1
|
Datta R, Mandal K, Boro P, Sultana A, Chattopadhyay S. Glutathione imparts stress tolerance against Alternaria brassicicola infection via miRNA mediated gene regulation. PLANT SIGNALING & BEHAVIOR 2022; 17:2047352. [PMID: 36184871 PMCID: PMC9542981 DOI: 10.1080/15592324.2022.2047352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 05/27/2023]
Abstract
Glutathione (GSH) is well known to play a crucial role in imparting resistance against various pathogen invasions. Nevertheless, the role of GSH in regulating miRNA-mediated defense response is yet to be explored. To decipher the GSH-mediated regulation of miRNA expression during necrotrophic infection in Arabidopsis thaliana, wild-type Col-0 and AtECS1, the transgenic line exhibiting enhanced GSH content, were infected with necrotrophic pathogen Alternaria brassicicola. AtECS1 plants exhibited enhanced resistance as compared to wild-type. MiRNA next-generation sequencing (NGS) was performed to compare the miRNA expression in Col-0 and AtECS1 leaves. Under control condition, differentially expressed 96 known miRNAs and 17 novel miRNAs viz. ath-miR8167f, ath-miR1886.3, ath-miR3932b-5p, etc. were identified. However, under infected condition, 73 known and 43 novel differentially expressed miRNAs viz. ath-miR5652, ath-miR160b, ath-miR865-5p, etc. were identified. Functional annotation and enrichment analysis revealed that several miRNAs that target defense-related genes like leucine-rich repeat protein kinase, MYB transcription factors, TCP8, etc. were down regulated in the AtECS1 line, which, in turn, relieves the repression of their target gene expression, leading to resistance against infection. Together, the present investigation suggests that GSH plays a decisive role in modulating the miRNA-mediated regulation of defense-related genes during pathogen invasion.
Collapse
Affiliation(s)
- Riddhi Datta
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, Newtown, West Bengal, India
| | - Kajal Mandal
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, KolkataIndia
| | - Priyanka Boro
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, KolkataIndia
| | - Asma Sultana
- Department of Botany, J. K. College, Purulia, West Bengal, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, KolkataIndia
| |
Collapse
|
2
|
Zhu B, Wang K, Liang Z, Zhu Z, Yang J. Transcriptome Analysis of Glutathione Response: RNA-Seq Provides Insights into Balance between Antioxidant Response and Glucosinolate Metabolism. Antioxidants (Basel) 2022; 11:1322. [PMID: 35883813 PMCID: PMC9312034 DOI: 10.3390/antiox11071322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/25/2022] Open
Abstract
When being stressed, plants require a balance between the resistance pathway and metabolism. Glucosinolates (GS) are secondary metabolics that widely exist in Brassicaceae. Glutathione (GSH) not only participates in plant processing reactive oxygen species (ROS) but also directly participates in GS synthesis as a sulfur donor. Therefore, we used transcriptomic to identify antioxidant and GS metabolism responses in GSH-treated pakchoi. Our study elucidated that GSH can be used as priming to improve oxidative resistance and preferentially stimulate the expression of resistance genes such as CAT1. The reduction in transcription factor expression inhibits the key steps of the GS synthesis pathway. When ROS returned to normal level, the resistance gene decreased and returned to normal level, while GSH restored the gene expression of GS biosynthesis. This work puts forward the mechanism of GSH in regulating the antioxidant system and glucosinolate metabolic pathway, which provides a basis for further study on the relationship between environmental signals and plant metabolism and provides ideas for follow-up research.
Collapse
Affiliation(s)
| | | | | | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (B.Z.); (K.W.); (Z.L.)
| | - Jing Yang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (B.Z.); (K.W.); (Z.L.)
| |
Collapse
|
3
|
Boro P, Sultana A, Mandal K, Chattopadhyay S. Interplay between glutathione and mitogen-activated protein kinase 3 via transcription factor WRKY40 under combined osmotic and cold stress in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153664. [PMID: 35279560 DOI: 10.1016/j.jplph.2022.153664] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Glutathione (GSH) plays a fundamental role in plant defense. Recent reports showed that enhanced GSH content activates mitogen-activated protein kinases (MPKs). However, the molecular mechanism behind this GSH-mediated MPKs expression during environmental challenges is unexplored. Here, we found that under control and combined abiotic stress-treated conditions, GSH feeding activates MPK3 expression in Arabidopsis thaliana by inducing its promoter, as established through the promoter activation assay. Additionally, transgenic A. thaliana overexpressing the LeMPK3 gene (AtMPK3 line) showed increased γ-ECS expression, which was decreased in mpk3, the MPK3-depleted mutant. An in-gel kinase assay exhibited hyperphosphorylation of Myelin Basic Protein (MBP) in the GSH-fed AtMPK3 transgenic line. Under control and combined abiotic stress treated conditions, expression of transcription factor WRKY40 binding to MPK3 promoter was up-regulated under enhanced GSH condition. Interestingly, GSH feeding was rendered ineffective in altering MPK3 expression in the Atwrky40 mutant, emphasizing the involvement of WRKY40 in GSH-MPK3 interplay. This was further confirmed by a wrky40 co-transformation assay. The immunoprecipitation assay followed by ChIP-qPCR showed a significant increase in the binding of WRKY40 to MPK3 promoter, which further established MPK3-WRKY40 association upon GSH feeding. In conclusion, this study demonstrated that GSH modulates MPK3 expression via WRKY40 in response to stress.
Collapse
Affiliation(s)
- Priyanka Boro
- Plant Biology Laboratory, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, West Bengal, India
| | - Asma Sultana
- Department of Botany, JK College, Purulia, West bengal 723 101, India
| | - Kajal Mandal
- Plant Biology Laboratory, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, West Bengal, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, West Bengal, India.
| |
Collapse
|
4
|
Zhu F, Zhang Q, Che Y, Zhu P, Zhang Q, Ji Z. Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2021; 22:1668-1687. [PMID: 34553471 PMCID: PMC8578835 DOI: 10.1111/mpp.13138] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus-induced gene-silencing-based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)-mediated signalling pathway. Application of GSH or l-2-oxothiazolidine-4-carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA-mediated signalling pathway, and increased the expression of ROS scavenging-related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA-mediated signalling pathway, and reduced the expression of ROS-regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA-mediated signalling pathway, and increased the expression of the ROS scavenging-related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of N. benthamiana to TMV through a differential modulation of SA and ROS.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qi‐Ping Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qin‐Qin Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
5
|
Yang Y, Wang X, Chen P, Zhou K, Xue W, Abid K, Chen S. Redox Status, JA and ET Signaling Pathway Regulating Responses to Botrytis cinerea Infection Between the Resistant Cucumber Genotype and Its Susceptible Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:559070. [PMID: 33101327 PMCID: PMC7546314 DOI: 10.3389/fpls.2020.559070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/04/2020] [Indexed: 05/28/2023]
Abstract
Botrytis cinerea is an important necrotrophic fungal pathogen with a broad host range and the ability to causing great economic losses in cucumber. However, the resistance mechanism against this pathogen in cucumber was not well understood. In this study, the microscopic observation of the spore growth, redox status measurements and transcriptome analysis were carried out after Botrytis cinerea infection in the resistant genotype No.26 and its susceptible mutant 26M. Results revealed shorter hypha, lower rate of spore germination, less acceleration of H2O2, O2 -, and lower total glutathione content (GSH+GSSG) in No.26 than that in 26M, which were identified by the staining result of DAB and NBT. Transcriptome data showed that after pathogen infection, a total of 3901 and 789 different expression genes (DEGs) were identified in No.26 and 26M respectively. These DEGs were highly enriched in redox regulation pathway, hormone signaling pathway and plant-pathogen interaction pathway. The glutathione S-transferase genes, putative peroxidase gene, and NADPH oxidase were up-regulated in No.26 whereas these genes changed little in 26M after Botrytis cinerea infection. Jasmonic acid and ethylene biosynthesis and signaling pathways were distinctively activated in No.26 comparing with 26M upon infection. Much more plant defense related genes including mitogen-activated protein kinases, calmodulin, calmodulin-like protein, calcium-dependent protein kinase, and WRKY transcription factor were induced in No.26 than 26M after pathogen infection. Finally, a model was established which elucidated the resistance difference between resistant cucumber genotype and susceptible mutant after B. cinerea infection.
Collapse
Affiliation(s)
- Yuting Yang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Xuewei Wang
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Panpan Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Keke Zhou
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Wanyu Xue
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| | - Kan Abid
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Shuxia Chen
- College of Horticulture, Northwest A&F University, Shaanxi Engineering Research Center for Vegetables, Yangling, China
| |
Collapse
|
6
|
Chen X, Li S, Zhao X, Zhu X, Wang Y, Xuan Y, Liu X, Fan H, Chen L, Duan Y. Modulation of (Homo)Glutathione Metabolism and H 2O 2 Accumulation during Soybean Cyst Nematode Infections in Susceptible and Resistant Soybean Cultivars. Int J Mol Sci 2020; 21:E388. [PMID: 31936278 PMCID: PMC7013558 DOI: 10.3390/ijms21020388] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
In plant immune responses, reactive oxygen species (ROS) act as signaling molecules that activate defense pathways against pathogens, especially following resistance (R) gene-mediated pathogen recognition. Glutathione (GSH), an antioxidant and redox regulator, participates in the removal of hydrogen peroxide (H2O2). However, the mechanism of GSH-mediated H2O2 generation in soybeans (Glycine max (L.) Merr.) that are resistant to the soybean cyst nematode (SCN; Heterodera glycines Ichinohe) remains unclear. To elucidate this underlying relationship, the feeding of race 3 of H. glycines with resistant cultivars, Peking and PI88788, was compared with that on a susceptible soybean cultivar, Williams 82. After 5, 10, and 15 days of SCN infection, we quantified γ-glutamylcysteine (γ-EC) and (homo)glutathione ((h)GSH), and a gene expression analysis showed that GSH metabolism in resistant cultivars differed from that in susceptible soybean roots. ROS accumulation was examined both in resistant and susceptible roots upon SCN infection. The time of intense ROS generation was related to the differences of resistance mechanisms in Peking and PI88788. ROS accumulation that was caused by the (h)GSH depletion-arrested nematode development in susceptible Williams 82. These results suggest that (h)GSH metabolism in resistant soybeans plays a key role in the regulation of ROS-generated signals, leading to resistance against nematodes.
Collapse
Affiliation(s)
- Xi Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Shuang Li
- Shaanxi key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China;
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Xuebing Zhao
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuanhu Xuan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Sciences, Shenyang Agricultural University, Shenyang 110000, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110000, China; (X.C.); (X.Z.); (X.Z.); (Y.W.); (Y.X.); (X.L.); (H.F.); (L.C.)
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110000, China
| |
Collapse
|
7
|
Svoboda T, Parich A, Güldener U, Schöfbeck D, Twaruschek K, Václavíková M, Hellinger R, Wiesenberger G, Schuhmacher R, Adam G. Biochemical Characterization of the Fusarium graminearum Candidate ACC-Deaminases and Virulence Testing of Knockout Mutant Strains. FRONTIERS IN PLANT SCIENCE 2019; 10:1072. [PMID: 31552072 PMCID: PMC6746940 DOI: 10.3389/fpls.2019.01072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Fusarium graminearum is a plant pathogenic fungus which is able to infect wheat and other economically important cereal crop species. The role of ethylene in the interaction with host plants is unclear and controversial. We have analyzed the inventory of genes with a putative function in ethylene production or degradation of the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC). F. graminearum, in contrast to other species, does not contain a candidate gene encoding ethylene-forming enzyme. Three genes with similarity to ACC synthases exist; heterologous expression of these did not reveal enzymatic activity. The F. graminearum genome contains in addition two ACC deaminase candidate genes. We have expressed both genes in E. coli and characterized the enzymatic properties of the affinity-purified products. One of the proteins had indeed ACC deaminase activity, with kinetic properties similar to ethylene-stress reducing enzymes of plant growth promoting bacteria. The other candidate was inactive with ACC but turned out to be a d-cysteine desulfhydrase. Since it had been reported that ethylene insensitivity in transgenic wheat increased Fusarium resistance and reduced the content of the mycotoxin deoxynivalenol (DON) in infected wheat, we generated single and double knockout mutants of both genes in the F. graminearum strain PH-1. No statistically significant effect of the gene disruptions on fungal spread or mycotoxin content was detected, indicating that the ability of the fungus to manipulate the production of the gaseous plant hormones ethylene and H2S is dispensable for full virulence.
Collapse
Affiliation(s)
- Thomas Svoboda
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Alexandra Parich
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Ulrich Güldener
- Department of Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Denise Schöfbeck
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Krisztian Twaruschek
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Marta Václavíková
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Roland Hellinger
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
8
|
Transcriptomic Analysis of Orange Fruit Treated with Pomegranate Peel Extract (PGE). PLANTS 2019; 8:plants8040101. [PMID: 30999604 PMCID: PMC6524005 DOI: 10.3390/plants8040101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
A Pomegranate Peel Extract (PGE) has been proposed as a natural antifungal substance with a wide range of activity against plant diseases. Previous studies showed that the extract has a direct antimicrobial activity and can elicit resistance responses in plant host tissues. In the present study, the transcriptomic response of orange fruit toward PGE treatments was evaluated. RNA-seq analyses, conducted on wounded fruits 0, 6, and 24 h after PGE applications, showed a significantly different transcriptome in treated oranges as compared to control samples. The majority (273) of the deferentially expressed genes (DEGs) were highly up-regulated compared to only 8 genes that were down-regulated. Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis showed the involvement of 1233 gene ontology (GO) terms and 35 KEGG metabolic pathways. Among these, important defense pathways were induced and antibiotic biosynthesis was the most enriched one. These findings may explain the underlying preventive and curative activity of PGE against plant diseases.
Collapse
|
9
|
Landi L, De Miccolis Angelini RM, Pollastro S, Feliziani E, Faretra F, Romanazzi G. Global Transcriptome Analysis and Identification of Differentially Expressed Genes in Strawberry after Preharvest Application of Benzothiadiazole and Chitosan. FRONTIERS IN PLANT SCIENCE 2017; 8:235. [PMID: 28286508 PMCID: PMC5323413 DOI: 10.3389/fpls.2017.00235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 05/07/2023]
Abstract
The use of resistance inducers is a novel strategy to elicit defense responses in strawberry fruit to protect against preharvest and postharvest decay. However, the mechanisms behind the specific resistance inducers are not completely understood. Here, global transcriptional changes in strawberry fruit were investigated using RNA-Seq technology. Preharvest, benzothiadiazole (BTH) and chitosan were applied to the plant canopy, and the fruit were harvested at 6, 12, and 24 h post-treatment. Overall, 5,062 and 5,210 differentially expressed genes (fold change ≥ 2) were identified in these fruits under the BTH and chitosan treatments, respectively, as compared to the control expression. About 80% of these genes were differentially expressed by both elicitors. Comprehensive functional enrichment analysis highlighted different gene modulation over time for transcripts associated with photosynthesis and heat-shock proteins, according to elicitor. Up-regulation of genes associated with reprogramming of protein metabolism was observed in fruit treated with both elicitors, which led to increased storage proteins. Several genes associated with the plant immune system, hormone metabolism, systemic acquired resistance, and biotic and abiotic stresses were differentially expressed in treated versus untreated plants. The RNA-Seq output was confirmed using RT-qPCR for 12 selected genes. This study demonstrates that these two elicitors affect cell networks associated with plant defenses in different ways, and suggests a role for chloroplasts as the primary target in this modulation of the plant defense responses, which actively communicate these signals through changes in redox status. The genes identified in this study represent markers to better elucidate plant/pathogen/resistance-inducer interactions, and to plan novel sustainable disease management strategies.
Collapse
Affiliation(s)
- Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | | | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’Bari, Italy
| | - Erica Feliziani
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | - Franco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’Bari, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
- *Correspondence: Gianfranco Romanazzi,
| |
Collapse
|
10
|
Zhang M, Mo H, Sun W, Guo Y, Li J. Systematic Isolation and Characterization of Cadmium Tolerant Genes in Tobacco: A cDNA Library Construction and Screening Approach. PLoS One 2016; 11:e0161147. [PMID: 27579677 PMCID: PMC5007098 DOI: 10.1371/journal.pone.0161147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 11/29/2022] Open
Abstract
Heavy metal pollution is a major limiting factor that severely affects plant growth worldwide, and the accumulation of heavy metal in the plant may be hazardous to human health. To identify the processes involved in cadmium detoxification, we constructed a cDNA library of tobacco roots acclimated to cadmium (Cd) stress. According to the results of functional screening cDNA library with a yeast Cd-sensitive mutant, ycf1Δ, we obtained a series of candidate genes that were involved in Cd response. Sequence analysis and yeast functional complementation of 24 positive cDNA clones revealed that, in addition to antioxidant genes, genes implicated in abiotic and biotic stress defenses, cellular metabolism, and signal transduction showed Cd detoxification effects in yeast. The real time RT-PCR analyses revealed that some Cd tolerance/ detoxification genes may be able to anticipate in other stresses such as biotic defense and water balance in tobacco. Taken together, our data suggest that plants' acclimation to Cd stress is a highly complex process associated with broad gene functions. Moreover, our results provide insights into the Cd detoxification mechanisms along with the antioxidant system, defense gene induction, and calcium signal pathway.
Collapse
Affiliation(s)
- Mei Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hui Mo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wen Sun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
11
|
Datta R, Kumar D, Sultana A, Hazra S, Bhattacharyya D, Chattopadhyay S. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress. PLANT PHYSIOLOGY 2015; 169:2963-81. [PMID: 26463088 PMCID: PMC4677924 DOI: 10.1104/pp.15.01543] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 05/13/2023]
Abstract
Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress.
Collapse
Affiliation(s)
- Riddhi Datta
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Deepak Kumar
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Asma Sultana
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Saptarshi Hazra
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Dipto Bhattacharyya
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
12
|
Datta R, Chattopadhyay S. Changes in the proteome of pad2-1, a glutathione depleted Arabidopsis mutant, during Pseudomonas syringae infection. J Proteomics 2015; 126:82-93. [PMID: 26032221 DOI: 10.1016/j.jprot.2015.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/19/2023]
Abstract
The involvement of glutathione (GSH) in plant defense against pathogen invasion is an established fact. However, the molecular mechanism conferring this tolerance remains to be explored. Here, proteomic analysis of pad2-1, an Arabidopsis thaliana GSH-depleted mutant, in response to Pseudomonas syringae infection has been performed to explore the intricate position of GSH in defense against biotrophic pathogens. The pad2-1 mutant displayed severe susceptibility to P. syringae infection compared to the wild-type (Col-0) thus re-establishing a fundamental role of GSH in defense. Apart from general up-accumulation of energy metabolism-related protein-species in both infected Col-0 and pad2-1, several crucial defense-related protein-species were identified to be differentially accumulated. Leucine-rich repeat-receptor kinase (LRR-RK) and nucleotide-binding site-leucine-rich repeat resistance protein (NBS-LRR), known to play a pioneering role against pathogen attack, were only weakly up-accumulated in pad2-1 after infection. Transcriptional and post-transcriptional regulators like MYB-P1 and glycine-rich repeat RNA-binding protein (GRP) and several other stress-related protein-species like heat shock protein 17 (HSP17) and glutathione-S-transferase (GST) were also identified to be differentially regulated in pad2-1 and Col-0 in response to infection. Together, the present investigation reveals that the optimum GSH-level is essential for the efficient activation of plant defense signaling cascades thus conferring resistance to pathogen invasion.
Collapse
Affiliation(s)
- Riddhi Datta
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C.Mullick Road, Kolkata 700 032, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
13
|
Kumar D, Datta R, Hazra S, Sultana A, Mukhopadhyay R, Chattopadhyay S. Transcriptomic profiling of Arabidopsis thaliana mutant pad2.1 in response to combined cold and osmotic stress. PLoS One 2015; 10:e0122690. [PMID: 25822199 PMCID: PMC4379064 DOI: 10.1371/journal.pone.0122690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/14/2015] [Indexed: 01/11/2023] Open
Abstract
The contribution of glutathione (GSH) in stress tolerance, defense response and antioxidant signaling is an established fact. In this study transcriptome analysis of pad2.1, an Arabidopsis thaliana mutant, after combined osmotic and cold stress treatment has been performed to explore the intricate position of GSH in the stress and defense signaling network in planta. Microarray data revealed the differential regulation of about 1674 genes in pad2.1 amongst which 973 and 701 were significantly up- and down-regulated respectively. Gene enrichment, functional pathway analysis by DAVID and MapMan analysis identified various stress and defense related genes viz. members of heat shock protein family, peptidyl prolyl isomerase (PPIase), thioredoxin peroxidase (TPX2), glutathione-S-transferase (GST), NBS-LRR type resistance protein etc. as down-regulated. The expression pattern of the above mentioned stress and defense related genes and APETALA were also validated by comparative proteomic analysis of combined stress treated Col-0 and pad2.1. Functional annotation noted down-regulation of UDP-glycosyl transferase, 4-coumarate CoA ligase 8, cinnamyl alcohol dehydrogenase 4 (CAD4), ACC synthase and ACC oxidase which are the important enzymes of phenylpropanoid, lignin and ethylene (ET) biosynthetic pathway respectively. Since the only difference between Col-0 (Wild type) and pad2.1 is the content of GSH, so, this study suggested that in addition to its association with specific stress responsive genes and proteins, GSH provides tolerance to plants by its involvement with phenylpropanoid, lignin and ET biosynthesis under stress conditions.
Collapse
Affiliation(s)
- Deepak Kumar
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Riddhi Datta
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Saptarshi Hazra
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Asma Sultana
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Ria Mukhopadhyay
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- * E-mail:
| |
Collapse
|
14
|
Velivelli SLS, Lojan P, Cranenbrouck S, de Boulois HD, Suarez JP, Declerck S, Franco J, Prestwich BD. The induction of Ethylene response factor 3 (ERF3) in potato as a result of co-inoculation with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 - a possible role in plant defense. PLANT SIGNALING & BEHAVIOR 2015; 10:e988076. [PMID: 25723847 PMCID: PMC4623016 DOI: 10.4161/15592324.2014.988076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 05/19/2023]
Abstract
Colonization of plant rhizosphere/roots by beneficial microorganisms (e.g. plant growth promoting rhizobacteria - PGPR, arbuscular mycorrhizal fungi - AMF) confers broad-spectrum resistance to virulent pathogens and is known as induced systemic resistance (ISR) and mycorrhizal-induced resistance (MIR). ISR or MIR, an indirect mechanism for biocontrol, involves complex signaling networks that are regulated by several plant hormones, the most important of which are salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). In the present study, we investigated if inoculation of potato plantlets with an AMF (Rhizophagus irregularis MUCL 41833) and a PGPR (Pseudomonas sp R41805) either alone or in combination, could elicit host defense response genes in the presence or absence of Rhizoctonia Solani EC-1, a major potato pathogen. RT-qPCR revealed the significant expression of ethylene response factor 3 (EFR3) in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and also in mycorrhized potato plantlets inoculated with Pseudomonas sp R41805 and challenged with R. solani. The significance of ethylene response factors (ERFs) in pathogen defense has been well documented in the literature. The results of the present study suggest that the dual inoculation of potato with PGPR and AMF may play a part in the activation of plant systemic defense systems via ERF3.
Collapse
Affiliation(s)
- Siva LS Velivelli
- School of Biological Earth and Environmental Sciences; University College Cork; Cork, Ireland
| | - Paul Lojan
- Departamento de Ciencias Naturales; Universidad Técnica Particular de Loja (UTPL); Loja, Ecuador
- Earth and Life Institute; Applied Microbiology; Mycology; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | - Sylvie Cranenbrouck
- Earth and Life Institute; Applied Microbiology; Mycology; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | - Hervé Dupré de Boulois
- Earth and Life Institute; Applied Microbiology; Mycology; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | - Juan Pablo Suarez
- Departamento de Ciencias Naturales; Universidad Técnica Particular de Loja (UTPL); Loja, Ecuador
| | - Stéphane Declerck
- Earth and Life Institute; Applied Microbiology; Mycology; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | - Javier Franco
- Fundación PROINPA Foundation; El Paso, Cochabamba, Bolivia
| | - Barbara Doyle Prestwich
- School of Biological Earth and Environmental Sciences; University College Cork; Cork, Ireland
| |
Collapse
|
15
|
Ghanta S, Datta R, Bhattacharyya D, Sinha R, Kumar D, Hazra S, Mazumdar AB, Chattopadhyay S. Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:940-50. [PMID: 24913051 DOI: 10.1016/j.jplph.2014.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/06/2014] [Accepted: 03/06/2014] [Indexed: 05/09/2023]
Abstract
The role of glutathione (GSH) in plant defense is an established fact. However, the association of GSH with other established signaling molecules within the defense signaling network remains to be evaluated. Previously we have shown that GSH is involved in defense signaling network likely through NPR1-dependent salicylic acid (SA)-mediated pathway. In this study, to gain further insight, we developed chloroplast-targeted gamma-glutamylcysteine synthetase (γ-ECS) overexpressed transgenic Nicotiana tabacum (NtGp line) and constructed a forward subtracted cDNA (suppression subtractive hybridization (SSH)) library using NtGp line as a tester. Interestingly, in addition to SA-related transcripts like pathogenesis-related protein 1a (PR1a) and SAR8.2 m/2l, 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase), a key enzyme of ethylene (ET) biosynthesis, was identified in the SSH library. Besides, transcription factors like WRKY transcription factor 3 (WRKY3), WRKY1 and ethylene responsive factor 4 (ERF4), associated with SA and ET respectively, were also identified thus suggesting an interplay of GSH with ET and SA. Furthermore, proteomic profiling of NtGp line, performed by employing two-dimensional gel electrophoresis (2-DE), corroborated with the transcriptomic profile and several defense-related proteins like serine/threonine protein kinase, and heat shock 70 protein (HSP70) were identified with increased accumulation. Fascinatingly, induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) was also noted thus demonstrating the active involvement of GSH with ET. Protein gel blot analysis confirmed the enhanced accumulation of ACC oxidase in NtGp line. Together, our data revealed that GSH is involved in the synergistic multiple steps crosstalk through ET as well as SA to combat environmental stress.
Collapse
Affiliation(s)
- Srijani Ghanta
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Riddhi Datta
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Dipto Bhattacharyya
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Ragini Sinha
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Deepak Kumar
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Saptarshi Hazra
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Aparupa Bose Mazumdar
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
16
|
Kumar D, Datta R, Sinha R, Ghosh A, Chattopadhyay S. Proteomic profiling of γ-ECS overexpressed transgenic Nicotiana in response to drought stress. PLANT SIGNALING & BEHAVIOR 2014; 9:e29246. [PMID: 25763614 PMCID: PMC4203497 DOI: 10.4161/psb.29246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 05/29/2023]
Abstract
The contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To explore this, here, transgenic tobacco plants (NtGp11) overexpressing gamma-glutamylcysteine synthetase (γ-ECS) was tested for tolerance against drought stress. NtGp11 conferred tolerance to drought stress by increased germination rate, water retention, water recovery, chlorophyll, and proline content compared with wild-type plants. Semi-quantitative RT-PCR analysis revealed that the transcript levels of stress-responsive genes were higher in NtGp11 compared with wild-type in response to drought stress. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI TOF-TOF MS/MS analysis has been used to identify 43 differentially expressed proteins in response to drought in wild-type and NtGp11 plants. The results demonstrated the up-accumulation of 58.1% of proteins among which 36%, 24%, and 20% of them were related to stress and defense, carbon metabolism and energy metabolism categories, respectively. Taken together, our results demonstrated that GSH plays an important role in combating drought stress in plants by inducing stress related genes and proteins like HSP70, chalcone synthase, glutathione peroxidase, thioredoxin peroxidase, ACC oxidase, and heme oxygenase I.
Collapse
Affiliation(s)
- Deepak Kumar
- Plant Biology Laboratory; Drug Development/Diagnostics and Biotechnology Division; CSIR-Indian Institute of Chemical Biology; Kolkata, India
| | - Riddhi Datta
- Plant Biology Laboratory; Drug Development/Diagnostics and Biotechnology Division; CSIR-Indian Institute of Chemical Biology; Kolkata, India
| | - Ragini Sinha
- Plant Biology Laboratory; Drug Development/Diagnostics and Biotechnology Division; CSIR-Indian Institute of Chemical Biology; Kolkata, India
| | - Aparupa Ghosh
- Plant Biology Laboratory; Drug Development/Diagnostics and Biotechnology Division; CSIR-Indian Institute of Chemical Biology; Kolkata, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory; Drug Development/Diagnostics and Biotechnology Division; CSIR-Indian Institute of Chemical Biology; Kolkata, India
| |
Collapse
|