthalmia, anophthalmia, and coloboma. The exact molecular function of MAB21L2 is currently unknown. We conducted a series of yeast two-hybrid (Y2H) experiments to determine protein interactomes of normal human and zebrafish MAB21L2/mab21l2 as well as human disease-associated variant MAB21L2-p.(Arg51Gly) using human adult retina and zebrafish embryo libraries. RESULTS These screens identified klhl31, tnpo1, TNPO2/tnpo2, KLC2/klc2, and SPTBN1/sptbn1 as co-factors of MAB21L2/mab21l2. Several factors, including hspa8 and hspa5, were found to interact with MAB21L2-p.Arg51Gly but not wild-type MAB21L2/mab21l2 in Y2H screens. Further analyses via 1-by-1 Y2H assays, co-immunoprecipitation, and mass spectrometry revealed that both normal and variant MAB21L2 interact with HSPA5 and HSPA8. In situ hybridization detected co-expression of hspa5 and hspa8 with mab21l2 during eye development in zebrafish. Examination of zebrafish mutant hspa8hi138Tg identified reduced hspa8 expression associated with severe ocular developmental defects, including small eye, coloboma, and anterior segment dysgenesis. To investigate the effects of hspa8 deficiency on the mab21l2Arg51_Phe52del allele, corresponding zebrafish double mutants were generated and found to be more severely affected than single mutant lines. CONCLUSION This study identifies heat shock proteins as interacting partners of MAB21L2/mab21l2 and suggests a role for this interaction in vertebrate eye development.
Collapse
Affiliation(s)
- Sarah E. Seese
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanaa Muheisen
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Natalie Gath
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M. Gross
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elena V. Semina
- Department of Pediatrics The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Children’s of Wisconsin, Milwaukee, WI 53226, USA
- Children’s Research Institute, Medical College of Wisconsin, Children’s of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
18
|
Desmettre T, Gatinel D, Leveziel N. Épigénétique et myopie : mécanismes et perspectives thérapeutiques. J Fr Ophtalmol 2022; 45:1209-1216. [DOI: 10.1016/j.jfo.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
|
19
|
Fuhrmann S, Ramirez S, Mina Abouda M, Campbell CD. Porcn is essential for growth and invagination of the mammalian optic cup. Front Cell Dev Biol 2022; 10:1016182. [PMID: 36393832 PMCID: PMC9661423 DOI: 10.3389/fcell.2022.1016182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Microphthalmia, anophthalmia, and coloboma (MAC) are congenital ocular malformations causing 25% of childhood blindness. The X-linked disorder Focal Dermal Hypoplasia (FDH) is frequently associated with MAC and results from mutations in Porcn, a membrane bound O-acyl transferase required for palmitoylation of Wnts to activate multiple Wnt-dependent pathways. Wnt/β-catenin signaling is suppressed in the anterior neural plate for initiation of eye formation and is subsequently required during differentiation of the retinal pigment epithelium (RPE). Non-canonical Wnts are critical for early eye formation in frog and zebrafish. However, it is unclear whether this also applies to mammals. We performed ubiquitous conditional inactivation of Porcn in mouse around the eye field stage. In Porcn CKO , optic vesicles (OV) arrest in growth and fail to form an optic cup. Ventral proliferation is significantly decreased in the mutant OV, with a concomitant increase in apoptotic cell death. While pan-ocular transcription factors such as PAX6, SIX3, LHX2, and PAX2 are present, indicative of maintenance of OV identity, regional expression of VSX2, MITF, OTX2, and NR2F2 is downregulated. Failure of RPE differentiation in Porcn CKO is consistent with downregulation of the Wnt/β-catenin effector LEF1, starting around 2.5 days after inactivation. This suggests that Porcn inactivation affects signaling later than a potential requirement for Wnts to promote eye field formation. Altogether, our data shows a novel requirement for Porcn in regulating growth and morphogenesis of the OV, likely by controlling proliferation and survival. In FDH patients with ocular manifestations, growth deficiency during early ocular morphogenesis may be the underlying cause for microphthalmia.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Sara Ramirez
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Mirna Mina Abouda
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Clorissa D. Campbell
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
20
|
Jones MK, Agarwal D, Mazo KW, Chopra M, Jurlina SL, Dash N, Xu Q, Ogata AR, Chow M, Hill AD, Kambli NK, Xu G, Sasik R, Birmingham A, Fisch KM, Weinreb RN, Enke RA, Skowronska-Krawczyk D, Wahlin KJ. Chromatin Accessibility and Transcriptional Differences in Human Stem Cell-Derived Early-Stage Retinal Organoids. Cells 2022; 11:3412. [PMID: 36359808 PMCID: PMC9657268 DOI: 10.3390/cells11213412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 02/08/2023] Open
Abstract
Retinogenesis involves the specification of retinal cell types during early vertebrate development. While model organisms have been critical for determining the role of dynamic chromatin and cell-type specific transcriptional networks during this process, an enhanced understanding of the developing human retina has been more elusive due to the requirement for human fetal tissue. Pluripotent stem cell (PSC) derived retinal organoids offer an experimentally accessible solution for investigating the developing human retina. To investigate cellular and molecular changes in developing early retinal organoids, we developed SIX6-GFP and VSX2-tdTomato (or VSX2-h2b-mRuby3) dual fluorescent reporters. When differentiated as 3D organoids these expressed GFP at day 15 and tdTomato (or mRuby3) at day 25, respectively. This enabled us to explore transcriptional and chromatin related changes using RNA-seq and ATAC-seq from pluripotency through early retina specification. Pathway analysis of developing organoids revealed a stepwise loss of pluripotency, while optic vesicle and retina pathways became progressively more prevalent. Correlating gene transcription with chromatin accessibility in early eye field development showed that retinal cells underwent a clear change in chromatin landscape, as well as gene expression profiles. While each dataset alone provided valuable information, considering both in parallel provided an informative glimpse into the molecular nature eye development.
Collapse
Affiliation(s)
- Melissa K. Jones
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Devansh Agarwal
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin W. Mazo
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Manan Chopra
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Shawna L. Jurlina
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Dash
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Qianlan Xu
- Center for Translational Vision Research, University of California Irvine, Irvine, CA 92617, USA
| | - Anna R. Ogata
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Melissa Chow
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex D. Hill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Netra K. Kambli
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biotechnology, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Guorong Xu
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
| | - Robert N. Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Ray A. Enke
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | | | - Karl J. Wahlin
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Vallée A. Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 2022; 49:79. [PMID: 35445729 PMCID: PMC9083851 DOI: 10.3892/ijmm.2022.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a natural product widely used due to its pharmacological effects. Nevertheless, only a limited number of studies concerning the effects of curcumin on exudative age‑related macular degeneration (AMD) is currently available. Since ophthalmic diseases, including exudative AMD, have a marked impact on public health, the prevention and therapy of ophthalmic disorders remain of increasing concern. Exudative AMD is characterized by choroidal neovascularization (CNV) invading the subretinal space, ultimately enhancing exudation and hemorrhaging. The exudative AMD subtype corresponds to 10 to 15% of cases of macular degeneration; however, the occurrence of this subtype has been reported as the major cause of vision loss and blindness, with the occurrence of CNV being responsible for 80% of the cases with vision loss. In CNV increased expression of VEGF has been observed, stimulated by the overactivation of Wnt/β‑catenin signaling pathway. The stimulation of the Wnt/β‑catenin signaling pathway is responsible for the activation of several cellular mechanisms, simultaneously enhancing inflammation, oxidative stress and angiogenesis in numerous diseases, including ophthalmic disorders. Some studies have previously demonstrated the possible advantage of the use of curcumin for the inhibition of Wnt/β‑catenin signaling. In the present review article, the different mechanisms of curcumin are described concerning its effects on oxidative stress, inflammation and angiogenesis in exudative AMD, by interacting with Wnt/β‑catenin signaling.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
22
|
Tipsuriyaporn B, Ammar MJ, Yonekawa Y. CTNNB1 (β-CATENIN) VITREORETINOPATHY: IMAGING CHARACTERISTICS AND SURGICAL MANAGEMENT. Retin Cases Brief Rep 2022; 16:259-262. [PMID: 32150115 DOI: 10.1097/icb.0000000000000990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We report a patient with CTNNB1-associated vitreoretinopathy. We discuss imaging findings and surgical management. METHODS Case report. RESULTS An 18-month-old girl with microcephaly, failure to thrive, developmental delay, and chronic rhinitis presented with bilateral central and peripheral tractional retinal detachments and an anomalous retinal vasculature. She underwent multimodal imaging and genetic testing, and we discuss successful surgical management. CONCLUSION CTNNB1 mutations can cause a vision-threatening vitreoretinopathy. We recommend CTNNB1 to be considered as part of the workup of patients presenting with familial exudative vitreoretinopathy-like clinical findings, especially if there are systemic manifestations.
Collapse
Affiliation(s)
- Boontip Tipsuriyaporn
- Department of Ophthalmology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand ; and
| | - Michael J Ammar
- Wills Eye Hospital Retina Service, Mid Atlantic Retina, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yoshihiro Yonekawa
- Wills Eye Hospital Retina Service, Mid Atlantic Retina, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Tangeman JA, Pérez-Estrada JR, Van Zeeland E, Liu L, Danciutiu A, Grajales-Esquivel E, Smucker B, Liang C, Del Rio-Tsonis K. A Stage-Specific OTX2 Regulatory Network and Maturation-Associated Gene Programs Are Inherent Barriers to RPE Neural Competency. Front Cell Dev Biol 2022; 10:875155. [PMID: 35517508 PMCID: PMC9062105 DOI: 10.3389/fcell.2022.875155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
The retinal pigment epithelium (RPE) exhibits a diverse range of plasticity across vertebrates and is a potential source of cells for the regeneration of retinal neurons. Embryonic amniotes possess a transitory ability to regenerate neural retina through the reprogramming of RPE cells in an FGF-dependent manner. Chicken RPE can regenerate neural retina at embryonic day 4 (E4), but RPE neural competence is lost by embryonic day 5 (E5). To identify mechanisms that underlie loss of regenerative competence, we performed RNA and ATAC sequencing using E4 and E5 chicken RPE, as well as at both stages following retinectomy and FGF2 treatment. We find that genes associated with neural retina fate remain FGF2-inducible in the non-regenerative E5 RPE. Coinciding with fate restriction, RPE cells stably exit the cell cycle and dampen the expression of cell cycle progression genes normally expressed during regeneration, including E2F1. E5 RPE exhibits progressive activation of gene pathways associated with mature function independently of retinectomy or FGF2 treatment, including retinal metabolism, pigmentation synthesis, and ion transport. Moreover, the E5 RPE fails to efficiently repress OTX2 expression in response to FGF2. Predicted OTX2 binding motifs undergo robust accessibility increases in E5 RPE, many of which coincide with putative regulatory elements for genes known to facilitate RPE differentiation and maturation. Together, these results uncover widespread alterations in gene regulation that culminate in the loss of RPE neural competence and implicate OTX2 as a key determinant in solidifying the RPE fate. These results yield valuable insight to the basis of RPE lineage restriction during early development and will be of importance in understanding the varying capacities for RPE-derived retinal regeneration observed among vertebrates.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - J. Raúl Pérez-Estrada
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Emily Van Zeeland
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Lin Liu
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Alexandra Danciutiu
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Byran Smucker
- Department of Statistics, Miami University, Oxford, OH, United States
| | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH, United States
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| |
Collapse
|
24
|
Dan H, Wang D, Huang Z, Shi Q, Zheng M, Xiao Y, Song Z. Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes for 20 families with familial exudative vitreoretinopathy. BMC Med Genomics 2022; 15:54. [PMID: 35277167 PMCID: PMC8915523 DOI: 10.1186/s12920-022-01204-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a complex form of blindness-causing retinal degeneration. This study investigated the potential disease-causing variants in 20 Chinese families with FEVR. METHODS All available family members underwent detailed ophthalmological examinations, including best-corrected visual acuity and fundus examination. All probands and most family members underwent fluorescein fundus angiography. Twenty probands underwent whole exome sequencing; 16 of them also underwent copy number variant and mitochondrial genome analysis. Bioinformatics analysis and Sanger sequencing of available family members were used to confirm the disease-causing gene variant. RESULTS Twenty families were diagnosed with FEVR based on clinical symptoms, fundus manifestations, and fundus fluorescein angiography. Whole exome sequencing revealed 14 variants in NDP, FZD4, LRP5, and TSPAN12 genes among the 13 families. These variants were predicted to be damaging or deleterious according to multiple lines of prediction algorithms; they were not frequently found in multiple population databases. Seven variants had not previously been reported to cause FEVR: c.1039T>G p.(Phe347Val) in the FZD4 gene; c.1612C>T p.(Arg538Trp) and c.3237-2A>C in the LRP5 gene; and c.77T>A p.(Ile26Asn), c.170dupT p.(Leu57Phe fsTer60), c.236T>G p.(Met79Arg) and c.550dupA p.(Arg184Lys fsTer16) in the TSPAN12 gene. We did not detect any variants in the remaining seven families. CONCLUSIONS These results expand the spectrum of variants in the NDP, FZD4, LRP5, and TSPAN12 genes and provide insights regarding accurate diagnosis, family genetic counseling, and future gene therapy for FEVR.
Collapse
Affiliation(s)
- Handong Dan
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Dongdong Wang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Zixu Huang
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Qianqian Shi
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Miao Zheng
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Yuanyuan Xiao
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China
| | - Zongming Song
- Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7 Weiwu Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
25
|
Regulation of Eye Determination and Regionalization in the Spider Parasteatoda tepidariorum. Cells 2022; 11:cells11040631. [PMID: 35203282 PMCID: PMC8870698 DOI: 10.3390/cells11040631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Animal visual systems are enormously diverse, but their development appears to be controlled by a set of conserved retinal determination genes (RDGs). Spiders are particular masters of visual system innovation, and offer an excellent opportunity to study the evolution of animal eyes. Several RDGs have been identified in spider eye primordia, but their interactions and regulation remain unclear. From our knowledge of RDG network regulation in Drosophila melanogaster, we hypothesize that orthologs of Pax6, eyegone, Wnt genes, hh, dpp, and atonal could play important roles in controlling eye development in spiders. We analyzed the expression of these genes in developing embryos of the spider Parasteatodatepidariorum, both independently and in relation to the eye primordia, marked using probes for the RDG sine oculis. Our results support conserved roles for Wnt genes in restricting the size and position of the eye field, as well as for atonal initiating photoreceptor differentiation. However, we found no strong evidence for an upstream role of Pax6 in eye development, despite its label as a master regulator of animal eye development; nor do eyg, hh or dpp compensate for the absence of Pax6. Conversely, our results indicate that hh may work with Wnt signaling to restrict eye growth, a role similar to that of Sonichedgehog (Shh) in vertebrates.
Collapse
|
26
|
Genetic Interaction between Mfrp and Adipor1 Mutations Affect Retinal Disease Phenotypes. Int J Mol Sci 2022; 23:ijms23031615. [PMID: 35163536 PMCID: PMC8835889 DOI: 10.3390/ijms23031615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both genes to similar disease phenotypes, including fundus spots, decreased axial length, and photoreceptor degeneration has yet to be examined. We performed a gene-interaction study where homozygous Adipor1tm1Dgen and Mfrprd6 mice were bred together and the resulting doubly heterozygous F1 offspring were intercrossed to produce 210 F2 progeny. Four-month-old mice from all nine genotypic combinations obtained in the F2 generation were assessed for white spots by fundus photo documentation, for axial length by caliper measurements, and for photoreceptor degeneration by histology. Two-way factorial ANOVA was performed to study individual as well as gene interaction effects on each phenotype. Here, we report the first observation of reduced axial length in Adipor1tmlDgen homozygotes. We show that while Adipor1 and Mfrp interact to affect spotting and degeneration, they act independently to control axial length, highlighting the complex functional association between these two genes. Further examination of the molecular basis of this interaction may help in uncovering mechanisms by which these genes perturb ocular homeostasis.
Collapse
|
27
|
Thomas DM, Kannabiran C, Balasubramanian D. Identification of Key Genes and Pathways in Persistent Hyperplastic Primary Vitreous of the Eye Using Bioinformatic Analysis. Front Med (Lausanne) 2021; 8:690594. [PMID: 34485332 PMCID: PMC8409525 DOI: 10.3389/fmed.2021.690594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The failure of the embryonic hyaloid vascular system to regress naturally causes persistent hyperplastic primary vitreous (PHPV), a congenital eye disease. PHPVs molecular pathway, candidate genes, and drug targets are unknown. The current paper describes a comprehensive analysis using bioinformatics to identify the key genes and molecular pathways associated with PHPV, and to evaluate potential therapeutic agents for disease management. Methods: The genes associated with PHPV were identified using the pubmed2ensembl text mining platform. GeneCodis was employed to evaluate the Gene Ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Search Tool for the Retrieval of Interacting Genes (STRING) constructed a protein-protein interaction (PPI) network from the text mining genes (TMGs) in Cytoscape. The significant modules were clustered using Molecular Complex Detection (MCODE), and the GO and KEGG analysis for the hub genes were analyzed with the Database of Annotation, Visualization and Integrated Discovery (DAVID) tool. ClueGO, CluePedia, and ShinyGo were used to illustrate the functions and pathways of the clustered hub genes in a significant module. The Drug-Gene Interaction database (DGIdb) was used to evaluate drug-gene interactions of the hub genes to identify potential PHPV drug candidates. Results: A total of 50 genes associated with PHPV were identified. Overall, 35 enriched GO terms and 15 KEGG pathways were discovered by the gene functional enrichment analysis. Two gene modules were obtained from the PPI network constructed with 31 nodes with 42 edges using MCODE. We selected 14 hub genes as core candidate genes: TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and PAX2, primarily associated with camera-type eye morphogenesis, pancreatic cancer, the apoptotic process involved in morphogenesis, and the VEGF receptor signaling pathway. We discovered that 26 Food and Drug Administration (FDA)-approved drugs could target 7 of the 14 hub genes. Conclusions: In conclusion, the results revealed a total of 14 potential genes, 4 major pathways, 7 drug gene targets, and 26 candidate drugs that could provide the basis of novel targeted therapies for targeted treatment and management of PHPV.
Collapse
Affiliation(s)
- Derin M Thomas
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - D Balasubramanian
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
28
|
Vielle A, Park YK, Secora C, Vergara MN. Organoids for the Study of Retinal Development and Developmental Abnormalities. Front Cell Neurosci 2021; 15:667880. [PMID: 34025363 PMCID: PMC8131530 DOI: 10.3389/fncel.2021.667880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 02/01/2023] Open
Abstract
The cumulative knowledge of retina development has been instrumental in the generation of retinal organoid systems from pluripotent stem cells; and these three-dimensional organoid models, in turn, have provided unprecedented opportunities for retinal research and translational applications, including the ability to model disease in a human setting and to apply these models to the development and validation of therapeutic drugs. In this review article, we examine how retinal organoids can also contribute to our understanding of retinal developmental mechanisms, how this knowledge can be applied to modeling developmental abnormalities, and highlight some of the avenues that remain to be explored.
Collapse
Affiliation(s)
- Anne Vielle
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, Aurora, CO, United States
| | - Yuna K Park
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Conner Secora
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, Aurora, CO, United States.,Master of Science in Modern Human Anatomy Program, Aurora, CO, United States
| | - M Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, Aurora, CO, United States
| |
Collapse
|
29
|
Kondkar AA. Updates on Genes and Genetic Mechanisms Implicated in Primary Angle-Closure Glaucoma. APPLICATION OF CLINICAL GENETICS 2021; 14:89-112. [PMID: 33727852 PMCID: PMC7955727 DOI: 10.2147/tacg.s274884] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022]
Abstract
Primary angle-closure glaucoma (PACG) is estimated to affect over 30 million people worldwide by 2040 and is highly prevalent in the Asian population. PACG is more severe and carries three times the higher risk of blindness than primary open-angle glaucoma, thus representing a significant public health concern. High heritability and ethnic-specific predisposition to PACG suggest the involvement of genetic factors in disease development. In the recent past, genetic studies have led to the successful identification of several genes and loci associated with PACG across different ethnicities. The precise cellular and molecular roles of these multiple loci in the development and progression of PACG remains to be elucidated. Nonetheless, these studies have significantly increased our understanding of the emerging cellular processes and biological pathways that might provide more significant insights into the disease’s genetic etiology and may be valuable for future clinical applications. This review aims to summarize and update the current knowledge of PACG genetics analysis research.
Collapse
Affiliation(s)
- Altaf A Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Glaucoma Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Sarkar A, Saha S, Paul A, Maji A, Roy P, Maity TK. Understanding stem cells and its pivotal role in regenerative medicine. Life Sci 2021; 273:119270. [PMID: 33640402 DOI: 10.1016/j.lfs.2021.119270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Stem cells (SCs) are clonogenic cells that develop into the specialized cells which later responsible for making up various types of tissue in the human body. SCs are not only the appropriate source of information for cell division, molecular and cellular processes, and tissue homeostasis but also one of the major putative biological aids to diagnose and cure various degenerative diseases. This study emphasises on various research outputs that occurred in the past two decades. This will give brief information on classification, differentiation, detection, and various isolation techniques of SCs. Here, the various signalling pathways which includes WNT, Sonic hedgehog, Notch, BMI1 and C-met pathways and how does it effect on the regeneration of various classes of SCs and factors that regulates the potency of the SCs are also been discussed. We also focused on the application of SCs in the area of regenerative medicine along with the cellular markers that are useful as salient diagnostic or curative tools or in both, by the process of reprogramming, which includes diabetes, cancer, cardiovascular disorders and neurological disorders. The biomarkers that are mentioned in various literatures and experiments include PDX1, FOXA2, HNF6, and NKX6-1 (for diabetes); CD33, CD24, CD133 (for cancer); c-Kit, SCA-1, Wilm's tumor 1 (for cardiovascular disorders); and OCT4, SOX2, c-MYC, EN1, DAT and VMAT2 (for neurological disorders). In this review, we come to know the advancements and scopes of potential SC-based therapies, its diverse applications in clinical fields that can be helpful in the near future.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Puspita Roy
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India.
| |
Collapse
|
31
|
Srinivasalu N, Zhang S, Xu R, Reinach PS, Su Y, Zhu Y, Qu J, Zhou X. Crosstalk between EP2 and PPARα Modulates Hypoxic Signaling and Myopia Development in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 61:44. [PMID: 32725213 PMCID: PMC7425689 DOI: 10.1167/iovs.61.8.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Cyclic adenosine monophosphate (cAMP) and peroxisome proliferator-activated receptor alpha (PPARα) levels mediate extracellular matrix (ECM) changes by altering the levels of hypoxia-inducible factor 1-alpha (HIF-1α) in various tissues. We aimed to determine, in the sclera of guinea pigs, whether a prostanoid receptor (EP2)-linked cAMP modulation affects PPARα and HIF-1α signaling during myopia. Methods Three-week-old guinea pigs (n = 20 in each group), were monocularly injected with either an EP2 agonist (butaprost 1 µmol/L/10 µmol/L), an antagonist (AH6809 10 µmol/L/30 µmol/L) or a vehicle solution for two weeks during normal ocular growth. Separate sets of animals received these injections and underwent form deprivation (FD) simultaneously. Refraction and axial length (AL) were measured at two weeks, followed by scleral tissue isolation for quantitative PCR (qPCR) analysis (n = 10) and cAMP detection (n = 10) using a radioimmunoassay. Results Butaprost induced myopia development during normal ocular growth, with proportional increases in AL and cAMP levels. FD did not augment the magnitude of myopia or cAMP elevations in these agonist-injected eyes. AH6809 suppressed cAMP increases and myopia progression during FD, but had no effect in a normal visual environment. Of the diverse set of 27 genes related to cAMP, PPARα and HIF-1α signaling and ECM remodeling, butaprost differentially regulated 15 of them during myopia development. AH6809 injections during FD negated such differential gene expressions. Conclusion EP2 agonism increased cAMP and HIF-1α signaling subsequent to declines in PPARα and RXR mRNA levels, which in turn decreased scleral fibrosis and promoted myopia. EP2 antagonism instead inhibited each of these responses. Our data suggest that EP2 suppression may sustain scleral ECM structure and inhibit myopia development.
Collapse
|
32
|
The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020; 10:400. [PMID: 33199680 PMCID: PMC7669888 DOI: 10.1038/s41398-020-01086-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual abilities and their clinical presentations are extremely heterogeneous in autism spectrum disorder (ASD). The main causes of ASD remain unclear. ASD is frequently associated with sleep disorders. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways, including brain development and behavioral processes. Recent findings have shown that the deregulation of the core clock neurodevelopmental signaling is correlated with ASD clinical presentation. One of the main pathways involved in developmental cognitive disorders is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving circadian expression of genes involved in physiologic and metabolic functions. In ASD, the increase of the canonical WNT/β-catenin pathway is enhancing by the dysregulation of circadian rhythms. ASD progression is associated with a major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, the aerobic glycolysis. This review focuses on the interest of circadian rhythms dysregulation in metabolic reprogramming in ASD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
|
33
|
Theerakittayakorn K, Thi Nguyen H, Musika J, Kunkanjanawan H, Imsoonthornruksa S, Somredngan S, Ketudat-Cairns M, Parnpai R. Differentiation Induction of Human Stem Cells for Corneal Epithelial Regeneration. Int J Mol Sci 2020; 21:E7834. [PMID: 33105778 PMCID: PMC7660084 DOI: 10.3390/ijms21217834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Deficiency of corneal epithelium causes vision impairment or blindness in severe cases. Transplantation of corneal epithelial cells is an effective treatment but the availability of the tissue source for those cells is inadequate. Stem cells can be induced to differentiate to corneal epithelial cells and used in the treatment. Multipotent stem cells (mesenchymal stem cells) and pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are promising cells to address the problem. Various protocols have been developed to induce differentiation of the stem cells into corneal epithelial cells. The feasibility and efficacy of both human stem cells and animal stem cells have been investigated for corneal epithelium regeneration. However, some physiological aspects of animal stem cells are different from those of human stem cells, the protocols suited for animal stem cells might not be suitable for human stem cells. Therefore, in this review, only the investigations of corneal epithelial differentiation of human stem cells are taken into account. The available protocols for inducing the differentiation of human stem cells into corneal epithelial cells are gathered and compared. Also, the pathways involving in the differentiation are provided to elucidate the relevant mechanisms.
Collapse
Affiliation(s)
- Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Hong Thi Nguyen
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Jidapa Musika
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Hataiwan Kunkanjanawan
- Medeze Research and Development Co., Ltd. 28/9 Moo 8, Phutthamonthon Sai 4 Rd., Krathum Lom, Sam Phran, Nakhon Pathom 73220, Thailand;
| | - Sumeth Imsoonthornruksa
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Mariena Ketudat-Cairns
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (K.T.); (H.T.N.); (J.M.); (S.I.); (S.S.); (M.K.-C.)
| |
Collapse
|
34
|
Zhu X, Sun K, Huang L, Ma S, Hao F, Yang Z, Sundaresan P, Zhu X. Identification of Novel Mutations in the FZD4 and NDP Genes in Patients with Familial Exudative Vitreoretinopathy in South India. Genet Test Mol Biomarkers 2020; 24:92-98. [PMID: 31999491 DOI: 10.1089/gtmb.2019.0212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Familial exudative vitreoretinopathy (FEVR) is an inheritable retinal vascular disease, which often leads to severe vision loss and blindness in children. However, reported mutations can only account for 50-60% of patients with FEVR. The purpose of this study was to identify novel frizzled class receptor 4 (FZD4) and Norrin cystine knot growth factor NDP (NDP) mutations in a cohort of Indian patients with FEVR by whole-exome sequencing. Methods: We performed data filtering and bioinformatic analyses. Results: Two novel heterozygous mutations in FZD4 gene were identified, each in two different families: c.1499_1500del [p.500_500del] and c.G296C [p.C99S]. One novel mutation in NDP in another family was identified: c.A256G [p.K86E]. All FZD4 mutations affected conserved amino acid residues and were absent in 1000 control individuals. To assess the effect of these FZD4 mutations on the biological activity of the protein, we introduced each FZD4 mutation into FZD4 cDNA by the site-directed mutagenesis techniques. A Norrin/beta-catenin pathway-based luciferase reporter assay revealed that the c.1499_1500del failed to activate the luciferase reporter; in contrast, compared with the wild-type FZD4 protein, the, c.G296C [p.C99S] mutation exhibited increased luciferase reporter activity. Conclusion: Our study found two novel FZD4 mutations, with opposite effects regarding functional expression levels in Indian patients with FEVR and expands on the mutational spectrum of FZD4 in Indian FEVR patients.
Collapse
Affiliation(s)
- Xiong Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuanxiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shi Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Hao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Periasamy Sundaresan
- Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital, Madurai, India
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
35
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
36
|
Fei YX, Zhu JP, Zhao B, Yin QY, Fang WR, Li YM. XQ-1H regulates Wnt/GSK3β/β-catenin pathway and ameliorates the integrity of blood brain barrier in mice with acute ischemic stroke. Brain Res Bull 2020; 164:269-288. [PMID: 32916221 DOI: 10.1016/j.brainresbull.2020.08.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/30/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
10-O-(N, N-dimethylaminoethyl) ginkgolide B methanesulfonate (XQ-1H), a novel analog of ginkgolide B, has been preliminarily recognized to show bioactivities against ischemia-induced injury. However, the underlying mechanism still remains to be fully elucidated. The aim of this study was to investigate the effect of XQ-1H against cerebral ischemia/reperfusion injury (CIRI) from the perspective of blood brain barrier (BBB) protection, and explore whether the underlying mechanism is associated with Wnt/GSK3β/β-catenin signaling pathway activation. The therapeutic effects of XQ-1H were evaluated in mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and in immortalized mouse cerebral endothelial cells (bEnd.3) challenged by oxygen and glucose deprivation/reoxygenation (OGD/R). Results showed that treatment with XQ-1H improved neurological behavior, reduced brain infarction volume, diminished edema, and attenuated the disruption of BBB in vivo. In vitro, XQ-1H increased cell viability and maintained the barrier function of bEnd.3 monolayer after OGD/R. Moreover, the protection of XQ-1H was accompanied with activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins. Notably, the protection of XQ-1H was abolished by Wnt/GSK3β/β-catenin inhibitor XAV939 or β-catenin siRNA, indicating XQ-1H exerted protection in a Wnt/GSK3β/β-catenin dependent profile. In summary, XQ-1H attenuated brain injury and maintained BBB integrity after CIRI, and the possible underlying mechanism may be related to the activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins.
Collapse
Affiliation(s)
- Yu-Xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jian-Ping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qi-Yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
37
|
Medina-Martinez O, Haller M, Rosenfeld JA, O'Neill MA, Lamb DJ, Jamrich M. The transcription factor Maz is essential for normal eye development. Dis Model Mech 2020; 13:dmm044412. [PMID: 32571845 PMCID: PMC7449797 DOI: 10.1242/dmm.044412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling has an essential role in eye development. Faulty regulation of this pathway results in ocular malformations, owing to defects in cell-fate determination and differentiation. Herein, we show that disruption of Maz, the gene encoding Myc-associated zinc-finger transcription factor, produces developmental eye defects in mice and humans. Expression of key genes involved in the Wnt cascade, Sfrp2, Wnt2b and Fzd4, was significantly increased in mice with targeted inactivation of Maz, resulting in abnormal peripheral eye formation with reduced proliferation of the progenitor cells in the region. Paradoxically, the Wnt reporter TCF-Lef1 displayed a significant downregulation in Maz-deficient eyes. Molecular analysis indicates that Maz is necessary for the activation of the Wnt/β-catenin pathway and participates in the network controlling ciliary margin patterning. Copy-number variations and single-nucleotide variants of MAZ were identified in humans that result in abnormal ocular development. The data support MAZ as a key contributor to the eye comorbidities associated with chromosome 16p11.2 copy-number variants and as a transcriptional regulator of ocular development.
Collapse
Affiliation(s)
- Olga Medina-Martinez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meade Haller
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Marisol A O'Neill
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dolores J Lamb
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- James Buchanan Brady Foundation Department of Urology, Weill Cornell Medical College, New York City, NY 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York City, NY 10065, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York City, NY 10065, USA
| | - Milan Jamrich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
38
|
Morizur L, Herardot E, Monville C, Ben M'Barek K. Human pluripotent stem cells: A toolbox to understand and treat retinal degeneration. Mol Cell Neurosci 2020; 107:103523. [PMID: 32634576 DOI: 10.1016/j.mcn.2020.103523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related Macular Degeneration (AMD) and Retinitis Pigmentosa (RP) are retinal degenerative disorders that dramatically damage the retina. As there is no therapeutic option for the majority of patients, vision is progressively and irremediably lost. Owing to their unlimited renewal and potency to give rise to any cell type of the human adult body, human pluripotent stem cells (hPSCs) have been extensively studied in recent years to develop more physiologically relevant in vitro cellular models. Such models open new perspectives to investigate the pathological molecular mechanisms of AMD and RP but also in drug screening. Moreover, proof-of-concept of hPSC-derived retinal cell therapy in animal models have led to first clinical trials. This review outlines the recent advances in the use of hPSCs in pathological modeling of retinal degeneration and their use in regenerative medicine. We also address the associated limitations and challenges that need to be overcome when using hPSCs.
Collapse
Affiliation(s)
- Lise Morizur
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France; Centre d'Etude des Cellules Souches, 91100 Corbeil-Essonnes, France
| | - Elise Herardot
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France.
| | - Karim Ben M'Barek
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, Université d'Evry, U861, 91100 Corbeil-Essonnes, France; Centre d'Etude des Cellules Souches, 91100 Corbeil-Essonnes, France.
| |
Collapse
|
39
|
Xiang Y, Cakir B, Park IH. Deconstructing and reconstructing the human brain with regionally specified brain organoids. Semin Cell Dev Biol 2020; 111:40-51. [PMID: 32553582 DOI: 10.1016/j.semcdb.2020.05.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022]
Abstract
Brain organoids, three-dimensional neural cultures recapitulating the spatiotemporal organization and function of the brain in a dish, offer unique opportunities for investigating the human brain development and diseases. To model distinct parts of the brain, various region-specific human brain organoids have been developed. In this article, we review current approaches to produce human region-specific brain organoids, developed through the endeavor of many researchers. We highlight the applications of human region-specific brain organoids, especially in reconstructing regional interactions in the brain through organoid fusion. We also outline the existing challenges to drive forward further the brain organoid technology and its applications for future studies.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Riluzole: a therapeutic strategy in Alzheimer's disease by targeting the WNT/β-catenin pathway. Aging (Albany NY) 2020; 12:3095-3113. [PMID: 32035419 PMCID: PMC7041777 DOI: 10.18632/aging.102830] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, where the etiology remains unclear. AD is characterized by amyloid-(Aβ) protein aggregation and neurofibrillary plaques deposits. Oxidative stress and chronic inflammation have been suggested as causes of AD. Glutamatergic pathway dysregulation is also mainly associated with AD process. In AD, the canonical WNT/β-catenin pathway is downregulated. Downregulation of WNT/β-catenin, by activation of GSK-3β-induced Aβ, and inactivation of PI3K/Akt pathway involve oxidative stress in AD. The downregulation of the WNT/β-catenin pathway decreases the activity of EAAT2, the glutamate receptors, and leads to neuronal death. In AD, oxidative stress, neuroinflammation and glutamatergic pathway operate in a vicious circle driven by the dysregulation of the WNT/β-catenin pathway. Riluzole is a glutamate modulator and used as treatment in amyotrophic lateral sclerosis. Recent findings have highlighted its use in AD and its potential increase power on the WNT pathway. Nevertheless, the mechanism by which Riluzole can operate in AD remains unclear and should be better determine. The focus of our review is to highlight the potential action of Riluzole in AD by targeting the canonical WNT/β-catenin pathway to modulate glutamatergic pathway, oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), University of Poitiers, CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), University of Poitiers, Poitiers, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), University of Poitiers, CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
41
|
Vallée A, Lecarpentier Y, Vallée R, Guillevin R, Vallée JN. Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21030820. [PMID: 32012797 PMCID: PMC7037737 DOI: 10.3390/ijms21030820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is considered as the main worldwide cause of blindness in elderly adults. Exudative AMD type represents 10 to 15% of macular degeneration cases, but is the main cause of vision loss and blindness. Circadian rhythm changes are associated with aging and could further accelerate it. However, the link between circadian rhythms and exudative AMD is not fully understood. Some evidence suggests that dysregulation of circadian functions could be manifestations of diseases or could be risk factors for the development of disease in elderly adults. Biological rhythms are complex systems interacting with the environment and control several physiological pathways. Recent findings have shown that the dysregulation of circadian rhythms is correlated with exudative AMD. One of the main pathways involved in exudative AMD is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving the circadian expression of genes involved in physiological and metabolic functions. In exudative AMD, the increase of the canonical WNT/β-catenin pathway is enhanced by the dysregulation of circadian rhythms. Exudative AMD progression is associated with major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, of aerobic glycolysis. This review focuses on the interest of circadian rhythm dysregulation in exudative AMD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France
| | - Rodolphe Vallée
- University Hospital Group of Paris-Seine-Saint-Denis, APHP, University of Paris-13 Sorbonne Paris-Cité, 93000 Paris, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, 86021 Poitiers, France
| |
Collapse
|
42
|
Simultaneous Requirements for Hes1 in Retinal Neurogenesis and Optic Cup-Stalk Boundary Maintenance. J Neurosci 2020; 40:1501-1513. [PMID: 31949107 DOI: 10.1523/jneurosci.2327-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
The bHLH transcription factor Hes1 is a key downstream effector for the Notch signaling pathway. During embryogenesis neural progenitors express low levels of Hes1 in an oscillating pattern, whereas glial brain boundary regions (e.g., isthmus) have high, sustained Hes1 levels that suppress neuronal fates. Here, we show that in the embryonic mouse retina, the optic nerve head and stalk express high Hes1, with the ONH constituting a boundary between the neural retina and glial cells that ultimately line the optic stalk. Using two Cre drivers with distinct spatiotemporal expression we conditionally inactivated Hes1, to delineate the requirements for this transcriptional repressor during retinal neurogenesis versus patterning of the optic cup and stalk. Throughout retinal neurogenesis, Hes1 maintains proliferation and blocks retinal ganglion cell formation, but surprisingly we found it also promotes cone photoreceptor genesis. In the postnatal eye, Hes1 inactivation with Rax-Cre resulted in increased bipolar neurons and a mispositioning of Müller glia. Our results indicate that Notch pathway regulation of cone genesis is more complex than previously assumed, and reveal a novel role for Hes1 in maintaining the optic cup-stalk boundary.SIGNIFICANCE STATEMENT The bHLH repressor Hes1 regulates the timing of neurogenesis, rate of progenitor cell division, gliogenesis, and maintains tissue compartment boundaries. This study expands current eye development models by showing Notch-independent roles for Hes1 in the developing optic nerve head (ONH). Defects in ONH formation result in optic nerve coloboma; our work now inserts Hes1 into the genetic hierarchy regulating optic fissure closure. Given that Hes1 acts analogously in the ONH as the brain isthmus, it prompts future investigation of the ONH as a signaling factor center, or local organizer. Embryonic development of the ONH region has been poorly studied, which is surprising given it is where the pan-ocular disease glaucoma is widely believed to inflict damage on RGC axons.
Collapse
|
43
|
Ahmad I, Teotia P, Erickson H, Xia X. Recapitulating developmental mechanisms for retinal regeneration. Prog Retin Eye Res 2019; 76:100824. [PMID: 31843569 DOI: 10.1016/j.preteyeres.2019.100824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Degeneration of specific retinal neurons in diseases like glaucoma, age-related macular degeneration, and retinitis pigmentosa is the leading cause of irreversible blindness. Currently, there is no therapy to modify the disease-associated degenerative changes. With the advancement in our knowledge about the mechanisms that regulate the development of the vertebrate retina, the approach to treat blinding diseases through regenerative medicine appears a near possibility. Recapitulation of developmental mechanisms is critical for reproducibly generating cells in either 2D or 3D culture of pluripotent stem cells for retinal repair and disease modeling. It is the key for unlocking the neurogenic potential of Müller glia in the adult retina for therapeutic regeneration. Here, we examine the current status and potential of the regenerative medicine approach for the retina in the backdrop of developmental mechanisms.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Helen Erickson
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
44
|
Kumar B, Reilly MA. The Development, Growth, and Regeneration of the Crystalline Lens: A Review. Curr Eye Res 2019; 45:313-326. [DOI: 10.1080/02713683.2019.1681003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bharat Kumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - M. A. Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
45
|
Shin JY, Son J, Kim WS, Gwak J, Ju BG. Jmjd6a regulates GSK3β RNA splicing in Xenopus laevis eye development. PLoS One 2019; 14:e0219800. [PMID: 31361752 PMCID: PMC6667200 DOI: 10.1371/journal.pone.0219800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/01/2019] [Indexed: 12/02/2022] Open
Abstract
It has been suggested that Jmjd6 plays an important role in gene regulation through its demethylation or hydroxylation activity on histone and transcription factors. In addition, Jmjd6 has been shown to regulate RNA splicing by interaction with splicing factors. In this study, we demonstrated that Jmjd6a is expressed in developing Xenopus laevis eye during optic vesicle formation and retinal layer differentiation stages. Knockdown of Jmjd6a by an antisense morpholino resulted in eye malformation including a deformed retinal layer and no lens formation. We further found down-regulation of gene expression related to eye development such as Rx1, Otx2, and Pax6 in Jmjd6a morpholino injected embryos. Jmjd6 interacts with splicing factor U2AF25 and GSK3β RNA in the anterior region of Xenopus embryos. Knockdown of Jmjd6a led to deletion of GSK3β RNA exon 1 and 2, which resulted in generation of N’-terminal truncated GSK3β protein. This event further caused decreased phosphorylation of β-catenin and subsequently increased β-catenin stability. Therefore, our result may suggest that Jmjd6a plays an important role in Xenopus eye development through regulation of GSK3β RNA splicing and canonical Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jee Yoon Shin
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jeongin Son
- Department of Life Science, Sogang University, Seoul, Korea
| | - Won Sun Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jungsug Gwak
- Department of Life Science, Sogang University, Seoul, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
46
|
Ma J, Lwigale P. Transformation of the Transcriptomic Profile of Mouse Periocular Mesenchyme During Formation of the Embryonic Cornea. Invest Ophthalmol Vis Sci 2019; 60:661-676. [PMID: 30786278 PMCID: PMC6383728 DOI: 10.1167/iovs.18-26018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Defects in neural crest development are a major contributing factor in corneal dysgenesis, but little is known about the genetic landscape during corneal development. The purpose of this study was to provide a detailed transcriptome profile and evaluate changes in gene expression during mouse corneal development. Methods RNA sequencing was used to uncover the transcriptomic profile of periocular mesenchyme (pNC) isolated at embryonic day (E) 10.5 and corneas isolated at E14.5 and E16.5. The spatiotemporal expression of several differentially expressed genes was validated by in situ hybridization. Results Analysis of the whole-transcriptome profile between pNC and embryonic corneas identified 3815 unique differentially expressed genes. Pathway analysis revealed an enrichment of differentially expressed genes involved in signal transduction (retinoic acid, transforming growth factor-β, and Wnt pathways) and transcriptional regulation. Conclusions Our analyses, for the first time, identify a large number of differentially expressed genes during progressive stages of mouse corneal development. Our data provide a comprehensive transcriptomic profile of the developing cornea. Combined, these data serve as a valuable resource for the identification of novel regulatory networks crucial for the advancement of studies in congenital defects, stem cell therapy, bioengineering, and adult corneal diseases.
Collapse
Affiliation(s)
- Justin Ma
- BioSciences Department, Rice University, Houston, Texas, United States
| | - Peter Lwigale
- BioSciences Department, Rice University, Houston, Texas, United States
| |
Collapse
|
47
|
Große A, Perner B, Naumann U, Englert C. Zebrafish Wtx is a negative regulator of Wnt signaling but is dispensable for embryonic development and organ homeostasis. Dev Dyn 2019; 248:866-881. [PMID: 31290212 DOI: 10.1002/dvdy.84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/20/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The X-chromosomally linked gene WTX is a human disease gene and a member of the AMER family. Mutations in WTX are found in Wilms tumor, a form of pediatric kidney cancer and in patients suffering from OSCS (Osteopathia striata with cranial sclerosis), a sclerosing bone disorder. Functional data suggest WTX to be an inhibitor of the Wnt/β-catenin signaling pathway. Deletion of Wtx in mouse leads to perinatal death, impeding the analysis of its physiological role. RESULTS To gain insights into the function of Wtx in development and homeostasis we have used zebrafish as a model and performed both knockdown and knockout studies using morpholinos and transcription activator-like effector nucleases (TALENs), respectively. Wtx knockdown led to increased Wnt activity and embryonic dorsalization. Also, wtx mutants showed a transient upregulation of Wnt target genes in the context of caudal fin regeneration. Surprisingly, however, wtx as well as wtx/amer2/amer3 triple mutants developed normally, were fertile and did not show any anomalies in organ maintenance. CONCLUSIONS Our data show that members of the zebrafish wtx/amer gene family, while sharing a partially overlapping expression pattern do not compensate for each other. This observation demonstrates a remarkable robustness during development and regeneration in zebrafish.
Collapse
Affiliation(s)
- Andreas Große
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Birgit Perner
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
48
|
Suri F, Yazdani S, Chapi M, Safari I, Rasooli P, Daftarian N, Jafarinasab MR, Ghasemi Firouzabadi S, Alehabib E, Darvish H, Klotzle B, Fan JB, Turk C, Elahi E. COL18A1 is a candidate eye iridocorneal angle-closure gene in humans. Hum Mol Genet 2019; 27:3772-3786. [PMID: 30007336 DOI: 10.1093/hmg/ddy256] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023] Open
Abstract
Primary angle-closure glaucoma (PACG) is a common form of glaucoma in the Far East. Its defining feature is iridocorneal angle closure. In addition to PACG, indications of angle closure are included in the diagnostic criteria of related conditions primary angle-closure suspect (PACS) and primary angle closure (PAC). To the best of our knowledge, a causative gene for iridocorneal angle closure in humans has not been identified. This study aimed to identify the genetic cause of iridocorneal angle closure in a pedigree with at least 10 individuals diagnosed with PACS, PAC or PACG. Results of linkage analysis, segregation analysis of 44 novel variations, whole exome sequencing of 10 individuals, screenings of controls and bioinformatics predictions identified a mutation in COL18A1 that encodes collagen type XVIII as the most likely cause of angle closure in the pedigree. The role of COL18A1 in the etiology of Knobloch syndrome (KS) that is consistently accompanied by optic anomalies, available functional data on the encoded protein and the recognized role of collagens and the extracellular matrix in glaucoma pathogenesis supported the proposed role of the COL18A1 mutation in the pedigree. Subsequent identification of other COL18A1 mutations in PACS affected individuals of two unrelated families further supported that COL18A1 may affect angle closure. These PACS individuals were parents and grandparents of KS-affected children. In conclusion, a gene that affects angle closure in humans, a critical feature of PACG, has been identified. The findings also reinforce the importance of collagens in eye features and functions.
Collapse
Affiliation(s)
- Fatemeh Suri
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Chapi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Safari
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Paniz Rasooli
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Jafarinasab
- Ophthalmic Epidemiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elham Alehabib
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Darvish
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | | | - Elahe Elahi
- School of Biology, University College of Science, University of Tehran, Tehran, Iran.,Department of Biotechnology, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
Wiegering A, Petzsch P, Köhrer K, Rüther U, Gerhardt C. GLI3 repressor but not GLI3 activator is essential for mouse eye patterning and morphogenesis. Dev Biol 2019; 450:141-154. [PMID: 30953627 DOI: 10.1016/j.ydbio.2019.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Since 1967, it is known that the loss of GLI3 causes very severe defects in murine eye development. GLI3 is able to act as a transcriptional activator (GLI3-A) or as a transcriptional repressor (GLI3-R). Soon after the discovery of these GLI3 isoforms, the question arose which of the different isoforms is involved in eye formation - GLI3-A, GLI3-R or even both. For several years, this question remained elusive. By analysing the eye morphogenesis of Gli3XtJ/XtJ mouse embryos that lack GLI3-A and GLI3-R and of Gli3Δ699/Δ699 mouse embryos in which only GLI3-A is missing, we revealed that GLI3-A is dispensable in vertebrate eye formation. Remarkably, our study shows that GLI3-R is sufficient for the creation of morphologically normal eyes although the molecular setup deviates substantially from normality. In depth-investigations elucidated that GLI3-R controls numerous key players in eye development and governs lens and retina development at least partially via regulating WNT/β-CATENIN signalling.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
50
|
Epigenetically dysregulated genes and pathways implicated in the pathogenesis of non-syndromic high myopia. Sci Rep 2019; 9:4145. [PMID: 30858441 PMCID: PMC6411983 DOI: 10.1038/s41598-019-40299-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Myopia, commonly referred to as nearsightedness, is one of the most common causes of visual disability throughout the world. It affects more people worldwide than any other chronic visual impairment condition. Although the prevalence varies among various ethnic groups, the incidence of myopia is increasing in all populations across globe. Thus, it is considered a pressing public health problem. Both genetics and environment play a role in development of myopia. To elucidate the epigenetic mechanism(s) underlying the pathophysiology of high-myopia, we conducted methylation profiling in 18 cases and 18 matched controls (aged 4–12 years), using Illumina MethylationEPIC BeadChips array. The degree of myopia was variable among subjects, ranging from −6 to −15D. We identified 1541 hypermethylated CpGs, representing 1745 genes (2.0-fold or higher) (false discovery rate (FDR) p ≤ 0.05), multiple CpGs were p < 5 × 10−8 with a receiver operating characteristic area under the curve (ROC-AUC) ≥ 0.75 in high-myopia subjects compared to controls. Among these, 48 CpGs had excellent correlation (AUC ≥ 0.90). Herein, we present the first genome-wide DNA methylation analysis in a unique high-myopia cohort, showing extensive and discrete methylation changes relative to controls. The genes we identified hold significant potential as targets for novel therapeutic intervention either alone, or in combination.
Collapse
|