1
|
Li X, Ren X, Su Y, Zhou X, Wang Y, Ruan S, Yan J, Li B, Guo K. Differential effects of winter cold stress on soil bacterial communities, metabolites, and physicochemical properties in two varieties of Tetrastigma hemsleyanum Diels & Gilg in reclaimed land. Microbiol Spectr 2024; 12:e0242523. [PMID: 38470484 PMCID: PMC10994721 DOI: 10.1128/spectrum.02425-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Tetrastigma hemsleyanum Diels & Gilg (TDG) has been recently planted in reclaimed lands in Zhejiang Province, China, to increase reclaimed land use. Winter cold stress seriously limits the growth and development of TDG and has become the bottleneck limiting the TDG planting industry. To investigate the defense mechanisms of TDG toward winter cold stress when grown on reclaimed land, a combined analysis of soil bacterial communities, metabolites, and physicochemical properties was conducted in this study. Significant differences were observed in the composition of soil bacterial communities, metabolites, and properties in soils of a cold-tolerant variety (A201201) compared with a cold-intolerant variety (B201810). The fresh weight (75.8% of tubers) and dry weight (73.6%) of A201201 were significantly higher than those of B201810. The 16S rRNA gene amplicon sequencing of soil bacteria showed that Gp5 (25.3%), Gemmatimonas (19.6%), Subdivision3 (16.7%), Lacibacterium (11.9%), Gp4 (11.8%), Gp3 (10.4%), Gp6 (7.0%), and WPS-1 (1.2%) were less common, while Chryseolinea (10.6%) were more common in A201201 soils than B201810 soils. Furthermore, linear discriminant analysis of effect size identified 35 bacterial biomarker taxa for both treatments. Co-occurrence network analyses also showed that the structures of the bacterial communities were more complex and stable in A201201 soils compared to B201810 soils. In addition, ultra-high-performance liquid chromatography coupled to mass spectrometry analysis indicated the presence of significantly different metabolites in the two soil treatments, with 10 differentially expressed metabolites (DEMs) (8 significantly upregulated by 9.2%-391.3% and 2 significantly downregulated by 25.1%-73.4%) that belonged to lipids and lipid-like molecules, organic acids and derivatives, and benzenoids. The levels of those DEMs were significantly correlated with the relative abundances of nine bacterial genera. Also, redundancy discriminant analysis revealed that the main factors affecting changes in the bacterial community composition were available potassium (AK), microbial biomass nitrogen (MBN), microbial biomass carbon (MBC), alkaline hydrolysis nitrogen (AHN), total nitrogen (TN), available phosphorus (AP), and soil organic matter (SOM). The main factors affecting changes in the metabolite profiles were AK, MBC, MBN, AHN, pH, SOM, TN, and AP. Overall, this study provides new insights into the TDG defense mechanisms involved in winter cold stress responses when grown on reclaimed land and practical guidelines for achieving optimal TDG production.IMPORTANCEChina has been undergoing rapid urbanization, and land reclamation is regarded as a viable option to balance occupation and compensation. In general, the quality of reclaimed land cannot meet plant or even cultivation requirements due to poor soil fertility and high gravel content. However, Tetrastigma hemsleyanum Diels & Gilg (TDG), extensively used in Chinese herbal medicine, can grow well in stony soils with few nutrients. So, to increase reclaimed land use, TDG has been cultivated on reclaimed lands in Zhejiang Province, China, recently. However, the artificial cultivation of TDG is often limited by winter cold stress. The aim of this study was to find out how TDG on reclaimed land deal with winter cold stress by looking at the bacterial communities, metabolites, and physicochemical properties of the soil, thereby guiding production in practice.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoxu Ren
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Su
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiang Zhou
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou, China
| | - Yu Wang
- Qingliangfeng Lvyuan Vegetable Professional Cooperative, Hangzhou, China
| | - Songlin Ruan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Guo
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
2
|
Qian L, Yin S, Lu N, Yue E, Yan J. Full-length transcriptome reveals the pivotal role of ABA and ethylene in the cold stress response of Tetrastigma hemsleyanum. FRONTIERS IN PLANT SCIENCE 2024; 15:1285879. [PMID: 38357266 PMCID: PMC10864657 DOI: 10.3389/fpls.2024.1285879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Tetrastigma hemsleyanum is a valuable herb widely used in Chinese traditional and modern medicine. Winter cold severely limits the artificial cultivation of this plant, but the physiological and molecular mechanisms upon exposure to cold stress in T. hemsleyanum are unclear. T. hemsleyanum plants with different geographical origins exhibit large differences in response to cold stress. In this research study, using T. hemsleyanum ecotypes that exhibit frost tolerance (FR) and frost sensitivity (FS), we analyzed the response of cottage seedlings to a simulated frost treatment; plant hormones were induced with both short (2 h) and long (9 h) frost treatments, which were used to construct the full-length transcriptome and obtained 76,750 transcripts with all transcripts mapped to 28,805 genes, and 27,215 genes, respectively, annotated to databases. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed enrichment in plant hormone signaling pathways. Further analysis shows that differently expressed genes (DEGs) concentrated on calcium signaling, ABA biosynthesis and signal transduction, and ethylene in response to cold stress. We also found that endogenous ABA and ethylene content were increased after cold treatment, and exogenous ABA and ethylene significantly improved cold tolerance in both ecotypes. Our results elucidated the pivotal role of ABA and ethylene in response to cold stress in T. hemsleyanum and identified key genes.
Collapse
Affiliation(s)
- Lihua Qian
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Shuya Yin
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Na Lu
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Erkui Yue
- Institute of Crop Science and Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jianli Yan
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
3
|
Zhang P, Wang Y, Wang J, Li G, Li S, Ma J, Peng X, Yin J, Liu Y, Zhu Y. Transcriptomic and physiological analyses reveal changes in secondary metabolite and endogenous hormone in ginger (Zingiber officinale Rosc.) in response to postharvest chilling stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107799. [PMID: 37271022 DOI: 10.1016/j.plaphy.2023.107799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Storing postharvest ginger at low temperatures can extend its shelf life, but can also lead to chilling injury, loss of flavor, and excessive water loss. To investigate the effects of chilling stress on ginger quality, morphological, physiological, and transcriptomic changes were examined after storage at 26 °C, 10 °C, and 2 °C for 24 h. Compared to 26 °C and 10 °C, storage at 2 °C significantly increased the concentrations of lignin, soluble sugar, flavonoids, and phenolics, as well as the accumulation of H2O2, O2-, and thiobarbituric acid reactive substances (TBARS). Additionally, chilling stress inhibited the levels of indoleacetic acid, while enhancing gibberellin, abscisic acid, and jasmonic acid, which may have increased postharvest ginger's adaptation to chilling. Storage at 10 °C decreased lignin concentration and oxidative damage, and induced less fluctuant changes in enzymes and hormones than storage at 2 °C. RNA-seq revealed that the number of differentially expressed genes (DEGs) increased with decreasing temperature. Functional enrichment analysis of the 523 DEGs that exhibited similar expression patterns between all treatments indicated that they were primarily enriched in phytohormone signaling, biosynthesis of secondary metabolites, and cold-associated MAPK signaling pathways. Key enzymes related to 6-gingerol and curcumin biosynthesis were downregulated at 2 °C, suggesting that cold storage may negatively impact ginger quality. Additionally, 2 °C activated the MKK4/5-MPK3/6-related protein kinase pathway, indicating that chilling may increase the risk of ginger pathogenesis.
Collapse
Affiliation(s)
- Pan Zhang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yanhong Wang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jie Wang
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Gang Li
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Siyun Li
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiawei Ma
- Jingzhou Jiazhiyuan Biotechnology Co. Ltd., Jingzhou, 434025, Hubei, China
| | - Xiangyan Peng
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yiqing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yongxing Zhu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
4
|
Wang X, Song Q, Guo H, Liu Y, Brestic M, Yang X. StICE1 enhances plant cold tolerance by directly upregulating StLTI6A expression. PLANT CELL REPORTS 2023; 42:197-210. [PMID: 36371722 DOI: 10.1007/s00299-022-02949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Under cold conditions, StICE1 enhances plant cold tolerance by upregulating StLTI6A expression to maintain the cell membrane stability. Cold stress affects potato plants growth and development, crop productivity and quality. The ICE-CBF-COR regulatory cascade is the well-known pathway in response to cold stress in plants. ICE1, as a MYC-like bHLH transcription factor, can regulate the expressions of CBFs. However, whether ICE1 could regulate other genes still need to be explored. Our results showed that overexpressing ICE1 from potato in Arabidopsis thaliana could enhance plant cold tolerance. Under cold stress, overexpressed StICE1 in plants improved the stability of cell membrane, enhanced scavenging capacity of reactive oxygen species and increased expression levels of CBFs and COR genes. Furthermore, StICE1 could bind to the promoter of StLTI6A gene, which could maintain the stability of the cell membrane, to upregulate StLTI6A expression under cold conditions. Our findings revealed that StICE1 could directly regulate StLTI6A, CBF and COR genes expression to response to cold stress.
Collapse
Affiliation(s)
- Xipan Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Hao Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
5
|
Asaeda T, Rahman M, Liping X, Schoelynck J. Hydrogen Peroxide Variation Patterns as Abiotic Stress Responses of Egeria densa. FRONTIERS IN PLANT SCIENCE 2022; 13:855477. [PMID: 35651776 PMCID: PMC9149424 DOI: 10.3389/fpls.2022.855477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
In vegetation management, understanding the condition of submerged plants is usually based on long-term growth monitoring. Reactive oxygen species (ROS) accumulate in organelles under environmental stress and are highly likely to be indicators of a plant's condition. However, this depends on the period of exposure to environmental stress, as environmental conditions are always changing in nature. Hydrogen peroxide (H2O2) is the most common ROS in organelles. The responses of submerged macrophytes, Egeria densa, to high light and iron (Fe) stressors were investigated by both laboratory experiments and natural river observation. Plants were incubated with combinations of 30-200 μmol m-2 s-1 of photosynthetically active radiation (PAR) intensity and 0-10 mg L-1 Fe concentration in the media. We have measured H2O2, photosynthetic pigment concentrations, chlorophyll a (Chl-a), chlorophyll b (Chl-b), carotenoid (CAR), Indole-3-acetic acid (IAA) concentrations of leaf tissues, the antioxidant activity of catalase (CAT), ascorbic peroxidase (APX), peroxidase (POD), the maximal quantum yield of PSII (Fv Fm -1), and the shoot growth rate (SGR). The H2O2 concentration gradually increased with Fe concentration in the media, except at very low concentrations and at an increased PAR intensity. However, with extremely high PAR or Fe concentrations, first the chlorophyll contents and then the H2O2 concentration prominently declined, followed by SGR, the maximal quantum yield of PSII (Fv Fm -1), and antioxidant activities. With an increasing Fe concentration in the substrate, the CAT and APX antioxidant levels decreased, which led to an increase in H2O2 accumulation in the plant tissues. Moreover, increased POD activity was proportionate to H2O2 accumulation, suggesting the low-Fe independent nature of POD. Diurnally, H2O2 concentration varies following the PAR variation. However, the CAT and APX antioxidant activities were delayed, which increased the H2O2 concentration level in the afternoon compared with the level in morning for the same PAR intensities. Similar trends were also obtained for the natural river samples where relatively low light intensity was preferable for growth. Together with our previous findings on macrophyte stress responses, these results indicate that H2O2 concentration is a good indicator of environmental stressors and could be used instead of long-term growth monitoring in macrophyte management.
Collapse
Affiliation(s)
- Takashi Asaeda
- Hydro Technology Institute Co, Ltd., Tokyo, Japan
- Research and Development Center, Ibaraki, Japan
- Department of Environmental Science, Saitama University, Saitama, Japan
| | - Mizanur Rahman
- Department of Environmental Science, Saitama University, Saitama, Japan
| | - Xia Liping
- Department of Environmental Science, Saitama University, Saitama, Japan
| | | |
Collapse
|
6
|
Genetic Mechanisms of Cold Signaling in Wheat (Triticum aestivum L.). Life (Basel) 2022; 12:life12050700. [PMID: 35629367 PMCID: PMC9147279 DOI: 10.3390/life12050700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Cold stress is a major environmental factor affecting the growth, development, and productivity of various crop species. With the current trajectory of global climate change, low temperatures are becoming more frequent and can significantly decrease crop yield. Wheat (Triticum aestivum L.) is the first domesticated crop and is the most popular cereal crop in the world. Because of a lack of systematic research on cold signaling pathways and gene regulatory networks, the underlying molecular mechanisms of cold signal transduction in wheat are poorly understood. This study reviews recent progress in wheat, including the ICE-CBF-COR signaling pathway under cold stress and the effects of cold stress on hormonal pathways, reactive oxygen species (ROS), and epigenetic processes and elements. This review also highlights possible strategies for improving cold tolerance in wheat.
Collapse
|
7
|
Li B, Wang W. Salicylic acid induces tolerance of Vitisriparia×V.labrusca to chilling stress by altered photosynthetic, antioxidant mechanisms and expression of cold stress responsive genes. PLANT SIGNALING & BEHAVIOR 2021; 16:1973711. [PMID: 34523393 PMCID: PMC8526021 DOI: 10.1080/15592324.2021.1973711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 05/21/2023]
Abstract
The yield and quality of wine grapes are severely persecuted by low-temperaturestresses. Salicylic acid (SA) assists plants in coping with abiotic stresses such as drought, heavy metal toxicity, and osmotic stress. The objective of this study was to evaluate the effect of foliar spraying of different concentrations of SA on the mitigation of cold damage in grapes, which is useful for the cultivation of wine grapes.Vitisriparia×V.labruscaseedlings were treated with foliar-sprayedSA at concentrations of 0-2 mM and then subjected to chilling stress at 4°C for 2 or 4 days, while the expression of relevant physiological indicators and cold response genes (CBF1, CBF2, CBF3) were measured. The findings indicated that low temperature stresses markedly reduced chlorophyll content, and increased proline as well as soluble sugar content, enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, decreased catalase (CAT) activity and inducedCBFgene expression in leaves. Physiologically, foliar spraying of different concentrations of SA greatly increased antioxidant enzyme activity (P < .05), soluble sugars, proline, and chlorophyll content of grapes leave under low temperature stress. With regard to gene expression, SA has significantly regulated the cold response genesCBF1, CBF2, andCBF3. Therefore, SA could reduce cold damage in grapevines under low-temperaturestress, and the effect of SA was most pronounced in the 1 and 2 mM concentrates.
Collapse
Affiliation(s)
- Bin Li
- College of Life Science and Technology,Gansu Agricultural University,Lanzhou,China
| | - Wangtian Wang
- Key Laboratory of Arid Land Crop Science of Gansu Province, College of Life Science and Technology,Gansu Agricultural University,Lanzhou,China
- CONTACTWangtian Wang Key Laboratory of Arid Land Crop Science of Gansu Province, College of Life Science and Technology,Gansu Agricultural University,Lanzhou730070,China
| |
Collapse
|
8
|
Lin L, Wu J, Jiang M, Wang Y. Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. Int J Mol Sci 2021; 22:ijms22041543. [PMID: 33546499 PMCID: PMC7913722 DOI: 10.3390/ijms22041543] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| | - Mingyi Jiang
- College of Life Sciences and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| |
Collapse
|
9
|
Loayza FE, Brecht JK, Simonne AH, Plotto A, Baldwin EA, Bai J, Lon-Kan E. A brief hot-water treatment alleviates chilling injury symptoms in fresh tomatoes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:54-64. [PMID: 32949019 DOI: 10.1002/jsfa.10821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Reducing the negative effects of chilling injury (CI) in tomatoes after harvest is essential to ensure good quality and to minimize losses. CI is a postharvest disorder associated with the generation of reactive oxygen species (ROS) in the fruit. Therefore, antioxidant accumulation can counteract ROS, alleviating CI symptoms. In this sense, it has been confirmed that a brief hot-water (HW) immersion promotes the synthesis of antioxidants. RESULTS HW treatment at 52 °C for 5 min significantly reduced chilling-associated decay, from 66.7% to 17.2% in breaker turning (BT) and from 55.8% to 9.8% in mature green (MG) 'BHN-602' tomatoes stored at 5 °C for 2 weeks and from 26.7% to 6.7% in BT tomatoes stored at 5 °C for 1 week. Also, HW treatment significantly increased lycopene content by 17% in BT tomatoes stored at 5 °C for 2 weeks, as well as ascorbic acid by 11%, lipophilic phenolics by 18% and total phenolics by 6.5% in BT tomatoes stored at 12.5 °C for 1 week. Despite the increase of antioxidants, HW treatment did not enhance the sensory aromatic profile, color and antioxidant capacity. Interestingly, HW treatment reduced ripening time by 3 days in MG tomatoes stored at 5 °C for 2 weeks or at 12.5 °C for 1 week. CONCLUSION HW treatment applied to MG or BT 'BHN-602' tomatoes can alleviate the development of some CI symptoms, particularly decay, possibly by increasing antioxidants that scavenge ROS. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco E Loayza
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Jeffrey K Brecht
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Amarat H Simonne
- Family, Youth and Community Sciences Department, University of Florida, Gainesville, FL, USA
| | - Anne Plotto
- US Horticultural Research Laboratory, USDA ARS, Fort Pierce, FL, USA
| | | | - Jinhe Bai
- US Horticultural Research Laboratory, USDA ARS, Fort Pierce, FL, USA
| | - Elena Lon-Kan
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Geng J, Wei T, Wang Y, Huang X, Liu JH. Overexpression of PtrbHLH, a basic helix-loop-helix transcription factor from Poncirus trifoliata, confers enhanced cold tolerance in pummelo (Citrus grandis) by modulation of H2O2 level via regulating a CAT gene. TREE PHYSIOLOGY 2019; 39:2045-2054. [PMID: 31330032 DOI: 10.1093/treephys/tpz081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 07/02/2019] [Indexed: 05/17/2023]
Abstract
The basic helix-loop-helix (bHLH) family of transcription factors (TFs) plays a crucial role in regulating plant response to abiotic stress by targeting a large spectrum of stress-responsive genes. However, the physiological mechanisms underlying the TF-mediated stress response are still poorly understood for most of the bHLH genes. In this study, transgenic pummelo (Citrus grandis) plants overexpressing PtrbHLH, a TF previously identified from Poncirus trifoliata, were generated via Agrobacterium-mediated transformation. In comparison with the wild-type plants, the transgenic lines exhibited significantly lower electrolyte leakage and malondialdehyde content after cold treatment, thereby resulting in a more tolerant phenotype. Meanwhile, the transgenic lines accumulated dramatically lower reactive oxygen species (ROS) levels, consistent with elevated activity and expression levels of antioxidant enzymes (genes), including catalase (CAT), peroxidase and superoxide dismutase. In addition, PtrbHLH was shown to specifically bind to and activate the promoter of PtrCAT gene. Taken together, these results demonstrated that overexpression of PtrbHLH leads to enhanced cold tolerance in transgenic pummelo, which may be due, at least partly, to modulation of ROS levels by regulating the CAT gene.
Collapse
Affiliation(s)
- Jingjing Geng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Mountainous Areas Research Institute, Hebei Agricultural University, Baoding 071001, China
| | - Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaosan Huang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Guadagno CR, Ewers BE, Weinig C. Circadian Rhythms and Redox State in Plants: Till Stress Do Us Part. FRONTIERS IN PLANT SCIENCE 2018; 9:247. [PMID: 29556244 PMCID: PMC5844964 DOI: 10.3389/fpls.2018.00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
A growing body of evidence demonstrates a significant relationship between cellular redox state and circadian rhythms. Each day these two vital components of plant biology influence one another, dictating the pace for metabolism and physiology. Diverse environmental stressors can disrupt this condition and, although plant scientists have made significant progress in re-constructing functional networks of plant stress responses, stress impacts on the clock-redox crosstalk is poorly understood. Inter-connected phenomena such as redox state and metabolism, internal and external environments, cellular homeostasis and rhythms can impede predictive understanding of coordinated regulation of plant stress response. The integration of circadian clock effects into predictive network models is likely to increase final yield and better predict plant responses to stress. To achieve such integrated understanding, it is necessary to consider the internal clock not only as a gatekeeper of environmental responses but also as a target of stress syndromes. Using chlorophyll fluorescence as a reliable and high-throughput probe of stress coupled to functional genomics and metabolomics will provide insights on the crosstalk across a wide range of stress severity and duration, including potential insights into oxidative stress response and signaling. We suggest the efficiency of photosystem II in light conditions (Fv'/Fm') to be the most dynamic of the fluorescence variables and therefore the most reliable parameter to follow the stress response from early sensing to mortality.
Collapse
Affiliation(s)
| | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
- Department of Molecular and Cellular Life Sciences, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
12
|
Soliman MH, Alayafi AAM, El Kelish AA, Abu-Elsaoud AM. Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. BOTANICAL STUDIES 2018; 59:6. [PMID: 29450670 PMCID: PMC5814394 DOI: 10.1186/s40529-018-0222-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/08/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND High and low temperatures constitute the most damaging type of abiotic stress and limit the survival, and productivity of plants. The present study aimed to evaluate the role of exogenous applications of acetylsalicylic acid (ASA) in reducing the deleterious effects of cold stress. Phaseolus vulgaris L. seedlings were treated with foliar-sprayed ASA at concentrations of 0-3 mM and then subjected to chilling stress at 4 °C for 2 or 4 days. RESULTS Growth, photosynthesis, biochemical alterations, oxidative damage and antioxidant enzyme activities as well as the expression of cold-responsive genes (CBF3-COR47), were monitored during the experiment. ASA applications substantially improved several growth and photosynthetic parameters, including shoot biomass, dry weight, and photosynthetic pigments, of P. vulgaris seedlings exposed to different durations of chilling stresses. The ASA foliar spray treatments significantly (p < 0.05) rescued the growth and photosynthetic pigments of P. vulgaris seedlings under different chilling stresses. The total soluble sugars markedly increased during 0-4 days of chilling stress following ASA foliar spraying. The exogenous application of ASA significantly (p < 0.05) increased the accumulation of proline in P. vulgaris seedlings under chilling stress. At the gene expression level, ASA significantly (p < 0.05) upregulated the cold-responsive genes CBF3 and COR47. CONCLUSIONS As a result, we speculate that, the application of exogenous ASA alleviated the adverse effects of chilling stress on all measured parameters, and 1 and 2 mM ASA exhibited the greatest effects.
Collapse
Affiliation(s)
- Mona H. Soliman
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, 46429 Kingdom of Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Aisha A. M. Alayafi
- Biological Sciences Department, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Amr A. El Kelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
13
|
Koehler G, Rohloff J, Wilson RC, Kopka J, Erban A, Winge P, Bones AM, Davik J, Alsheikh MK, Randall SK. Integrative "omic" analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa 'Korona'. FRONTIERS IN PLANT SCIENCE 2015; 6:826. [PMID: 26528299 PMCID: PMC4606020 DOI: 10.3389/fpls.2015.00826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/22/2015] [Indexed: 05/18/2023]
Abstract
To assess underlying metabolic processes and regulatory mechanisms during cold exposure of strawberry, integrative "omic" approaches were applied to Fragaria × ananassa Duch. 'Korona.' Both root and leaf tissues were examined for responses to the cold acclimation processes. Levels of metabolites, proteins, and transcripts in tissues from plants grown at 18°C were compared to those following 1-10 days of cold (2°C) exposure. When leaves and roots were subjected to GC/TOF-MS-based metabolite profiling, about 160 compounds comprising mostly structurally annotated primary and secondary metabolites, were found. Overall, 'Korona' showed a modest increase of protective metabolites such as amino acids (aspartic acid, leucine, isoleucine, and valine), pentoses, phosphorylated and non-phosphorylated hexoses, and distinct compounds of the raffinose pathway (galactinol and raffinose). Distinctive responses were observed in roots and leaves. By 2DE proteomics a total of 845 spots were observed in leaves; 4.6% changed significantly in response to cold. Twenty-one proteins were identified, many of which were associated with general metabolism or photosynthesis. Transcript levels in leaves were determined by microarray, where dozens of cold associated transcripts were quantitatively characterized, and levels of several potential key contributors (e.g., the dehydrin COR47 and GADb) to cold tolerance were confirmed by qRT-PCR. Cold responses are placed within the existing knowledge base of low temperature-induced changes in plants, allowing an evaluation of the uniqueness or generality of Fragaria responses in photosynthetic tissues. Overall, the cold response characteristics of 'Korona' are consistent with a moderately cold tolerant plant.
Collapse
Affiliation(s)
- Gage Koehler
- Department of Biology, Indiana University–Purdue University Indianapolis, IndianapolisIN, USA
| | - Jens Rohloff
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Robert C. Wilson
- Department of Natural Sciences and Technology, Hedmark University CollegeHamar, Norway
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Per Winge
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Jahn Davik
- Bioforsk, Norwegian Institute for Agricultural and Environmental Research – Grassland and Landscape DivisionKvithamar, Norway
| | - Muath K. Alsheikh
- Graminor Breeding Ltd.Ridabu, Norway
- Department of Plant Sciences, Norwegian University of Life SciencesÅs, Norway
| | - Stephen K. Randall
- Department of Biology, Indiana University–Purdue University Indianapolis, IndianapolisIN, USA
- *Correspondence: Stephen K. Randall, Department of Biology, Indiana University–Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202-5132, USA,
| |
Collapse
|
14
|
Peng T, Jia MM, Liu JH. RNAi-based functional elucidation of PtrPRP, a gene encoding a hybrid proline rich protein, in cold tolerance of Poncirus trifoliata. FRONTIERS IN PLANT SCIENCE 2015; 6:808. [PMID: 26483822 PMCID: PMC4587090 DOI: 10.3389/fpls.2015.00808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/16/2015] [Indexed: 05/18/2023]
Abstract
Hybrid proline-rich proteins (HyPRPs) have been suggested to play important roles in various plant development and stress response. In this study, we report the cloning and functional analysis of PtrPRP, a HyPRP-encoding gene of Poncirus trifoliata. PtrPRP contains 176 amino acids, among which 21% are proline residues, and has an 8-cysteine motif (8 CM) domain at the C terminal, a signal peptide and a proline-rich region at the N terminal. PtrPRP is constitutively expressed in root, stem and leaf, with the highest expression levels in leaf. It was progressively induced by cold, but transiently upregulated by salt and ABA. Transgenic P. trifoliata plants with knock-down PtrPRP by RNA interference (RNAi) were generated to investigate the role of PtrPRP in cold tolerance. When challenged by low temperature, the PtrPRP-RNAi plants displayed more sensitive performance compared with wild type (WT), as shown by higher electrolyte leakage and malondialdehyde content. In addition, the RNAi lines accumulated more reactive oxygen species (ROS) and lower levels of proline relative to WT. These results suggested that PtrPRP might be positively involved in cold tolerance by maintaining membrane integrity and ROS homeostasis.
Collapse
Affiliation(s)
- Ting Peng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, WuhanChina
- National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, GanzhouChina
| | - Mao-Mao Jia
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, WuhanChina
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, WuhanChina
- *Correspondence: Ji-Hong Liu, Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China,
| |
Collapse
|
15
|
Singha HS, Chakraborty S, Deka H. Stress induced MAPK genes show distinct pattern of codon usage in Arabidopsis thaliana, Glycine max and Oryza sativa. Bioinformation 2014; 10:436-42. [PMID: 25187684 PMCID: PMC4135292 DOI: 10.6026/97320630010436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 01/19/2023] Open
Abstract
Mitogen activated protein kinase (MAPK) genes provide resistance to various biotic and abiotic stresses. Codon usage profiling of the genes reveals the characteristic features of the genes like nucleotide composition, gene expressivity, optimal codons etc. The present study is a comparative analysis of codon usage patterns for different MAPK genes in three organisms, viz. Arabidopsis thaliana, Glycine max (soybean) and Oryza sativa (rice). The study has revealed a high AT content in MAPK genes of Arabidopsis and soybean whereas in rice a balanced AT-GC content at the third synonymous position of codon. The genes show a low bias in codon usage profile as reflected in the higher values (50.83 to 56.55) of effective number of codons (Nc). The prediction of gene expression profile in the MAPK genes revealed that these genes might be under the selective pressure of translational optimization as reflected in the low codon adaptation index (CAI) values ranging from 0.147 to 0.208.
Collapse
Affiliation(s)
| | | | - Himangshu Deka
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
16
|
Cai G, Wang G, Wang L, Pan J, Liu Y, Li D. ZmMKK1, a novel group A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:57-73. [PMID: 24268164 DOI: 10.1016/j.plantsci.2013.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 05/18/2023]
Abstract
As an important intracellular signaling module, the mitogen-activated protein kinase (MAPK) cascades have been previously implicated in signal transduction during plants responsing to various environmental stresses as well as pathogen attack. The mitogen-activated protein kinase kinase acts as the convergent point of MAPK cascades during a variety of stress signaling. In this study, a novel MAPKK gene, ZmMKK1, in maize (Zea mays L.) belonging to group A MAPKK was isolated and functionally characterized. ZmMKK1 was mainly localized in the cytoplasm and its constitutive kinase-active form ZmMKK1DD was localized in both cytoplasm and nucleus. QRT-PCR analysis uncovered that ZmMKK1 expression was triggered by abiotic and biotic stresses and exogenous signaling molecules. Moreover, hydrogen peroxide (H2O2) and Ca(2+) mediated 12°C-induced up-regulated expressing of ZmMKK1 at mRNA level. Ectopic expression of ZmMKK1 in tobacco (Nicotiana tabacum) conferred tolerance to chilling stress by higher antioxidant enzyme activities, more accumulation of osmoregulatory substances and more significantly up-expression of ROS-related and stress-responsive genes compared with empty vector control plants. Furthermore, ZmMKK1 played differential functions in biotrophic versus necrotrophic pathogen-induced responses. These results suggested ZmMKK1 played a crucial role in chilling stress and pathogen defense in plants.
Collapse
Affiliation(s)
- Guohua Cai
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | | | | | | | | | | |
Collapse
|
17
|
Raimbault AK, Zuily-Fodil Y, Soler A, Cruz de Carvalho MH. A novel aspartic acid protease gene from pineapple fruit (Ananas comosus): cloning, characterization and relation to postharvest chilling stress resistance. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1536-1540. [PMID: 23838125 DOI: 10.1016/j.jplph.2013.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
A full-length cDNA encoding a putative aspartic acid protease (AcAP1) was isolated for the first time from the flesh of pineapple (Ananas comosus) fruit. The deduced sequence of AcAP1 showed all the common features of a typical plant aspartic protease phytepsin precursor. Analysis of AcAP1 gene expression under postharvest chilling treatment in two pineapple varieties differing in their resistance to blackheart development revealed opposite trends. The resistant variety showed an up-regulation of AcAP1 precursor gene expression whereas the susceptible showed a down-regulation in response to postharvest chilling treatment. The same trend was observed regarding specific AP enzyme activity in both varieties. Taken together our results support the involvement of AcAP1 in postharvest chilling stress resistance in pineapple fruits.
Collapse
Affiliation(s)
- Astrid-Kim Raimbault
- IBIOS-UMR CNRS 7618 BIOEMCO, Université Paris Est Créteil (UPEC), 61 Avenue du Général de Gaulle, 94010 Créteil Cedex 2, France; CIRAD-PRAM, Quartier Petite Morne, BP214, 97285 Le Lamentin, Martinique, France
| | | | | | | |
Collapse
|
18
|
Voss I, Sunil B, Scheibe R, Raghavendra AS. Emerging concept for the role of photorespiration as an important part of abiotic stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:713-22. [PMID: 23452019 DOI: 10.1111/j.1438-8677.2012.00710.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/02/2012] [Indexed: 05/19/2023]
Abstract
When plants are exposed to stress, generation of reactive oxygen species (ROS) is often one of the first responses. In order to survive, cells attempt to down-regulate the production of ROS, while at the same time scavenging ROS. Photorespiration is now appreciated as an important part of stress responses in green tissues for preventing ROS accumulation. Photorespiratory reactions can dissipate excess reducing equivalents and energy either directly (using ATP, NAD(P)H and reduced ferredoxin) or indirectly (e.g., via alternative oxidase (AOX) and providing an internal CO2 pool). Photorespiration, however, is also a source of H2 O2 that is possibly involved in signal transduction, resulting in modulation of gene expression. We propose that photorespiration can assume a major role in the readjustment of redox homeostasis. Protection of photosynthesis from photoinhibition through photorespiration is well known. Photorespiration can mitigate oxidative stress under conditions of drought/water stress, salinity, low CO2 and chilling. Adjustments to even mild disturbances in redox status, caused by a deficiency in ascorbate, AOX or chloroplastic NADP-malate dehydrogenase, comprise increases in photorespiratory components such as catalase, P-protein of glycine decarboxylase complex (GDC) and glycine content. The accumulation of excess reducing equivalents or ROS in plant cells also affects mitochondria. Therefore, a strong interaction between the chloroplast redox status and photorespiration is not surprising, but highlights interesting properties evident in plant cells. We draw attention to the fact that a complex network of multiple and dynamic systems, including photorespiration, prevents oxidative damage while optimising photosynthesis. Further experiments are necessary to identify and validate the direct targets of redox signals among photorespiratory components.
Collapse
Affiliation(s)
- I Voss
- Lehrstuhl Pflanzenphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| | | | | | | |
Collapse
|
19
|
Conde A, Chaves MM, Gerós H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. PLANT & CELL PHYSIOLOGY 2011; 52:1583-602. [PMID: 21828102 DOI: 10.1093/pcp/pcr107] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants are generally well adapted to a wide range of environmental conditions. Even though they have notably prospered in our planet, stressful conditions such as salinity, drought and cold or heat, which are increasingly being observed worldwide in the context of the ongoing climate changes, limit their growth and productivity. Behind the remarkable ability of plants to cope with these stresses and still thrive, sophisticated and efficient mechanisms to re-establish and maintain ion and cellular homeostasis are involved. Among the plant arsenal to maintain homeostasis are efficient stress sensing and signaling mechanisms, plant cell detoxification systems, compatible solute and osmoprotectant accumulation and a vital rearrangement of solute transport and compartmentation. The key role of solute transport systems and signaling proteins in cellular homeostasis is addressed in the present work. The full understanding of the plant cell complex defense mechanisms under stress may allow for the engineering of more tolerant plants or the optimization of cultivation practices to improve yield and productivity, which is crucial at the present time as food resources are progressively scarce.
Collapse
Affiliation(s)
- Artur Conde
- Centro de Investigacão e de Tecnologias Agro-Ambientais e Biológicas, Portugal
| | | | | |
Collapse
|
20
|
Kim YJ, Lee JH, Lee OR, Shim JS, Jung SK, Son NR, Kim JH, Kim SY, Yang DC. Isolation and Characterization of a Type II Peroxiredoxin Gene from Panax ginseng C. A. Meyer. J Ginseng Res 2010. [DOI: 10.5142/jgr.2010.34.4.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Huang X, Li Y, Zhang X, Zuo J, Yang S. The Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death. THE NEW PHYTOLOGIST 2010; 187:301-312. [PMID: 20456049 DOI: 10.1111/j.1469-8137.2010.03275.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In higher plants, the crosstalk between cold stress responses and reactive oxygen species (ROS) signaling is not well understood. *Two chilling-sensitive mutants, chs4-1 and chs4-3, were characterized genetically and molecularly. *The CHS4 gene, identified by map-based cloning, was found to be identical to lesion simulating disease resistance 1 (LSD1). We therefore renamed these two alleles lsd1-3 and lsd1-4, respectively. These two mutants exhibited an extensive cell death phenotype under cold stress conditions. Consistently, lsd1-3 plants exposed to cold showed up-regulation of the PR1 and PR2 genes, and increased accumulation of salicylic acid. These results indicate that low temperature is another trigger of cell death in lsd1 mutants. Furthermore, lsd1-3 plants accumulated higher concentrations of H(2)O(2) and total glutathione under cold conditions than wild-type plants. Genetic analysis revealed that PAD4 and EDS1, two key signaling regulators mediating resistance responses, are required for the chilling-sensitive phenotype of lsd1-3. *These findings reveal a role of LSD1 in regulating cell death trigged by cold stress and a link between cold stress responses and ROS-associated signaling.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yansha Li
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Einset J, Connolly EL. Glycine betaine enhances extracellular processes blocking ROS signaling during stress. PLANT SIGNALING & BEHAVIOR 2009; 4:197-9. [PMID: 19721747 PMCID: PMC2652526 DOI: 10.4161/psb.4.3.7725] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 12/30/2008] [Indexed: 05/03/2023]
Abstract
It has now been demonstrated that treatment of Arabidopsis thaliana plants with glycine betaine (GB) improves tolerance to chilling stress by regulating gene expression. This finding provides the opportunity to identify new stress determinants using gene expression profiling with microarrays followed by functional confirmation of the involvement of candidate genes via mutant studies. The first gene identified by this approach was the gene for RabA4c GTPase (At5g47960), which is expressed in roots and is involved in vesicle trafficking from the Golgi Apparatus to the plasma membrane. Recently, we have identified the FRO2 ferric reductase (At1g01580) which is localized on the plasma membrane, as another component of the GB-regulated system and suggested that enhanced production of reductant in the cell wall also plays a role in chilling tolerance. This addendum article focuses on the concept that extracellular processes may play a pivotal role in stress tolerance. A candidate gene list is presented for GB-upregulated genes in Arabidopsis roots and a model is proposed incorporating candidate genes with potential roles in relation to reactive oxygen species (ROS) signaling and chilling stress.
Collapse
Affiliation(s)
- John Einset
- Norwegian University of Life Sciences, Aas, Norway.
| | | |
Collapse
|
23
|
Einset J, Winge P, Bones AM, Connolly EL. The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots. PHYSIOLOGIA PLANTARUM 2008; 134:334-41. [PMID: 18513375 DOI: 10.1111/j.1399-3054.2008.01141.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
FRO2 (At1g01580) codes for an NADPH-dependent ferric reductase in plasma membranes of root epidermal cells with a demonstrated role in iron uptake by plants. Ferric reductase activity has been shown to be the rate-limiting step for iron uptake in strategy I plants like Arabidopsis and in rice, but it has been unclear whether FRO genes have other physiological functions. We hypothesized that FRO2 was involved in chilling stress tolerance because its expression was upregulated by treatment of plants with glycine betaine (GB), a chemical that prevents reactive oxygen species (ROS) signaling in chilling stress. This idea was confirmed by showing that the FRO2 null mutant frd1-1 failed to respond to GB in chilling assays either in relation to root growth recovery or inhibition of ROS accumulation. Measurements of ferric reductase activity in wild-type plants treated with GB before chilling showed no significant GB effect compared with controls. In addition, 35S-FRO2 transgenics with elevated mRNA levels did not have improved chilling tolerance. However, ferric reductase activity in wild-type plants or 35S-FRO2 transgenics pretreated with GB was several-fold higher after chilling compared with non-pretreated controls. These experiments identify a new physiological function for FRO2, i.e. blocking ROS accumulation during chilling. They also suggest that GB has a major effect on FRO2 activity posttranscriptionally in the cold.
Collapse
Affiliation(s)
- John Einset
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway.
| | | | | | | |
Collapse
|