1
|
Inoue T, Nomura S, Yamakawa T, Takara S, Imoto H, Maruta Y, Niwayama M, Suzuki M. Intraoperative evaluation using a multimodality probe of temperature-dependent neurovascular modulation during focal brain cooling. Clin Neurophysiol 2025; 173:31-42. [PMID: 40073587 DOI: 10.1016/j.clinph.2025.02.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/15/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVE This study aimed to assess the effects of focal brain cooling (FBC) on human brain tissue through use of multiple sensing techniques by monitoring cerebrovascular activity and brain temperature. METHODS Intraoperative brain activity monitoring using a multimodality probe capable of measuring brain temperature, electrocorticography (ECoG) and changes in cerebral hemoglobin concentration was performed in 13 patients with refractory epilepsy. Brain temperature and neurovascular activity were measured beneath and surrounding the FBC device. Data were categorized into three temperature ranges [low-temperature range (LTR, <18 °C), moderate-temperature range (MTR, 18 °C-28 °C), and high-temperature range (HTR, >28 °C)] for analysis. RESULTS Changes in oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHHb) across the temperature ranges showed a U-shape and inverted U-shape pattern, respectively. ΔO2Hb decreased and ΔHHb increased in the MTR, reflecting enhanced neuronal activity and increased oxygen consumption. Conversely, ΔO2Hb increased and ΔHHb decreased in the LTR, indicating suppressed neuronal activity and reduced oxygen consumption. These findings highlight the temperature-dependent modulation of neurovascular activity by FBC, driven by distinct non-linear patterns. CONCLUSIONS FBC selectively influenced brain electrical activity and hemoglobin concentration, highlighting its subtle effects on neurovascular dynamics. SIGNIFICANCE These findings provide critical insights into optimizing cooling strategies for neurological disorders using multimodality probes and FBC devices.
Collapse
Affiliation(s)
- Takao Inoue
- Organization of Research Initiatives, Yamaguchi University, Ube, Japan.
| | - Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Toshitaka Yamakawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Sayuki Takara
- Organization of Research Initiatives, Yamaguchi University, Ube, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Masatsugu Niwayama
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
2
|
Machado FP, Vicari AR, Bauer AC. Assessing the impact of positive cultures in preservation fluid on renal transplant outcomes: a scoping review. J Nephrol 2025; 38:321-341. [PMID: 38869823 DOI: 10.1007/s40620-024-01972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Infection following kidney transplantation is a significant risk factor for adverse outcomes. While the donor may be a source of infection, microbiological assessment of the preservation fluid (PF) can mitigate potential recipient contamination and help curb unnecessary antibiotic use. This scoping review aimed to describe the available literature on the association between culture-positive preservation fluid, its clinically relevant outcomes, and management. METHODS Following the Joanna Briggs Institute's scoping review recommendations, a comprehensive search in databases (EMBASE, MEDLINE, and gray literature) was conducted, with data independently extracted by two researchers from selected studies. RESULTS We analysed 24 articles involving 12,052 samples, predominantly published post-2000, 91% of which retrospective. The prevalence of culture-positive preservation fluid varied from 0.86 to 77.8%. Coagulase-negative staphylococci emerged as the most frequently isolated pathogen in 14 studies. The presence of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), observed in two studies involving 1074 donors, was significantly associated with an increased risk of probable donor-derived infections (p-DDI). Of the reviewed articles, 14 reported on probable donor-derived infections, while 19 addressed the topic of preemptive antibiotic therapy. CONCLUSIONS Routine culturing of preservation fluid is crucial for the identification of pathogenic organisms, facilitates targeted treatment and prevents probable donor-derived infections. Furthermore, this approach helps avoid the treatment of low-virulence contaminants, thereby reducing unnecessary antimicrobial use and the risk of antibiotic resistance. In cases where ESKAPE or Candida species are detected, preemptive therapy appears to be an important strategy. Given that the current evidence primarily stems from retrospective studies, there is a pressing need for large-scale, prospective trials to corroborate these recommendations. This scoping review currently represents the most thorough compilation of evidence on how contamination of preservation fluids affects kidney transplant management.
Collapse
Affiliation(s)
- Fabiani P Machado
- Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos Street, 2.350 Largo Eduardo Zaccaro Faraco, Porto Alegre, RS, 90035-903, Brazil.
| | - Alessandra R Vicari
- Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos Street, 2.350 Largo Eduardo Zaccaro Faraco, Porto Alegre, RS, 90035-903, Brazil
- Division of Nephrology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Andrea C Bauer
- Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos Street, 2.350 Largo Eduardo Zaccaro Faraco, Porto Alegre, RS, 90035-903, Brazil
- Division of Nephrology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Zakrocka I, Urbańska EM, Załuska W, Kronbichler A. Kynurenine Pathway after Kidney Transplantation: Friend or Foe? Int J Mol Sci 2024; 25:9940. [PMID: 39337426 PMCID: PMC11432217 DOI: 10.3390/ijms25189940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Kidney transplantation significantly improves the survival of patients with end-stage kidney disease (ESKD) compared to other forms of kidney replacement therapy. However, kidney transplant recipients' outcomes are not fully satisfactory due to increased risk of cardiovascular diseases, infections, and malignancies. Immune-related complications remain the biggest challenge in the management of kidney graft recipients. Despite the broad spectrum of immunosuppressive agents available and more detailed methods used to monitor their effectiveness, chronic allograft nephropathy remains the most common cause of kidney graft rejection. The kynurenine (KYN) pathway is the main route of tryptophan (Trp) degradation, resulting in the production of a plethora of substances with ambiguous properties. Conversion of Trp to KYN by the enzyme indoleamine 2,3-dioxygenase (IDO) is the rate-limiting step determining the formation of the next agents from the KYN pathway. IDO activity, as well as the production of subsequent metabolites of the pathway, is highly dependent on the balance between pro- and anti-inflammatory conditions. Moreover, KYN pathway products themselves possess immunomodulating properties, e.g., modify the activity of IDO and control other immune-related processes. KYN metabolites were widely studied in neurological disorders but recently gained the attention of researchers in the context of immune-mediated diseases. Evidence that this route of Trp degradation may represent a peripheral tolerogenic pathway with significant implications for transplantation further fueled this interest. Our review aimed to present recent knowledge about the role of the KYN pathway in the pathogenesis, diagnosis, monitoring, and treatment of kidney transplant recipients' complications.
Collapse
Affiliation(s)
- Izabela Zakrocka
- Department of Nephrology, Medical University of Lublin, 20-093 Lublin, Poland; (I.Z.); (W.Z.)
| | - Ewa M. Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, 20-093 Lublin, Poland; (I.Z.); (W.Z.)
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, 6020 Innsbruck, Austria
- Department of Health, Medicine and Caring Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
4
|
Min C, Galons JP, Lynch RM, Steyn LV, Price ND, Weegman BP, Taylor MJ, Pandey A, Harland R, Martin D, Besselsen D, Putnam CW, Papas KK. Antegrade persufflation of porcine kidneys improves renal function after warm ischemia. FRONTIERS IN TRANSPLANTATION 2024; 3:1420693. [PMID: 39239359 PMCID: PMC11375613 DOI: 10.3389/frtra.2024.1420693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Introduction Transplantation of kidneys from expanded criteria donors (ECD), including after circulatory death (DCD), is associated with a higher risk of adverse events compared to kidneys from standard criteria donors. In previous studies, improvements in renal transplant outcomes have been seen when kidneys were perfused with gaseous oxygen during preservation (persufflation, PSF). In the present study, we assessed ex-vivo renal function from a Diffusion Contrast Enhanced (DCE)-MRI estimation of glomerular filtration rate (eGFR); and metabolic sufficiency from whole-organ oxygen consumption (WOOCR) and lactate production rates. Methods Using a porcine model of DCD, we assigned one kidney to antegrade PSF, and the contralateral kidney to static cold storage (SCS), both maintained for 24 h at 4°C. Post-preservation organ quality assessments, including eGFR, WOOCR and lactate production, were measured under cold perfusion conditions, and biopsies were subsequently taken for histopathological analysis. Results A significantly higher eGFR (36.6 ± 12.1 vs. 11.8 ± 4.3 ml/min, p < 0.05), WOOCR (182 ± 33 vs. 132 ± 21 nmol/min*g, p < 0.05), and lower rates of lactate production were observed in persufflated kidneys. No overt morphological differences were observed between the two preservation methods. Conclusion These data suggest that antegrade PSF is more effective in preserving renal function than conventional SCS. Further studies in large animal models of transplantation are required to investigate whether integration with PSF of WOOCR, eGFR or lactate production measurements before transplantation are predictive of post-transplantation renal function and clinical outcomes.
Collapse
Affiliation(s)
- Catherine Min
- Department of Physiology, University of Arizona, Tucson, AZ, United States
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | | | - Ronald M Lynch
- Department of Physiology, University of Arizona, Tucson, AZ, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Nicholas D Price
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Brad P Weegman
- Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Sylvatica Biotech, Inc., North Charleston, SC, United States
| | - Michael J Taylor
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Sylvatica Biotech, Inc., North Charleston, SC, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Abhishek Pandey
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States
| | - Robert Harland
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Diego Martin
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States
| | - David Besselsen
- University Animal Care, University of Arizona, Tucson, AZ, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Tran MH, Gao J, Wang X, Liu R, Parris CL, Esquivel C, Fan Y, Wang L. Enhancing Liver Transplant Outcomes through Liver Precooling to Mitigate Inflammatory Response and Protect Mitochondrial Function. Biomedicines 2024; 12:1475. [PMID: 39062048 PMCID: PMC11275024 DOI: 10.3390/biomedicines12071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Transplanted organs experience several episodes of ischemia and ischemia-reperfusion. The graft injury resulting from ischemia-reperfusion (IRI) remains a significant obstacle to the successful survival of transplanted grafts. Temperature significantly influences cellular metabolic rates because biochemical reactions are highly sensitive to temperature changes. Consequently, lowering the temperature could reduce the degradative reactions triggered by ischemia. In mitigating IRI in liver grafts, the potential protective effect of localized hypothermia on the liver prior to blood flow obstruction has yet to be explored. In this study, we applied local hypothermia to mouse donor livers for a specific duration before stopping blood flow to liver lobes, a procedure called "liver precooling". Mouse donor liver temperature in control groups was controlled at 37 °C. Subsequently, the liver donors were preserved in cold University of Wisconsin solution for various durations followed by orthotopic liver transplantation. Liver graft injury, function and inflammation were assessed at 1 and 2 days post-transplantation. Liver precooling exhibited a significant improvement in graft function, revealing more than a 47% decrease in plasma aspartate transaminase (AST) and alanine aminotransferase (ALT) levels, coupled with a remarkable reduction of approximately 50% in liver graft histological damage compared to the control group. The protective effects of liver precooling were associated with the preservation of mitochondrial function, a substantial reduction in hepatocyte cell death, and a significantly attenuated inflammatory response. Taken together, reducing the cellular metabolism and enzymatic activity to a minimum level before ischemia protects against IRI during transplantation.
Collapse
Affiliation(s)
- Minh H. Tran
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Jie Gao
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinzhe Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Colby L. Parris
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Carlos Esquivel
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Yingxiang Fan
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Akdogan M, Demirbakan K, Baydilek Y, Yuksel Y. Lactated Ringer as Preservation Solution in Living Donor Renal Transplantation. Transplant Proc 2023:S0041-1345(23)00313-5. [PMID: 37202302 DOI: 10.1016/j.transproceed.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Optimal organ preservation remains a critical hallmark event in renal transplantation as it is the supply line. Previous studies have shown that the choice of preservation solution may affect transplant outcomes. In this study, we aimed to present the early follow-up results of the graft and patients, using lactated Ringer to preserve kidney allografts with living donors. METHODS The results of 97 living donor transplant operations performed in Sanko University Hospital were evaluated retrospectively. The patient's evaluation included demographics, dialysis time duration, renal replacement method, primary disease, comorbidity, surgical and clinical complications in the acute period, graft functions, blood levels of calcineurin inhibitor drugs, anastomotic renal artery, warm ischemia, and cold ischemia times. RESULTS Donor (49 men, 50.5%) and recipient (58 men, 59.7%) demographics, HLA compatibility (mismatch), hospitalization days, and length of warm and cold ischemic time are summarized in Table 1. Primary nonfunction was not defined in any patients, but delayed graft function was observed during the follow-up of 3 patients (3.09%), who were all hypotensive in the post-transplantation period, and positive inotropic infusion was needed for hemodynamic stability. CONCLUSIONS Lactated Ringer demonstrated efficacy in terms of patient and graft survival, and its lower cost represents a financial advantage, so it can be used in living donor kidney transplantation because it is safe, effective, and inexpensive. Standard preservation solutions may still be recommended in cases with long cold ischemia times, such as paired exchange transplants and cadaveric transplants. Thus, randomized controlled studies are needed for further investigation.
Collapse
Affiliation(s)
- Mehtap Akdogan
- Department of Nephrology, Sanko University Medical School, Gaziantep, Turkey.
| | - Kenan Demirbakan
- Department of General Surgery, Sanko University Medical School, Gaziantep, Turkey
| | - Yunus Baydilek
- Department of Anesthesiology, Sanko University Medical School, Gaziantep, Turkey
| | - Yucel Yuksel
- Department of General Surgery, Sanko University Medical School, Gaziantep, Turkey
| |
Collapse
|
7
|
Tripathy S, Das SK. Strategies for organ preservation: Current prospective and challenges. Cell Biol Int 2023; 47:520-538. [PMID: 36626269 DOI: 10.1002/cbin.11984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023]
Abstract
In current therapeutic approaches, transplantation of organs provides the best available treatment for a myriad of end-stage organ failures. However, shortage of organ donors, lacunae in preservation methods, and lack of a suitable match are the major constraints in advocating this life-sustaining therapy. There has been continuous progress in the strategies for organ preservation since its inception. Current strategies for organ preservation are based on the University of Wisconsin (UW) solution using the machine perfusion technique, which allows successful preservation of intra-abdominal organs (kidney and liver) but not intra-thoracic organs (lungs and heart). However, novel concepts with a wide range of adapted preservation technologies that can increase the shelf life of retrieved organs are still under investigation. The therapeutic interventions of in vitro-cultured stem cells could provide novel strategies for replacement of nonfunctional cells of damaged organs with that of functional ones. This review describes existing strategies, highlights recent advances, discusses challenges and innovative approaches for effective organ preservation, and describes application of stem cells to restore the functional activity of damaged organs for future clinical practices.
Collapse
Affiliation(s)
- Seema Tripathy
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneshwar, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
8
|
Holtmann C, Roth M, Filler T, Bergmann AK, Hänggi D, Muhammad S, Borrelli M, Geerling G. Microvascular anastomosis of the human lacrimal gland: a concept study towards transplantation of the human lacrimal gland. Graefes Arch Clin Exp Ophthalmol 2022; 261:1443-1450. [PMID: 36477647 PMCID: PMC10148775 DOI: 10.1007/s00417-022-05933-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Introduction
Severe aqueous tear deficiency is caused by primary or secondary main lacrimal gland insufficiency. The transplantation of a human lacrimal gland could become a potential treatment option to provide physiological tears with optimal properties. To this end, we performed an ex vivo study to develop a surgical strategy that would ensure a vascular supply for a lacrimal gland transplant using microvascular techniques.
Material and methods
Five cadaver heads were used to perform a lateral orbitotomy in order to identify the vascular pedicle and the lacrimal gland itself. The principal feasibility and the time of the required surgical steps for an intraorbital microvascular re-anastomosis of the human lacrimal gland were documented. Patency and potential leakage of the anastomosis were tested with hematoxylin intraoperatively. Postoperatively, routine histological, as well as scanning electron microscopy (SEM) of the gland and vascular anastomosis, were performed.
Results
The vascular pedicle of all five glands could be isolated over a minimum stretch of at least 1 cm, severed, and successfully reanastmosed microsurgically. Time for arterial anatomization (n = 4) was 23 ± 7 min and 22 ± 3 min for the vein (p = 0.62). The total time for the entire microvascular anastomosis was 46 ± 9 min. All anastomosis were patent upon testing. SEM revealed well-aligned edges of the anastomosis with tight sutures in place.
Conclusion
Our study demonstrates as proof of principle the feasibility of intraorbital microvascular re-anastomosis of a human lacrimal gland within the presumed window of ischemia of this tissue. This should encourage orbital surgeons to attempt lacrimal gland transplantation in humans in vivo.
Collapse
Affiliation(s)
- Christoph Holtmann
- Department of Ophthalmology, University Hospital, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Mathias Roth
- Department of Ophthalmology, University Hospital, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Timm Filler
- Institute of Anatomy I, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility Elektronenmikroskopie (CFEM), Heinrich-Heine-Universität Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, University Hospital, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Maria Borrelli
- Department of Ophthalmology, University Hospital, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, University Hospital, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
9
|
Coskun A, Yegen C, Arbak S, Attaallah W, Gunal O, Elmas MA, Ucal Y, Can O, Baş B, Yildirim Z, Seckin I, Demirci S, Serteser M, Ozpinar A, Belce A, Basdemir G, Moldur DE, Derelioglu EI, Yozgatli TK, Erdemgil Y, Unsal I. Melatonin in preservation solutions prevents ischemic injury in rat kidneys. PLoS One 2022; 17:e0273921. [PMID: 36044512 PMCID: PMC9432748 DOI: 10.1371/journal.pone.0273921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Transplantation is lifesaving and the most effective treatment for end-stage organ failure. The transplantation success depends on the functional preservation of organs prior to transplantation. Currently, the University of Wisconsin (UW) and histidine-tryptophan-ketoglutarate (HTK) are the most commonly used preservation solutions. Despite intensive efforts, the functional preservation of solid organs prior to transplantation is limited to hours. In this study, we modified the UW solution containing components from both the UW and HTK solutions and analyzed their tissue-protective effect against ischemic injury. The composition of the UW solution was changed by reducing hydroxyethyl starch concentration and adding Histidine/Histidine-HCl which is the main component of HTK solution. Additionally, the preservation solutions were supplemented with melatonin and glucosamine. The protective effects of the preservation solutions were assessed by biochemical and microscopical analysis at 2, 10, 24, and 72 h after preserving the rat kidneys with static cold storage. Lactate dehydrogenase (LDH) activity in preservation solutions was measured at 2, 10, 24, and 72. It was not detectable at 2 h of preservation in all groups and 10 h of preservation in modified UW+melatonin (mUW-m) and modified UW+glucosamine (mUW-g) groups. At the 72nd hour, the lowest LDH activity (0.91 IU/g (0.63–1.17)) was measured in the mUW-m group. In comparison to the UW group, histopathological damage score was low in modified UW (mUW), mUW-m, and mUW-g groups at 10, 24, and 72 hours. The mUW-m solution at low temperature was an effective and suitable solution to protect renal tissue for up to 72 h.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
- * E-mail:
| | - Cumhur Yegen
- Department of General Surgery, Marmara University, School of Medicine, Istanbul, Turkey
| | - Serap Arbak
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Wafi Attaallah
- Department of General Surgery, Marmara University, School of Medicine, Istanbul, Turkey
| | - Omer Gunal
- Department of General Surgery, Marmara University, School of Medicine, Istanbul, Turkey
| | - Merve Acikel Elmas
- Department of Histology and Embryology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Yasemin Ucal
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Ozge Can
- Faculty of Engineering, Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Banu Baş
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Zeynep Yildirim
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Ismail Seckin
- Department of Histology and Embryology, Istanbul University Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Sibel Demirci
- Department of Histology and Embryology, Biruni University, School of Medicine, Istanbul, Turkey
| | - Mustafa Serteser
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Ahmet Belce
- Department of Medical Biochemistry, Biruni University, School of Medicine, Istanbul, Turkey
| | - Gulcin Basdemir
- Department of Pathology, Memorial Hospital, Istanbul, Turkey
| | - Derya Emel Moldur
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | | | | | - Yigit Erdemgil
- Department of Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Ibrahim Unsal
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| |
Collapse
|
10
|
Sharma N, Sharma A, Rai Y, Karwasra R, Khanna K, Nishad K, Bhatt AN, Bhatnagar A, Kakkar D. Protective Effect of Organ Preservation Fluid Supplemented With Nicorandil and Rutin Trihydrate: A Comparative Study in a Rat Model of Renal Ischemia. EXP CLIN TRANSPLANT 2022; 20:569-579. [DOI: 10.6002/ect.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Jägers J, Kirsch M, Cantore M, Karaman O, Ferenz KB. Artificial oxygen carriers in organ preservation: Dose dependency in a rat model of ex-vivo normothermic kidney perfusion. Artif Organs 2022; 46:1783-1793. [PMID: 35435266 DOI: 10.1111/aor.14264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Organ preservation through ex-vivo normothermic perfusion (EVNP) with albumin-derived perfluorocarbon-based artificial oxygen carriers (A-AOCs) consisting of albumin-derived perfluorodecalin-filled nanocapsules prior to transplantation would be a promising approach to avoid hypoxic tissue injury during organ storage. METHODS The kidneys of 16 rats underwent EVNP for 2 h with plasma-like solution (5% bovine serum albumin, Ringer-Saline, inulin) with or without A-AOCs in different volume fractions (0%, 2%, 4%, or 8%). Cell death was determined using TdT-mediated dUTP-biotin nick end labeling (TUNEL). Aspartate transaminase (AST) activity in both perfusate and urine as well as the glomerular filtration rate (GFR) were determined. The hypoxia inducible factors 1α and 2α (HIF-1α und -2α) were quantified in tissue homogenates. RESULTS GFR was substantially decreased in the presence of 0%, 2%, and 8% A-AOC but not of 4%. In accordance, hypoxia-mediated cell death, as indicated by both AST activity and TUNEL-positive cells, was significantly decreased in the 4% group compared to the control group. The stabilization of HIF-1α and 2α decreased with 4% and 8% but not with 2% A-AOCs. CONCLUSION The dosage of 4% A-AOCs in EVNP was most effective in maintaining the physiological renal function.
Collapse
Affiliation(s)
- Johannes Jägers
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Michael Kirsch
- Institute of Physiological Chemistry, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Miriam Cantore
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Ozan Karaman
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Institute of Physiological Chemistry, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Katja Bettina Ferenz
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,CeNIDE (Center for Nanointegration Duisburg-Essen) University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
12
|
Lodhi S, Stone JP, Entwistle TR, Fildes JE. The Use of Hemoglobin-Based Oxygen Carriers in Ex Vivo Machine Perfusion of Donor Organs for Transplantation. ASAIO J 2022; 68:461-470. [PMID: 35220355 DOI: 10.1097/mat.0000000000001597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There has been significant progress in the development of ex vivo machine perfusion for the nonischemic preservation of donor organs. However, several complications remain, including the logistics of using human blood for graft oxygenation and hemolysis occurring as a result of mechanical technology. Recently, hemoglobin-based oxygen carriers, originally developed for use as blood substitutes, have been studied as an alternative to red blood cell-based perfusates. Although research in this field is somewhat limited, the findings are promising. We offer a brief review of the use of hemoglobin-based oxygen carriers in ex vivo machine perfusion and discuss future directions that will likely have a major impact in progressing oxygen carrier use in clinical practice.
Collapse
Affiliation(s)
- Sirat Lodhi
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - John P Stone
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Timothy R Entwistle
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - James E Fildes
- From the The Ex-Vivo Research Centre, 3F66, Block 3, Alderley Park, Nether Alderley, Cheshire, United Kingdom
- The Ex-Vivo Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- The Transplant Centre, Manchester Foundation Trust, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Teodoro JS, Da Silva RT, Machado IF, Panisello-Roselló A, Roselló-Catafau J, Rolo AP, Palmeira CM. Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
Affiliation(s)
- João S. Teodoro
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- IIIUC–Institute of Interdisciplinary Research, University of Coimbra, Pólo II da Universidade de Coimbra, 3000 Coimbra, Portugal
| | - Rui T. Da Silva
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Ivo F. Machado
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- IIIUC–Institute of Interdisciplinary Research, University of Coimbra, Pólo II da Universidade de Coimbra, 3000 Coimbra, Portugal
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Anabela P. Rolo
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
| | - Carlos M. Palmeira
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
| |
Collapse
|
14
|
von Horn C, Wilde B, Rauen U, Paul A, Minor T. Use of the new preservation solution Custodiol-MP for ex vivo reconditioning of kidney grafts. Artif Organs 2021; 45:1117-1123. [PMID: 33683761 DOI: 10.1111/aor.13951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Organ shortage and the increasing use of extended criteria donor grafts for transplantation drives efforts for more efficient organ preservation strategies from simple cold storage toward dynamic organ reconditioning. The choice of a suitable preservation solution is of high relevance in different organ preservation or reconditioning situations. Custodiol-MP is a new machine perfusion solution giving the opportunity to add colloids according to organ requirements. The present study aimed to compare new Custodiol-MP with clinically established Belzer MPS solution. Porcine kidneys were ischemically predamaged and cold stored for 20 hours. Ex vivo machine reconditioning was performed either with Custodiol-MP (n = 6) or with Belzer MPS solution (n = 6) for 90 minutes with controlled oxygenated rewarming up to 20°C. Kidney function was evaluated using an established ex vivo reperfusion model. In this experimental setting, differences between both types of perfusion solutions could not be observed. Machine perfusion with Custodiol-MP resulted in higher creatinine clearance (7.4 ± 8.6 mL/min vs. 2.8 ± 2.5 mL/min) and less TNC perfusate levels (0.22 ± 0.25 ng/mL vs. 0.09 ± 0.08 ng/mL), although differences did not reach significance. For short-term kidney perfusion Custodiol-MP is safe and applicable. Particularly, the unique feature of flexible colloid supplementation makes the solution attractive in specific experimental and clinical settings.
Collapse
Affiliation(s)
- Charlotte von Horn
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Paul
- Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Minor
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Subnormothermic Perfusion with H 2S Donor AP39 Improves DCD Porcine Renal Graft Outcomes in an Ex Vivo Model of Kidney Preservation and Reperfusion. Biomolecules 2021; 11:biom11030446. [PMID: 33802753 PMCID: PMC8002411 DOI: 10.3390/biom11030446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cold preservation is the standard of care for renal grafts. However, research on alternatives like perfusion at higher temperatures and supplementing preservation solutions with hydrogen sulfide (H2S) has gained momentum. In this study, we investigated whether adding H2S donor AP39 to porcine blood during subnormothermic perfusion at 21 °C improves renal graft outcomes. Porcine kidneys were nephrectomized after 30 min of clamping the renal pedicles and treated to 4 h of static cold storage (SCS) on ice or ex vivo subnormothermic perfusion at 21 °C with autologous blood alone (SNT) or with AP39 (SNTAP). All kidneys were reperfused ex vivo with autologous blood at 37 °C for 4 h. Urine output, histopathology and RNAseq were used to evaluate the renal graft function, injury and gene expression profiles, respectively. The SNTAP group exhibited significantly higher urine output than other groups during preservation and reperfusion, along with significantly lower apoptotic injury compared to the SCS group. The SNTAP group also exhibited differential pro-survival gene expression patterns compared to the SCS (downregulation of pro-apoptotic genes) and SNT (downregulation of hypoxia response genes) groups. Subnormothermic perfusion at 21 °C with H2S-supplemented blood improves renal graft outcomes. Further research is needed to facilitate the clinical translation of this approach.
Collapse
|
16
|
Quader M, Toldo S, Chen Q, Hundley G, Kasirajan V. Heart transplantation from donation after circulatory death donors: Present and future. J Card Surg 2020; 35:875-885. [PMID: 32065475 DOI: 10.1111/jocs.14468] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first successful human heart transplantation was reported on 3 December 1967, by Christiaan Barnard in South Africa. Since then this life-saving procedure has been performed in over 120 000 patients. A limitation to the performance of this procedure is the availability of donor hearts with as many as 20% of patients dying before a donor's heart is available for transplant. Today, hearts for transplantation are procured from individuals experiencing donation after brain death (DBD). Interestingly, this, however, was not always the case as the first heart transplants occurred after circulatory death. Revisiting the availability of hearts for transplant from those experiencing donation after circulatory death (DCD) could further expand the number of hearts suitable for transplantation. There are several considerations pertinent to transplanting hearts from those undergoing circulatory death. In this review, we summarize the main distinctions between DBD and DCD heart donation and discuss the research relevant to increasing the number of hearts available for transplantation by including individual's hearts that experience circulatory death.
Collapse
Affiliation(s)
- Mohammed Quader
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Stefano Toldo
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Qun Chen
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Greg Hundley
- Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | | |
Collapse
|
17
|
Chen Y, Shi J, Xia TC, Xu R, He X, Xia Y. Preservation Solutions for Kidney Transplantation: History, Advances and Mechanisms. Cell Transplant 2019; 28:1472-1489. [PMID: 31450971 PMCID: PMC6923544 DOI: 10.1177/0963689719872699] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Solid organ transplantation was one of the greatest medical advances during the past few
decades. Organ preservation solutions have been applied to diminish ischemic/hypoxic
injury during cold storage and improve graft survival. In this article, we provide a
general review of the history and advances of preservation solutions for kidney
transplantation. Key components of commonly used solutions are listed, and effective
supplementations for current available preservation solutions are discussed. At cellular
and molecular levels, further insights were provided into the pathophysiological
mechanisms of effective ingredients against ischemic/hypoxic renal injury during cold
storage. We pay special attention to the cellular and molecular events during
transplantation, including ATP depletion, acidosis, mitochondrial dysfunction, oxidative
stress, inflammation, and other intracellular mechanisms.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Terry C Xia
- The University of Connecticut, Storrs, CT, USA
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Novel therapeutic strategies for renal graft preservation and their potential impact on the future of clinical transplantation. Curr Opin Organ Transplant 2019; 24:385-390. [DOI: 10.1097/mot.0000000000000660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Choi JH, Lee JE, Kim SH, Kim HL, Jeun SS, Yang SH. Functional survival of rat pituitary gland in hypothermic storage for pituitary transplantation. Pituitary 2019; 22:353-361. [PMID: 30989445 DOI: 10.1007/s11102-019-00959-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Deteriorated pituitary function can lead to serious complications that might need lifelong hormone replacement therapy. However, long-term hormone administration can have significant adverse effects. Thus, it would be more desirable to restore pituitary function by pituitary transplantation. In this study, we investigated functional preservation of extracted pituitary gland in special preservation solution under hypothermic condition for pituitary transplantation. METHODS We obtained nineteen pituitary glands from 250-300 g male Sprague-Dawley rats via parapharyngeal approach. These extracted glands were divided into three pieces and stored in histidine-tryptophan-ketoglutarate (HTK) solution at 4 °C and compared to their corresponding glands stored in phosphate buffer saline (PBS). Light and electron microscopic examinations were performed to identify morphological changes of pituitary gland at 0,3, and 7 days after storage. TUNEL assay to confirm cell viability, and adenosine-triphosphate (ATP) concentration were also serially examined. RESULTS Tissue architecture and cellular viability of specimens preserved in HTK solution for 3 days were considerably maintained and similar to those in normal pituitary gland (0 day specimen). In contrast, specimens stored in PBS were markedly destroyed after 3 days of storage. After 7 days of storage, significant degeneration occurred in tissues stored in both HTK and PBS. However, tissue architecture was preserved more in specimens stored in HTK solution than those stored in PBS. ATP concentration decreased more rapidly in specimens stored in PBS solution, but there was no statistical significance (p= 0.055). CONCLUSIONS Extracted rat pituitary gland supplemented with special preservation solution could be preserved for 3 days under hypothermic condition.
Collapse
Affiliation(s)
- Jai Ho Choi
- Department of Neurosurgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpodaero, Seochogu, Seoul, South Korea
| | - Jung Eun Lee
- Department of Neurosurgery, College of Medicine, Cell Death Disease Research Center, St. Vincent's Hospital, The Catholic University of Korea, 222, Banpodaero, Seochogu, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University of College of Medicine, Seoul, South Korea
| | - Hong-Lim Kim
- Laboratory of Electron Microscope, College of Medicine, Integrative Research Support Center, The Catholic University of Korea, Seoul, South Korea
| | - Sin Soo Jeun
- Department of Neurosurgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpodaero, Seochogu, Seoul, South Korea.
| | - Seung Ho Yang
- Department of Neurosurgery, College of Medicine, Cell Death Disease Research Center, St. Vincent's Hospital, The Catholic University of Korea, 222, Banpodaero, Seochogu, Seoul, South Korea.
| |
Collapse
|
20
|
Khedr S, Palygin O, Pavlov TS, Blass G, Levchenko V, Alsheikh A, Brands MW, El-Meanawy A, Staruschenko A. Increased ENaC activity during kidney preservation in Wisconsin solution. BMC Nephrol 2019; 20:145. [PMID: 31035971 PMCID: PMC6489205 DOI: 10.1186/s12882-019-1329-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Abstract
Background The invention of an effective kidney preservation solution capable of prolonging harvested kidney viability is the core of kidney transplantation procedure. Researchers have been working on upgrading the preservation solution quality aiming at prolonging storage time while maintaining utmost organ viability and functionality. For many years, the University of Wisconsin (UW) solution has been considered the gold standard solution for kidney preservation. However, the lifespan of kidney preservation in the UW solution is still limited. Its impact on the epithelial Na+ channel (ENaC) activity and its mediated processes is unknown and the primary goal of this study. Methods Kidneys harvested from 8 weeks old Sprague Dawley rats were divided into 4 groups depending upon the period of preservation in UW solution. Additional analysis was performed using dogs’ kidneys. ENaC activity was measured using patch clamp technique; protein expression and mRNA transcription were tested through Western blot and RT-qPCR, respectively. A colorimetric LDH level estimation was performed at different time points during UW solution preservation. Results Kidney preservation in Wisconsin solution caused reduction of the kidney size and weight and elevation of LDH level. ENaC activity increased in both rat and dog kidneys preserved in the UW solution as assessed by patch clamp analysis. On the contrary, ENaC channel mRNA levels remained unchanged. Conclusions ENaC activity is significantly elevated in the kidneys during preservation in UW solution, which might affect the immediate post-implantation allograft function and trajectory post-transplant.
Collapse
Affiliation(s)
- Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Present address: Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Present address: Western Kentucky University, Bowling Green, KY, 42101, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ammar Alsheikh
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30901, USA
| | - Ashraf El-Meanawy
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
21
|
Gowers SAN, Hamaoui K, Vallant N, Hanna GB, Darzi A, Casanova D, Papalois V, Boutelle MG. An improved rapid sampling microdialysis system for human and porcine organ monitoring in a hospital setting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:5273-5281. [PMID: 31490460 PMCID: PMC6244488 DOI: 10.1039/c8ay01807c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/22/2018] [Indexed: 06/10/2023]
Abstract
Online organ monitoring could provide clinicians with critical information regarding organ health prior to transplantation and could aid clinical decision-making. This paper presents the methodology of online microdialysis for real-time monitoring of human organs ex vivo. We describe how rapid sampling microdialysis can be incorporated with organ perfusion machines to create a robust organ monitoring system and demonstrate its use in monitoring human and porcine kidneys as well as human and porcine pancreases. In this paper we also show the potential usefulness of this methodology for evaluating novel interventions in a research setting. The analysis system can be configured either to analyse two analytes in one organ, allowing for ratiometric analysis, or alternatively to monitor one analyte in two organs simultaneously, allowing direct comparison. It was found to be reliable over long monitoring periods in real clinical use. The results clearly show that the analysis system is sensitive to differences between organs and therefore has huge potential as an ex vivo organ monitoring tool.
Collapse
Affiliation(s)
| | - Karim Hamaoui
- Department of Surgery & Cancer , Imperial College London , UK
| | - Natalie Vallant
- Department of Surgery & Cancer , Imperial College London , UK
| | - George B Hanna
- Department of Surgery & Cancer , Imperial College London , UK
| | - Ara Darzi
- Department of Surgery & Cancer , Imperial College London , UK
| | - Daniel Casanova
- Department of Surgery , University of Cantabria , Santander , Spain
| | | | | |
Collapse
|
22
|
The Effect of Histidine-tryptophan-ketoglutarate Solution and University of Wisconsin Solution: An Analysis of the Eurotransplant Registry. Transplantation 2018; 102:1870-1877. [DOI: 10.1097/tp.0000000000002406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Knecht C, Balaban CL, Rodríguez JV, Ceccarelli EA, Guibert EE, Rosano GL. Proteome variation of the rat liver after static cold storage assayed in an ex vivo model. Cryobiology 2018; 85:47-55. [PMID: 30296410 DOI: 10.1016/j.cryobiol.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022]
Abstract
Cold storage is a common procedure for liver preservation in a transplant setting. However, during cold ischemia, the liver suffers molecular alterations that can affect its performance. Also, deleterious mechanisms set forth in the storage phase are exacerbated during reperfusion. This study aimed to identify liver proteins associated with injury during cold storage and/or normothermic reperfusion using the isolated perfused rat liver model. Livers from male rats were subjected to either (1) cold storage for 24 h, (2) ex vivo normothermic reperfusion for 90 min or (3) cold storage for 24 h followed by ex vivo normothermic reperfusion for 90 min. Then, the livers were homogenized and proteins were extracted. Protein expression between each experimental group and the control (freshly resected livers) was compared by two-dimensional (2D) gel electrophoresis. Protein identification was carried out by matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF/TOF) using MASCOT as the search engine. 23 proteins were detected with significantly altered levels of expression among the different treatments, including molecular chaperones, antioxidant enzymes, and proteins involved in energy metabolism. Some of them have been postulated as biomarkers for liver damage while others had been identified in other organs subjected to ischemia and reperfusion injury. The whole data set will be a useful resource for studying deleterious molecular mechanisms that result in diminished liver function during storage and subsequent reperfusion.
Collapse
Affiliation(s)
- Camila Knecht
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina; Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Cecilia L Balaban
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina; Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Joaquín V Rodríguez
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Edgardo E Guibert
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| |
Collapse
|
24
|
Jayant K, Reccia I, Shapiro AMJ. Normothermic ex-vivo liver perfusion: where do we stand and where to reach? Expert Rev Gastroenterol Hepatol 2018; 12:1045-1058. [PMID: 30064278 DOI: 10.1080/17474124.2018.1505499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays liver transplantation is considered as the treatment of choice, however, the scarcity of suitable donor organs limits the delivery of care to the end-stage liver disease patients leading to the death while on the waiting list. The advent of ex-situ normothermic machine perfusion (NMP) has emerged as an alternative to the standard organ preservation technique, static cold storage (SCS). The newer technique promises to not only restore the normal metabolic activity but also attempt to recondition the marginal livers back to the pristine state, which are otherwise more susceptible to ischemic injury and foster the poor post-transplant outcomes. Areas covered: An extensive search of all the published literature describing the role of NMP based device in liver transplantation as an alternative to SCS was made on MEDLINE, EMBASE, Cochrane, BIOSIS, Crossref, Scopus databases and clinical trial registry on 10 May 2018. Expert commentary: The main tenet of NMP is the establishment of the physiological milieu, which permits aerobic metabolism to continue through out the period of preservation and limits the effects of ischemia-reperfusion (I/R) injury. In addition, by assessing the various metabolic and synthetic parameters the viability and suitability of donor livers for transplantation can be determined. This important technological advancement has scored satisfactorily on the safety and efficacy parameters in preliminary clinical studies. The present review suggests that NMP can offer the opportunity to assess and safely utilize the marginal donor livers if deemed appropriate for the transplantation. However, ongoing trials will determine its full potential and further adoption.
Collapse
Affiliation(s)
- Kumar Jayant
- a Department of Surgery and Cancer , Imperial College London , London , UK
| | - Isabella Reccia
- a Department of Surgery and Cancer , Imperial College London , London , UK
| | | |
Collapse
|
25
|
Rock N, Ansari M, Villard J, Ferrari-Lacraz S, Waldvogel S, McLin VA. Factors associated with immune hemolytic anemia after pediatric liver transplantation. Pediatr Transplant 2018; 22:e13230. [PMID: 29885007 DOI: 10.1111/petr.13230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2018] [Indexed: 01/27/2023]
Abstract
Immune-mediated hemolytic anemia following SOT is a rare disorder, the risk factors for which are unknown. Our purpose was to analyze a seemingly increased incidence in our center with the aim to identify predisposing factors. This recipients single-center retrospective study reviewed the medical records of 96 pediatric LT between 2000 and 2013. IHA was defined as acute anemia with a positive direct antiglobulin test. Seven cases of immune-mediated hemolytic anemia were identified (incidence 8.5%). Three cases presented during the first 3 months following LT (early IHA), and 4 presented later (late IHA). All patients with late IHA required rituximab. Using univariate analysis, the following factors were associated with IHA onset: BA (P = .04), younger age (P = .04), and the use of IGL-1 preservation solution (P = .05). Late IHA was associated with viral infections occurring beyond 3 months following LT, younger age, and BA (P = .01). Overall, CMV infection was associated with the development of both early and late IHA: CMV-negative recipients who received an organ from a CMV-positive donor were more likely to develop IHA (P = .035), and de novo CMV infection during the first year post-LT was associated with late IHA (P = .03). IHA is a rare complication following pediatric LT, occurring more frequently in younger patients and patients with an initial diagnosis of BA. CMV-negative recipients and patients who experience a de novo CMV infection in the first year following LT seem particularly vulnerable. IGL-1 preservation solution may be associated with an increased likelihood of developing IHA, a novel finding which warrants further investigation.
Collapse
Affiliation(s)
- Nathalie Rock
- Swiss Center for Liver Disease in Children, University Hospitals Geneva, Geneva, Switzerland
| | - Marc Ansari
- Pediatric Hematology and Oncology Unit, University Hospitals Geneva, Geneva, Switzerland
| | - Jean Villard
- Transplant Immunology Unit, Division of Immunology and Allergy, University Hospitals Geneva, Geneva, Switzerland
| | - Sylvie Ferrari-Lacraz
- Transplant Immunology Unit, Division of Immunology and Allergy, University Hospitals Geneva, Geneva, Switzerland
| | - Sophie Waldvogel
- Immunology and Hematology Laboratory, University Hospitals Geneva, Geneva, Switzerland
| | - Valérie Anne McLin
- Swiss Center for Liver Disease in Children, University Hospitals Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
De Rosa S, Antonelli M, Ronco C. Hypothermia and kidney: a focus on ischaemia-reperfusion injury. Nephrol Dial Transplant 2018; 32:241-247. [PMID: 28186567 DOI: 10.1093/ndt/gfw038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/03/2016] [Indexed: 01/01/2023] Open
Abstract
Cellular damage after reperfusion of ischaemic tissue is defined as ischaemia–reperfusion injury (IRI). Hypothermia is able to decrease oxygen consumption, preventing a rapid loss of mitochondrial activity. However, even though cooling can help to decrease the deleterious effects of ischaemia, the consequences are not exclusively beneficial, such that hypothermic storage is a compromise between benefits and harm. The present review details the relationship between renal IRI and hypothermia, describing the pathophysiology of IRI and hypothermic protection through experimental evidence. Although experimental models of renal IRI are a valuable tool for understanding the pathophysiology of renal ischaemia–reperfusion, the clinical transfer of experimental results has several limitations, particularly because of anatomical and physiological differences. In this review limitations of animal models but also hypothermia as a strategy to protect the kidney from IRI are discussed. We also attempt to describe three clinical scenarios where hypothermia is used in clinical settings of IRI: transplantation, deceased donors and post-cardiac arrest.
Collapse
Affiliation(s)
- Silvia De Rosa
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.,Department of Anaesthesia and Intensive Care, Catholic University, Rome, Italy.,Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Massimo Antonelli
- Department of Anaesthesia and Intensive Care, Catholic University, Rome, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.,Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
27
|
Hamaoui K, Gowers S, Sandhu B, Vallant N, Cook T, Boutelle M, Casanova D, Papalois V. Development of pancreatic machine perfusion: translational steps from porcine to human models. J Surg Res 2018; 223:263-274. [PMID: 29325720 DOI: 10.1016/j.jss.2017.11.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypothermic machine perfusion (HMP) is increasingly being used for extended criteria kidney grafts. Pancreatic HMP is challenging because physiologically the pancreas is a low-flow organ susceptible to edema. We report the successful development of preclinical HMP models using porcine pancreases, as well as human pancreases unsuitable for clinical transplantation. METHODS Ten porcine pancreases were used in the development of these perfusion models. Pancreases underwent 24 h of static cold storage (SCS, n = 3) and then viability assessment on an isolated oxygenated normothermic reperfusion (NRP) circuit or 24-h SCS, 5 h of HMP, and then NRP (SCS-HMP, n = 3). Human pancreases (n = 3) were used in the development of a preclinical model. RESULTS Porcine HMP demonstrated stable perfusion indices at low pressures, with a weight gain of between 15.3% and 27.6%. During NRP, SCS-HMP pancreases demonstrated stable perfusion flow indices (PFIs) throughout reperfusion (area under the curve was in the range of 0.49-2.04 mL/min/100 g/mm Hg), whereas SCS-only pancreases had deteriorating PFI with a decline of between 19% and 46%. Human pancreas models demonstrated stable PFI between 0.18 and 0.69 mL/min/100 g/mm Hg during HMP with weight gain of between 3.9% and 14.7%. NRP perfusion in porcine and human models was stable, and functional assessment via insulin secretion demonstrated beta cell viability. Exocrine function was intact with production of pancreatic secretions only in human grafts. CONCLUSIONS Application of machine perfusion in preclinical porcine and human pancreas models is feasible and successful; the development of these translational models could be beneficial in improving pancreas preservation before transplantation and allowing organ viability assessment and optimization.
Collapse
Affiliation(s)
- Karim Hamaoui
- Department of Surgery, Imperial College London, London, UK.
| | - Sally Gowers
- Department of Bioengineering, Imperial College London, London, UK
| | - Bynvant Sandhu
- Department of Surgery, Imperial College London, London, UK
| | | | - Terry Cook
- Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Martyn Boutelle
- Department of Bioengineering, Imperial College London, London, UK
| | - Daniel Casanova
- Department of Surgery, Imperial College London, London, UK; Department of Surgery, University of Cantabria, Santander, Spain
| | - Vassilios Papalois
- Department of Surgery, Imperial College London, London, UK; Imperial College Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
28
|
Ceresa CDL, Nasralla D, Jassem W. Normothermic Machine Preservation of the Liver: State of the Art. CURRENT TRANSPLANTATION REPORTS 2018; 5:104-110. [PMID: 29564207 PMCID: PMC5843699 DOI: 10.1007/s40472-018-0186-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose of Review This review aims to introduce the concept of normothermic machine perfusion (NMP) and its role in liver transplantation. By discussing results from recent clinical studies and highlighting the potential opportunities provided by this technology, we aim to provide a greater insight into NMP and the role it can play to enhance liver transplantation. Recent Findings NMP has recently been shown to be both safe and feasible in liver transplantation and has also demonstrated its superiority to traditional cold storage in terms of early biochemical liver function. Through the ability to perform a viability assessment during preservation and extend preservation times, it is likely that an increase in organ utilisation will follow. NMP may facilitate the enhanced preservation with improved outcomes from donors after cardiac death and steatotic livers. Furthermore, it provides the exciting potential for liver-directed therapeutic interventions. Summary Evidence to date suggests that NMP facilitates the enhanced preservation of liver grafts with improved early post-transplant outcomes. The key role for this technology is to increase the number and quality of liver grafts available for transplantation and to reduce waiting list deaths.
Collapse
Affiliation(s)
- Carlo D L Ceresa
- 1Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - David Nasralla
- 1Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Wayel Jassem
- 2Institute of Liver Studies, King's College Hospital, London, UK
| |
Collapse
|
29
|
Cold storage or normothermic perfusion for liver transplantation: probable application and indications. Curr Opin Organ Transplant 2017; 22:300-305. [PMID: 28301388 DOI: 10.1097/mot.0000000000000410] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Preservation of the liver via normothermic machine perfusion (NMP) is rapidly becoming an area of great academic and clinical interest. This review focuses on the benefits and limitations of NMP and where the role for static cold storage may lie. RECENT FINDINGS Clinical studies have recently been published reporting the use of NMP in liver preservation for transplantation. They have described the technology to be well tolerated and feasible with potentially improved posttransplant outcomes. NMP facilitates extended preservation times as well as the potential to increase organ utilization through viability assessment and regeneration. However, this technology is considerably more costly than cold storage and carries significant logistical challenges. Cold storage remains the gold standard preservation for standard criteria livers with good long-term patient and graft survival. SUMMARY NMP is an exciting new technological advancement in liver preservation, which is likely to have a positive impact in liver transplantation. However, randomized controlled trials are required to justify its inclusion into standard practice and provide evidence to support its efficacy.
Collapse
|
30
|
Wang L, Wei J, Jiang S, Li HH, Fu L, Zhang J, Liu R. Effects of different storage solutions on renal ischemia tolerance after kidney transplantation in mice. Am J Physiol Renal Physiol 2017; 314:F381-F387. [PMID: 29141940 DOI: 10.1152/ajprenal.00475.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
storage is the most prevalent method for graft preservation in kidney transplantation (KTX). The protective effects of various preservation solutions have been studied extensively in both clinical trials and experimental animal models. However, a paucity of studies have examined the effect of different preservation solutions on graft function in mouse KTX; in addition, the tolerance of the transplanted grafts to further insult has not been evaluated, which was the objective of the present study. We performed mouse KTX in three groups, with the donor kidneys preserved in different solutions for 60 min: saline, mouse serum, and University of Wisconsin (UW) solution. The graft functions were assessed by kidney injury markers and glomerular filtration rate (GFR). The grafts that were preserved in UW solution exhibited better functions, reflected by 50 and 70% lower plasma creatinine levels as well as 30 and 55% higher plasma creatinine levels in GFR than serum and saline groups, respectively, during the first week after transplants. To examine the graft function in response to additional insult, we induced ischemia-reperfusion injury (IRI) by clamping the renal pedicle for 18 min at 4 wk after KTX. We found that the grafts preserved in UW solution exhibited ~30 and 20% less injury assessed by kidney injury markers and histology than in other two preservation solutions. Taken together, our results demonstrated that UW solution exhibited a better protective effect in transplanted renal grafts in mice. UW solution is recommended for use in mouse KTX for reducing confounding factors such as IRI during surgery.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Hui-Hua Li
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Liying Fu
- Tampa General Hospital , Tampa, Florida
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| |
Collapse
|
31
|
Jager NM, Poppelaars F, Daha MR, Seelen MA. Complement in renal transplantation: The road to translation. Mol Immunol 2017; 89:22-35. [PMID: 28558950 DOI: 10.1016/j.molimm.2017.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
Renal transplantation is the treatment of choice for patients with end-stage renal disease. The vital role of the complement system in renal transplantation is widely recognized. This review discusses the role of complement in the different phases of renal transplantation: in the donor, during preservation, in reperfusion and at the time of rejection. Here we examine the current literature to determine the importance of both local and systemic complement production and how complement activation contributes to the pathogenesis of renal transplant injury. In addition, we dissect the complement pathways involved in the different phases of renal transplantation. We also review the therapeutic strategies that have been tested to inhibit complement during the kidney transplantation. Several clinical trials are currently underway to evaluate the therapeutic potential of complement inhibition for the treatment of brain death-induced renal injury, renal ischemia-reperfusion injury and acute rejection. We conclude that it is expected that in the near future, complement-targeted therapeutics will be used clinically in renal transplantation. This will hopefully result in improved renal graft function and increased graft survival.
Collapse
Affiliation(s)
- Neeltina M Jager
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nephrology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands
| | - Marc A Seelen
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Neuberger JM, Bechstein WO, Kuypers DRJ, Burra P, Citterio F, De Geest S, Duvoux C, Jardine AG, Kamar N, Krämer BK, Metselaar HJ, Nevens F, Pirenne J, Rodríguez-Perálvarez ML, Samuel D, Schneeberger S, Serón D, Trunečka P, Tisone G, van Gelder T. Practical Recommendations for Long-term Management of Modifiable Risks in Kidney and Liver Transplant Recipients: A Guidance Report and Clinical Checklist by the Consensus on Managing Modifiable Risk in Transplantation (COMMIT) Group. Transplantation 2017; 101:S1-S56. [PMID: 28328734 DOI: 10.1097/tp.0000000000001651] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Short-term patient and graft outcomes continue to improve after kidney and liver transplantation, with 1-year survival rates over 80%; however, improving longer-term outcomes remains a challenge. Improving the function of grafts and health of recipients would not only enhance quality and length of life, but would also reduce the need for retransplantation, and thus increase the number of organs available for transplant. The clinical transplant community needs to identify and manage those patient modifiable factors, to decrease the risk of graft failure, and improve longer-term outcomes.COMMIT was formed in 2015 and is composed of 20 leading kidney and liver transplant specialists from 9 countries across Europe. The group's remit is to provide expert guidance for the long-term management of kidney and liver transplant patients, with the aim of improving outcomes by minimizing modifiable risks associated with poor graft and patient survival posttransplant.The objective of this supplement is to provide specific, practical recommendations, through the discussion of current evidence and best practice, for the management of modifiable risks in those kidney and liver transplant patients who have survived the first postoperative year. In addition, the provision of a checklist increases the clinical utility and accessibility of these recommendations, by offering a systematic and efficient way to implement screening and monitoring of modifiable risks in the clinical setting.
Collapse
Affiliation(s)
- James M Neuberger
- 1 Liver Unit, Queen Elizabeth Hospital Birmingham, United Kingdom. 2 Department of General and Visceral Surgery, Frankfurt University Hospital and Clinics, Germany. 3 Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Campus Gasthuisberg, Belgium. 4 Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, Padova, Italy. 5 Renal Transplantation Unit, Department of Surgical Science, Università Cattolica Sacro Cuore, Rome, Italy. 6 Department of Public Health, Faculty of Medicine, Institute of Nursing Science, University of Basel, Switzerland. 7 Department of Public Health, Faculty of Medicine, Centre for Health Services and Nursing Research, KU Leuven, Belgium. 8 Department of Hepatology and Liver Transplant Unit, Henri Mondor Hospital (AP-HP), Paris-Est University (UPEC), France. 9 Department of Nephrology, University of Glasgow, United Kingdom. 10 Department of Nephrology and Organ Transplantation, CHU Rangueil, Université Paul Sabatier, Toulouse, France. 11 Vth Department of Medicine & Renal Transplant Program, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany. 12 Department of Gastroenterology and Hepatology, Erasmus MC, University Hospital Rotterdam, the Netherlands. 13 Department of Gastroenterology and Hepatology, University Hospitals KU Leuven, Belgium. 14 Abdominal Transplant Surgery, Microbiology and Immunology Department, University Hospitals KU Leuven, Belgium. 15 Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, IMIBIC, CIBERehd, Spain. 16 Hepatobiliary Centre, Hospital Paul-Brousse (AP-HP), Paris-Sud University, Université Paris-Saclay, Villejuif, France. 17 Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Austria. 18 Nephrology Department, Hospital Vall d'Hebrón, Autonomous University of Barcelona, Spain. 19 Transplant Center, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic. 20 Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Italy. 21 Department of Hospital Pharmacy and Internal Medicine, Erasmus MC, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nath J, Smith TB, Patel K, Ebbs SR, Hollis A, Tennant DA, Ludwig C, Ready AR. Metabolic differences between cold stored and machine perfused porcine kidneys: A 1 H NMR based study. Cryobiology 2017; 74:115-120. [DOI: 10.1016/j.cryobiol.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/18/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
|
34
|
Nuclear Magnetic Resonance Strategies for Metabolic Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:45-76. [DOI: 10.1007/978-3-319-47656-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Abstract
BACKGROUND The high demand for livers for transplantation has led to organs of limited quality being accepted to expand the donor pool. This is associated with inferior outcomes due to more pronounced preservation injury. Accordingly, recent research has aimed to develop preservation modalities for improved preservation as well as strategies for liver viability assessment and liver reconditioning. METHODS The PubMed database was searched using the terms 'perfusion', 'liver', 'preservation', and 'reconditioning' in various combinations, and the according literature was reviewed. RESULTS Several perfusion techniques have been developed in recent years with the potential for liver reconditioning. Preclinical and first emerging clinical data suggest feasibility, safety, and superiority over the current gold standard of cold storage. CONCLUSION This review outlines current advances in the field of liver preservation with an emphasis on liver reconditioning methods.
Collapse
Affiliation(s)
- Dieter P Hoyer
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Thomas Minor
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
36
|
Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Ramírez JM, Tan DX, García JJ, Reiter RJ. Melatonin role preventing steatohepatitis and improving liver transplantation results. Cell Mol Life Sci 2016; 73:2911-2927. [PMID: 27022943 PMCID: PMC11108472 DOI: 10.1007/s00018-016-2185-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Liver steatosis is a prevalent process that is induced due to alcoholic or non-alcoholic intake. During the course of these diseases, the generation of reactive oxygen species, followed by molecular damage to lipids, protein and DMA occurs generating organ cell death. Transplantation is the last-resort treatment for the end stage of both acute and chronic hepatic diseases, but its success depends on ability to control ischemia-reperfusion injury, preservation fluids used, and graft quality. Melatonin is a powerful endogenous antioxidant produced by the pineal gland and a variety of other because of its efficacy in organs; melatonin has been investigated to improve the outcome of organ transplantation by reducing ischemia-reperfusion injury and due to its synergic effect with organ preservation fluids. Moreover, this indolamine also prevent liver steatosis. That is important because this disease may evolve leading to an organ transplantation. This review summarizes the observations related to melatonin beneficial actions in organ transplantation and ischemic-reperfusion models.
Collapse
Affiliation(s)
- Eduardo Esteban-Zubero
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain.
| | - Francisco Agustín García-Gil
- Department of Surgery, Gynaecology and Obstetrics, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Laura López-Pingarrón
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Moisés Alejandro Alatorre-Jiménez
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - José Manuel Ramírez
- Department of Surgery, Gynaecology and Obstetrics, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - José Joaquín García
- Department of Pharmacology and Physiology, University of Zaragoza, Calle Domingo Miral s/n, 50009, Saragossa, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
37
|
Lázaro A, Humanes B, Jado JC, Mojena M, González-Nicolás MÁ, del Cañizo JF, Tejedor A, Lledó-García E. Beneficial Effect of Short Pretransplant Period of Hypothermic Pulsatile Perfusion of the Warm-Ischemic Kidney after Cold Storage: Experimental Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2518626. [PMID: 27556029 PMCID: PMC4983324 DOI: 10.1155/2016/2518626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 07/10/2016] [Indexed: 11/30/2022]
Abstract
Warm ischemia (WI) produces a significant deleterious effect in potential kidney grafts. Hypothermic machine perfusion (HMP) seems to improve immediate graft function after transplant. Our aim was to analyze the effect of short pretransplant periods of pulsatile HMP on histology and renal injury in warm-ischemic kidneys. Twelve minipigs were used. WI was achieved in the right kidney by applying a vascular clamp for 45 min. After nephrectomy, autotransplant was performed following one of two strategies: cold storage of the kidneys or cold storage combined with perfusion in pulsatile HMP. The graft was removed early to study renal morphology, inflammation (fibrosis), and apoptosis. Proinflammatory activity and fibrosis were less pronounced after cold storage of the kidneys with HMP than after cold storage only. The use of HMP also decreased apoptosis compared with cold storage only. The detrimental effects on cells of an initial and prolonged period of WI seem to improve with a preservation protocol that includes a short period of pulsatile HMP after cold storage and immediately before the transplant, in comparison with cold storage only.
Collapse
Affiliation(s)
- Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Blanca Humanes
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Juan Carlos Jado
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Marina Mojena
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - María Ángeles González-Nicolás
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Juan Francisco del Cañizo
- Medicine and Surgery Unit, IiSGM, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Department of Surgery, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alberto Tejedor
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Enrique Lledó-García
- Urology Department, IiSGM, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| |
Collapse
|
38
|
Schoening W, Ariyakhagorn V, Schubert T, Olschewski P, Andreou A, Neuhaus P, Pratschke J, Puhl G. Warm HTK donor pretreatment reduces liver injury during static cold storage in experimental rat liver transplantation. Hepatobiliary Pancreat Dis Int 2015; 14:596-602. [PMID: 26663007 DOI: 10.1016/s1499-3872(15)60426-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Organ shortage has led to an increased number of transplantations from extended criteria donors. These organs are more vulnerable to ischemia-reperfusion injury. Thus, improvement of organ preservation is needed. HTK is a widely used preservation solution for static cold storage in liver transplantation. The present study was to investigate the beneficial effect of warm HTK donor pretreatment on liver preservation. METHODS Male inbred Wistar rats (weighing 230-260 g) served as donors and recipients (n=6/group). Donors of treatment groups received i.v. 0.01 mL/g body weight (BW) warm (21 degree centigrade) HTK systemically 15 minutes prior to cold perfusion. Control groups received 0.01 mL/g BW warm (21 degree centigrade) NaCl 0.9%. Following pretreatment, donors were flushed with 4 degree centigrade cold HTK, livers were explanted and stored in 4 degree centigrade HTK for six hours. Thereafter orthotopic liver transplantation was performed. Recipients were harvested four hours, two and five days after reperfusion and blood and liver tissue samples were obtained. Blood samples were analyzed for AST, ALT, lactate dehydrogenase and bilirubin. Liver histological analysis as well as tissue analysis for pro-MMP2, MMP2 and pro-MMP9 using zymography was conducted. RESULTS Treatment groups showed significantly lower ALT and lactate dehydrogenase levels as well as significantly lower activities of pro-MMP2, MMP2 and pro-MMP9. Histological analysis revealed only minor damage in all groups. CONCLUSIONS The new concept of warm HTK pretreatment significantly reduced ischemia-reperfusion injury. The reduced ischemia-reperfusion injury was due to MMP inhibition. Warm HTK donor pretreatment is easy to handle and could further improve HTK's potency in liver preservation.
Collapse
Affiliation(s)
- Wenzel Schoening
- Allgemein-, Visceral- & Transplantationschirurgie, Charite Campus Virchow Klinikum, Berlin 13353, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Limkemann A, Lindell SL, Reichstetter H, Plant V, Parrish D, Ramos C, Kowalski C, Quintini C, Mangino MJ. Donor gluconate rescues livers from uncontrolled donation after cardiac death. Surgery 2015; 159:852-61. [PMID: 26619928 DOI: 10.1016/j.surg.2015.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/02/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Ischemia from organ preservation or donation causes cells and tissues to swell owing to loss of energy-dependent mechanisms of control of cell volume. These volume changes cause substantial preservation injury, because preventing these changes by adding cell impermeants to preservation solutions decreases preservation injury. The objective of this study was to assess if this effect could be realized early in uncontrolled donation after cardiac death (DCD) livers by systemically loading donors with gluconate immediately after death to prevent accelerated swelling injury during the warm ischemia period before liver retrieval. METHODS Uncontrolled DCD rat livers were cold-stored in University of Wisconsin solution for 24 hours and reperfused on an isolated perfused liver (IPL) device for 2 hours or transplanted into a rat as an allograft for 7 days. Donors were pretreated with a solution of the impermeant gluconate or a saline control immediately after cardiac death. Livers were retrieved after 30 minutes. RESULTS In vivo, gluconate infusion in donors immediately before or after cardiac death prevented DCD-induced increases in total tissue water, decreased vascular resistance, increased oxygen consumption and synthesis of adenosine triphosphate, increased bile production, decreased lactate dehydrogenase release, and decreased histology injury scores after reperfusion on the IPL relative to saline-treated DCD controls. In the transplant model, donor gluconate pretreatment significantly decreased both alanine aminotransferase the first day after transplantation and total bilirubin the seventh day after transplantation. CONCLUSION Cell and tissue swelling plays a key role in preservation injury of uncontrolled DCD livers, which can be mitigated by early administration of gluconate solutions to the donor immediately after death.
Collapse
Affiliation(s)
- Ashley Limkemann
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Susanne L Lindell
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Heather Reichstetter
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Valerie Plant
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Dan Parrish
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Clementina Ramos
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | - Chris Kowalski
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA
| | | | - Martin J Mangino
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA; Department of Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA; Department of Physiology and Biophysics, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA.
| |
Collapse
|
40
|
Palkhi E, Pathak S, Hostert L, Morris-Stiff G, Patel JV, Ahmad N. Complete Absence of Iliac Arteries in the Left Hemipelvis in a Case of Deceased Donor Renal Transplantation. Case Rep Transplant 2015; 2015:138170. [PMID: 26064765 PMCID: PMC4430649 DOI: 10.1155/2015/138170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
Renal transplantation is an established method of treating end-stage renal failure. Whilst the majority of procedures follow a standard technique, vascular anomalies may pose intraoperative challenges and, therefore, careful preoperative assessment is warranted. We present a unique, complex case compounded by complete absence of iliac arteries in the left hemipelvis in association with double inferior vena cava in a young recipient.
Collapse
Affiliation(s)
- Ebrahim Palkhi
- Division of Surgery, Department of Transplantation, St James's University Hospital, Leeds LS9 7TF, UK
| | - Samir Pathak
- Division of Surgery, Department of Transplantation, St James's University Hospital, Leeds LS9 7TF, UK
| | - Lutz Hostert
- Division of Surgery, Department of Transplantation, St James's University Hospital, Leeds LS9 7TF, UK
| | - Gareth Morris-Stiff
- Division of Surgery, Department of Transplantation, St James's University Hospital, Leeds LS9 7TF, UK
| | - Jai V. Patel
- Department of Vascular Radiology, St James's University Hospital, Leeds LS9 7TF, UK
| | - Niaz Ahmad
- Division of Surgery, Department of Transplantation, St James's University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
41
|
Adam R, Delvart V, Karam V, Ducerf C, Navarro F, Letoublon C, Belghiti J, Pezet D, Castaing D, Le Treut YP, Gugenheim J, Bachellier P, Pirenne J, Muiesan P. Compared efficacy of preservation solutions in liver transplantation: a long-term graft outcome study from the European Liver Transplant Registry. Am J Transplant 2015; 15:395-406. [PMID: 25612492 DOI: 10.1111/ajt.13060] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 01/25/2023]
Abstract
Between 2003 and 2012, 42 869 first liver transplantations performed in Europe with the use of either University of Wisconsin solution (UW; N = 24 562), histidine-tryptophan-ketoglutarate(HTK; N = 8696), Celsior solution (CE; N = 7756) or Institute Georges Lopez preservation solution (IGL-1; N = 1855) preserved grafts. Alternative solutions to the UW were increasingly used during the last decade. Overall, 3-year graft survival was higher with UW, IGL-1 and CE (75%, 75% and 73%, respectively), compared to the HTK (69%) (p < 0.0001). The same trend was observed with a total ischemia time (TIT) >12 h or grafts used for patients with cancer (p < 0.0001). For partial grafts, 3-year graft survival was 89% for IGL-1, 67% for UW, 68% for CE and 64% for HTK (p = 0.009). Multivariate analysis identified HTK as an independent factor of graft loss, with recipient HIV (+), donor age ≥65 years, recipient HCV (+), main disease acute hepatic failure, use of a partial liver graft, recipient age ≥60 years, no identical ABO compatibility, recipient hepatitis B surface antigen (-), TIT ≥ 12 h, male recipient and main disease other than cirrhosis. HTK appears to be an independent risk factor of graft loss. Both UW and IGL-1, and CE to a lesser extent, provides similar results for full size grafts. For partial deceased donor liver grafts, IGL-1 tends to offer the best graft outcome.
Collapse
Affiliation(s)
- R Adam
- Centre Hépatobiliaire, AP-HP Hôpital Paul Brousse, Inserm U 776, Univ Paris Sud, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ferrigno A, Pasqua LGD, Bianchi A, Richelmi P, Vairetti M. Metabolic shift in liver: Correlation between perfusion temperature and hypoxia inducible factor-1α. World J Gastroenterol 2015; 21:1108-1116. [PMID: 25632183 PMCID: PMC4306154 DOI: 10.3748/wjg.v21.i4.1108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/01/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion.
METHODS: In this study, we correlated hypoxia inducible factor (HIF)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 °C. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; pH of the perfusate was also evaluated; HIF-1α mRNA and protein expression were analyzed by real time-polymerase chain reaction and ELISA, respectively.
RESULTS: Livers perfused at 10 and 20 °C showed no difference in lactate dehydrogenase release after 6 h of perfusion (0.96 ± 0.23 vs 0.93 ± 0.09 mU/min per g) and had lower hepatic damage as compared to 30 and 37 °C (5.63 ± 0.76 vs 527.69 ± 45.27 mU/min per g, respectively, Ps < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 °C than in livers perfused at 30 and 37 °C (0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, Ps < 0.01). No sign of hypoxia was observed at 10 and 20 °C, as highlighted by low lactate release respect to livers perfused at 30 and 37 °C (121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/mL, respectively, Ps < 0.02), and low relative HIF-1α mRNA (0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, Ps < 0.05) and protein (3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, Ps < 0.05) expression.
CONCLUSION: Livers perfused at 10 and 20 °C show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 °C.
Collapse
|
43
|
Gallinat A, Efferz P, Paul A, Minor T. One or 4 h of "in-house" reconditioning by machine perfusion after cold storage improve reperfusion parameters in porcine kidneys. Transpl Int 2014; 27:1214-9. [PMID: 24977654 DOI: 10.1111/tri.12393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 12/01/2022]
Abstract
In-house machine perfusion after cold storage (hypothermic reconditioning) has been proposed as convenient tool to improve kidney graft function. This study investigated the role of machine perfusion duration for early reperfusion parameters in porcine kidneys. Kidney function after cold preservation (4 °C, 18 h) and subsequent reconditioning by one or 4 h of pulsatile, nonoxygenated hypothermic machine perfusion (HMP) was studied in an isolated kidney perfusion model in pigs (n = 6, respectively) and compared with simply cold-stored grafts (CS). Compared with CS alone, one or 4 h of subsequent HMP similarly and significantly improved renal flow and kidney function (clearance and sodium reabsorption) upon warm reperfusion, along with reduced perfusate concentrations of endothelin-1 and increased vascular release of nitric oxide. Molecular effects of HMP comprised a significant (vs CS) mRNA increase in the endothelial transcription factor KLF2 and lower expression of endothelin that were observed already at the end of one-hour HMP after CS. Reconditioning of cold-stored kidneys is possible, even if clinical logistics only permit one hour of therapy, while limited extension of the overall storage time by in-house machine perfusion might also allow for postponing of transplantation from night to early day work.
Collapse
Affiliation(s)
- Anja Gallinat
- Clinic of General, Visceral and Transplantation Surgery, University Hospital of Essen, Essen, Germany
| | | | | | | |
Collapse
|
44
|
Tian T, Lindell SL, Kowalski C, Mangino MJ. Moesin functionality in hypothermic liver preservation injury. Cryobiology 2014; 69:34-40. [PMID: 24836372 DOI: 10.1016/j.cryobiol.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 01/27/2023]
Abstract
The objective of this study was to determine how expression and functionality of the cytoskeletal linker protein moesin is involved in hepatic hypothermic preservation injury. Mouse livers were cold stored in University of Wisconsin (UW) solution and reperfused on an isolated perfused liver (IPL) device for one hour. Human hepatocytes (HepG2) and human or murine sinusoidal endothelial cells (SECs) were cold stored and rewarmed to induce hypothermic preservation injury. The cells were transfected with: wild type moesin, an siRNA duplex specific for moesin, and the moesin mutants T558D and T558A. Tissue and cell moesin expression and its binding to actin were determined by Western blot. Liver IPL functional outcomes deteriorated proportional to the length of cold storage, which correlated with moesin disassociation from the actin cytoskeleton. Cell viability (LDH and WST-8) in the cell models progressively declined with increasing preservation time, which also correlated with moesin disassociation. Transfection of a moesin containing plasmid or an siRNA duplex specific for moesin into HepG2 cells resulted in increased and decreased moesin expression, respectively. Overexpression of moesin protected while moesin knock-down potentiated preservation injury in the HepG2 cell model. Hepatocytes expressing the T558A (inactive) and T558D (active) moesin binding mutants demonstrated significantly more and less preservation injury, respectively. Cold storage time dependently caused hepatocyte detachment from the matrix and cell death, which was prevented by the T558D active moesin mutation. In conclusion, moesin is causally involved in hypothermic liver cell preservation injury through control of its active binding molecular functionality.
Collapse
Affiliation(s)
- Tao Tian
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States
| | - Susanne L Lindell
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States
| | - Chris Kowalski
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States
| | - Martin J Mangino
- Department of Surgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States; Department of Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States; Department of Physiology and Biophysics, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States.
| |
Collapse
|
45
|
Domen J, Li Y, Sun L, Simpson P, Gandy K. Rapid tolerance induction by hematopoietic progenitor cells in the absence of donor-matched lymphoid cells. Transpl Immunol 2014; 31:112-8. [PMID: 24794050 DOI: 10.1016/j.trim.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/03/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Donor specific hematopoietic cell transplantation has long been recognized for its potential in tolerance induction for subsequently transplanted organs. We have recently published that co-administration of Myeloid Progenitor (MP) and third party Hematopoietic Stem Cells (HSC) can induce MP-specific tolerance for subsequently transplanted organs [1]. METHODS Mice received an allogeneic HSC and third party MP transplantation simultaneous with placement of a MP-matched skin graft. Variants tested include time of graft placement, MP genotype and source of cells. RESULTS Using B10;B6-Rag2(-/-)Il2rg(-/-) mice, we demonstrate that specific tolerance can be induced by MP given simultaneous with the skin graft in the complete absence of MP-donor-matched lymphoid cells. Ex vivo expanded MP function as well as sorted cells in inducing tolerance. In addition we demonstrate that tolerance can be induced by MP in the context of autologous HSC transplantation. CONCLUSIONS Our results demonstrate that the previously observed expansion of organ donor matched Treg is not essential for tolerance, and that MP tolerance protocols can be envisioned in most clinical settings, including those involving deceased donor organs.
Collapse
Affiliation(s)
- Jos Domen
- Section of Cardiac Surgery, Children's Mercy Hospital and Clinics, Kansas City MO64108, United States; Department of Pediatrics, University of Missouri Kansas City, Kansas City, MO, United States.
| | - Yongwu Li
- Section of Cardiac Surgery, Children's Mercy Hospital and Clinics, Kansas City MO64108, United States.
| | - Lei Sun
- Section of Cardiac Surgery, Children's Mercy Hospital and Clinics, Kansas City MO64108, United States.
| | - Pippa Simpson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Kimberly Gandy
- Section of Cardiac Surgery, Children's Mercy Hospital and Clinics, Kansas City MO64108, United States; Department of Pediatrics, University of Missouri Kansas City, Kansas City, MO, United States; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
46
|
Bruns H, Schemmer P. Machine perfusion in solid organ transplantation: where is the benefit? Langenbecks Arch Surg 2014; 399:421-427. [PMID: 24429900 DOI: 10.1007/s00423-014-1161-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/01/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Machine perfusion (MP) in solid organ transplantation has been a topic of variable importance for decades. At the dawn of organ transplantation, MP was one of the standard techniques for preservation; today's gold standard for organ preservation for transplantation is cold storage (CS). The outcome after transplantation of solid organs has tremendously improved over the last five decades. MP has been continuously under investigation and may be an option for organ preservation in selected cases; however, there is only little evidence from clinical trials that can be used to advocate for MP as a routine organ preservation method. METHODS This article reviews the current knowledge on MP in the field of solid organ transplantation with special focus on findings from clinical trials. CONCLUSION Especially in heart and lung transplantation, MP seems to be a promising tool to improve postoperative outcome, but a general evidence-based recommendation for or against an application of MP cannot be given due to the lack of the highest level of clinical evidence. Gold standards such as CS should not be left behind without good reason. Randomized clinical trials are desperately needed to further improve outcome and for better understanding of the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Helge Bruns
- Department of General and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | | |
Collapse
|
47
|
PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia. ScientificWorldJournal 2013; 2013:486574. [PMID: 24319370 PMCID: PMC3844238 DOI: 10.1155/2013/486574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/18/2013] [Indexed: 11/17/2022] Open
Abstract
We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1+/+ wild-type and 15 male Parp10/0 knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp10/0 knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.
Collapse
|
48
|
Catena F, Coccolini F, Montori G, Vallicelli C, Amaduzzi A, Ercolani G, Ravaioli M, Del Gaudio M, Schiavina R, Brunocilla E, Liviano G, Feliciangeli G, Pinna A. Kidney Preservation: Review of Present and Future Perspective. Transplant Proc 2013; 45:3170-7. [DOI: 10.1016/j.transproceed.2013.02.145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/05/2013] [Accepted: 02/16/2013] [Indexed: 01/31/2023]
|
49
|
|
50
|
Gallinat A, Lüer B, Swoboda S, Rauen U, Paul A, Minor T. Use of the new preservation solution Custodiol-N supplemented with dextran for hypothermic machine perfusion of the kidney. Cryobiology 2013; 66:131-5. [DOI: 10.1016/j.cryobiol.2012.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/25/2023]
|