1
|
Scorrano G, Di Francesco L, Di Ludovico A, Chiarelli F, Matricardi S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. Int J Mol Sci 2024; 25:11982. [PMID: 39596051 PMCID: PMC11593774 DOI: 10.3390/ijms252211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent years, next-generation sequencing (NGS) technologies allowed the identification of several gene pathogenic variants etiologically related to these disorders in a large cohort of affected children. These genes encode proteins involved in synaptic homeostasis, such as SNARE proteins, implicated in calcium-triggered pre-synaptic release of neurotransmitters, or channel subunit proteins, such as post-synaptic ionotropic glutamate receptors involved in the brain's fast excitatory neurotransmission. In this narrative review, we dissected emerged molecular mechanisms related to NDDs and epilepsy due to defects in pre- and post-synaptic transmission. We focused on the most recently discovered SNAREopathies and AMPA-related synaptopathies.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Ludovica Di Francesco
- Department of Neonatology, University of L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| |
Collapse
|
2
|
Kádková A, Murach J, Østergaard M, Malsam A, Malsam J, Lolicato F, Nickel W, Söllner TH, Sørensen JB. SNAP25 disease mutations change the energy landscape for synaptic exocytosis due to aberrant SNARE interactions. eLife 2024; 12:RP88619. [PMID: 38411501 PMCID: PMC10911398 DOI: 10.7554/elife.88619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.
Collapse
Affiliation(s)
- Anna Kádková
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | | | - Maiken Østergaard
- Department of Neuroscience, University of CopenhagenCopenhagenDenmark
| | - Andrea Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Jörg Malsam
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | - Fabio Lolicato
- Heidelberg University Biochemistry CenterHeidelbergDenmark
- Department of Physics, University of HelsinkiHelsinkiFinland
| | - Walter Nickel
- Heidelberg University Biochemistry CenterHeidelbergDenmark
| | | | | |
Collapse
|
3
|
Villavicencio Gonzalez E, Dhindsa RS. Studying ultra-rare variants in STX1A uncovers a novel neurodevelopmental disorder. Eur J Hum Genet 2023; 31:973-974. [PMID: 37029317 PMCID: PMC10474260 DOI: 10.1038/s41431-023-01348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Affiliation(s)
- Esmeralda Villavicencio Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurologic Research Institute at Texas Children's Hospital, Houston, TX, USA.
| | - Ryan S Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurologic Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Motta M, Consentino MC, Fontana A, Sciuto L, Falsaperla R, Praticò ER, Salafia S, Zanghì A, Praticò AD. DNM1 Gene and Its Related Epileptic Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:273-282. [DOI: 10.1055/s-0041-1727258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe phenotypic variety associated to mutations in dynamin 1 (DNM1), codifying the presynaptic protein DNM1 has been increasingly reported, mainly related to encephalopathy with intractable epilepsy; currently, it is known the phenotype related to DNM1 gene mutations is relatively homogeneous with developmental delay, hypotonia, and epilepsy characterized by infantile spasms and possible progression to Lennox-Gastaut syndrome. By examining all the papers published until 2020 (18 articles), we compared data from 30 patients (extrapolated from 5 papers) with DNM1 mutations, identifying 26 patients with de novo mutations in DNM1. Nine patients (33.3%) reported the recurrent mutation p.Arg237Trp. A usual phenotype observed comprises severe to deep developmental delay and muscular hypotonia in all patients with epilepsy beginning with infantile spasms, which often evolved into Lennox-Gastaut syndrome. Data about GTPase or central domains mutations, and existing structural modeling and functional suggest a dominant negative effect on DMN1 function. Generally genetic epilepsies consist of a wide spectrum of clinical features, unlike that, DNM1-related CNS impairment phenotype is quite uniform. In up to one third of patients it has been found variant p.Arg237Trp, which is one of the most frequent variant detected in epileptic encephalopathies. The understanding of DNM1 function opens up the chance that this gene would become a new therapeutic target for epilepsies.
Collapse
Affiliation(s)
- Milena Motta
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Chiara Consentino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Fontana
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | | | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Department of Clinical and Experimental Medicine, Unit of Rare Diseases of the Nervous System in Childhood, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15:1148957. [PMID: 37066095 PMCID: PMC10102358 DOI: 10.3389/fnsyn.2023.1148957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.
Collapse
Affiliation(s)
- Burak Uzay
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
6
|
Reynolds HM, Wen T, Farrell A, Mao R, Moore B, Boyden SE, Bayrak-Toydemir P, Nicholas TJ, Rynearson S, Holt C, Miller C, Noble K, Bentley D, Palmquist R, Ostrander B, Manberg S, Bonkowsky JL, Shayota BJ, Jenkins SM. Rapid genome sequencing identifies a novel de novo SNAP25 variant for neonatal congenital myasthenic syndrome. Cold Spring Harb Mol Case Stud 2022; 8:a006242. [PMID: 36379720 PMCID: PMC9808558 DOI: 10.1101/mcs.a006242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital myasthenic syndrome (CMS) is a group of 32 disorders involving genetic dysfunction at the neuromuscular junction resulting in skeletal muscle weakness that worsens with physical activity. Precise diagnosis and molecular subtype identification are critical for treatment as medication for one subtype may exacerbate disease in another (Engel et al., Lancet Neurol 14: 420 [2015]; Finsterer, Orphanet J Rare Dis 14: 57 [2019]; Prior and Ghosh, J Child Neurol 36: 610 [2021]). The SNAP25-related CMS subtype (congenital myasthenic syndrome 18, CMS18; MIM #616330) is a rare disorder characterized by muscle fatigability, delayed psychomotor development, and ataxia. Herein, we performed rapid whole-genome sequencing (rWGS) on a critically ill newborn leading to the discovery of an unreported pathogenic de novo SNAP25 c.529C > T; p.Gln177Ter variant. In this report, we present a novel case of CMS18 with complex neonatal consequence. This discovery offers unique insight into the extent of phenotypic severity in CMS18, expands the reported SNAP25 variant phenotype, and paves a foundation for personalized management for CMS18.
Collapse
Affiliation(s)
- Hayley M Reynolds
- University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Ting Wen
- University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- ARUP Laboratories, Salt Lake City, Utah 84108, USA
| | - Andrew Farrell
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Rong Mao
- University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- ARUP Laboratories, Salt Lake City, Utah 84108, USA
| | - Barry Moore
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Steven E Boyden
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Pinar Bayrak-Toydemir
- University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
- ARUP Laboratories, Salt Lake City, Utah 84108, USA
| | - Thomas J Nicholas
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Shawn Rynearson
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | - Carson Holt
- Department of Human Genetics, Utah Center for Genetic Discovery, Salt Lake City, Utah 84112, USA
| | | | | | - Dawn Bentley
- Division of Neonatology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84113, USA
| | - Betsy Ostrander
- Division of Pediatric Neurology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84113, USA
| | - Stephanie Manberg
- Division of Pediatric Neurology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84113, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84113, USA
- Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, Utah 84108, USA
| | - Brian J Shayota
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Sabrina Malone Jenkins
- Division of Neonatology, Department of Pediatrics University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
7
|
Sommer D, Rajkumar S, Seidel M, Aly A, Ludolph A, Ho R, Boeckers TM, Catanese A. Aging-Dependent Altered Transcriptional Programs Underlie Activity Impairments in Human C9orf72-Mutant Motor Neurons. Front Mol Neurosci 2022; 15:894230. [PMID: 35774867 PMCID: PMC9237792 DOI: 10.3389/fnmol.2022.894230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an incurable neurodegenerative disease characterized by dysfunction and loss of upper and lower motor neurons (MN). Despite several studies identifying drastic alterations affecting synaptic composition and functionality in different experimental models, the specific contribution of impaired activity to the neurodegenerative processes observed in ALS-related MN remains controversial. In particular, contrasting lines of evidence have shown both hyper- as well as hypoexcitability as driving pathomechanisms characterizing this specific neuronal population. In this study, we combined high definition multielectrode array (HD-MEA) techniques with transcriptomic analysis to longitudinally monitor and untangle the activity-dependent alterations arising in human C9orf72-mutant MN. We found a time-dependent reduction of neuronal activity in ALSC9orf72 cultures occurring as synaptic contacts undergo maturation and matched by a significant loss of mutant MN upon aging. Notably, ALS-related neurons displayed reduced network synchronicity most pronounced at later stages of culture, suggesting synaptic imbalance. In concordance with the HD-MEA data, transcriptomic analysis revealed an early up-regulation of synaptic terms in ALSC9orf72 MN, whose expression was decreased in aged cultures. In addition, treatment of older mutant cells with Apamin, a K+ channel blocker previously shown to be neuroprotective in ALS, rescued the time-dependent loss of firing properties observed in ALSC9orf72 MN as well as the expression of maturity-related synaptic genes. All in all, this study broadens the understanding of how impaired synaptic activity contributes to MN degeneration in ALS by correlating electrophysiological alterations to aging-dependent transcriptional programs.
Collapse
Affiliation(s)
- Daniel Sommer
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Mira Seidel
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Amr Aly
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Ritchie Ho
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tobias M. Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
- *Correspondence: Alberto Catanese,
| |
Collapse
|
8
|
Perl E, Ravisankar P, Beerens ME, Mulahasanovic L, Smallwood K, Sasso MB, Wenzel C, Ryan TD, Komár M, Bove KE, MacRae CA, Weaver KN, Prada CE, Waxman JS. Stx4 is required to regulate cardiomyocyte Ca 2+ handling during vertebrate cardiac development. HGG ADVANCES 2022; 3:100115. [PMID: 35599850 PMCID: PMC9114686 DOI: 10.1016/j.xhgg.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Requirements for vesicle fusion within the heart remain poorly understood, despite the multitude of processes that necessitate proper intracellular trafficking within cardiomyocytes. Here, we show that Syntaxin 4 (STX4), a target-Soluble N-ethylmaleimide sensitive factor attachment receptor (t-SNARE) protein, is required for normal vertebrate cardiac conduction and vesicular transport. Two patients were identified with damaging variants in STX4. A patient with a homozygous R240W missense variant displayed biventricular dilated cardiomyopathy, ectopy, and runs of non-sustained ventricular tachycardia, sensorineural hearing loss, global developmental delay, and hypotonia, while a second patient displayed severe pleiotropic abnormalities and perinatal lethality. CRISPR/Cas9-generated stx4 mutant zebrafish exhibited defects reminiscent of these patients' clinical presentations, including linearized hearts, bradycardia, otic vesicle dysgenesis, neuronal atrophy, and touch insensitivity by 3 days post fertilization. Imaging of Vamp2+ vesicles within stx4 mutant zebrafish hearts showed reduced docking to the cardiomyocyte sarcolemma. Optical mapping of the embryonic hearts coupled with pharmacological modulation of Ca2+ handling together support that zebrafish stx4 mutants have a reduction in L-type Ca2+ channel modulation. Transgenic overexpression of zebrafish Stx4R241W, analogous to the first patient's STX4R240W variant, indicated that the variant is hypomorphic. Thus, these data show an in vivo requirement for SNAREs in regulating normal embryonic cardiac function and that variants in STX4 are associated with pleiotropic human disease, including cardiomyopathy.
Collapse
Affiliation(s)
- Eliyahu Perl
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Padmapriyadarshini Ravisankar
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Manu E. Beerens
- Cardiovascular Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lejla Mulahasanovic
- Praxis für Humangenetik, Tübingen, Baden-Württemberg, Germany,CeGaT GmbH, Tübingen, Baden-Württemberg, Germany
| | - Kelly Smallwood
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marion Bermúdez Sasso
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Saxony, Germany
| | - Carina Wenzel
- Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Thomas D. Ryan
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Matej Komár
- Department of Gynecology and Obstetrics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Saxony, Germany
| | - Kevin E. Bove
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pathology and Laboratory Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Calum A. MacRae
- Cardiovascular Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Genetics and Network Medicine Divisions, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Harvard Stem Cell Institute, Boston, MA, USA
| | - K. Nicole Weaver
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Carlos E. Prada
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Joshua S. Waxman
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA,Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA,Corresponding author
| |
Collapse
|
9
|
Spoto G, Valentini G, Saia MC, Butera A, Amore G, Salpietro V, Nicotera AG, Di Rosa G. Synaptopathies in Developmental and Epileptic Encephalopathies: A Focus on Pre-synaptic Dysfunction. Front Neurol 2022; 13:826211. [PMID: 35350397 PMCID: PMC8957959 DOI: 10.3389/fneur.2022.826211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
The proper connection between the pre- and post-synaptic nervous cells depends on any element constituting the synapse: the pre- and post-synaptic membranes, the synaptic cleft, and the surrounding glial cells and extracellular matrix. An alteration of the mechanisms regulating the physiological synergy among these synaptic components is defined as “synaptopathy.” Mutations in the genes encoding for proteins involved in neuronal transmission are associated with several neuropsychiatric disorders, but only some of them are associated with Developmental and Epileptic Encephalopathies (DEEs). These conditions include a heterogeneous group of epilepsy syndromes associated with cognitive disturbances/intellectual disability, autistic features, and movement disorders. This review aims to elucidate the pathogenesis of these conditions, focusing on mechanisms affecting the neuronal pre-synaptic terminal and its role in the onset of DEEs, including potential therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giulia Valentini
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Maria Concetta Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom
- Pediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- *Correspondence: Vincenzo Salpietro
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
10
|
Wang XD, Liu S, Lu H, Guan Y, Wu H, Ji Y. Analysis of Shared Genetic Regulatory Networks for Alzheimer's Disease and Epilepsy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6692974. [PMID: 34697589 PMCID: PMC8538392 DOI: 10.1155/2021/6692974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) and epilepsy are neurological disorders that affect a large cohort of people worldwide. Although both of the two diseases could be influenced by genetic factors, the shared genetic mechanism underlying the pathogenesis of them is still unclear. In this study, we aimed to identify the shared genetic networks and corresponding hub genes for AD and epilepsy. Firstly, the gene coexpression modules (GCMs) were constructed by weighted gene coexpression network analysis (WGCNA), and 16 GCMs were identified. Through further integration of GCMs, genome-wide association studies (GWASs), and expression quantitative trait loci (eQTLs), 4 shared GCMs of AD and epilepsy were identified. Functional enrichment analysis was performed to analyze the shared biological processes of these GCMs and explore the functional overlaps between these two diseases. The results showed that the genes in shared GCMs were significantly enriched in nervous system-related pathways, such as Alzheimer's disease and neuroactive ligand-receptor interaction pathways. Furthermore, the hub genes of AD- and epilepsy-associated GCMs were captured by weighted key driver analysis (wKDA), including TRPC1, C2ORF40, NR3C1, KIAA0368, MMT00043109, STEAP1, MSX1, KL, and CLIC6. The shared GCMs and hub genes might provide novel therapeutic targets for AD and epilepsy.
Collapse
Affiliation(s)
- Xiao-Dan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin 300350, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin 300350, China
| | - Hui Lu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin 300350, China
| | - Yalin Guan
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin 300350, China
| | - Hao Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin 300350, China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin 300350, China
| |
Collapse
|
11
|
John A, Ng-Cordell E, Hanna N, Brkic D, Baker K. The neurodevelopmental spectrum of synaptic vesicle cycling disorders. J Neurochem 2021; 157:208-228. [PMID: 32738165 DOI: 10.1111/jnc.15135] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe and discuss neurodevelopmental phenotypes arising from rare, high penetrance genomic variants which directly influence synaptic vesicle cycling (SVC disorders). Pathogenic variants in each SVC disorder gene lead to disturbance of at least one SVC subprocess, namely vesicle trafficking (e.g. KIF1A and GDI1), clustering (e.g. TRIO, NRXN1 and SYN1), docking and priming (e.g. STXBP1), fusion (e.g. SYT1 and PRRT2) or re-uptake (e.g. DNM1, AP1S2 and TBC1D24). We observe that SVC disorders share a common set of neurological symptoms (movement disorders, epilepsies), cognitive impairments (developmental delay, intellectual disabilities, cerebral visual impairment) and mental health difficulties (autism, ADHD, psychiatric symptoms). On the other hand, there is notable phenotypic variation between and within disorders, which may reflect selective disruption to SVC subprocesses, spatiotemporal and cell-specific gene expression profiles, mutation-specific effects, or modifying factors. Understanding the common cellular and systems mechanisms underlying neurodevelopmental phenotypes in SVC disorders, and the factors responsible for variation in clinical presentations and outcomes, may translate to personalized clinical management and improved quality of life for patients and families.
Collapse
Affiliation(s)
- Abinayah John
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Nancy Hanna
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Diandra Brkic
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Klöckner C, Sticht H, Zacher P, Popp B, Babcock HE, Bakker DP, Barwick K, Bonfert MV, Bönnemann CG, Brilstra EH, Chung WK, Clarke AJ, Devine P, Donkervoort S, Fraser JL, Friedman J, Gates A, Ghoumid J, Hobson E, Horvath G, Keller-Ramey J, Keren B, Kurian MA, Lee V, Leppig KA, Lundgren J, McDonald MT, McLaughlin HM, McTague A, Mefford HC, Mignot C, Mikati MA, Nava C, Raymond FL, Sampson JR, Sanchis-Juan A, Shashi V, Shieh JTC, Shinawi M, Slavotinek A, Stödberg T, Stong N, Sullivan JA, Taylor AC, Toler TL, van den Boogaard MJ, van der Crabben SN, van Gassen KLI, van Jaarsveld RH, Van Ziffle J, Wadley AF, Wagner M, Wigby K, Wortmann SB, Zarate YA, Møller RS, Lemke JR, Platzer K. De novo variants in SNAP25 cause an early-onset developmental and epileptic encephalopathy. Genet Med 2020; 23:653-660. [PMID: 33299146 DOI: 10.1038/s41436-020-01020-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE This study aims to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed "SNAREopathies."
Collapse
Affiliation(s)
- Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pia Zacher
- The Saxon Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Holly E Babcock
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA
| | - Dewi P Bakker
- Department of Child Neurology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Katy Barwick
- Institute of Child Health, University Collge London, London, UK
| | - Michaela V Bonfert
- Department of Pediatric Neurology and Developmental Medicine and LMU Center for Children with Medical Complexity, Dr. von Hauner Children's Hospital, LMU - University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eva H Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA
| | - Angus J Clarke
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, UK
| | - Patrick Devine
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jamie L Fraser
- Rare Disease Institute, Division of Genetics and Metabolism, Children's National Hospital, Washington, DC, USA
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California San Diego and Division of Neurology, Rady Children's Hospital, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Alyssa Gates
- Department of Genetic Services, Kaiser Permanente Washington, Seattle, WA, USA
| | - Jamal Ghoumid
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Emma Hobson
- Yorkshire Clinical Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Gabriella Horvath
- Department of Pediatrics, Division of Biochemical Diseases, University of British Columbia, Vancouver, Canada
| | | | - Boris Keren
- APHP, Département de Génétique, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Manju A Kurian
- Institute of Child Health, University Collge London, London, UK
| | - Virgina Lee
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen A Leppig
- Department of Genetic Services, Kaiser Permanente Washington, Seattle, WA, USA
| | - Johan Lundgren
- Institute of Clinical Sciences, Skane University Hospital, Lund, Sweden
| | - Marie T McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Amy McTague
- Institute of Child Health, University Collge London, London, UK
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Cyril Mignot
- Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et Hôpital Trousseau, APHP, Sorbonne Université, Paris, France
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Caroline Nava
- Sorbonne University, Paris Brain Institute, Inserm U1127, CNRS UMR 7225, AP-HP, Pitié Salpêtrière Hospital, Department of Genetics, Paris, France
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Julian R Sampson
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Wales, UK
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Joseph T C Shieh
- Division of Medical Genetics, University of California, San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne Slavotinek
- Division of Medical Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Tommy Stödberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Jennifer A Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ashley C Taylor
- Section of Genetics, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tomi L Toler
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Saskia N van der Crabben
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jessica Van Ziffle
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | | | - Matias Wagner
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Kristen Wigby
- Department of Pediatrics, Division of Genetics, University of California, San Diego and Rady Children's Hospital-San Diego, San Diego, CA, USA
| | - Saskia B Wortmann
- Amalia Children's Hospital, Radboud University Nijmegen, Nijmegen, The Netherlands.,University Childrens Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Yuri A Zarate
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rikke S Møller
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark.,Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre Filadelfia, Dianalund, Denmark
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
13
|
Alten B, Zhou Q, Shin OH, Esquivies L, Lin PY, White KI, Sun R, Chung WK, Monteggia LM, Brunger AT, Kavalali ET. Role of Aberrant Spontaneous Neurotransmission in SNAP25-Associated Encephalopathies. Neuron 2020; 109:59-72.e5. [PMID: 33147442 DOI: 10.1016/j.neuron.2020.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/09/2020] [Accepted: 10/07/2020] [Indexed: 01/19/2023]
Abstract
SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex, composed of synaptobrevin, syntaxin, and SNAP25, forms the essential fusion machinery for neurotransmitter release. Recent studies have reported several mutations in the gene encoding SNAP25 as a causative factor for developmental and epileptic encephalopathies of infancy and childhood with diverse clinical manifestations. However, it remains unclear how SNAP25 mutations give rise to these disorders. Here, we show that although structurally clustered mutations in SNAP25 give rise to related synaptic transmission phenotypes, specific alterations in spontaneous neurotransmitter release are a key factor to account for disease heterogeneity. Importantly, we identified a single mutation that augments spontaneous release without altering evoked release, suggesting that aberrant spontaneous release is sufficient to cause disease in humans.
Collapse
Affiliation(s)
- Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Qiangjun Zhou
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ok-Ho Shin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Pei-Yi Lin
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Rong Sun
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Wendy K Chung
- Department of Pediatrics (in Medicine), Columbia University Medical Center, New York, NY 10032, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
14
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
15
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Verhage M, Sørensen JB. SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron 2020; 107:22-37. [PMID: 32559416 DOI: 10.1016/j.neuron.2020.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Neuronal SNAREs and their key regulators together drive synaptic vesicle exocytosis and synaptic transmission as a single integrated membrane fusion machine. Human pathogenic mutations have now been reported for all eight core components, but patients are diagnosed with very different neurodevelopmental syndromes. We propose to unify these syndromes, based on etiology and mechanism, as "SNAREopathies." Here, we review the strikingly diverse clinical phenomenology and disease severity and the also remarkably diverse genetic mechanisms. We argue that disease severity generally scales with functional redundancy and, conversely, that the large effect of mutations in some SNARE genes is the price paid for extensive integration and exceptional specialization. Finally, we discuss how subtle differences in components being rate limiting in different types of neurons helps to explain the main symptoms.
Collapse
Affiliation(s)
- Matthijs Verhage
- Department of Functional Genomics, Vrije Universiteit (VU) Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Department of Clinical Genetics, UMC Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands.
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
18
|
Chen W, Cai ZL, Chao ES, Chen H, Longley CM, Hao S, Chao HT, Kim JH, Messier JE, Zoghbi HY, Tang J, Swann JW, Xue M. Stxbp1/Munc18-1 haploinsufficiency impairs inhibition and mediates key neurological features of STXBP1 encephalopathy. eLife 2020; 9:e48705. [PMID: 32073399 PMCID: PMC7056272 DOI: 10.7554/elife.48705] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in genes encoding synaptic proteins cause many neurodevelopmental disorders, with the majority affecting postsynaptic apparatuses and much fewer in presynaptic proteins. Syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1) is an essential component of the presynaptic neurotransmitter release machinery. De novo heterozygous pathogenic variants in STXBP1 are among the most frequent causes of neurodevelopmental disorders including intellectual disabilities and epilepsies. These disorders, collectively referred to as STXBP1 encephalopathy, encompass a broad spectrum of neurologic and psychiatric features, but the pathogenesis remains elusive. Here we modeled STXBP1 encephalopathy in mice and found that Stxbp1 haploinsufficiency caused cognitive, psychiatric, and motor dysfunctions, as well as cortical hyperexcitability and seizures. Furthermore, Stxbp1 haploinsufficiency reduced cortical inhibitory neurotransmission via distinct mechanisms from parvalbumin-expressing and somatostatin-expressing interneurons. These results demonstrate that Stxbp1 haploinsufficient mice recapitulate cardinal features of STXBP1 encephalopathy and indicate that GABAergic synaptic dysfunction is likely a crucial contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Wu Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Hongmei Chen
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Colleen M Longley
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Shuang Hao
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- McNair Medical Institute, The Robert and Janice McNair FoundationHoustonUnited States
| | - Joo Hyun Kim
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Jessica E Messier
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| | - Jianrong Tang
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - John W Swann
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
19
|
Dissecting the genetic basis of comorbid epilepsy phenotypes in neurodevelopmental disorders. Genome Med 2019; 11:65. [PMID: 31653223 PMCID: PMC6815046 DOI: 10.1186/s13073-019-0678-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Background Neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability, developmental disability, and epilepsy are characterized by abnormal brain development that may affect cognition, learning, behavior, and motor skills. High co-occurrence (comorbidity) of NDDs indicates a shared, underlying biological mechanism. The genetic heterogeneity and overlap observed in NDDs make it difficult to identify the genetic causes of specific clinical symptoms, such as seizures. Methods We present a computational method, MAGI-S, to discover modules or groups of highly connected genes that together potentially perform a similar biological function. MAGI-S integrates protein-protein interaction and co-expression networks to form modules centered around the selection of a single “seed” gene, yielding modules consisting of genes that are highly co-expressed with the seed gene. We aim to dissect the epilepsy phenotype from a general NDD phenotype by providing MAGI-S with high confidence NDD seed genes with varying degrees of association with epilepsy, and we assess the enrichment of de novo mutation, NDD-associated genes, and relevant biological function of constructed modules. Results The newly identified modules account for the increased rate of de novo non-synonymous mutations in autism, intellectual disability, developmental disability, and epilepsy, and enrichment of copy number variations (CNVs) in developmental disability. We also observed that modules seeded with genes strongly associated with epilepsy tend to have a higher association with epilepsy phenotypes than modules seeded at other neurodevelopmental disorder genes. Modules seeded with genes strongly associated with epilepsy (e.g., SCN1A, GABRA1, and KCNB1) are significantly associated with synaptic transmission, long-term potentiation, and calcium signaling pathways. On the other hand, modules found with seed genes that are not associated or weakly associated with epilepsy are mostly involved with RNA regulation and chromatin remodeling. Conclusions In summary, our method identifies modules enriched with de novo non-synonymous mutations and can capture specific networks that underlie the epilepsy phenotype and display distinct enrichment in relevant biological processes. MAGI-S is available at https://github.com/jchow32/magi-s.
Collapse
|
20
|
Gorman KM, Meyer E, Grozeva D, Spinelli E, McTague A, Sanchis-Juan A, Carss KJ, Bryant E, Reich A, Schneider AL, Pressler RM, Simpson MA, Debelle GD, Wassmer E, Morton J, Sieciechowicz D, Jan-Kamsteeg E, Paciorkowski AR, King MD, Cross JH, Poduri A, Mefford HC, Scheffer IE, Haack TB, McCullagh G, Millichap JJ, Carvill GL, Clayton-Smith J, Maher ER, Raymond FL, Kurian MA, McRae JF, Clayton S, Fitzgerald TW, Kaplanis J, Prigmore E, Rajan D, Sifrim A, Aitken S, Akawi N, Alvi M, Ambridge K, Barrett DM, Bayzetinova T, Jones P, Jones WD, King D, Krishnappa N, Mason LE, Singh T, Tivey AR, Ahmed M, Anjum U, Archer H, Armstrong R, Awada J, Balasubramanian M, Banka S, Baralle D, Barnicoat A, Batstone P, Baty D, Bennett C, Berg J, Bernhard B, Bevan AP, Bitner-Glindzicz M, Blair E, Blyth M, Bohanna D, Bourdon L, Bourn D, Bradley L, Brady A, Brent S, Brewer C, Brunstrom K, Bunyan DJ, Burn J, Canham N, Castle B, Chandler K, Chatzimichali E, Cilliers D, Clarke A, Clasper S, Clayton-Smith J, Clowes V, Coates A, Cole T, Colgiu I, Collins A, Collinson MN, Connell F, Cooper N, Cox H, Cresswell L, Cross G, Crow Y, D’Alessandro M, et alGorman KM, Meyer E, Grozeva D, Spinelli E, McTague A, Sanchis-Juan A, Carss KJ, Bryant E, Reich A, Schneider AL, Pressler RM, Simpson MA, Debelle GD, Wassmer E, Morton J, Sieciechowicz D, Jan-Kamsteeg E, Paciorkowski AR, King MD, Cross JH, Poduri A, Mefford HC, Scheffer IE, Haack TB, McCullagh G, Millichap JJ, Carvill GL, Clayton-Smith J, Maher ER, Raymond FL, Kurian MA, McRae JF, Clayton S, Fitzgerald TW, Kaplanis J, Prigmore E, Rajan D, Sifrim A, Aitken S, Akawi N, Alvi M, Ambridge K, Barrett DM, Bayzetinova T, Jones P, Jones WD, King D, Krishnappa N, Mason LE, Singh T, Tivey AR, Ahmed M, Anjum U, Archer H, Armstrong R, Awada J, Balasubramanian M, Banka S, Baralle D, Barnicoat A, Batstone P, Baty D, Bennett C, Berg J, Bernhard B, Bevan AP, Bitner-Glindzicz M, Blair E, Blyth M, Bohanna D, Bourdon L, Bourn D, Bradley L, Brady A, Brent S, Brewer C, Brunstrom K, Bunyan DJ, Burn J, Canham N, Castle B, Chandler K, Chatzimichali E, Cilliers D, Clarke A, Clasper S, Clayton-Smith J, Clowes V, Coates A, Cole T, Colgiu I, Collins A, Collinson MN, Connell F, Cooper N, Cox H, Cresswell L, Cross G, Crow Y, D’Alessandro M, Dabir T, Davidson R, Davies S, de Vries D, Dean J, Deshpande C, Devlin G, Dixit A, Dobbie A, Donaldson A, Donnai D, Donnelly D, Donnelly C, Douglas A, Douzgou S, Duncan A, Eason J, Ellard S, Ellis I, Elmslie F, Evans K, Everest S, Fendick T, Fisher R, Flinter F, Foulds N, Fry A, Fryer A, Gardiner C, Gaunt L, Ghali N, Gibbons R, Gill H, Goodship J, Goudie D, Gray E, Green A, Greene P, Greenhalgh L, Gribble S, Harrison R, Harrison L, Harrison V, Hawkins R, He L, Hellens S, Henderson A, Hewitt S, Hildyard L, Hobson E, Holden S, Holder M, Holder S, Hollingsworth G, Homfray T, Humphreys M, Hurst J, Hutton B, Ingram S, Irving M, Islam L, Jackson A, Jarvis J, Jenkins L, Johnson D, Jones E, Josifova D, Joss S, Kaemba B, Kazembe S, Kelsell R, Kerr B, Kingston H, Kini U, Kinning E, Kirby G, Kirk C, Kivuva E, Kraus A, Kumar D, Kumar VKA, Lachlan K, Lam W, Lampe A, Langman C, Lees M, Lim D, Longman C, Lowther G, Lynch SA, Magee A, Maher E, Male A, Mansour S, Marks K, Martin K, Maye U, McCann E, McConnell V, McEntagart M, McGowan R, McKay K, McKee S, McMullan DJ, McNerlan S, McWilliam C, Mehta S, Metcalfe K, Middleton A, Miedzybrodzka Z, Miles E, Mohammed S, Montgomery T, Moore D, Morgan S, Morton J, Mugalaasi H, Murday V, Murphy H, Naik S, Nemeth A, Nevitt L, Newbury-Ecob R, Norman A, O’Shea R, Ogilvie C, Ong KR, Park SM, Parker MJ, Patel C, Paterson J, Payne S, Perrett D, Phipps J, Pilz DT, Pollard M, Pottinger C, Poulton J, Pratt N, Prescott K, Price S, Pridham A, Procter A, Purnell H, Quarrell O, Ragge N, Rahbari R, Randall J, Rankin J, Raymond L, Rice D, Robert L, Roberts E, Roberts J, Roberts P, Roberts G, Ross A, Rosser E, Saggar A, Samant S, Sampson J, Sandford R, Sarkar A, Schweiger S, Scott R, Scurr I, Selby A, Seller A, Sequeira C, Shannon N, Sharif S, Shaw-Smith C, Shearing E, Shears D, Sheridan E, Simonic I, Singzon R, Skitt Z, Smith A, Smith K, Smithson S, Sneddon L, Splitt M, Squires M, Stewart F, Stewart H, Straub V, Suri M, Sutton V, Swaminathan GJ, Sweeney E, Tatton-Brown K, Taylor C, Taylor R, Tein M, Temple IK, Thomson J, Tischkowitz M, Tomkins S, Torokwa A, Treacy B, Turner C, Turnpenny P, Tysoe C, Vandersteen A, Varghese V, Vasudevan P, Vijayarangakannan P, Vogt J, Wakeling E, Wallwark S, Waters J, Weber A, Wellesley D, Whiteford M, Widaa S, Wilcox S, Wilkinson E, Williams D, Williams N, Wilson L, Woods G, Wragg C, Wright M, Yates L, Yau M, Nellåker C, Parker M, Firth HV, Wright CF, FitzPatrick DR, Barrett JC, Hurles ME, Al Turki S, Anderson C, Anney R, Antony D, Artigas MS, Ayub M, Balasubramaniam S, Barrett JC, Barroso I, Beales P, Bentham J, Bhattacharya S, Birney E, Blackwood D, Bobrow M, Bochukova E, Bolton P, Bounds R, Boustred C, Breen G, Calissano M, Carss K, Chatterjee K, Chen L, Ciampi A, Cirak S, Clapham P, Clement G, Coates G, Collier D, Cosgrove C, Cox T, Craddock N, Crooks L, Curran S, Curtis D, Daly A, Day-Williams A, Day IN, Down T, Du Y, Dunham I, Edkins S, Ellis P, Evans D, Faroogi S, Fatemifar G, Fitzpatrick DR, Flicek P, Flyod J, Foley AR, Franklin CS, Futema M, Gallagher L, Geihs M, Geschwind D, Griffin H, Grozeva D, Guo X, Guo X, Gurling H, Hart D, Hendricks A, Holmans P, Howie B, Huang L, Hubbard T, Humphries SE, Hurles ME, Hysi P, Jackson DK, Jamshidi Y, Jing T, Joyce C, Kaye J, Keane T, Keogh J, Kemp J, Kennedy K, Kolb-Kokocinski A, Lachance G, Langford C, Lawson D, Lee I, Lek M, Liang J, Lin H, Li R, Li Y, Liu R, Lönnqvist J, Lopes M, Iotchkova V, MacArthur D, Marchini J, Maslen J, Massimo M, Mathieson I, Marenne G, McGuffin P, McIntosh A, McKechanie AG, McQuillin A, Metrustry S, Mitchison H, Moayyeri A, Morris J, Muntoni F, Northstone K, O'Donnovan M, Onoufriadis A, O'Rahilly S, Oualkacha K, Owen MJ, Palotie A, Panoutsopoulou K, Parker V, Parr JR, Paternoster L, Paunio T, Payne F, Pietilainen O, Plagnol V, Quaye L, Quail MA, Raymond L, Rehnström K, Ring S, Ritchie GR, Roberts N, Savage DB, Scambler P, Schiffels S, Schmidts M, Schoenmakers N, Semple RK, Serra E, Sharp SI, Shin SY, Skuse D, Small K, Southam L, Spasic-Boskovic O, St Clair D, Stalker J, Stevens E, St Pourcian B, Sun J, Suvisaari J, Tachmazidou I, Tobin MD, Valdes A, Van Kogelenberg M, Vijayarangakannan P, Visscher PM, Wain LV, Walters JT, Wang G, Wang J, Wang Y, Ward K, Wheeler E, Whyte T, Williams H, Williamson KA, Wilson C, Wong K, Xu C, Yang J, Zhang F, Zhang P, Aitman T, Alachkar H, Ali S, Allen L, Allsup D, Ambegaonkar G, Anderson J, Antrobus R, Armstrong R, Arno G, Arumugakani G, Ashford S, Astle W, Attwood A, Austin S, Bacchelli C, Bakchoul T, Bariana TK, Baxendale H, Bennett D, Bethune C, Bibi S, Bitner-Glindzicz M, Bleda M, Boggard H, Bolton-Maggs P, Booth C, Bradley JR, Brady A, Brown M, Browning M, Bryson C, Burns S, Calleja P, Canham N, Carmichael J, Carss K, Caulfield M, Chalmers E, Chandra A, Chinnery P, Chitre M, Church C, Clement E, Clements-Brod N, Clowes V, Coghlan G, Collins P, Cooper N, Creaser-Myers A, DaCosta R, Daugherty L, Davies S, Davis J, De Vries M, Deegan P, Deevi SV, Deshpande C, Devlin L, Dewhurst E, Doffinger R, Dormand N, Drewe E, Edgar D, Egner W, Erber WN, Erwood M, Everington T, Favier R, Firth H, Fletcher D, Flinter F, Fox JC, Frary A, Freson K, Furie B, Furnell A, Gale D, Gardham A, Gattens M, Ghali N, Ghataorhe PK, Ghurye R, Gibbs S, Gilmour K, Gissen P, Goddard S, Gomez K, Gordins P, Gräf S, Greene D, Greenhalgh A, Greinacher A, Grigoriadou S, Grozeva D, Hackett S, Hadinnapola C, Hague R, Haimel M, Halmagyi C, Hammerton T, Hart D, Hayman G, Heemskerk JW, Henderson R, Hensiek A, Henskens Y, Herwadkar A, Holden S, Holder M, Holder S, Hu F, Huissoon A, Humbert M, Hurst J, James R, Jolles S, Josifova D, Kazmi R, Keeling D, Kelleher P, Kelly AM, Kennedy F, Kiely D, Kingston N, Koziell A, Krishnakumar D, Kuijpers TW, Kumararatne D, Kurian M, Laffan MA, Lambert MP, Allen HL, Lawrie A, Lear S, Lees M, Lentaigne C, Liesner R, Linger R, Longhurst H, Lorenzo L, Machado R, Mackenzie R, MacLaren R, Maher E, Maimaris J, Mangles S, Manson A, Mapeta R, Markus HS, Martin J, Masati L, Mathias M, Matser V, Maw A, McDermott E, McJannet C, Meacham S, Meehan S, Megy K, Mehta S, Michaelides M, Millar CM, Moledina S, Moore A, Morrell N, Mumford A, Murng S, Murphy E, Nejentsev S, Noorani S, Nurden P, Oksenhendler E, Ouwehand WH, Papadia S, Park SM, Parker A, Pasi J, Patch C, Paterson J, Payne J, Peacock A, Peerlinck K, Penkett CJ, Pepke-Zaba J, Perry DJ, Pollock V, Polwarth G, Ponsford M, Qasim W, Quinti I, Rankin S, Rankin J, Raymond FL, Rehnstrom K, Reid E, Rhodes CJ, Richards M, Richardson S, Richter A, Roberts I, Rondina M, Rosser E, Roughley C, Rue-Albrecht K, Samarghitean C, Sanchis-Juan A, Sandford R, Santra S, Sargur R, Savic S, Schulman S, Schulze H, Scott R, Scully M, Seneviratne S, Sewell C, Shamardina O, Shipley D, Simeoni I, Sivapalaratnam S, Smith K, Sohal A, Southgate L, Staines S, Staples E, Stauss H, Stein P, Stephens J, Stirrups K, Stock S, Suntharalingam J, Tait RC, Talks K, Tan Y, Thachil J, Thaventhiran J, Thomas E, Thomas M, Thompson D, Thrasher A, Tischkowitz M, Titterton C, Toh CH, Toshner M, Treacy C, Trembath R, Tuna S, Turek W, Turro E, Van Geet C, Veltman M, Vogt J, von Ziegenweldt J, Vonk Noordegraaf A, Wakeling E, Wanjiku I, Warner TQ, Wassmer E, Watkins H, Webster A, Welch S, Westbury S, Wharton J, Whitehorn D, Wilkins M, Willcocks L, Williamson C, Woods G, Wort J, Yeatman N, Yong P, Young T, Yu P. Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia. Am J Hum Genet 2019; 104:948-956. [PMID: 30982612 DOI: 10.1016/j.ajhg.2019.03.005] [Show More Authors] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.
Collapse
|
21
|
SNAP-25 in Major Psychiatric Disorders: A Review. Neuroscience 2019; 420:79-85. [PMID: 30790667 DOI: 10.1016/j.neuroscience.2019.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Synaptosomal Associated Protein-25 kilodaltons (SNAP-25) is an integral member of the SNARE complex. This complex is essential for calcium-triggered synaptic vesicular fusion and release of neurotransmitters into the synaptic cleft. In addition to neurotransmission, SNAP-25 is associated with insulin release, the regulation of intracellular calcium, and neuroplasticity. Because of SNAP-25's varied and crucial biological roles, the consequences of changes in this protein can be seen in both the central nervous system and the periphery. In this review, we will look at the published literature from human genetic, postmortem, and animal studies involving SNAP-25. The accumulated data indicate that SNAP-25 may be linked with some symptoms associated with a variety of psychiatric disorders. These disorders include bipolar disorder, schizophrenia, major depressive disorder, attention deficit hyperactivity disorder, autism, alcohol use disorder, and dementia. There are also data suggesting SNAP-25 may be involved with non-psychiatric seizures and metabolic disorders. We believe investigation of SNAP-25 is important for understanding both normal behavior and some aspects of the pathophysiology of behavior seen with psychiatric disorders. The wealth of information from both animal and human studies on SNAP-25 offers an excellent opportunity to use a bi-directional research approach. Hypotheses generated from genetically manipulated mice can be directly tested in human postmortem tissue, and, conversely, human genetic and postmortem findings can improve and validate animal models for psychiatric disorders.
Collapse
|
22
|
Assoum M, Lines MA, Elpeleg O, Darmency V, Whiting S, Edvardson S, Devinsky O, Heinzen E, Hernan RR, Antignac C, Deleuze JF, Des Portes V, Bertholet-Thomas A, Belot A, Geller E, Lemesle M, Duffourd Y, Thauvin-Robinet C, Thevenon J, Chung W, Lowenstein DH, Faivre L. Further delineation of the clinical spectrum of de novo TRIM8 truncating mutations. Am J Med Genet A 2018; 176:2470-2478. [PMID: 30244534 DOI: 10.1002/ajmg.a.40357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/22/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022]
Abstract
De novo mutations of the TRIM8 gene, which codes for a tripartite motif protein, have been identified using whole exome sequencing (WES) in two patients with epileptic encephalopathy (EE), but these reports were not sufficient to conclude that TRIM8 was a novel gene responsible for EE. Here we report four additional patients presenting with EE and de novo truncating mutations of TRIM8 detected by WES, and give further details of the patient previously reported by the Epi4K consortium. Epilepsy of variable severity was diagnosed in children aged 2 months to 3.5 years of age. All patients had developmental delay of variable severity with no or very limited language, often associated with behavioral anomalies and unspecific facial features or MRI brain abnormalities. The phenotypic variability observed in these patients appeared related to the severity of the epilepsy. One patient presented pharmacoresistant EE with regression, recurrent infections and nephrotic syndrome, compatible with the brain and kidney expression of TRIM8. Interestingly, all mutations were located at the highly conserved C-terminus section of TRIM8. This collaborative study confirms that TRIM8 is a novel gene responsible for EE, possibly associated with nephrotic syndrome. This report brings new evidence on the pathogenicity of TRIM8 mutations and highlights the value of data-sharing to delineate the phenotypic characteristics and biological basis of extremely rare disorders.
Collapse
Affiliation(s)
- Mirna Assoum
- Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, Dijon, France
| | - Matthew A Lines
- Division of Metabolics, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Véronique Darmency
- Service de Neurophysiologie Clinique Pole Neurosciences Hôpital d'Enfants, Dijon, France
| | - Sharon Whiting
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Simon Edvardson
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Orrin Devinsky
- NYU and Saint Barnabas Epilepsy Centers NYU School of Medicine, New York, New York
| | - Erin Heinzen
- Institute for Genomic Medicine Columbia University Medical Center, New York, New York
| | - Rebecca Rose Hernan
- Department of Pediatrics and Molecular Genetics, Columbia University, New York, New York
| | - Corinne Antignac
- Laboratoire de Génétique Moléculaire, Institut de Recherche Necker Enfants Malades, CHU Paris - Hôpital Necker-Enfants Malades, Paris, France.,Equipe Néphropathies héréditaires et rein en développement, Inserm U983, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Vincent Des Portes
- Centre de référence « Déficiences Intellectuelles de causes rares », HFME, HCL F-69675, Bron, France.,ISC CNRS UMR 5304, Université de Lyon, Lyon, France
| | - Aurélie Bertholet-Thomas
- Centre de référence des rhumatismes inflammatoires et des maladies auto-immunes systémiques rares de l'enfant (RAISE), HFME HCL INSERM U1111, Lyon, France.,Service de Néphrologie, Rhumatologie et Dermatologie pédiatriques, Hôpital Femme Mère Enfant Hospices Civils de Lyon GH Est, Bron, France
| | - Alexandre Belot
- Centre de référence des rhumatismes inflammatoires et des maladies auto-immunes systémiques rares de l'enfant (RAISE), HFME HCL INSERM U1111, Lyon, France.,Service de Néphrologie, Rhumatologie et Dermatologie pédiatriques, Hôpital Femme Mère Enfant Hospices Civils de Lyon GH Est, Bron, France
| | - Eric Geller
- NYU and Saint Barnabas Epilepsy Centers NYU School of Medicine, New York, New York
| | - Martine Lemesle
- Service de Neurophysiologie Clinique Pole Neurosciences Hôpital d'Enfants, Dijon, France
| | - Yannis Duffourd
- Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire TRANSLAD CHU Dijon et Université de Bourgogne-Franche Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est CHU, Dijon, France
| | - Christel Thauvin-Robinet
- Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire TRANSLAD CHU Dijon et Université de Bourgogne-Franche Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est CHU, Dijon, France.,Centre de Référence Déficience Intellectuelle de causes rares (Defi-Bourgogne), CHU, Dijon, France
| | - Julien Thevenon
- Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire TRANSLAD CHU Dijon et Université de Bourgogne-Franche Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est CHU, Dijon, France
| | - Wendy Chung
- Kennedy Family Professor of Pediatrics and Medicine, Columbia University, New York, New York
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Laurence Faivre
- Génétique des Anomalies du Développement, UMR1231, Université de Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire TRANSLAD CHU Dijon et Université de Bourgogne-Franche Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est CHU, Dijon, France.,Centre de Référence Déficience Intellectuelle de causes rares (Defi-Bourgogne), CHU, Dijon, France
| |
Collapse
|
23
|
Ma H, Feng S, Deng X, Wang L, Zeng S, Wang C, Ma X, Sun H, Chen R, Du S, Mao J, Zhang X, Ma C, Jiang H, Zhang L, Tang B, Liu JY. APRRT2variant in a Chinese family with paroxysmal kinesigenic dyskinesia and benign familial infantile seizures results in loss of interaction withSTX1B. Epilepsia 2018; 59:1621-1630. [DOI: 10.1111/epi.14511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/14/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Hongying Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Shenglei Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Xuejun Deng
- Department of Neurology; Union Hospital of Huazhong University of Science and Technology; Wuhan China
| | - Li Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Sheng Zeng
- Department of Neurology, Xiangya Hospital; Key Laboratory of Hunan Province in Neurodegenerative Disorders; Central South University; Changsha China
| | - Cheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Xixiang Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Hao Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Rui Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Shiyue Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Jinglin Mao
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Xianwei Zhang
- Department of Anesthesiology; Tongji Hospital of Huazhong University of Science and Technology; Wuhan China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital; Key Laboratory of Hunan Province in Neurodegenerative Disorders; Central South University; Changsha China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital; Key Laboratory of Hunan Province in Neurodegenerative Disorders; Central South University; Changsha China
| | - Jing Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education; Center for Human Genome Research; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
24
|
Luo J, Norris RH, Gordon SL, Nithianantharajah J. Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:424-439. [PMID: 29217145 DOI: 10.1016/j.pnpbp.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/15/2022]
Abstract
The genomic revolution has begun to unveil the enormous complexity and heterogeneity of the genetic basis of neurodevelopmental disorders such as such epilepsy, intellectual disability, autism spectrum disorder and schizophrenia. Increasingly, human mutations in synapse genes are being identified across these disorders. These neurodevelopmental synaptopathies highlight synaptic homeostasis pathways as a convergence point underlying disease mechanisms. Here, we review some of the key pre- and postsynaptic genes in which penetrant human mutations have been identified in neurodevelopmental disorders for which genetic rodent models have been generated. Specifically, we focus on the main behavioural phenotypes that have been documented in these animal models, to consolidate our current understanding of how synapse genes regulate key behavioural and cognitive domains. These studies provide insights into better understanding the basis of the overlapping genetic and cognitive heterogeneity observed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Luo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - R H Norris
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - S L Gordon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - J Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
25
|
Kovačević J, Maroteaux G, Schut D, Loos M, Dubey M, Pitsch J, Remmelink E, Koopmans B, Crowley J, Cornelisse LN, Sullivan PF, Schoch S, Toonen RF, Stiedl O, Verhage M. Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy. Brain 2018; 141:1350-1374. [PMID: 29538625 PMCID: PMC5917748 DOI: 10.1093/brain/awy046] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/15/2017] [Accepted: 01/05/2018] [Indexed: 01/14/2023] Open
Abstract
De novo heterozygous mutations in STXBP1/Munc18-1 cause early infantile epileptic encephalopathies (EIEE4, OMIM #612164) characterized by infantile epilepsy, developmental delay, intellectual disability, and can include autistic features. We characterized the cellular deficits for an allelic series of seven STXBP1 mutations and developed four mouse models that recapitulate the abnormal EEG activity and cognitive aspects of human STXBP1-encephalopathy. Disease-causing STXBP1 variants supported synaptic transmission to a variable extent on a null background, but had no effect when overexpressed on a heterozygous background. All disease variants had severely decreased protein levels. Together, these cellular studies suggest that impaired protein stability and STXBP1 haploinsufficiency explain STXBP1-encephalopathy and that, therefore, Stxbp1+/- mice provide a valid mouse model. Simultaneous video and EEG recordings revealed that Stxbp1+/- mice with different genomic backgrounds recapitulate the seizure/spasm phenotype observed in humans, characterized by myoclonic jerks and spike-wave discharges that were suppressed by the antiepileptic drug levetiracetam. Mice heterozygous for Stxbp1 in GABAergic neurons only, showed impaired viability, 50% died within 2-3 weeks, and the rest showed stronger epileptic activity. c-Fos staining implicated neocortical areas, but not other brain regions, as the seizure foci. Stxbp1+/- mice showed impaired cognitive performance, hyperactivity and anxiety-like behaviour, without altered social behaviour. Taken together, these data demonstrate the construct, face and predictive validity of Stxbp1+/- mice and point to protein instability, haploinsufficiency and imbalanced excitation in neocortex, as the underlying mechanism of STXBP1-encephalopathy. The mouse models reported here are valid models for development of therapeutic interventions targeting STXBP1-encephalopathy.
Collapse
Affiliation(s)
- Jovana Kovačević
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Gregoire Maroteaux
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Desiree Schut
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Mohit Dubey
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Julika Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | | | | | - James Crowley
- UNC Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599-7160, USA
| | - L Niels Cornelisse
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Patrick F Sullivan
- UNC Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599-7160, USA
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics and Department of (Clinical) Genetics, Nobels väg 12A, 171 77 Stockholm, Sweden
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
26
|
Fukuda H, Imagawa E, Hamanaka K, Fujita A, Mitsuhashi S, Miyatake S, Mizuguchi T, Takata A, Miyake N, Kramer U, Matsumoto N, Fattal-Valevski A. A novel missense SNAP25b mutation in two affected siblings from an Israeli family showing seizures and cerebellar ataxia. J Hum Genet 2018; 63:673-676. [DOI: 10.1038/s10038-018-0421-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/17/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
|
27
|
Ugur B, Bao H, Stawarski M, Duraine LR, Zuo Z, Lin YQ, Neely GG, Macleod GT, Chapman ER, Bellen HJ. The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission. Cell Rep 2017; 21:3794-3806. [PMID: 29281828 PMCID: PMC5747319 DOI: 10.1016/j.celrep.2017.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022] Open
Abstract
Neurotransmission is a tightly regulated Ca2+-dependent process. Upon Ca2+ influx, Synaptotagmin1 (Syt1) promotes fusion of synaptic vesicles (SVs) with the plasma membrane. This requires regulation at multiple levels, but the role of metabolites in SV release is unclear. Here, we uncover a role for isocitrate dehydrogenase 3a (idh3a), a Krebs cycle enzyme, in neurotransmission. Loss of idh3a leads to a reduction of the metabolite, alpha-ketoglutarate (αKG), causing defects in synaptic transmission similar to the loss of syt1. Supplementing idh3a flies with αKG suppresses these defects through an ATP or neurotransmitter-independent mechanism. Indeed, αKG, but not glutamate, enhances Syt1-dependent fusion in a reconstitution assay. αKG promotes interaction between the C2-domains of Syt1 and phospholipids. The data reveal conserved metabolic regulation of synaptic transmission via αKG. Our studies provide a synaptic role for αKG, a metabolite that has been proposed as a treatment for aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Berrak Ugur
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Huan Bao
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53705, USA
| | - Michal Stawarski
- Department of Biological Sciences and Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Lita R Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Qi Lin
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - G Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory T Macleod
- Department of Biological Sciences and Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA; Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53705, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Hamdan FF, Myers CT, Cossette P, Lemay P, Spiegelman D, Laporte AD, Nassif C, Diallo O, Monlong J, Cadieux-Dion M, Dobrzeniecka S, Meloche C, Retterer K, Cho MT, Rosenfeld JA, Bi W, Massicotte C, Miguet M, Brunga L, Regan BM, Mo K, Tam C, Schneider A, Hollingsworth G, FitzPatrick DR, Donaldson A, Canham N, Blair E, Kerr B, Fry AE, Thomas RH, Shelagh J, Hurst JA, Brittain H, Blyth M, Lebel RR, Gerkes EH, Davis-Keppen L, Stein Q, Chung WK, Dorison SJ, Benke PJ, Fassi E, Corsten-Janssen N, Kamsteeg EJ, Mau-Them FT, Bruel AL, Verloes A, Õunap K, Wojcik MH, Albert DV, Venkateswaran S, Ware T, Jones D, Liu YC, Mohammad SS, Bizargity P, Bacino CA, Leuzzi V, Martinelli S, Dallapiccola B, Tartaglia M, Blumkin L, Wierenga KJ, Purcarin G, O’Byrne JJ, Stockler S, Lehman A, Keren B, Nougues MC, Mignot C, Auvin S, Nava C, Hiatt SM, Bebin M, Shao Y, Scaglia F, Lalani SR, Frye RE, Jarjour IT, Jacques S, Boucher RM, Riou E, Srour M, Carmant L, Lortie A, Major P, Diadori P, Dubeau F, D’Anjou G, Bourque G, Berkovic SF, Sadleir LG, Campeau PM, Kibar Z, Lafrenière RG, Girard SL, Mercimek-Mahmutoglu S, Boelman C, Rouleau GA, et alHamdan FF, Myers CT, Cossette P, Lemay P, Spiegelman D, Laporte AD, Nassif C, Diallo O, Monlong J, Cadieux-Dion M, Dobrzeniecka S, Meloche C, Retterer K, Cho MT, Rosenfeld JA, Bi W, Massicotte C, Miguet M, Brunga L, Regan BM, Mo K, Tam C, Schneider A, Hollingsworth G, FitzPatrick DR, Donaldson A, Canham N, Blair E, Kerr B, Fry AE, Thomas RH, Shelagh J, Hurst JA, Brittain H, Blyth M, Lebel RR, Gerkes EH, Davis-Keppen L, Stein Q, Chung WK, Dorison SJ, Benke PJ, Fassi E, Corsten-Janssen N, Kamsteeg EJ, Mau-Them FT, Bruel AL, Verloes A, Õunap K, Wojcik MH, Albert DV, Venkateswaran S, Ware T, Jones D, Liu YC, Mohammad SS, Bizargity P, Bacino CA, Leuzzi V, Martinelli S, Dallapiccola B, Tartaglia M, Blumkin L, Wierenga KJ, Purcarin G, O’Byrne JJ, Stockler S, Lehman A, Keren B, Nougues MC, Mignot C, Auvin S, Nava C, Hiatt SM, Bebin M, Shao Y, Scaglia F, Lalani SR, Frye RE, Jarjour IT, Jacques S, Boucher RM, Riou E, Srour M, Carmant L, Lortie A, Major P, Diadori P, Dubeau F, D’Anjou G, Bourque G, Berkovic SF, Sadleir LG, Campeau PM, Kibar Z, Lafrenière RG, Girard SL, Mercimek-Mahmutoglu S, Boelman C, Rouleau GA, Scheffer IE, Mefford HC, Andrade DM, Rossignol E, Minassian BA, Michaud JL, Michaud JL. High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. Am J Hum Genet 2017; 101:664-685. [PMID: 29100083 DOI: 10.1016/j.ajhg.2017.09.008] [Show More Authors] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/11/2017] [Indexed: 12/30/2022] Open
Abstract
Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequencing in another series of individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of several DEE and ID series. By combining these strategies, we were able to provide a causal link between DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2, and SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals in our WGS series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo missense variants explained a larger proportion of individuals in our series than in other series that were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than those identified in ID series. These observations indicate that the genetic landscape of DEE might be different from that of ID without epilepsy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jacques L Michaud
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T1C5, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC H3T1J4, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC H3T1C5, Canada.
| |
Collapse
|
29
|
Myers CT, Stong N, Mountier EI, Helbig KL, Freytag S, Sullivan JE, Ben Zeev B, Nissenkorn A, Tzadok M, Heimer G, Shinde DN, Rezazadeh A, Regan BM, Oliver KL, Ernst ME, Lippa NC, Mulhern MS, Ren Z, Poduri A, Andrade DM, Bird LM, Bahlo M, Berkovic SF, Lowenstein DH, Scheffer IE, Sadleir LG, Goldstein DB, Mefford HC, Heinzen EL. De Novo Mutations in PPP3CA Cause Severe Neurodevelopmental Disease with Seizures. Am J Hum Genet 2017; 101:516-524. [PMID: 28942967 DOI: 10.1016/j.ajhg.2017.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
Abstract
Exome sequencing has readily enabled the discovery of the genetic mutations responsible for a wide range of diseases. This success has been particularly remarkable in the severe epilepsies and other neurodevelopmental diseases for which rare, often de novo, mutations play a significant role in disease risk. Despite significant progress, the high genetic heterogeneity of these disorders often requires large sample sizes to identify a critical mass of individuals with disease-causing mutations in a single gene. By pooling genetic findings across multiple studies, we have identified six individuals with severe developmental delay (6/6), refractory seizures (5/6), and similar dysmorphic features (3/6), each harboring a de novo mutation in PPP3CA. PPP3CA encodes the alpha isoform of a subunit of calcineurin. Calcineurin encodes a calcium- and calmodulin-dependent serine/threonine protein phosphatase that plays a role in a wide range of biological processes, including being a key regulator of synaptic vesicle recycling at nerve terminals. Five individuals with de novo PPP3CA mutations were identified among 4,760 trio probands with neurodevelopmental diseases; this is highly unlikely to occur by chance (p = 1.2 × 10-8) given the size and mutability of the gene. Additionally, a sixth individual with a de novo mutation in PPP3CA was connected to this study through GeneMatcher. Based on these findings, we securely implicate PPP3CA in early-onset refractory epilepsy and further support the emerging role for synaptic dysregulation in epilepsy.
Collapse
Affiliation(s)
- Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Emily I Mountier
- Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand
| | | | - Saskia Freytag
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Joseph E Sullivan
- Department of Neurology & Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bruria Ben Zeev
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andreea Nissenkorn
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michal Tzadok
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gali Heimer
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Arezoo Rezazadeh
- Division of Neurology, Epilepsy Genetics Research Program, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Brigid M Regan
- Division of Neurology, Epilepsy Genetics Research Program, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Karen L Oliver
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Michelle E Ernst
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Natalie C Lippa
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Maureen S Mulhern
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle M Andrade
- Division of Neurology, Epilepsy Genetics Research Program, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Lynne M Bird
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92037, USA; Rady Children's Hospital, San Diego, CA 92037, USA
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
30
|
Batten SR, Matveeva EA, Whiteheart SW, Vanaman TC, Gerhardt GA, Slevin JT. Linking kindling to increased glutamate release in the dentate gyrus of the hippocampus through the STXBP5/tomosyn-1 gene. Brain Behav 2017; 7:e00795. [PMID: 28948088 PMCID: PMC5607557 DOI: 10.1002/brb3.795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In kindling, repeated electrical stimulation of certain brain areas causes progressive and permanent intensification of epileptiform activity resulting in generalized seizures. We focused on the role(s) of glutamate and a negative regulator of glutamate release, STXBP5/tomosyn-1, in kindling. METHODS Stimulating electrodes were implanted in the amygdala and progression to two successive Racine stage 5 seizures was measured in wild-type and STXBP5/tomosyn-1-/- (Tom-/-) animals. Glutamate release measurements were performed in distinct brain regions using a glutamate-selective microelectrode array (MEA). RESULTS Naïve Tom-/- mice had significant increases in KCl-evoked glutamate release compared to naïve wild type as measured by MEA of presynaptic release in the hippocampal dentate gyrus (DG). Kindling progression was considerably accelerated in Tom-/- mice, requiring fewer stimuli to reach a fully kindled state. Following full kindling, MEA measurements of both kindled Tom+/+ and Tom-/- mice showed significant increases in KCl-evoked and spontaneous glutamate release in the DG, indicating a correlation with the fully kindled state independent of genotype. Resting glutamate levels in all hippocampal subregions were significantly lower in the kindled Tom-/- mice, suggesting possible changes in basal control of glutamate circuitry in the kindled Tom-/- mice. CONCLUSIONS Our studies demonstrate that increased glutamate release in the hippocampal DG correlates with acceleration of the kindling process. Although STXBP5/tomosyn-1 loss increased evoked glutamate release in naïve animals contributing to their prokindling phenotype, the kindling process can override any attenuating effect of STXBP5/tomosyn-1. Loss of this "braking" effect of STXBP5/tomosyn-1 on kindling progression may set in motion an alternative but ultimately equally ineffective compensatory response, detected here as reduced basal glutamate release.
Collapse
Affiliation(s)
- Seth R. Batten
- Department of PsychologyUniversity of KentuckyCollege of Arts and SciencesLexingtonKYUSA
| | - Elena A. Matveeva
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Sidney W. Whiteheart
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Thomas C. Vanaman
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Greg A. Gerhardt
- Department of NeuroscienceUniversity of Kentucky Medical CenterLexingtonKYUSA
- Department of NeurologyUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - John T. Slevin
- Neurology ServiceVeterans Affairs Medical CenterLexingtonKYUSA
- Department of NeurologyUniversity of Kentucky Medical CenterLexingtonKYUSA
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky Medical CenterLexingtonKYUSA
| |
Collapse
|
31
|
Kang JQ. Defects at the crossroads of GABAergic signaling in generalized genetic epilepsies. Epilepsy Res 2017; 137:9-18. [PMID: 28865303 DOI: 10.1016/j.eplepsyres.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022]
Abstract
Seizure disorders are very common and affect 3% of the general population. The recurrent unprovoked seizures that are also called epilepsies are highly diverse as to both underlying genetic basis and clinic presentations. Recent genetic advances and sequencing technologies indicate that many epilepsies previously thought to be without known causes, or idiopathic generalized epilepsies (IGEs), are virtually genetic epilepsy as they are caused by genetic variations. IGEs are estimated to account for ∼15-20% of all epilepsies. Initially IGEs were primarily considered channelopathies, because the first genetic defects identified in IGEs involved ion channel genes. However, new findings indicate that mutations in many non ion channel genes are also involved in addition to those in ion channel genes. Interestingly, mutations in many genes associated with epilepsy affect GABAergic signaling, a major biological pathway in epilepsy. Additionally, many antiepileptic drugs work via enhancing GABAergic signaling. Hence, the review will focus on the mutations that impair GABAergic signaling and selectively discuss the newly identified STXBP1, PRRT2, and DNM1 in addition to those long-established epilepsy ion channel genes that also impair GABAergic signaling like SCN1A and GABAA receptor subunit genes. GABAergic signaling includes the pre- and post- synaptic mechanisms. Some mutations, such as STXBP1, PRRT2, DNM1, and SCN1A, impair GABAergic signaling mainly via pre-synaptic mechanisms while those mutations in GABAA receptor subunit genes impair GABAergic signaling via post-synaptic mechanisms. Nevertheless, these findings suggest impaired GABAergic signaling is a converging pathway of defects for many ion channel or non ion channel mutations associated with genetic epilepsies.
Collapse
Affiliation(s)
- Jing-Qiong Kang
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232-8552, USA; Affiliated Hospital of Nantong University, Jiangsu, 226001, China; Vanderbilt Brain Institute, Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN, 37232-8522, USA.
| |
Collapse
|
32
|
Epilepsy and synaptic proteins. Curr Opin Neurobiol 2017; 45:1-8. [DOI: 10.1016/j.conb.2017.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
|
33
|
von Spiczak S, Helbig KL, Shinde DN, Huether R, Pendziwiat M, Lourenço C, Nunes ME, Sarco DP, Kaplan RA, Dlugos DJ, Kirsch H, Slavotinek A, Cilio MR, Cervenka MC, Cohen JS, McClellan R, Fatemi A, Yuen A, Sagawa Y, Littlejohn R, McLean SD, Hernandez-Hernandez L, Maher B, Møller RS, Palmer E, Lawson JA, Campbell CA, Joshi CN, Kolbe DL, Hollingsworth G, Neubauer BA, Muhle H, Stephani U, Scheffer IE, Pena SDJ, Sisodiya SM, Helbig I. DNM1 encephalopathy: A new disease of vesicle fission. Neurology 2017; 89:385-394. [PMID: 28667181 PMCID: PMC5574673 DOI: 10.1212/wnl.0000000000004152] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling. METHODS We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function. RESULTS We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function. CONCLUSIONS The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Robert Huether
- Author affiliations are provided at the end of the article
| | | | | | - Mark E Nunes
- Author affiliations are provided at the end of the article
| | - Dean P Sarco
- Author affiliations are provided at the end of the article
| | | | | | - Heidi Kirsch
- Author affiliations are provided at the end of the article
| | | | - Maria R Cilio
- Author affiliations are provided at the end of the article
| | | | - Julie S Cohen
- Author affiliations are provided at the end of the article
| | | | - Ali Fatemi
- Author affiliations are provided at the end of the article
| | - Amy Yuen
- Author affiliations are provided at the end of the article
| | - Yoshimi Sagawa
- Author affiliations are provided at the end of the article
| | | | - Scott D McLean
- Author affiliations are provided at the end of the article
| | | | - Bridget Maher
- Author affiliations are provided at the end of the article
| | - Rikke S Møller
- Author affiliations are provided at the end of the article
| | | | - John A Lawson
- Author affiliations are provided at the end of the article
| | | | | | - Diana L Kolbe
- Author affiliations are provided at the end of the article
| | | | | | - Hiltrud Muhle
- Author affiliations are provided at the end of the article
| | | | | | | | | | - Ingo Helbig
- Author affiliations are provided at the end of the article.
| | | | | |
Collapse
|
34
|
Smith ED, Radtke K, Rossi M, Shinde DN, Darabi S, El-Khechen D, Powis Z, Helbig K, Waller K, Grange DK, Tang S, Farwell Hagman KD. Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat 2017; 38:600-608. [PMID: 28106320 PMCID: PMC5655771 DOI: 10.1002/humu.23183] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/16/2017] [Indexed: 12/12/2022]
Abstract
Ascertaining a diagnosis through exome sequencing can provide potential benefits to patients, insurance companies, and the healthcare system. Yet, as diagnostic sequencing is increasingly employed, vast amounts of human genetic data are produced that need careful curation. We discuss methods for accurately assessing the clinical validity of gene-disease relationships to interpret new research findings in a clinical context and increase the diagnostic rate. The specifics of a gene-disease scoring system adapted for use in a clinical laboratory are described. In turn, clinical validity scoring of gene-disease relationships can inform exome reporting for the identification of new or the upgrade of previous, clinically relevant gene findings. Our retrospective analysis of all reclassification reports from the first 4 years of diagnostic exome sequencing showed that 78% were due to new gene-disease discoveries published in the literature. Among all exome positive/likely positive findings in characterized genes, 32% were in genetic etiologies that were discovered after 2010. Our data underscore the importance and benefits of active and up-to-date curation of a gene-disease database combined with critical clinical validity scoring and proactive reanalysis in the clinical genomics era.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zöe Powis
- Ambry Genetics, Aliso Viejo, CA, 92656
| | | | | | - Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, 63110
| | - Sha Tang
- Ambry Genetics, Aliso Viejo, CA, 92656
| | | |
Collapse
|
35
|
Barakauskas VE, Moradian A, Barr AM, Beasley CL, Rosoklija G, Mann JJ, Ilievski B, Stankov A, Dwork AJ, Falkai P, Morin GB, Honer WG. Quantitative mass spectrometry reveals changes in SNAP-25 isoforms in schizophrenia. Schizophr Res 2016; 177:44-51. [PMID: 26971072 PMCID: PMC5017887 DOI: 10.1016/j.schres.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 11/24/2022]
Abstract
SNAP-25 and syntaxin are presynaptic terminal SNARE proteins altered in amount and function in schizophrenia. In the ventral caudate, we observed 32% lower SNAP-25 and 26% lower syntaxin, but greater interaction between the two proteins using an in vitro assay. SNAP-25 has two isoforms, SNAP-25A and B, differing by only 9 amino acids, but with different effects on neurotransmission. A quantitative mass spectrometry assay was developed to measure total SNAP-25, and proportions of SNAP-25A and B. The assay had a good linear range (50- to 150-fold) and coefficient of variation (4.5%). We studied ventral caudate samples from patients with schizophrenia (n=15) previously reported to have lower total SNAP-25 than controls (n=13). We confirmed 27% lower total SNAP-25 in schizophrenia, and observed 31% lower SNAP-25A (P=0.002) with 20% lower SNAP-25B amounts (P=0.10). Lower SNAP-25A amount correlated with greater SNAP-25-syntaxin protein-protein interactions (r=-0.41, P=0.03); the level of SNAP-25B did not. Administration of haloperidol or clozapine to rats did not mimic the changes found in schizophrenia. The findings suggest that lower levels of SNAP-25 in schizophrenia may represent a greater effect of the illness on the SNAP-25A isoform. This in turn could contribute to the greater interaction between SNAP25 and syntaxin, and possibly disturb neurotransmission in the illness.
Collapse
Affiliation(s)
- Vilte E Barakauskas
- BC Mental Health and Addictions Research Institute, Vancouver, BC,Department of Psychiatry, University of British Columbia, Vancouver, BC
| | - Annie Moradian
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC
| | - Alasdair M. Barr
- BC Mental Health and Addictions Research Institute, Vancouver, BC,Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC
| | - Clare L Beasley
- BC Mental Health and Addictions Research Institute, Vancouver, BC,Department of Psychiatry, University of British Columbia, Vancouver, BC
| | - Gorazd Rosoklija
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute; and Department of Psychiatry, Columbia University, New York, NY, USA,Macedonian Academy of Sciences and Arts, University “SS. Cyril and Methodius,” Skopje, Macedonia
| | - J John Mann
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute; and Department of Psychiatry, Columbia University, New York, NY, USA
| | - Boro Ilievski
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute; and Department of Psychiatry, Columbia University, New York, NY, USA,Institute for Pathology, University “SS. Cyril and Methodius,” Skopje, Macedonia
| | - Aleksandar Stankov
- Institute of Forensic Medicine, Criminology and Medical Deontology, University “SS. Cyril and Methodius,” Skopje, Macedonia
| | - Andrew J Dwork
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute; and Department of Psychiatry, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - William G Honer
- BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Noor A, Zahid S. A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. Int J Neurosci 2016; 127:805-811. [DOI: 10.1080/00207454.2016.1248240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aneeqa Noor
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
37
|
PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function. Trends Neurosci 2016; 39:668-679. [DOI: 10.1016/j.tins.2016.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
|
38
|
Farwell Hagman KD, Shinde DN, Mroske C, Smith E, Radtke K, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Alcaraz WA, Helbig KL, Sajan SA, Rossi M, Lu HM, Huether R, Li S, Wu S, Nuñes ME, Tang S. Candidate-gene criteria for clinical reporting: diagnostic exome sequencing identifies altered candidate genes among 8% of patients with undiagnosed diseases. Genet Med 2016; 19:224-235. [PMID: 27513193 PMCID: PMC5303763 DOI: 10.1038/gim.2016.95] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
Purpose: Diagnostic exome sequencing (DES) is now a commonly ordered test for individuals with undiagnosed genetic disorders. In addition to providing a diagnosis for characterized diseases, exome sequencing has the capacity to uncover novel candidate genes for disease. Methods: Family-based DES included analysis of both characterized and novel genetic etiologies. To evaluate candidate genes for disease in the clinical setting, we developed a systematic, rule-based classification schema. Results: Testing identified a candidate gene among 7.7% (72/934) of patients referred for DES; 37 (4.0%) and 35 (3.7%) of the genes received evidence scores of “candidate” and “suspected candidate,” respectively. A total of 71 independent candidate genes were reported among the 72 patients, and 38% (27/71) were subsequently corroborated in the peer-reviewed literature. This rate of corroboration increased to 51.9% (27/52) among patients whose gene was reported at least 12 months previously. Conclusions: Herein, we provide transparent, comprehensive, and standardized scoring criteria for the clinical reporting of candidate genes. These results demonstrate that DES is an integral tool for genetic diagnosis, especially for elucidating the molecular basis for both characterized and novel candidate genetic etiologies. Gene discoveries also advance the understanding of normal human biology and more common diseases. Genet Med19 2, 224–235.
Collapse
Affiliation(s)
| | - Deepali N Shinde
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Cameron Mroske
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Erica Smith
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Kelly Radtke
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Layla Shahmirzadi
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Dima El-Khechen
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Zöe Powis
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Elizabeth C Chao
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA.,Division of Genetics and Genomics, Department of Pediatrics, University of California, Irvine, Irvine, California, USA
| | - Wendy A Alcaraz
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Katherine L Helbig
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Samin A Sajan
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Mari Rossi
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Hsiao-Mei Lu
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Robert Huether
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Shuwei Li
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Sitao Wu
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Mark E Nuñes
- Department of Genetics, Kaiser Permanente, San Diego, California, USA
| | - Sha Tang
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| |
Collapse
|
39
|
Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, Matteoli M. SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions. Front Synaptic Neurosci 2016; 8:7. [PMID: 27047369 PMCID: PMC4805587 DOI: 10.3389/fnsyn.2016.00007] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/07/2016] [Indexed: 12/27/2022] Open
Abstract
A hallmark of synaptic specializations is their dependence on highly organized complexes of proteins that interact with each other. The loss or modification of key synaptic proteins directly affects the properties of such networks, ultimately impacting synaptic function. SNAP-25 is a component of the SNARE complex, which is central to synaptic vesicle exocytosis, and, by directly interacting with different calcium channels subunits, it negatively modulates neuronal voltage-gated calcium channels, thus regulating intracellular calcium dynamics. The SNAP-25 gene has been associated with distinct brain diseases, including Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia and bipolar disorder, indicating that the protein may act as a shared biological substrate among different "synaptopathies". The mechanisms by which alterations in SNAP-25 may concur to these psychiatric diseases are still undefined, although alterations in neurotransmitter release have been indicated as potential causative processes. This review summarizes recent work showing that SNAP-25 not only controls exo/endocytic processes at the presynaptic terminal, but also regulates postsynaptic receptor trafficking, spine morphogenesis, and plasticity, thus opening the possibility that SNAP-25 defects may contribute to psychiatric diseases by impacting not only presynaptic but also postsynaptic functions.
Collapse
Affiliation(s)
- Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano Milan, Italy
| | - Irene Corradini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di MilanoMilan, Italy; Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy
| | - Giuliana Fossati
- Humanitas Clinical and Research Center, IRCCS Rozzano Rozzano, Italy
| | - Romana Tomasoni
- Humanitas Clinical and Research Center, IRCCS Rozzano Rozzano, Italy
| | - Elisabetta Menna
- Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy; Humanitas Clinical and Research Center, IRCCS RozzanoRozzano, Italy
| | - Michela Matteoli
- Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy; Humanitas Clinical and Research Center, IRCCS RozzanoRozzano, Italy
| |
Collapse
|
40
|
Myers C, Mefford H. Genetic investigations of the epileptic encephalopathies. PROGRESS IN BRAIN RESEARCH 2016; 226:35-60. [DOI: 10.1016/bs.pbr.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Ma L, Rebane AA, Yang G, Xi Z, Kang Y, Gao Y, Zhang Y. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. eLife 2015; 4. [PMID: 26701912 PMCID: PMC4744192 DOI: 10.7554/elife.09580] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1. DOI:http://dx.doi.org/10.7554/eLife.09580.001 Plants, animals and other eukaryotes transport many large molecules within their cells inside membrane-bound packages called vesicles. These vesicles can fuse with the membrane of a target compartment in the cell to deliver their contents inside, or fuse with the cell’s membrane to release the contents outside of the cell. Membrane fusion is carried out by a group of proteins called SNAREs. These proteins are embedded on the membranes of both the vesicle and its target, and they bind to each other to form a tight complex. This complex docks the vesicle to the target and then acts like a “zipper” to pull the two membranes close enough to fuse. The best-studied SNARE proteins act in nerve cells and fuse vesicles to the cell’s membrane in order to release molecules called neurotransmitters. This process is essential for communication between nerve cells, and relies on a protein called Munc18-1. However, it is not well understood how SNARE proteins assemble into the complex and how Munc18-1 regulates this process. Ma et al. have now used a tool called “optical tweezers” to pull an assembled SNARE complex apart in the laboratory and then observe how it folds and assembles in a step-by-step process. These experiments showed that the complex assembled in four stages and not three as has been reported in previous work. SNARE proteins are made up of four parts called domains, and Ma et al. observed that the N-terminal domains were the first to bind to each other. Next, the binding progressed to the middle domain, then to the C-terminal domain and finally to the linker domain. An intermediate, half-zippered form was also observed. Ma et al. next analysed each domain in more detail and found that the N-terminal and C-terminal domains drive the docking of vesicles to the target membrane, the middle domain is crucial for assembling the SNARE complex correctly, and all three domains regulate the fusing of the membranes. Further experiments showed that Munc18-1 promoted the assembly of new SNARE complexes and stabilized the half-zippered form, rather than stabilizing the complex after it had fully assembled. This study will provide a new tool to examine many other proteins that regulate SNARE assembly, and a basis to understand the role of SNARE proteins in brain activity. DOI:http://dx.doi.org/10.7554/eLife.09580.002
Collapse
Affiliation(s)
- Lu Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Aleksander A Rebane
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States.,Department of Physics, Yale University, New Haven, United States
| | - Guangcan Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Department of Physics, Wenzhou University, Wenzhou, China
| | - Zhiqun Xi
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yuhao Kang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Ying Gao
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
42
|
Watanabe S, Yamamori S, Otsuka S, Saito M, Suzuki E, Kataoka M, Miyaoka H, Takahashi M. Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice. Epilepsy Res 2015. [DOI: 10.1016/j.eplepsyres.2015.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
|
44
|
Abstract
Epilepsy is a group of disorders characterized by recurrent seizures, and is one of the most common neurological conditions. The genetic basis of epilepsy is clear from epidemiological studies and from rare gene discoveries in large families. The three major classes of epilepsy disorders are genetic generalized, focal and encephalopathic epilepsies, with several specific disorders within each class. Advances in genomic technologies that facilitate genome-wide discovery of both common and rare variants have led to a rapid increase in our understanding of epilepsy genetics. Copy number variant and genome-wide association studies have contributed to our understanding of the complex genetic architecture of generalized epilepsy, while genetic insights into the focal epilepsies and epileptic encephalopathies have come primarily from exome sequencing. It is increasingly clear that epilepsy is genetically heterogeneous, and novel gene discoveries have moved the field beyond the known contribution of ion channels to implicate chromatin remodeling, transcriptional regulation and regulation of the mammalian target of rapamycin (mTOR) protein in the etiology of epilepsy. Such discoveries pave the way for new therapeutics, some of which are already being studied. In this review, we discuss the rapid pace of gene discovery in epilepsy, as facilitated by genomic technologies, and highlight several novel genes and potential therapies.
Collapse
Affiliation(s)
- Candace T Myers
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
45
|
Dorofeeva NA, Glazova MV, Khudik KA, Nikitina LS, Kirillova OD, Chernigovskaya EV. Comparative analysis of the nigrostriatal system in Wistar rats and rats prone to seizures. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015030088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Shen XM, Selcen D, Brengman J, Engel AG. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology 2014; 83:2247-55. [PMID: 25381298 DOI: 10.1212/wnl.0000000000001079] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify and characterize the molecular basis of a syndrome associated with myasthenia, cortical hyperexcitability, cerebellar ataxia, and intellectual disability. METHODS We performed in vitro microelectrode studies of neuromuscular transmission, performed exome and Sanger sequencing, and analyzed functional consequences of the identified mutation in expression studies. RESULTS Neuromuscular transmission at patient endplates was compromised by reduced evoked quantal release. Exome sequencing identified a dominant de novo variant, p.Ile67Asn, in SNAP25B, a SNARE protein essential for exocytosis of synaptic vesicles from nerve terminals and of dense-core vesicles from endocrine cells. Ca(2+)-triggered exocytosis is initiated when synaptobrevin attached to synaptic vesicles (v-SNARE) assembles with SNAP25B and syntaxin anchored in the presynaptic membrane (t-SNAREs) into an α-helical coiled-coil held together by hydrophobic interactions. Pathogenicity of the Ile67Asn mutation was confirmed by 2 measures. First, the Ca(2+) triggered fusion of liposomes incorporating v-SNARE with liposomes containing t-SNAREs was hindered when t-SNAREs harbored the mutant SNAP25B moiety. Second, depolarization of bovine chromaffin cells transfected with mutant SNAP25B or with mutant plus wild-type SNAP25B markedly reduced depolarization-evoked exocytosis compared with wild-type transfected cells. CONCLUSION Ile67Asn variant in SNAP25B is pathogenic because it inhibits synaptic vesicle exocytosis. We attribute the deleterious effects of the mutation to disruption of the hydrophobic α-helical coiled-coil structure of the SNARE complex by replacement of a highly hydrophobic isoleucine by a strongly hydrophilic asparagine.
Collapse
Affiliation(s)
- Xin-Ming Shen
- From the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN.
| | - Duygu Selcen
- From the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN
| | - Joan Brengman
- From the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN
| | - Andrew G Engel
- From the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN.
| |
Collapse
|
47
|
The usefulness of whole-exome sequencing in routine clinical practice. Genet Med 2014; 16:922-31. [PMID: 24901346 DOI: 10.1038/gim.2014.58] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Reports of the use of whole-exome sequencing in clinical practice are limited. We report our experience with whole-exome sequencing in 115 patients in a single center and evaluate its feasibility and clinical usefulness in clinical care. METHODS Whole-exome sequencing was utilized based on the judgment of three clinical geneticists. We describe age, gender, ethnicity, consanguinity, indication for testing, family history, insurance, laboratory results, clinician interpretation of results, and impact on patient care. RESULTS Most patients were children (78.9%). The most common indications for testing were birth defects (24.3%) and developmental delay (25.2%). We identified four new candidate human disease genes and possibly expanded the disease phenotypes associated with five different genes. Establishing a diagnosis led to discontinuation of additional planned testing in all patients, screening for additional manifestations in eight, altered management in fourteen, novel therapy in two, identification of other familial mutation carriers in five, and reproductive planning in six. CONCLUSION Our results show that whole-exome sequencing is feasible, has clinical usefulness, and allows timely medical interventions, informed reproductive choices, and avoidance of additional testing. Our results also suggest phenotype expansion and identification of new candidate disease genes that would have been impossible to diagnose by other targeted testing methods.
Collapse
|