1
|
Li P, Ma X, Wang J, Yao L, Li B, Meng Y, Si E, Yang K, Shang X, Zhang X, Wang H. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Low Phosphorus Tolerance in Wheat Seedling. Int J Mol Sci 2023; 24:14840. [PMID: 37834288 PMCID: PMC10573437 DOI: 10.3390/ijms241914840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Low phosphorus (LP) stress leads to a significant reduction in wheat yield, primarily in the reduction of biomass, the number of tillers and spike grains, the delay in heading and flowering, and the inhibition of starch synthesis and grouting. However, the differences in regulatory pathway responses to low phosphorus stress among different wheat genotypes are still largely unknown. In this study, metabolome and transcriptome analyses of G28 (LP-tolerant) and L143 (LP-sensitive) wheat varieties after 72 h of normal phosphorus (CK) and LP stress were performed. A total of 181 and 163 differentially accumulated metabolites (DAMs) were detected for G28CK vs. G28LP and L143CK vs. L143LP, respectively. Notably, the expression of pilocarpine (C07474) in G28CK vs. G28LP was significantly downregulated 4.77-fold, while the expression of neochlorogenic acid (C17147) in L143CK vs. L143LP was significantly upregulated 2.34-fold. A total of 4023 differentially expressed genes (DEGs) were acquired between G28 and L143, of which 1120 DEGs were considered as the core DEGs of LP tolerance of wheat after LP treatment. The integration of metabolomics and transcriptomic data further revealed that the LP tolerance of wheat was closely related to 15 metabolites and 18 key genes in the sugar and amino acid metabolism pathway. The oxidative phosphorylation pathway was enriched to four ATPases, two cytochrome c reductase genes, and fumaric acid under LP treatment. Moreover, PHT1;1, TFs (ARFA, WRKY40, MYB4, MYB85), and IAA20 genes were related to the Pi starvation stress of wheat roots. Therefore, the differences in LP tolerance of different wheat varieties were related to energy metabolism, amino acid metabolism, phytohormones, and PHT proteins, and precisely regulated by the levels of various molecular pathways to adapt to Pi starvation stress. Taken together, this study may help to reveal the complex regulatory process of wheat adaptation to Pi starvation and provide new genetic clues for further study on improving plant Pi utilization efficiency.
Collapse
Affiliation(s)
- Pengcheng Li
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Juncheng Wang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ke Yang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xueyong Zhang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
| | - Huajun Wang
- State Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, 730070, China; (P.L.); (X.M.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Zhao Y, Huang S, Wei L, Li M, Cai T, Ma X, Shuai P. ClNAC100 Is a NAC Transcription Factor of Chinese Fir in Response to Phosphate Starvation. Int J Mol Sci 2023; 24:10486. [PMID: 37445664 DOI: 10.3390/ijms241310486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Phosphate (Pi) deficiency is one of the most limiting factors for Chinese fir growth and production. Moreover, continuous cultivation of Chinese fir for multiple generations led to the reduction of soil nutrients, which hindered the yield of Chinese fir in southern China. Although NAC (NAM, ATAF, and CUC) transcription factors (TFs) play critical roles in plant development and abiotic stress resistance, it is still unclear how they regulate the response of Chinese fir to phosphate (Pi) starvation. Based on Pi-deficient transcriptome data of Chinses fir root, we identified a NAC transcription factor with increased expression under Pi deficiency, which was obtained by PCR and named ClNAC100. RT-qPCR confirmed that the expression of ClNAC100 in the root of Chinese fir was induced by phosphate deficiency and showed a dynamic change with time. It was positively regulated by ABA and negatively regulated by JA, and ClNAC100 was highly expressed in the roots and leaves of Chinese fir. Transcriptional activation assay confirmed that ClNAC100 was a transcriptional activator. The promoter of ClNAC100 was obtained by genome walking, which was predicted to contain a large number of stress, hormone, and growth-related cis-elements. Tobacco infection was used to verify the activity of the promoter, and the core promoter was located between -1519 bp and -589 bp. We identified 18 proteins bound to the ClNAC100 promoter and 5 ClNAC100 interacting proteins by yeast one-hybrid and yeast two-hybrid, respectively. We speculated that AHL and TIFY family transcription factors, calmodulin, and E3 ubiquitin ligase in these proteins might be important phosphorus-related proteins. These results provide a basis for the further study of the regulatory mechanism and pathways of ClNAC100 under Pi starvation.
Collapse
Affiliation(s)
- Yuxuan Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Shuotian Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Lihui Wei
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Meng Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Tingting Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Peng Shuai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
3
|
He K, Du J, Han X, Li H, Kui M, Zhang J, Huang Z, Fu Q, Jiang Y, Hu Y. PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. THE PLANT CELL 2023; 35:2132-2156. [PMID: 36856677 PMCID: PMC10226604 DOI: 10.1093/plcell/koad057] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 05/30/2023]
Abstract
Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional function. Furthermore, PHR1 physically associated with the basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3, and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the crucial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 functions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.
Collapse
Affiliation(s)
- Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Huiqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichong Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
4
|
Li Y, Yang X, Liu H, Wang W, Wang C, Ding G, Xu F, Wang S, Cai H, Hammond JP, White PJ, Shabala S, Yu M, Shi L. Local and systemic responses conferring acclimation of Brassica napus roots to low phosphorus conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4753-4777. [PMID: 35511123 DOI: 10.1093/jxb/erac177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.
Collapse
Affiliation(s)
- Yalin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - HaiJiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Philip J White
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas, Australia
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Kumar S, Agrawal A, Seem K, Kumar S, Vinod KK, Mohapatra T. Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage. PLANT MOLECULAR BIOLOGY 2022; 109:29-50. [PMID: 35275352 DOI: 10.1007/s11103-022-01254-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/15/2022] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is essential for cellular processes like respiration, photosynthesis, biosynthesis of membrane phospholipids, etc. To cope with P deficiency stress, plants adopt reprograming of the expression of genes involved in different metabolic/signaling pathways for survival, growth, and development. Plants use transcriptional, post-transcriptional, and/or post-translational machinery to achieve P homeostasis. Several transcription factors (TFs), miRNAs, and P transporters play important roles in P deficiency tolerance; however, the underlying mechanisms responsible for P deficiency tolerance remain poorly understood. Studies on P starvation/deficiency responses in plants at early (seedling) stage of growth have been reported but only a few of them focused on molecular responses of the plant at advanced (tillering or reproductive) stage of growth. To decipher the strategies adopted by rice at tillering stage under P deficiency stress, a pair of contrasting genotypes [Pusa-44 (a high-yielding, P deficiency sensitive cultivar) and its near-isogenic line (NIL-23, P deficiency tolerant) for Pup1 QTL] was used for morphophysiological, biochemical, and molecular analyses. Comparative analyses of shoot and root tissues from 45-day-old plants grown hydroponically under P sufficient (16 ppm) or P deficient (4 ppm) medium confirmed some of the known morphophysiological responses. Moreover, RNA-seq analysis revealed the important roles of phosphate transporters, TFs, auxin-responsive proteins, modulation in the cell wall, fatty acid metabolism, and chromatin architecture/epigenetic modifications in providing P deficiency tolerance to NIL-23, which were brought in due to the introgression of the Pup1 QTL in Pusa-44. This study provides insights into the molecular functions of Pup1 for P deficiency tolerance, which might be utilized to improve P-use efficiency of rice for better productivity in P deficient soils. KEY MESSAGE: Introgression of Pup1 QTL in high-yielding rice cultivar modulates mainly phosphate transporters, TFs, auxin-responsive proteins, cell wall structure, fatty acid metabolism, and chromatin architecture/epigenetic modifications at tillering stage of growth under phosphorus deficiency stress.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Anuradha Agrawal
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - K K Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
6
|
López-Ruiz BA, Zluhan-Martínez E, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells 2020; 9:E2576. [PMID: 33271980 PMCID: PMC7759812 DOI: 10.3390/cells9122576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions to achieve development, is still a matter of investigation and hormones play fundamental roles. Hormones are small molecules essential for plant growth and their function is modulated in response to stress environmental conditions and internal cues to adjust plant development. This review was motivated by the need to explore how Arabidopsis thaliana primary root differentially sense and transduce external conditions to modify its development and how hormone-mediated pathways contribute to achieve it. To accomplish this, we discuss available data of primary root growth phenotype under several hormone loss or gain of function mutants or exogenous application of compounds that affect hormone concentration in several abiotic stress conditions. This review shows how different hormones could promote or inhibit primary root development in A. thaliana depending on their growth in several environmental conditions. Interestingly, the only hormone that always acts as a promoter of primary root development is gibberellins.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
7
|
Huang G, Zhang D. The Plasticity of Root Systems in Response to External Phosphate. Int J Mol Sci 2020; 21:E5955. [PMID: 32824996 PMCID: PMC7503333 DOI: 10.3390/ijms21175955] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphate is an essential macro-element for plant growth accumulated in the topsoil. The improvement of phosphate uptake efficiency via manually manipulating root system architecture is of vital agronomic importance. This review discusses the molecular mechanisms of root patterning in response to external phosphate availability, which could be applied on the alleviation of phosphate-starvation stress. During the long time evolution, plants have formed sophisticated mechanisms to adapt to environmental phosphate conditions. In terms of root systems, plants would adjust their root system architecture via the regulation of the length of primary root, the length/density of lateral root and root hair and crown root growth angle to cope with different phosphate conditions. Finally, plants develop shallow or deep root system in low or high phosphate conditions, respectively. The plasticity of root system architecture responds to the local phosphate concentrations and this response was regulated by actin filaments, post-translational modification and phytohormones such as auxin, ethylene and cytokinin. This review summarizes the recent progress of adaptive response to external phosphate with focus on integrated physiological, cellular and molecular signaling transduction in rice and Arabidopsis.
Collapse
Affiliation(s)
- Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- School of Agriculture, University of Adelaide-SJTU Joint Centre for Agriculture and Health, Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, South Australia
| |
Collapse
|
8
|
Waidmann S, Sarkel E, Kleine-Vehn J. Same same, but different: growth responses of primary and lateral roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2397-2411. [PMID: 31956903 PMCID: PMC7178446 DOI: 10.1093/jxb/eraa027] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/15/2020] [Indexed: 05/20/2023]
Abstract
The root system architecture describes the shape and spatial arrangement of roots within the soil. Its spatial distribution depends on growth and branching rates as well as directional organ growth. The embryonic primary root gives rise to lateral (secondary) roots, and the ratio of both root types changes over the life span of a plant. Most studies have focused on the growth of primary roots and the development of lateral root primordia. Comparably less is known about the growth regulation of secondary root organs. Here, we review similarities and differences between primary and lateral root organ growth, and emphasize particularly how external stimuli and internal signals differentially integrate root system growth.
Collapse
Affiliation(s)
- Sascha Waidmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Elizabeth Sarkel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
9
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
10
|
Lee HY, Chen Z, Zhang C, Yoon GM. Editing of the OsACS locus alters phosphate deficiency-induced adaptive responses in rice seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1927-1940. [PMID: 30810167 PMCID: PMC6436150 DOI: 10.1093/jxb/erz074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) deficiency severely influences the growth and reproduction of plants. To cope with Pi deficiency, plants initiate morphological and biochemical adaptive responses upon sensing low Pi in the soil, and the plant hormone ethylene plays a crucial role during this process. However, how regulation of ethylene biosynthesis influences the Pi-induced adaptive responses remains unclear. Here, we determine the roles of rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), the rate-limiting enzymes in ethylene biosynthesis, in response to Pi deficiency. Through analysis of tissue-specific expression of OsACS in response to Pi deficiency and OsACS mutants generated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] genome editing, we found that two members of the OsACS family, i.e. OsACS1 and OsACS2, are involved but differed in their importance in controlling the remodeling of root system architecture, transcriptional regulation of Pi starvation-induced genes, and cellular phosphorus homeostasis. Interestingly, in contrast to the known inhibitory role of ethylene on root elongation, both OsACS mutants, especially OsACS1, almost fail to promote lateral root growth in response to Pi deficiency, demonstrating a stimulatory role for ethylene in lateral root development under Pi-deficient conditions. Together, this study provides new insights into the roles of ethylene in Pi deficiency response in rice seedlings and the isoform-specific function of OsACS genes in this process.
Collapse
Affiliation(s)
- Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Cankui Zhang
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
Du H, Li X, Ning L, Qin R, Du Q, Wang Q, Song H, Huang F, Wang H, Yu D. RNA-Seq analysis reveals transcript diversity and active genes after common cutworm (Spodoptera litura Fabricius) attack in resistant and susceptible wild soybean lines. BMC Genomics 2019; 20:237. [PMID: 30902045 PMCID: PMC6431011 DOI: 10.1186/s12864-019-5599-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/12/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Common cutworm (CCW) is highly responsible for destabilizing soybean productivity. Wild soybean is a resource used by breeders to discover elite defensive genes. RESULTS The transcriptomes of two wild accessions (W11 and W99) with different resistance to CCW were analyzed at early- and late-induction time points. After induction, the susceptible accession W11 differentially expressed 1268 and 508 genes at the early and late time points, respectively. Compared with W11, the resistant accession W99 differentially expressed 1270 genes at the early time point and many more genes (2308) at the late time point. In total, 3836 non-redundant genes were identified in both lines. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the differentially expressed genes (DEGs) in W99 at the late time point were mostly associated with specific processes and pathways. Among the non-redundant genes, 146 genes were commonly up-regulated in the treatment condition compared with the control condition at the early- and late-induction time points in both accessions used in this experiment. Approximately 40% of the common DEGs were related to secondary metabolism, disease resistance, and signal transduction based on their putative function. Excluding the common DEGs, W99 expressed more unique DEGs than W11. Further analysis of the 3836 DEGs revealed that the induction of CCW not only up-regulated defense-related genes, including 37 jasmonic acid (JA)-related genes, 171 plant-pathogen-related genes, and 17 genes encoding protease inhibitors, but also down-regulated growth-related genes, including 35 photosynthesis-related genes, 48 nutrition metabolism genes, and 28 auxin metabolism genes. Therefore, representative defense-related and growth-related genes were chosen for binding site prediction via co-expression of transcription factors (TFs) and spatial expression pattern analyses. In total, 53 binding sites of 28 TFs were identified based on 3 defense-related genes and 3 growth-related genes. Phosphate transporter PT1, which is a representative growth-related gene, was transformed into soybean, and the transgenic soybean plants were susceptible to CCW. CONCLUSIONS In summary, we described transcriptome reprograming after herbivore induction in wild soybean, identified the susceptibility of growth-related genes, and provided new resources for the breeding of herbivore-resistant cultivated soybeans.
Collapse
Affiliation(s)
- Haiping Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lihua Ning
- Jiangsu Academy of Agricultural Sciences, Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Nanjing, 210014 China
| | - Rui Qin
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qing Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haina Song
- College of Chemistry and Chemical Engineering, Key Laboratory of Ecological Restoration in Hilly Area, PingDingshan University, Pingdingshan, 467000 China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
12
|
iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency. J Proteomics 2018; 184:39-53. [PMID: 29920325 DOI: 10.1016/j.jprot.2018.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 01/18/2023]
Abstract
Phosphate (Pi) deficiency significantly limits plant growth in natural and agricultural systems. Accumulation of anthocyanins in shoots is a common response of Arabidopsis thaliana to Pi deficiency. To elucidate the mechanisms underlying Pi deficiency-induced anthocyanin accumulation, we employed a proteomic approach based on isobaric tags for relative and absolute quantification (iTRAQ) to investigate protein expression profiles of Arabidopsis thaliana seedlings subjected to Pi deficiency for 7 days. In total, 5,106 proteins were identified, of which 156 displayed significant changes in abundance upon Pi deficiency. Bioinformatics analysis indicated that flavonoid biosynthesis was the most significantly elevated metabolic process under Pi deficiency. We further examined the potential role of the flavonoid biosynthetic pathway using a dihydroflavonol 4-reductase (DFR) mutant (tt3) and quantitative RT-PCR (qRT-PCR) analysis, and found that the tt3 mutant was deprived of transcriptional up-regulation of three genes related to anthocyanin biosynthesis, modification and transport under Pi deficiency. These results showed that Pi deficiency probably enhances the anthocyanin accumulation by promoting the flavonoid biosynthesis. The exact functions of these proteins remain to be examined. Nevertheless, our study increases the understanding of the mechanisms implicated in the anthocyanin accumulation induced by Pi deficiency and adaptive responses of plants to Pi starvation.
Collapse
|
13
|
Wu W, Lin Y, Liu P, Chen Q, Tian J, Liang C. Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:603-617. [PMID: 29329437 PMCID: PMC5853315 DOI: 10.1093/jxb/erx441] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/13/2017] [Indexed: 05/20/2023]
Abstract
Plant root cell walls are dynamic systems that serve as the first plant compartment responsive to soil conditions, such as phosphorus (P) deficiency. To date, evidence for the regulation of root cell wall proteins (CWPs) by P deficiency remains sparse. In order to gain a better understanding of the roles played by CWPs in the roots of soybean (Glycine max) in adaptation to P deficiency, we conducted an iTRAQ (isobaric tag for relative and absolute quantitation) proteomic analysis. A total of 53 CWPs with differential accumulation in response to P deficiency were identified. Subsequent qRT-PCR analysis correlated the accumulation of 21 of the 27 up-regulated proteins, and eight of the 26 down-regulated proteins with corresponding gene expression patterns in response to P deficiency. One up-regulated CWP, purple acid phosphatase 1-like (GmPAP1-like), was functionally characterized. Phaseolus vulgaris transgenic hairy roots overexpressing GmPAP1-like displayed an increase in root-associated acid phosphatase activity. In addition, relative growth and P content were significantly enhanced in GmPAP1-like overexpressing lines compared to control lines when deoxy-ribonucleotide triphosphate (dNTP) was applied as the sole external P source. Taken together, the results suggest that the modulation of CWPs may regulate complex changes in the root system in response to P deficiency, and that the cell wall-localized GmPAP1-like protein is involved in extracellular dNTP utilization in soybean.
Collapse
Affiliation(s)
- Weiwei Wu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Pandao Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Hainan, P. R. China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
14
|
Zhao P, Wang L, Yin H. Transcriptional responses to phosphate starvation in Brachypodium distachyon roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 122:113-120. [PMID: 29216498 DOI: 10.1016/j.plaphy.2017.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Brachypodium distachyon is a model plant that has recently emerged in grass research. Although the growth and photochemical efficiency of this species respond strongly to phosphate (Pi) availability, its Pi starvation response mechanism, which controls the Pi homeostasis, remains largely unknown. This study presents the transcriptomic response profiles of Pi-deficient roots at growth stages during which the plants were starved but obvious growth defects were absent. The results identify several phosphate transporters (i.e., PHO1), purple acid phosphatases, and SYG1/PHO81/XPR1 (SPX) domain-containing proteins out of a total of 1740 differentially expressed genes (DEGs). In particular, the transcription factor ethylene response factor (ERF), basic helix-loop-helix (bHLH), and WRKY family genes were the three most abundant DEG groups and the latter was significantly enriched. Comparative transcriptome analysis of Brachypodium versus Arabidopsis and rice revealed the presence of several common components in response to Pi fluctuations. Most significantly, jasmonic acid (JA) signaling-related genes were overrepresented in gene ontology (GO) enrichment tests. The presence of a possible link between low Pi response, inositol polyphosphates, and JA signaling is therefore discussed.
Collapse
Affiliation(s)
- Pengshan Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Lirong Wang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
15
|
Grillet L, Schmidt W. The multiple facets of root iron reduction. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5021-5027. [PMID: 29036459 DOI: 10.1093/jxb/erx320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The biological significance of iron (Fe) is based on its propensity to oscillate between the ferric and ferrous forms, a transition that also affects its phyto-availability in soils. With the exception of grasses, Fe3+ is unavailable to plants. Most angiosperms employ a reduction-based Fe uptake mechanism, which relies on enzymatic reduction of ferric iron as an obligatory, rate-limiting step prior to uptake. This system functions optimally in acidic soils. Calcicole plants are, however, exposed to environments that are alkaline and/or have suboptimal availability of phosphorous, conditions under which the enzymatic reduction mechanism ceases to work effectively. We propose that auxiliary, non-enzymatic Fe reduction can be of critical importance for conferring fitness to plants thriving in alkaline soils with low bioavailability of Fe and/or phosphorus.
Collapse
Affiliation(s)
- Louis Grillet
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Phosphate Starvation-Dependent Iron Mobilization Induces CLE14 Expression to Trigger Root Meristem Differentiation through CLV2/PEPR2 Signaling. Dev Cell 2017; 41:555-570.e3. [DOI: 10.1016/j.devcel.2017.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
|
17
|
Wang G, Ma Y, Zhang P, He X, Zhang Z, Qu M, Ding Y, Zhang J, Xie C, Luo W, Zhang J, Chu S, Chai Z, Zhang Z. Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:392-399. [PMID: 28237306 DOI: 10.1016/j.envpol.2017.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Fate and toxicity of manufactured nanoparticles (NPs) in the living organisms and the environment are highly related to their transformation. In the present study, the effect of phosphate on the phytotoxicity and transformation of CeO2 NPs was investigated in an agar medium using head lettuce plants that are sensitive to Ce3+ ions. Plants were treated by CeO2 NPs with or without phosphate for 10 days. Results suggest that the treatments of P deficiency (P(-)) and CeO2 NPs (P(+)&Ce) could separately induce significant inhibition on the growth of lettuce seedlings and cause oxidative stress, but the inhibition was the most serious when the two conditions were combined (P(-)&Ce). In the absence of phosphate, more CeO2 NPs were transformed to Ce(III) in the roots and more Ce3+ ions were translocated to the shoots, which induced higher toxicity to head lettuce. Phosphates could alleviate the phytotoxic effect of CeO2 NPs through the precipitation of dissociated Ce3+ ions. Considering the wide existence of phosphate in the environment, phosphate-related transformation may be a critical factor in evaluating the toxicity and fate of many other metal-based NPs.
Collapse
Affiliation(s)
- Guohua Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohui Zhang
- School of Public Health, University of South China, Hunan, 421001, China
| | - Meihua Qu
- Weifang Medical University, Shandong, 261042, China
| | - Yayun Ding
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci U S A 2017; 114:E3563-E3572. [PMID: 28400510 DOI: 10.1073/pnas.1701952114] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low phosphate (Pi) availability constrains plant development and seed production in both natural and agricultural ecosystems. When Pi is scarce, modifications of root system architecture (RSA) enhance the soil exploration ability of the plant and lead to an increase in Pi uptake. In Arabidopsis, an iron-dependent mechanism reprograms primary root growth in response to low Pi availability. This program is activated upon contact of the root tip with low-Pi media and induces premature cell differentiation and the arrest of mitotic activity in the root apical meristem, resulting in a short-root phenotype. However, the mechanisms that regulate the primary root response to Pi-limiting conditions remain largely unknown. Here we report on the isolation and characterization of two low-Pi insensitive mutants (lpi5 and lpi6), which have a long-root phenotype when grown in low-Pi media. Cellular, genomic, and transcriptomic analysis of low-Pi insensitive mutants revealed that the genes previously shown to underlie Arabidopsis Al tolerance via root malate exudation, known as SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) and ALUMINUM ACTIVATED MALATE TRANSPORTER 1 (ALMT1), represent a critical checkpoint in the root developmental response to Pi starvation in Arabidopsis thaliana Our results also show that exogenous malate can rescue the long-root phenotype of lpi5 and lpi6 Malate exudation is required for the accumulation of Fe in the apoplast of meristematic cells, triggering the differentiation of meristematic cells in response to Pi deprivation.
Collapse
|
19
|
Roldan M, Islam A, Dinh PTY, Leung S, McManus MT. Phosphate availability regulates ethylene biosynthesis gene expression and protein accumulation in white clover (Trifolium repens L.) roots. Biosci Rep 2016; 36:e00411. [PMID: 27737923 PMCID: PMC5293567 DOI: 10.1042/bsr20160148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/23/2023] Open
Abstract
The expression and accumulation of members of the 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO) gene families was examined in white clover roots grown in either Pi (phosphate) sufficient or Pi-deprived defined media. The accumulation of one ACO isoform, TR-ACO1, was positively influenced after only 1 h of exposure to low Pi, and this was maintained over a 7-day time-course. Up-regulation of TR-ACS1, TR-ACS2 and TR-ACS3 transcript abundance was also observed within 1 h of exposure to low Pi in different tissue regions of the roots, followed by a second increase in abundance of TR-ACS2 after 5-7 days of exposure. An increase in transcript abundance of TR-ACO1 and TR-ACO3, but not TR-ACO2, was observed after 1 h of exposure to low Pi, with a second increase in TR-ACO1 transcripts occurring after 2-5 days. These initial increases of the TR-ACS and TR-ACO transcript abundance occurred before the induction of Trifolium repens PHOSPHATE TRANSPORTER 1 (TR-PT1), and the addition of sodium phosphite did not up-regulate TR-ACS1 expression over 24 h. In situ hybridization revealed some overlap of TR-ACO mRNA accumulation, with TR-ACO1 and TR-ACO2 in the root tip regions, and TR-ACO1 and TR-ACO3 mRNA predominantly in the lateral root primordia. TR-ACO1p-driven GFP expression showed that activation of the TR-ACO1 promoter was initiated within 24 h of exposure to low Pi (as determined by GFP protein accumulation). These results suggest that the regulation of ethylene biosynthesis in white clover roots is biphasic in response to low Pi supply.
Collapse
Affiliation(s)
- Marissa Roldan
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Afsana Islam
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Phuong T Y Dinh
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Susanna Leung
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| |
Collapse
|
20
|
Yu FW, Zhu XF, Li GJ, Kronzucker HJ, Shi WM. The Chloroplast Protease AMOS1/EGY1 Affects Phosphate Homeostasis under Phosphate Stress. PLANT PHYSIOLOGY 2016; 172:1200-1208. [PMID: 27516532 PMCID: PMC5047092 DOI: 10.1104/pp.16.00786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/10/2016] [Indexed: 05/28/2023]
Abstract
Plastid intramembrane proteases in Arabidopsis (Arabidopsis thaliana) are involved in jasmonic acid biosynthesis, chloroplast development, and flower morphology. Here, we show that Ammonium-Overly-Sensitive1 (AMOS1), a member of the family of plastid intramembrane proteases, plays an important role in the maintenance of phosphate (P) homeostasis under P stress. Loss of function of AMOS1 revealed a striking resistance to P starvation. amos1 plants displayed retarded root growth and reduced P accumulation in the root compared to wild type (Col-0) under P-replete control conditions, but remained largely unaffected by P starvation, displaying comparable P accumulation and root and shoot growth under P-deficient conditions. Further analysis revealed that, under P-deficient conditions, the cell wall, especially the pectin fraction of amos1, released more P than that of wild type, accompanied by a reduction of the abscisic acid (ABA) level and an increase in ethylene production. By using an ABA-insensitive mutant, abi4, and applying ABA and ACC exogenously, we found that ABA inhibits cell wall P remobilization while ethylene facilitates P remobilization from the cell wall by increasing the pectin concentration, suggesting ABA can counteract the effect of ethylene. Furthermore, the elevated ABA level and the lower ethylene production also correlated well with the mimicked P deficiency in amos1 Thus, our study uncovers the role of AMOS1 in the maintenance of P homeostasis through ABA-antagonized ethylene signaling.
Collapse
Affiliation(s)
- Fang Wei Yu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Guang Jie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Herbert J Kronzucker
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| | - Wei Ming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China (F.W.Y., X.F.Z., G.J.L., W.M.S.); andDepartment of Biological Sciences, University of Toronto, Toronto, Ontario, Canada M1C 1A4 (H.J.K.)
| |
Collapse
|
21
|
Hasan MM, Hasan MM, Teixeira da Silva JA, Li X. Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cell Mol Biol Lett 2016; 21:7. [PMID: 28536610 PMCID: PMC5415736 DOI: 10.1186/s11658-016-0008-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 11/18/2022] Open
Abstract
Phosphorus is a poorly bioavailable macronutrient that is essential for crop growth and yield. Overuse of phosphorus fertilizers results in low phosphorus use efficiency (PUE), has serious environmental consequences and accelerates the depletion of phosphorus mineral reserves. It has become extremely challenging to improve PUE while preserving global food supplies and maintaining environmental sustainability. Molecular and genetic analyses have revealed the primary mechanisms of phosphorus uptake and utilization and their relationships to phosphorus transporters, regulators, root architecture, metabolic adaptations, quantitative trait loci, hormonal signaling and microRNA. The ability to improve PUE requires a transition from this knowledge of molecular mechanisms and plant architecture to practical strategies. These could include: i) the use of arbuscular mycorrhizal fungal symbioses for efficient phosphorus mining and uptake; ii) intercropping with suitable crop species to achieve phosphorus activation and mobilization in the soil; and iii) tissue-specific overexpression of homologous genes with advantageous agronomic properties for higher PUE along with breeding for phosphorus-efficient varieties and introgression of key quantitative trait loci. More effort is required to further dissect the mechanisms controlling phosphorus uptake and utilization within plants and provide new insight into the means to efficiently improve PUE.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- The Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193 China
| | - Md. Mainul Hasan
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali Bangladesh
| | | | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
22
|
Zhang H, Huang L, Hong Y, Song F. BOTRYTIS-INDUCED KINASE1, a plasma membrane-localized receptor-like protein kinase, is a negative regulator of phosphate homeostasis in Arabidopsis thaliana. BMC PLANT BIOLOGY 2016; 16:152. [PMID: 27389008 PMCID: PMC4936243 DOI: 10.1186/s12870-016-0841-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/28/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plants have evolved complex coordinated regulatory networks to cope with deficiency of phosphate (Pi) in their growth environment; however, the detailed molecular mechanisms that regulate Pi sensing and signaling pathways are not fully understood yet. We report here that the involvement of Arabidopsis BIK1, a plasma membrane-localized receptor-like protein kinase that plays critical role in immunity, in Pi starvation response. RESULTS qRT-PCR analysis revealed that expression of BIK1 was induced by Pi starvation and GUS staining indicated that the BIK1 promoter activity was detected in root, stem and leaf tissues of plants grown in Pi starvation condition, demonstrating that BIK1 is responsive to Pi starvation stress. The bik1 plants accumulated higher Pi content in root and leaf tissues and exhibited altered root architecture such as shorter primary roots, longer and more root hairs and lateral roots, as compared with those in the wild type plants, when grown under Pi sufficient and deficient conditions. Increased anthocyanin content and acid phosphatase activity, reduced accumulation of reactive oxygen species and downregulated expression of Pi starvation-induced genes including PHR1, WRKY75, AT4, PHT1;2 and PHT1;4 were observed in bik1 plants grown under Pi deficient condition. Furthermore, the expression of PHO2 was downregulated while the expression of miRNA399a and miRNA399d, which target to PHO2, was upregulated in bik1 plants, compared to the wild type plants, when grown under Pi deficient condition. CONCLUSION Our results demonstrate that BIK1 is a Pi starvation-responsive gene that functions as a negative regulator of Pi homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Huijuan Zhang
- />College of Life Science, Taizhou University, Taizhou, Zhejiang 318001 People’s Republic of China
- />National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Lei Huang
- />National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Yongbo Hong
- />National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Fengming Song
- />National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
23
|
Sun L, Tian J, Zhang H, Liao H. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3655-3664. [PMID: 27190050 DOI: 10.1093/jxb/erw188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphorus (P) deficiency and aluminum (Al) toxicity often coexist and limit plant growth on acid soils. It has been well documented that both P deficiency and Al toxicity alter root growth, including inhibition of primary roots and promotion of lateral roots. This suggests that plants adapt to both stresses through a common regulation pathway. Although an expanding set of results shows that phytohormones play vital roles in controlling root responses to Pi starvation and Al toxicity, it remains largely unknown whether P and Al coordinately regulate root growth through interacting phytohormone biosynthesis and signal transduction pathways. This review provides a summary of recent results concerning the influences of P deficiency and Al toxicity on root growth through the action of phytohormones, most notably auxin and ethylene. The objective is to facilitate increasing insights into complex responses of plants to adverse factors common on acid soils, which can spur development of 'smart' cultivars with better root growth and higher yield on these globally distributed marginal soils.
Collapse
Affiliation(s)
- Lili Sun
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Zhang
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Liu P, Li B, Lin M, Chen G, Ding X, Weng Q, Chen Q. Phosphite-induced reactive oxygen species production and ethylene and ABA biosynthesis, mediate the control of Phytophthora capsici in pepper (Capsicum annuum). FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:563-574. [PMID: 32480486 DOI: 10.1071/fp16006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/15/2016] [Indexed: 06/11/2023]
Abstract
Phytophthora capsici is an oomycete pathogen with a broad host range that inflicts significant damage in vegetables. Phosphite (Phi) is used to control oomycete diseases, but the molecular mechanisms underlying Phi-induced resistance to P. capsici are unknown. Thus, Phi-inhibited mycelial growth on strain LT1534 and primed host defence were analysed. We demonstrated that Phi (>5µgmL-1) had a direct antibiotic effect on mycelial growth and zoospore production, and that mortality and DNA content were significantly reduced by pre-treatment with Phi. In addition, elevated hydrogen peroxide (H2O2) promoted callose deposition and increased the levels of soluble proteins and Capsicum annuum L. pathogenesis-related 1 (CaPR1) expression. Furthermore, Phi (1gL-1) significantly increased the transcription of the antioxidant enzyme genes, and the genes involved in ethylene (ET) and abscisic acid (ABA) biosynthesis, as well as mitogen-activated protein kinase (MAPK) cascades. However, pre-treatment with reactive oxygen species (ROS), ABA and ET biosynthesis inhibitors decreased Phi-induced resistance and reduced the expression of ABA-responsive 1 (CaABR1) and lipoxygenase 1 (CaLOX1). In addition, the decreased ROS and ABA inhibited Phi-induced expression of CaMPK17-1. We propose that Phi-induced ROS production, ET and ABA biosynthesis mediate the control of P. capsici, and that ABA functions through CaMPK17-1-mediated MAPK signalling.
Collapse
Affiliation(s)
- Peiqing Liu
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350 003, China
| | - Benjin Li
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350 003, China
| | - Ming Lin
- Fujian-Taiwan Joint Innovative Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350 002, China
| | - Guoliang Chen
- Fujian-Taiwan Joint Innovative Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350 002, China
| | - Xueling Ding
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350 003, China
| | - Qiyong Weng
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350 003, China
| | - Qinghe Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350 003, China
| |
Collapse
|
25
|
Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W. The regulation and plasticity of root hair patterning and morphogenesis. Development 2016; 143:1848-58. [DOI: 10.1242/dev.132845] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Root hairs are highly specialized cells found in the epidermis of plant roots that play a key role in providing the plant with water and mineral nutrients. Root hairs have been used as a model system for understanding both cell fate determination and the morphogenetic plasticity of cell differentiation. Indeed, many studies have shown that the fate of root epidermal cells, which differentiate into either root hair or non-hair cells, is determined by a complex interplay of intrinsic and extrinsic cues that results in a predictable but highly plastic pattern of epidermal cells that can vary in shape, size and function. Here, we review these studies and discuss recent evidence suggesting that environmental information can be integrated at multiple points in the root hair morphogenetic pathway and affects multifaceted processes at the chromatin, transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
| | | | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
26
|
Discriminative gene co-expression network analysis uncovers novel modules involved in the formation of phosphate deficiency-induced root hairs in Arabidopsis. Sci Rep 2016; 6:26820. [PMID: 27220366 PMCID: PMC4879556 DOI: 10.1038/srep26820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022] Open
Abstract
Cell fate and differentiation in the Arabidopsis root epidermis are genetically defined but remain plastic to environmental signals such as limited availability of inorganic phosphate (Pi). Root hairs of Pi-deficient plants are more frequent and longer than those of plants grown under Pi-replete conditions. To dissect genes involved in Pi deficiency-induced root hair morphogenesis, we constructed a co-expression network of Pi-responsive genes against a customized database that was assembled from experiments in which differentially expressed genes that encode proteins with validated functions in root hair development were over-represented. To further filter out less relevant genes, we combined this procedure with a search for common cis-regulatory elements in the promoters of the selected genes. In addition to well-described players and processes such as auxin signalling and modifications of primary cell walls, we discovered several novel aspects in the biology of root hairs induced by Pi deficiency, including cell cycle control, putative plastid-to-nucleus signalling, pathogen defence, reprogramming of cell wall-related carbohydrate metabolism, and chromatin remodelling. This approach allows the discovery of novel of aspects of a biological process from transcriptional profiles with high sensitivity and accuracy.
Collapse
|
27
|
Khan GA, Vogiatzaki E, Glauser G, Poirier Y. Phosphate Deficiency Induces the Jasmonate Pathway and Enhances Resistance to Insect Herbivory. PLANT PHYSIOLOGY 2016; 171:632-44. [PMID: 27016448 PMCID: PMC4854718 DOI: 10.1104/pp.16.00278] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 05/19/2023]
Abstract
During their life cycle, plants are typically confronted by simultaneous biotic and abiotic stresses. Low inorganic phosphate (Pi) is one of the most common nutrient deficiencies limiting plant growth in natural and agricultural ecosystems, while insect herbivory accounts for major losses in plant productivity and impacts ecological and evolutionary changes in plant populations. Here, we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defense against insect herbivory. Pi-deficient Arabidopsis (Arabidopsis thaliana) showed enhanced synthesis of JA and the bioactive conjugate JA-isoleucine, as well as activation of the JA signaling pathway, in both shoots and roots of wild-type plants and in shoots of the Pi-deficient mutant pho1 The kinetics of the induction of the JA signaling pathway by Pi deficiency was influenced by PHOSPHATE STARVATION RESPONSE1, the main transcription factor regulating the expression of Pi starvation-induced genes. Phenotypes of the pho1 mutant typically associated with Pi deficiency, such as high shoot anthocyanin levels and poor shoot growth, were significantly attenuated by blocking the JA biosynthesis or signaling pathway. Wounded pho1 leaves hyperaccumulated JA/JA-isoleucine in comparison with the wild type. The pho1 mutant also showed an increased resistance against the generalist herbivore Spodoptera littoralis that was attenuated in JA biosynthesis and signaling mutants. Pi deficiency also triggered increased resistance to S. littoralis in wild-type Arabidopsis as well as tomato (Solanum lycopersicum) and Nicotiana benthamiana, revealing that the link between Pi deficiency and enhanced herbivory resistance is conserved in a diversity of plants, including crops.
Collapse
Affiliation(s)
- Ghazanfar Abbas Khan
- Departof Lausanne, CH-1015 Lausanne, Switzerland (G.A.K., E.V., Y.P.); andNeuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland (G.G.)
| | - Evangelia Vogiatzaki
- Departof Lausanne, CH-1015 Lausanne, Switzerland (G.A.K., E.V., Y.P.); andNeuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland (G.G.)
| | - Gaétan Glauser
- Departof Lausanne, CH-1015 Lausanne, Switzerland (G.A.K., E.V., Y.P.); andNeuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland (G.G.)
| | - Yves Poirier
- Departof Lausanne, CH-1015 Lausanne, Switzerland (G.A.K., E.V., Y.P.); andNeuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland (G.G.)
| |
Collapse
|
28
|
Zheng H, Pan X, Deng Y, Wu H, Liu P, Li X. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Sci Rep 2016; 6:24778. [PMID: 27101793 PMCID: PMC4840450 DOI: 10.1038/srep24778] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022] Open
Abstract
The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3's function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis.
Collapse
Affiliation(s)
- Hongyan Zheng
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Xiaoying Pan
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yuxia Deng
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Huamao Wu
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| | - Pei Liu
- Department of Ecology, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
29
|
Salazar-Henao JE, Schmidt W. An Inventory of Nutrient-Responsive Genes in Arabidopsis Root Hairs. FRONTIERS IN PLANT SCIENCE 2016; 7:237. [PMID: 26973680 PMCID: PMC4771725 DOI: 10.3389/fpls.2016.00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/12/2016] [Indexed: 05/07/2023]
Abstract
Root hairs, single cell extensions of root epidermal cells that are critically involved in the acquisition of mineral nutrients, have proven to be an excellent model system for studying plant cell growth. More recently, omics-based systems biology approaches have extended the model function of root hairs toward functional genomic studies. While such studies are extremely useful to decipher the complex mechanisms underlying root hair morphogenesis, their importance for the performance and fitness of the plant puts root hairs in the spotlight of research aimed at elucidating aspects with more practical implications. Here, we mined transcriptomic and proteomic surveys to catalog genes that are preferentially expressed in root hairs and responsive to nutritional signals. We refer to this group of genes as the root hair trophomorphome. Our analysis shows that the activity of genes within the trophomorphome is regulated at both the transcriptional and post-transcriptional level with the mode of regulation being related to the function of the gene product. A core set of proteins functioning in cell wall modification and protein transport was defined as the backbone of the trophomorphome. In addition, our study shows that homeostasis of reactive oxygen species and redox regulation plays a key role in root hair trophomorphogenesis.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
- Biotechnology Center, National Chung-Hsing UniversityTaichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan UniversityTaipei, Taiwan
- *Correspondence: Wolfgang Schmidt
| |
Collapse
|
30
|
Song L, Liu D. Ethylene and plant responses to phosphate deficiency. FRONTIERS IN PLANT SCIENCE 2015; 6:796. [PMID: 26483813 PMCID: PMC4586416 DOI: 10.3389/fpls.2015.00796] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/13/2015] [Indexed: 05/20/2023]
Abstract
Phosphorus is an essential macronutrient for plant growth and development. Phosphate (Pi), the major form of phosphorus that plants take up through roots, however, is limited in most soils. To cope with Pi deficiency, plants activate an array of adaptive responses to reprioritize internal Pi use and enhance external Pi acquisition. These responses are modulated by sophisticated regulatory networks through both local and systemic signaling, but the signaling mechanisms are poorly understood. Early studies suggested that the phytohormone ethylene plays a key role in Pi deficiency-induced remodeling of root system architecture. Recently, ethylene was also shown to be involved in the regulation of other signature responses of plants to Pi deficiency. In this article, we review how researchers have used pharmacological and genetic approaches to dissect the roles of ethylene in regulating Pi deficiency-induced developmental and physiological changes. The interactions between ethylene and other signaling molecules, such as sucrose, auxin, and microRNA399, in the control of plant Pi responses are also examined. Finally, we provide a perspective for the future research in this field.
Collapse
Affiliation(s)
| | - Dong Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, BeijingChina
| |
Collapse
|
31
|
Neumann G. The Role of Ethylene in Plant Adaptations for Phosphate Acquisition in Soils - A Review. FRONTIERS IN PLANT SCIENCE 2015; 6:1224. [PMID: 26834759 PMCID: PMC4718997 DOI: 10.3389/fpls.2015.01224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/18/2015] [Indexed: 05/20/2023]
Abstract
Although a role of ethylene in the regulation of senescence and plant stress responses in general has a long history, a possible involvement in the regulation of adaptive responses to nutrient deficiencies has been mainly investigated since the last two decades. In the case of plant responses to phosphate (Pi) starvation, ethylene was identified as a modulator of adaptive responses in root growth and morphology. The molecular base of these adaptations has been elucidated in supplementation studies with ethylene precursors and antagonists, as well as analysis of mutants and transgenic plants with modified ethylene biosynthesis and responsiveness, using mainly Arabidopsis thaliana as a model plant. However, increasing evidence suggests that apart from root growth responses, ethylene may be involved in various additional plant adaptations to Pi limitation including Pi mobilization in the rhizosphere, Pi uptake and internal Pi recycling. The ethylene-mediated responses are frequently characterized by high genotypic variability and may partially share common pathways in different nutrient limitations.
Collapse
|
32
|
Singh AP, Pandey BK, Deveshwar P, Narnoliya L, Parida SK, Giri J. JAZ Repressors: Potential Involvement in Nutrients Deficiency Response in Rice and Chickpea. FRONTIERS IN PLANT SCIENCE 2015; 6:975. [PMID: 26617618 PMCID: PMC4639613 DOI: 10.3389/fpls.2015.00975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/25/2015] [Indexed: 05/20/2023]
Abstract
Jasmonates (JA) are well-known phytohormones which play important roles in plant development and defense against pathogens. Jasmonate ZIM domain (JAZ) proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behavior of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify 10 novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK) and micronutrients (Zn, Fe) deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity toward type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations.
Collapse
Affiliation(s)
- Ajit P. Singh
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Bipin K. Pandey
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Priyanka Deveshwar
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
- Department of Botany, Sri Aurobindo College, University of DelhiNew Delhi, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Jawaharlal Nehru UniversityNew Delhi, India
- *Correspondence: Jitender Giri
| |
Collapse
|
33
|
Alatorre-Cobos F, Calderón-Vázquez C, Ibarra-Laclette E, Yong-Villalobos L, Pérez-Torres CA, Oropeza-Aburto A, Méndez-Bravo A, González-Morales SI, Gutiérrez-Alanís D, Chacón-López A, Peña-Ocaña BA, Herrera-Estrella L. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions. BMC PLANT BIOLOGY 2014; 14:69. [PMID: 24649917 PMCID: PMC3999955 DOI: 10.1186/1471-2229-14-69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/13/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. RESULTS We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. CONCLUSIONS The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.
Collapse
Affiliation(s)
- Fulgencio Alatorre-Cobos
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Department of Biological and Environmental Sciences, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Carlos Calderón-Vázquez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, 81101 Guasave, Sinaloa, México
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. Carretera Antigua a Coatepec #351, Xalapa 91070, Veracruz, México
| | - Lenin Yong-Villalobos
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Claudia-Anahí Pérez-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Araceli Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Alfonso Méndez-Bravo
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C. Carretera Antigua a Coatepec #351, Xalapa 91070, Veracruz, México
| | - Sandra-Isabel González-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Dolores Gutiérrez-Alanís
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Alejandra Chacón-López
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
- Current address: Instituto Tecnológico de Tepic, Laboratorio de Investigación Integral en Alimentos, División de Estudios de Posgrado, 63175 Tepic, Nayarit, México
| | - Betsy-Anaid Peña-Ocaña
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)/Unidad de Genómica Avanzada (UGA), Centro de Investigación y Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, México
| |
Collapse
|
34
|
Zhang Z, Liao H, Lucas WJ. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:192-220. [PMID: 24417933 DOI: 10.1111/jipb.12163] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.
Collapse
Affiliation(s)
- Zhaoliang Zhang
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, 95616, USA
| | | | | |
Collapse
|
35
|
Abstract
The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Institute of Genetics, Faculty of Biology, University of Munich, 82152 Martinsried, Germany; ,
| | | |
Collapse
|
36
|
Rossez Y, Holmes A, Wolfson EB, Gally DL, Mahajan A, Pedersen HL, Willats WG, Toth IK, Holden NJ. Flagella interact with ionic plant lipids to mediate adherence of pathogenicEscherichia colito fresh produce plants. Environ Microbiol 2013; 16:2181-95. [DOI: 10.1111/1462-2920.12315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Yannick Rossez
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| | - Ashleigh Holmes
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| | - Eliza B. Wolfson
- The Roslin Institute Division of Infection and Immunity; University of Edinburgh, R(D)SVS; Edinburgh EH25 9RG UK
| | - David L. Gally
- The Roslin Institute Division of Infection and Immunity; University of Edinburgh, R(D)SVS; Edinburgh EH25 9RG UK
| | - Arvind Mahajan
- The Roslin Institute Division of Infection and Immunity; University of Edinburgh, R(D)SVS; Edinburgh EH25 9RG UK
| | | | - William G.T. Willats
- Department of Plant Biology and Biotechnology; University of Copenhagen; Denmark
| | - Ian K. Toth
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| | - Nicola J. Holden
- Cellular and Molecular Sciences; James Hutton Institute; Dundee Scotland UK
| |
Collapse
|
37
|
Identification of Differential Expressed Proteins Responding to Phosphorus Starvation Based on Proteomic Analysis in Roots of Wheat ( Triticum aestivum L.). ZUOWU XUEBAO 2013. [DOI: 10.3724/sp.j.1006.2012.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. Responses of root architecture development to low phosphorus availability: a review. ANNALS OF BOTANY 2013; 112:391-408. [PMID: 23267006 PMCID: PMC3698383 DOI: 10.1093/aob/mcs285] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/14/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Phosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources. SCOPE This review discusses the significance of root architecture development in response to low P availability and its beneficial effects on alleviation of P stress. It also focuses on recent progress in unravelling cellular, physiological and molecular mechanisms in root developmental adaptation to P starvation. The progress in a more detailed understanding of these mechanisms might be used for developing strategies that build upon the observed explorative behaviour of plant roots. CONCLUSIONS The role of root architecture in alleviation of P stress is well documented. However, this paper describes how plants adjust their root architecture to low-P conditions through inhibition of primary root growth, promotion of lateral root growth, enhancement of root hair development and cluster root formation, which all promote P acquisition by plants. The mechanisms for activating alterations in root architecture in response to P deprivation depend on changes in the localized P concentration, and transport of or sensitivity to growth regulators such as sugars, auxins, ethylene, cytokinins, nitric oxide (NO), reactive oxygen species (ROS) and abscisic acid (ABA). In the process, many genes are activated, which in turn trigger changes in molecular, physiological and cellular processes. As a result, root architecture is modified, allowing plants to adapt effectively to the low-P environment. This review provides a framework for understanding how P deficiency alters root architecture, with a focus on integrated physiological and molecular signalling.
Collapse
Affiliation(s)
- Yao Fang Niu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ru Shan Chai
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gu Lei Jin
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huan Wang
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Xian Tang
- Centre for AgriBioscience/Department of Agricultural Sciences, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia
| | - Yong Song Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
González-Mendoza V, Zurita-Silva A, Sánchez-Calderón L, Sánchez-Sandoval ME, Oropeza-Aburto A, Gutiérrez-Alanís D, Alatorre-Cobos F, Herrera-Estrella L. APSR1, a novel gene required for meristem maintenance, is negatively regulated by low phosphate availability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:2-12. [PMID: 23498857 DOI: 10.1016/j.plantsci.2012.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/18/2012] [Accepted: 12/23/2012] [Indexed: 05/08/2023]
Abstract
Proper root growth is crucial for anchorage, exploration, and exploitation of the soil substrate. Root growth is highly sensitive to a variety of environmental cues, among them water and nutrient availability have a great impact on root development. Phosphorus (P) availability is one of the most limiting nutrients that affect plant growth and development under natural and agricultural environments. Root growth in the direction of the long axis proceeds from the root tip and requires the coordinated activities of cell proliferation, cell elongation and cell differentiation. Here we report a novel gene, APSR1 (Altered Phosphate Starvation Response1), involved in root meristem maintenance. The loss of function mutant apsr1-1 showed a reduction in primary root length and root apical meristem size, short differentiated epidermal cells and long root hairs. Expression of APSR1 gene decreases in response to phosphate starvation and apsr1-1 did not show the typical progressive decrease of undifferentiated cells at root tip when grown under P limiting conditions. Interestingly, APSR1 expression pattern overlaps with root zones of auxin accumulation. Furthermore, apsr1-1 showed a clear decrease in the level of the auxin transporter PIN7. These data suggest that APSR1 is required for the coordination of cell processes necessary for correct root growth in response to phosphate starvation conceivably by direct or indirect modulation of PIN7. We also propose, based on its nuclear localization and structure, that APSR1 may potentially be a member of a novel group of transcription factors.
Collapse
Affiliation(s)
- Víctor González-Mendoza
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y Estudios Avanzados, Campus Guanajuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato, Guanajuato, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani KI, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, Abe K, Miyao A, Hirochika H, Hattori T, Takeda S. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. THE PLANT CELL 2013; 25:1709-25. [PMID: 23715469 PMCID: PMC3694701 DOI: 10.1105/tpc.113.112052] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of land plants. However, the molecular basis underlying the regulation of root growth under stressful conditions is poorly understood. Here, we report that a rice nuclear factor, RICE SALT SENSITIVE3 (RSS3), regulates root cell elongation during adaptation to salinity. Loss of function of RSS3 only moderately inhibits cell elongation under normal conditions, but it provokes spontaneous root cell swelling, accompanied by severe root growth inhibition, under saline conditions. RSS3 is preferentially expressed in the root tip and forms a ternary complex with class-C basic helix-loop-helix (bHLH) transcription factors and JASMONATE ZIM-DOMAIN proteins, the latter of which are the key regulators of jasmonate (JA) signaling. The mutated protein arising from the rss3 allele fails to interact with bHLH factors, and the expression of a significant portion of JA-responsive genes is upregulated in rss3. These results, together with the known roles of JAs in root growth regulation, suggest that RSS3 modulates the expression of JA-responsive genes and plays a crucial role in a mechanism that sustains root cell elongation at appropriate rates under stressful conditions.
Collapse
Affiliation(s)
- Yosuke Toda
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Maiko Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Daisuke Ogawa
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kyo Kurata
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yoshiki Habu
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Tsuyu Ando
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Kazuhiko Sugimoto
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan
| | - Etsuko Katoh
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Kiyomi Abe
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Akio Miyao
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Tsukaho Hattori
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Shin Takeda
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
- Address correspondence to
| |
Collapse
|
41
|
Ha S, Tran LS. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Crit Rev Biotechnol 2013; 34:16-30. [PMID: 23586682 DOI: 10.3109/07388551.2013.783549] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In both prokaryotes and eukaryotes, including plants, phosphorus (P) is an essential nutrient that is involved in various biochemical processes, such as lipid metabolism and the biosynthesis of nucleic acids and cell membranes. P also contributes to cellular signaling cascades by function as mediators of signal transduction and it also serves as a vital energy source for a wide range of biological functions. Due to its intensive use in agriculture, P resources have become limited. Therefore, it is critically important in the future to develop scientific strategies that aim to increase P use efficiency and P recycling. In addition, the biologically available soluble form of P for uptake (phosphate; Pi) is readily washed out of topsoil layers, resulting in serious environmental pollution. In addition to this environmental concern, the wash out of Pi from topsoil necessitates a continuous Pi supply to maintain adequate levels of fertilization, making the situation worse. As a coping mechanism to P stress, plants are known to undergo drastic cellular changes in metabolism, physiology, hormonal balance and gene expression. Understanding these molecular, physiological and biochemical responses developed by plants will play a vital role in improving agronomic practices, resource conservation and environmental protection as well as serving as a foundation for the development of biotechnological strategies, which aim to improve P use efficiency in crops. In this review, we will discuss a variety of plant responses to low P conditions and various molecular mechanisms that regulate these responses. In addition, we also discuss the implication of this knowledge for the development of plant biotechnological applications.
Collapse
Affiliation(s)
- Sukbong Ha
- Department of Plant Biotechnology, Chonnam National University , Buk-Gu, Gwangju , Korea and
| | | |
Collapse
|
42
|
Roldan M, Dinh P, Leung S, McManus MT. Ethylene and the responses of plants to phosphate deficiency. AOB PLANTS 2013; 5:plt013. [PMCID: PMC4104654 DOI: 10.1093/aobpla/plt013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/14/2013] [Indexed: 05/20/2023]
Abstract
This review considers the evidence that ethylene biosynthesis is up-regulated by locally-generated signals in response to a change in external P supply, where the hormone then mediates, with auxin, changes in root system architecture. Subsequent changes in endogenous P evoke systemic responses whereby ethylene again is important in inducing some of the key signature changes observed in P-deprived tissues (eg. phosphate transporter and acid phosphatase up-regulation). The consideration as to how plants uptake and transport phosphorus (P) is of significant agronomic and economic importance, in part driven by finite reserves of rock phosphate. Our understanding of these mechanisms has been greatly advanced, particularly with respect to the responses of plants to P deficiency and the genetic dissection of the signalling involved. Further, the realization that there are two tiers of transcriptional responses, the local, in which inorganic P (Pi) acts as an external signal independent of the endogenous P level, and the systemic involving root–shoot signalling, has now added a dimension of both clarity and complexity. Notwithstanding, it is now clear that the hormone ethylene plays a key role in mediating both levels of responses. This review, therefore, covers the role of ethylene in terms of mediating responses to P deficiency. The evidence that Pi supply regulates ethylene biosynthesis and sensitivity, and that this, in turn, regulates changes in root system architecture and in Pi-deprivation responses is examined here. While ethylene is the focus, the key interactions with auxin are also assessed, but interactions with the other hormone groups, which have recently been reviewed, are not covered. The emerging view that ethylene is a multi-faceted hormone in terms of mediating responses to P deficiency invites the dissection of the transcriptional cues that mediate changes in ethylene biosynthesis and/or sensitivity. Knowledge of the nature of such cues will subsequently reveal more of the underpinning interactions that govern P responses and provide avenues for the production of germplasm with an improved phosphate use efficiency.
Collapse
Affiliation(s)
- Marissa Roldan
- Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
- Present address: AgResearch Grasslands, Private Bag 11008, Palmerston North, New Zealand
| | - Phuong Dinh
- Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
- Present address: Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Susanna Leung
- Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Michael T. McManus
- Institute of Molecular Biosciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
- Corresponding author's e-mail address:
| |
Collapse
|
43
|
Aparicio-Fabre R, Guillén G, Loredo M, Arellano J, Valdés-López O, Ramírez M, Íñiguez LP, Panzeri D, Castiglioni B, Cremonesi P, Strozzi F, Stella A, Girard L, Sparvoli F, Hernández G. Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC PLANT BIOLOGY 2013; 13:26. [PMID: 23402340 PMCID: PMC3621168 DOI: 10.1186/1471-2229-13-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/29/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. RESULTS Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the expression of some P-responsive genes; this process could be mediated by JA-signaling. CONCLUSION Our work contributes to the functional characterization of PvTIFY transcriptional regulators in common bean, an agronomically important legume. Members from the large PvTIFY gene family are important global transcriptional regulators that could participate as repressors in the JA signaling pathway. In addition, we propose that the JA-signaling pathway involving PvTIFY genes might play a role in regulating the plant response/adaptation to P-starvation.
Collapse
Affiliation(s)
- Rosaura Aparicio-Fabre
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Gabriel Guillén
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Montserrat Loredo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Jesús Arellano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Oswaldo Valdés-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Luis P Íñiguez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Dario Panzeri
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Bianca Castiglioni
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Paola Cremonesi
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Francesco Strozzi
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Lourdes Girard
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Francesca Sparvoli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| |
Collapse
|
44
|
Yu H, Luo N, Sun L, Liu D. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4527-38. [PMID: 22615140 PMCID: PMC3421987 DOI: 10.1093/jxb/ers131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The phytohormone ethylene plays important roles in regulating plant responses to phosphate (Pi) starvation. To date, however, no molecular components have been identified that interact with ethylene signalling in regulating such responses. In this work, an Arabidopsis mutant, hps4, was characterized that exhibits enhanced responses to Pi starvation, including increased inhibition of primary root growth, enhanced expression of Pi starvation-induced genes, and overproduction of root-associated acid phosphatases. Molecular cloning indicated that hps4 is a new allele of SABRE, which was previously identified as an important regulator of cell expansion in Arabidopsis. HPS4/SABRE antagonistically interacts with ethylene signalling to regulate plant responses to Pi starvation. Furthermore, it is shown that Pi-starved hps4 mutants accumulate more auxin in their root tips than the wild type, which may explain the increased inhibition of their primary root growth when grown under Pi deficiency.
Collapse
Affiliation(s)
| | | | | | - Dong Liu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Wang L, Dong J, Gao Z, Liu D. The Arabidopsis gene hypersensitive to phosphate starvation 3 encodes ethylene overproduction 1. PLANT & CELL PHYSIOLOGY 2012; 53:1093-105. [PMID: 22623414 DOI: 10.1093/pcp/pcs072] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
When plants are subjected to a deficiency in inorganic phosphate (Pi), they exhibit an array of responses to cope with this nutritional stress. In this work, we have characterized two Arabidopsis mutants, hps3-1 and hps3-2 (hypersensitive to Pi starvation 3), that have altered expression of Pi starvation-induced (PSI) genes and enhanced production of acid phosphatase (APase) when grown under either Pi sufficiency or deficiency conditions. hps3-1 and hps3-2, however, accumulate less anthocyanin than the wild type when grown on a Pi-deficient medium. Molecular cloning indicated that the phenotypes of hps3 mutants were caused by mutations within the ETO1 (ETHYLENE OVERPRODUCTION 1) gene. In Arabidopsis, ETO1 encodes a negative regulator of ethylene biosynthesis, and mutation of ETO1 causes Arabidopsis seedlings to overproduce ethylene. The ethylene biosynthesis inhibitor aminoethoxyvinyl glycine or the ethylene perception inhibitor Ag(+) suppressed all the mutant phenotypes of hps3. Taken together, these results provide further genetic evidence that ethylene is an important regulator of multiple plant responses to Pi starvation. Furthermore, we found that a change in ethylene level has differential effects on the expression of PSI genes, maintenance of Pi homeostasis, production of APase and accumulation of anthocyanin. We also demonstrated that ethylene signaling mainly regulates the activity of root surface-associated APases rather than total APase activity.
Collapse
Affiliation(s)
- Liangsheng Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | | | | | | |
Collapse
|
46
|
Nagarajan VK, Smith AP. Ethylene's role in phosphate starvation signaling: more than just a root growth regulator. PLANT & CELL PHYSIOLOGY 2012; 53:277-86. [PMID: 22199374 DOI: 10.1093/pcp/pcr186] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) is a common limiter of plant growth due to its low availability in most soils. Plants have evolved elaborate mechanisms for sensing Pi deficiency and for initiating adaptive responses to low Pi conditions. Pi signaling pathways are modulated by both local and long-distance, or systemic, sensing mechanisms. Local sensing of low Pi initiates major root developmental changes aimed at enhancing Pi acquisition, whereas systemic sensing governs pathways that modulate expression of numerous genes encoding factors involved in Pi transport and distribution. The gaseous phytohormone ethylene has been shown to play an integral role in regulating local, root developmental responses to Pi deficiency. Comparatively, a role for ethylene in systemic Pi signaling has been more circumstantial. However, recent studies have revealed that ethylene acts to modulate a number of systemically controlled Pi starvation responses. Herein we highlight the findings from these studies and offer a model for how ethylene biosynthesis and responsiveness are integrated into both local and systemic Pi signaling pathways.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | |
Collapse
|
47
|
Sato A, Miura K. Root architecture remodeling induced by phosphate starvation. PLANT SIGNALING & BEHAVIOR 2011; 6:1122-6. [PMID: 21778826 PMCID: PMC3260708 DOI: 10.4161/psb.6.8.15752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 05/17/2023]
Abstract
Plants have evolved efficient strategies for utilizing nutrients in the soil in order to survive, grow, and reproduce. Inorganic phosphate (Pi) is a major macroelement source for plant growth; however, the availability and distribution of Pi are varying widely across locations. Thus, plants in many areas experience Pi deficiency. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition, limit Pi consumption, and adjust Pi recycling internally under Pi starvation conditions. This review focuses on the molecular regulators that modulate Pi starvation-induced root architectural changes.
Collapse
Affiliation(s)
- Aiko Sato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
48
|
Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation: better safe than sorry. TRENDS IN PLANT SCIENCE 2011; 16:442-50. [PMID: 21684794 DOI: 10.1016/j.tplants.2011.05.006] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 05/18/2023]
Abstract
Phosphorus is a crucial component of major organic molecules such as nucleic acids, ATP and membrane phospholipids. It is present in soils in the form of inorganic phosphate (Pi), which has low availability and poor mobility. To cope with Pi limitations, plants have evolved complex adaptive responses that include morphological and physiological modifications. This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging. A better understanding of plant adaptation to low phosphate will open the way to increased phosphorus use efficiency by crops. Such an improvement is needed in order to adjust how we manage limited phosphorus stocks and to reduce the disastrous environmental effects of phosphate fertilizers overuse.
Collapse
Affiliation(s)
- Benjamin Péret
- UMR 6191 CEA, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement des Plantes, Université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France.
| | | | | | | |
Collapse
|