1
|
De Domenico S, La Banca V, D'Amico S, Nicolai S, Peschiaroli A. Defining the transcriptional routes controlling lncRNA NEAT1 expression: implications in cellular stress response, inflammation, and differentiation. Discov Oncol 2025; 16:768. [PMID: 40369379 PMCID: PMC12078918 DOI: 10.1007/s12672-025-02510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
NEAT1 (Nuclear Enriched Abundant Transcript 1) is a long non-coding RNA playing a critical role in both physiological and pathological settings by directly modulating a variety of biological events, including transcriptional regulation, RNA processing, and chromatin remodeling. Multiple evidence demonstrated that different transcription factors and signaling pathways modulate biological processes by tightly regulating NEAT1 expression. These regulatory mechanisms act at different levels, allowing cells to rapidly modulate NEAT1 expression and dynamically respond to sudden changes in cellular conditions. In this review, we summarize and discuss the transcriptional routes controlling NEAT1 expression, emphasizing recent evidence showing the pivotal role of NEAT1 in regulating important biological processes, such as cellular stress response, inflammation, and cell differentiation.
Collapse
Affiliation(s)
- Sara De Domenico
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Veronica La Banca
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Silvia D'Amico
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Sara Nicolai
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
2
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
3
|
Khaleel AQ, Jasim SA, Menon SV, Kaur M, Sivaprasad GV, Rab SO, Hjazi A, Kumar A, Husseen B, Mustafa YF. siRNA-based knockdown of lncRNAs: A new modality to target tumor progression. Pathol Res Pract 2025; 266:155746. [PMID: 39657398 DOI: 10.1016/j.prp.2024.155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
This study examines the potential of small interfering RNA (siRNA) as a therapeutic agent for cancer targeting long non-coding RNAs (lncRNAs). The article begins with an analysis of the structure and biogenesis of lncRNA. It explains the diverse functions of lncRNAs in cancer, establishing a foundation for assessing approaches to inhibit these molecules. The analysis focuses on the consequences of lncRNA suppression through siRNA on signaling pathways associated with cancer, connecting theoretical understanding to practical applications. An evaluation of ongoing clinical trials and applications contributes to the discourse by revealing the potential for siRNA-mediated interventions to be practiced. Furthermore, an evaluation of the advantages and disadvantages of this therapeutic approach offers a nuanced viewpoint. In conclusion, the paper synthesizes significant discoveries and outlines potential avenues for future research, contributing to the dialogue surrounding personalized cancer therapeutics and precision medicine. Future challenges in using siRNA to target lncRNAs in oncology include optimizing delivery systems for efficient tumor cell uptake, minimizing off-target effects, enhancing RNA stability for a longer therapeutic window, and overcoming barriers in the tumor microenvironment. Addressing these factors is essential for the practical application of siRNA-based cancer therapies.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar 31001, Iraq.
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India.
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| |
Collapse
|
4
|
Li S, Xu Z, Zhang S, Sun H, Qin X, Zhu L, Jiang T, Zhou J, Yan F, Deng Q. Non-coding RNAs in acute ischemic stroke: from brain to periphery. Neural Regen Res 2025; 20:116-129. [PMID: 38767481 PMCID: PMC11246127 DOI: 10.4103/nrr.nrr-d-23-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 05/22/2024] Open
Abstract
Acute ischemic stroke is a clinical emergency and a condition with high morbidity, mortality, and disability. Accurate predictive, diagnostic, and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined. With innovations in high-throughput gene sequencing analysis, many aberrantly expressed non-coding RNAs (ncRNAs) in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models. Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes, leading to neuroprotection or deterioration, thus ncRNAs can serve as therapeutic targets in acute ischemic stroke. Moreover, distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. In particular, ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke. In this review, we consolidate the latest progress of research into the roles of ncRNAs (microRNAs, long ncRNAs, and circular RNAs) in the pathological processes of acute ischemic stroke-induced brain damage, as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction, diagnosis, and prognosis. Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
Collapse
Affiliation(s)
- Shuo Li
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiyao Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaodan Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Zhu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fuling Yan
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Milcamps R, Michiels T. Involvement of paraspeckle components in viral infections. Nucleus 2024; 15:2350178. [PMID: 38717150 PMCID: PMC11086011 DOI: 10.1080/19491034.2024.2350178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.
Collapse
Affiliation(s)
- Romane Milcamps
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Thomas Michiels
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
6
|
Guha P, Chini A, Rishi A, Mandal SS. Long noncoding RNAs in ubiquitination, protein degradation, and human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195061. [PMID: 39341591 DOI: 10.1016/j.bbagrm.2024.195061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Protein stability and turnover is critical in normal cellular and physiological process and their misregulation may contribute to accumulation of unwanted proteins causing cellular malfunction, neurodegeneration, mitochondrial malfunction, and disrupted metabolism. Signaling mechanism associated with protein degradation is complex and is extensively studied. Many protein and enzyme machineries have been implicated in regulation of protein degradation. Despite these insights, our understanding of protein degradation mechanisms remains limited. Emerging studies suggest that long non-coding RNAs (lncRNAs) play critical roles in various cellular and physiological processes including metabolism, cellular homeostasis, and protein turnover. LncRNAs, being large nucleic acids (>200 nt long) can interact with various proteins and other nucleic acids and modulate protein structure and function leading to regulation of cell signaling processes. LncRNAs are widely distributed across cell types and may exhibit tissue specific expression. They are detected in body fluids including blood and urine. Their expressions are also altered in various human diseases including cancer, neurological disorders, immune disorder, and others. LncRNAs are being recognized as novel biomarkers and therapeutic targets. This review article focuses on the emerging role of noncoding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), in the regulation of protein polyubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
7
|
Harper KL, Harrington EM, Hayward C, Anene CA, Wongwiwat W, White RE, Whitehouse A. Virus-modified paraspeckle-like condensates are hubs for viral RNA processing and their formation drives genomic instability. Nat Commun 2024; 15:10240. [PMID: 39592606 PMCID: PMC11599752 DOI: 10.1038/s41467-024-54592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The nucleus is a highly organised yet dynamic environment containing distinct membraneless nuclear bodies. This spatial separation enables a subset of components to be concentrated within biomolecular condensates, allowing efficient and discrete processes to occur which regulate cellular function. One such nuclear body, paraspeckles, are comprised of multiple paraspeckle proteins (PSPs) built around the architectural RNA, NEAT1_2. Paraspeckle function is yet to be fully elucidated but has been implicated in a variety of developmental and disease scenarios. We demonstrate that Kaposi's sarcoma-associated herpesvirus (KSHV) drives formation of structurally distinct paraspeckles with a dramatically increased size and altered protein composition that are required for productive lytic replication. We highlight these virus-modified paraspeckles form adjacent to virus replication centres, potentially functioning as RNA processing hubs for viral transcripts during infection. Notably, we reveal that PSP sequestration into virus-modified paraspeckles result in increased genome instability during both KSHV and Epstein Barr virus (EBV) infection, implicating their formation in virus-mediated tumourigenesis.
Collapse
MESH Headings
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Herpesvirus 8, Human/metabolism
- Humans
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Genomic Instability
- Virus Replication
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Herpesvirus 4, Human/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/genetics
- HEK293 Cells
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Biomolecular Condensates/metabolism
Collapse
Affiliation(s)
- Katherine L Harper
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Elena M Harrington
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Connor Hayward
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Chinedu A Anene
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds, LS1 3HE, UK
- Centre for Cancer Genomics and Computation Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6AU, UK
| | - Wiyada Wongwiwat
- Department of Infectious Disease, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Robert E White
- Department of Infectious Disease, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- Department of Biochemistry & Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
8
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
9
|
Kilgas S, Syed A, Toolan-Kerr P, Swift ML, Roychoudhury S, Sarkar A, Wilkins S, Quigley M, Poetsch AR, Botuyan MV, Cui G, Mer G, Ule J, Drané P, Chowdhury D. NEAT1 modulates the TIRR/53BP1 complex to maintain genome integrity. Nat Commun 2024; 15:8438. [PMID: 39349456 PMCID: PMC11443056 DOI: 10.1038/s41467-024-52862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Tudor Interacting Repair Regulator (TIRR) is an RNA-binding protein (RBP) that interacts directly with 53BP1, restricting its access to DNA double-strand breaks (DSBs) and its association with p53. We utilized iCLIP to identify RNAs that directly bind to TIRR within cells, identifying the long non-coding RNA NEAT1 as the primary RNA partner. The high affinity of TIRR for NEAT1 is due to prevalent G-rich motifs in the short isoform (NEAT1_1) region of NEAT1. This interaction destabilizes the TIRR/53BP1 complex, promoting 53BP1's function. NEAT1_1 is enriched during the G1 phase of the cell cycle, thereby ensuring that TIRR-dependent inhibition of 53BP1's function is cell cycle-dependent. TDP-43, an RBP that is implicated in neurodegenerative diseases, modulates the TIRR/53BP1 complex by promoting the production of the NEAT1 short isoform, NEAT1_1. Together, we infer that NEAT1_1, and factors regulating NEAT1_1, may impact 53BP1-dependent DNA repair processes, with implications for a spectrum of diseases.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aleem Syed
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrick Toolan-Kerr
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aniruddha Sarkar
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah Wilkins
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale School of Medicine, 333 Cedar St, New Haven, CT, USA
| | - Mikayla Quigley
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA
| | - Anna R Poetsch
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, Dresden, Germany
| | | | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London, UK
- UK Dementia Research Institute at King's College London, 5 Cutcombe Rd, London, UK
| | - Pascal Drané
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
11
|
Ma Z, Liu X, Zhang X, Li S, An J, Luo Z. Research progress on long non‑coding RNAs in non‑infectious spinal diseases (Review). Mol Med Rep 2024; 30:164. [PMID: 38994759 PMCID: PMC11267249 DOI: 10.3892/mmr.2024.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Spinal diseases, including intervertebral disc degeneration (IDD), ankylosing spondylitis, spinal cord injury and other non‑infectious spinal diseases, severely affect the quality of life of patients. Current treatments for IDD and other spinal diseases can only relieve symptoms and do not completely cure the disease. Therefore, there is an urgent need to explore the causes of these diseases and develop new treatment approaches. Long non‑coding RNA (lncRNA), a form of non‑coding RNA, is abundant in diverse sources, has numerous functions, and plays an important role in the occurrence and development of spinal diseases such as IDD. However, the mechanism of action of lncRNAs has not been fully elucidated, and significant challenges remain in the use of lncRNAs as new therapeutic targets. The present article reviews the sources, classification and functions of lncRNAs, and introduces the role of lncRNAs in spinal diseases, such as IDD, and their therapeutic potential.
Collapse
Affiliation(s)
- Zhong Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xianxu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shicheng Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jiangdong An
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhiqiang Luo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
- Orthopaedics Key Laboratory of Gansu Province, Orthopedics Institute of The Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
12
|
Huang X, Gu F, Zhao M, Huang W, Han W, Chen R, Wang Y. Function and Therapeutic Potential of Non-Coding RNA in Ameloblastoma. Onco Targets Ther 2024; 17:643-653. [PMID: 39131904 PMCID: PMC11316470 DOI: 10.2147/ott.s474038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Ameloblastoma (AB) is a common odontogenic tumor that develops in the mouth. Despite its benign nature, AB exhibits significant invasiveness leading to tumor metastasis and high postoperative recurrence rates. Studies have shown a relationship between the occurrence and development of various tumors and non-coding RNA (ncRNA). NcRNA, transcribed from the genomes of mammals and other complex organisms, are often products of alternative splicing and processing into smaller products. MicroRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNA) are the main types of ncRNA. NcRNA play increasingly significant roles in the pathogenesis of human cancers, regulating their occurrence and progression as oncogenes or tumor suppressors. They are involved in tumor development and progression through alternative splicing of pre-mRNA, transcriptional regulation, mRNA stability, protein translation, and chromatin remodeling and modification. The importance of ncRNA in AB has received significant attention in recent years. However, the biological functions and mechanisms of ncRNA in AB remain largely unknown. In this review, we not only explore the functions and roles of ncRNA in AB, but also describe and envision their potential functional roles as biomarkers in AB diagnosis. In particular, we highlight the potential of miR-29a as a molecular marker for diagnosis and therapy. As promising novel therapeutic targets, the biological functions of ncRNA need further study, which is indispensable.
Collapse
Affiliation(s)
- Xu Huang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Feihan Gu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Mingyu Zhao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Wenkai Huang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Wenjia Han
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Ran Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| |
Collapse
|
13
|
Chakraborty S, Mishra J, Roy A, Niharika, Manna S, Baral T, Nandi P, Patra S, Patra SK. Liquid-liquid phase separation in subcellular assemblages and signaling pathways: Chromatin modifications induced gene regulation for cellular physiology and functions including carcinogenesis. Biochimie 2024; 223:74-97. [PMID: 38723938 DOI: 10.1016/j.biochi.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Liquid-liquid phase separation (LLPS) describes many biochemical processes, including hydrogel formation, in the integrity of macromolecular assemblages and existence of membraneless organelles, including ribosome, nucleolus, nuclear speckles, paraspeckles, promyelocytic leukemia (PML) bodies, Cajal bodies (all exert crucial roles in cellular physiology), and evidence are emerging day by day. Also, phase separation is well documented in generation of plasma membrane subdomains and interplay between membranous and membraneless organelles. Intrinsically disordered regions (IDRs) of biopolymers/proteins are the most critical sticking regions that aggravate the formation of such condensates. Remarkably, phase separated condensates are also involved in epigenetic regulation of gene expression, chromatin remodeling, and heterochromatinization. Epigenetic marks on DNA and histones cooperate with RNA-binding proteins through their IDRs to trigger LLPS for facilitating transcription. How phase separation coalesces mutant oncoproteins, orchestrate tumor suppressor genes expression, and facilitated cancer-associated signaling pathways are unravelling. That autophagosome formation and DYRK3-mediated cancer stem cell modification also depend on phase separation is deciphered in part. In view of this, and to linchpin insight into the subcellular membraneless organelle assembly, gene activation and biological reactions catalyzed by enzymes, and the downstream physiological functions, and how all these events are precisely facilitated by LLPS inducing organelle function, epigenetic modulation of gene expression in this scenario, and how it goes awry in cancer progression are summarized and presented in this article.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Subhajit Patra
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
14
|
Yadav M, Harding RJ, Li T, Xu X, Gall-Duncan T, Khan M, Bardile CF, Sequiera GL, Duan S, Chandrasekaran R, Pan A, Bu J, Yamazaki T, Hirose T, Prinos P, Tippett L, Turner C, Curtis MA, Faull RL, Pouladi MA, Pearson CE, He HH, Arrowsmith CH. Huntingtin is an RNA binding protein and participates in NEAT1-mediated paraspeckles. SCIENCE ADVANCES 2024; 10:eado5264. [PMID: 39028820 PMCID: PMC11259171 DOI: 10.1126/sciadv.ado5264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Huntingtin protein, mutated in Huntington's disease, is implicated in nucleic acid-mediated processes, yet the evidence for direct huntingtin-nucleic acid interaction is limited. Here, we show wild-type and mutant huntingtin copurify with nucleic acids, primarily RNA, and interact directly with G-rich RNAs in in vitro assays. Huntingtin RNA-immunoprecipitation sequencing from patient-derived fibroblasts and neuronal progenitor cells expressing wild-type and mutant huntingtin revealed long noncoding RNA NEAT1 as a significantly enriched transcript. Altered NEAT1 levels were evident in Huntington's disease cells and postmortem brain tissues, and huntingtin knockdown decreased NEAT1 levels. Huntingtin colocalized with NEAT1 in paraspeckles, and we identified a high-affinity RNA motif preferred by huntingtin. This study highlights NEAT1 as a huntingtin interactor, demonstrating huntingtin's involvement in RNA-mediated functions and paraspeckle regulation.
Collapse
Affiliation(s)
- Manisha Yadav
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rachel J. Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Tiantian Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Terence Gall-Duncan
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mahreen Khan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Glen L. Sequiera
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Shili Duan
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Anni Pan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jiachuan Bu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A. Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L.M. Faull
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Mahmoud A. Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Christopher E. Pearson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
15
|
Luo X, Wei Q, Jiang X, Chen N, Zuo X, Zhao H, Liu Y, Liu X, Xie L, Yang Y, Liu T, Yi P, Xu J. CSTF3 contributes to platinum resistance in ovarian cancer through alternative polyadenylation of lncRNA NEAT1 and generating the short isoform NEAT1_1. Cell Death Dis 2024; 15:432. [PMID: 38898019 PMCID: PMC11187223 DOI: 10.1038/s41419-024-06816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Platinum-based chemotherapy is the standard postoperative adjuvant treatment for ovarian cancer (OC). Despite the initial response to chemotherapy, 85% of advanced OC patients will have recurrent disease. Relapsed disease and platinum resistance are the major causes of death in OC patients. In this study, we compared the global regulation of alternative polyadenylation (APA) in platinum-resistant and platinum-sensitive tissues of OC patients by analyzing a set of single-cell RNA sequencing (scRNA-seq) data from public databases and found that platinum-resistant patients exhibited global 3' untranslated region (UTR) shortening due to the different usage of polyadenylation sites (PASs). The APA regulator CSTF3 was the most significantly upregulated gene in epithelial cells of platinum-resistant OC. CSTF3 knockdown increased the sensitivity of OC cells to platinum. The lncRNA NEAT1 has two isoforms, short (NEAT1_1) and long (NEAT1_2) transcript, because of the APA processing in 3'UTR. We found that CSTF3 knockdown reduced the usage of NEAT1 proximal PAS to lengthen the transcript and facilitate the expression of NEAT1_2. Downregulation of the expression of NEAT1 (NEAT1_1/_2), but not only NEAT1_2, also increased the sensitivity of OC cells to platinum. Overexpressed NEAT1_1 reversed the platinum resistance of OC cells after knocking down CSTF3 expression. Furthermore, downregulated expression of CSTF3 and NEAT1_1, rather than NEAT1_2, was positively correlated with inactivation of the PI3K/AKT/mTOR pathway in OC cells. Together, our findings revealed a novel mechanism of APA regulation in platinum-resistant OC. CSTF3 directly bound downstream of the NEAT1 proximal PAS to generate the short isoform NEAT1_1 and was conducive to platinum resistance, which provides a potential biomarker and therapeutic strategy for platinum-resistant OC patients.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglv Wei
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ningxuan Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinzhao Zuo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Zhao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yujiao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingcui Xie
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Yin C, Ge Z, Yuan J, Chen Y, Tang Y, Xiang Y, Zhang Y. NEAT1 regulates VSMC differentiation and calcification in as long noncoding RNA NEAT1 enhances phenotypic and osteogenic switching of vascular smooth muscle cells in atherosclerosis via scaffolding EZH2. Am J Physiol Cell Physiol 2024; 326:C1721-C1734. [PMID: 38646788 PMCID: PMC11371316 DOI: 10.1152/ajpcell.00587.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Atherosclerosis (AS) is a significant contributor to cardio-cerebrovascular ischemia diseases, resulting in high mortality rates worldwide. During AS, vascular smooth muscle cells (VSMCs) play a crucial role in plaque formation by undergoing phenotypic and osteogenic switching. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has previously been identified as a nuclear regulator that promotes tumorigenesis and metastasis, but its role in regulating VSMCs in AS remains unclear. Our study aimed to investigate the biological functions and specific mechanisms of NEAT1 in regulating VSMCs in AS. We found that NEAT1 was upregulated in the aortas of AS mouse models and dedifferentiated primary VSMCs. Silencing NEAT1 in vitro attenuated the proliferation, migration, and osteogenic differentiation of VSMCs, while NEAT1 overexpression had the opposite effect. Furthermore, NEAT1 promoted VSMC osteogenic differentiation and vascular calcification in both in vivo and in vitro vascular calcification models. We also discovered that NEAT1 directly activates enhancer of zeste homolog 2 (EZH2), an epigenetic enzyme that suppresses the expression of senescence- and antimigration-related genes, by translocating it into the nucleus. CUT&Tag assay revealed that NEAT1 guides EZH2 to the promoters of senescence-related genes (P16, P21, and TIMP3), methylating local histones to reduce their transcription. Our findings suggest that NEAT1 functions in AS by modulating the epigenetic function of EZH2, which enhances the proliferation, migration, and osteogenic differentiation of VSMCs. This study provides new insights into the molecular mechanisms underlying the pathogenesis of AS and highlights the potential of NEAT1 as a therapeutic target of AS.NEW & NOTEWORTHY Our study demonstrates that the upregulation of long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) promotes proliferation and migration during phenotypic switching of vascular smooth muscle cells in atherosclerosis. We also provide in vivo and in vitro evidence that NEAT1 accelerates vascular calcification. Our findings identified the direct interaction between enhancer of zeste homolog 2 (EZH2) and NEAT1 during atherosclerosis. NEAT1 is necessary for EZH2 to translocate from the cytoplasm to the nucleus, where EZH2 epigenetically inhibits the expression of genes related to senescence and antimigration.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Osteogenesis/genetics
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cell Differentiation
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Mice
- Male
- Mice, Inbred C57BL
- Cell Proliferation
- Phenotype
- Cells, Cultured
- Humans
- Cell Movement
Collapse
Affiliation(s)
- Chengye Yin
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiali Yuan
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuhan Chen
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yong Tang
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yin Xiang
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yachen Zhang
- Department of Cardiology, Xinhua HospitalShanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
18
|
Qiu H, Fu Y, Guo Z, Zhang X, Wang X, Wu H. Dysregulated microRNAs and long non-coding RNAs associated with extracellular matrix stiffness. Exp Cell Res 2024; 437:114014. [PMID: 38547959 DOI: 10.1016/j.yexcr.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Extracellular matrix (ECM) stiffness regulates development and homeostasis in vivo and affects both physiological and pathological processes. A variety of studies have demonstrated that mRNAs, such as Piezo1, integrin β1, and Yes-associated protein (YAP)/tafazzin (TAZ), can sense the mechanical signals induced by ECM stiffness and transmit them from the extracellular space into the cytoplasm. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been reported to play important roles in various cellular processes. Therefore, the interactions between ncRNAs and ECM stiffness, as well as the underlying molecular mechanisms, have become intriguing. In this review, we summarize recent findings on miRNAs and lncRNAs that interact with ECM stiffness. Several miRNAs and lncRNAs are involved in the progression of liver cancer, breast cancer, osteosarcoma, and cardiovascular diseases under the regulation of ECM stiffness. Through these ncRNAs, cellular behaviors including cell differentiation, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) are affected by ECM stiffness. We also integrate the ncRNA signaling pathways associated with ECM stiffness, in which typical signaling pathways like integrin β1/TGFβ1, phosphatidylinositol-3 kinase (PI3K)/AKT, and EMT are involved. Although our understanding of the relationships between ncRNAs and ECM stiffness is still limited, further investigations may provide new insights for disease treatment. ECM-associated ncRNAs may serve as disease biomarkers or be targeted by drugs.
Collapse
Affiliation(s)
- Huimin Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Yangpu, 200093, Shanghai, China; Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Zhinan Guo
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China; School of Sports and Health, Shanghai University of Sport, Yangpu, 200438, Shanghai, China.
| | - Xinjia Zhang
- School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Xinyue Wang
- School of Medical Instruments, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| | - Hailong Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Pudong, 201318, Shanghai, China.
| |
Collapse
|
19
|
Doghish AS, Radwan AF, Zaki MB, Elfar N, Moussa R, Walash Z, Alhamshry NAA, Mohammed OA, Abdel-Reheim MA, Elimam H. Decoding the role of long non-coding RNAs in gallbladder cancer pathogenesis: A review focus on signaling pathways interplay. Int J Biol Macromol 2024; 264:130426. [PMID: 38428766 DOI: 10.1016/j.ijbiomac.2024.130426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Gallbladder cancer (GBC) is one of the most aggressive types of biliary tree cancers and the commonest despite its rarity. It is infrequently diagnosed at an early stage, further contributing to its poor prognosis and low survival rate. The lethal nature of the disease has underlined a crucial need to discern the underlying mechanisms of GBC carcinogenesis which are still largely unknown. However, with the continual evolution in the research of cancer biology and molecular genetics, studies have found that non-coding RNAs (ncRNAs) play an active role in the molecular pathophysiology of GBC development. Dysregulated long non-coding RNAs (lncRNAs) and their interaction with intracellular signaling pathways contribute to malignancy and disease development. LncRNAs, a subclass of ncRNAs with over 200 nucleotides, regulate gene expression at transcriptional, translational, and post-translational levels and especially as epigenetic modulators. Thus, their expression abnormalities have been linked to malignancy and therapeutic resistance. lnsRNAs have also been found in GBC patients' serum and tumor tissue biopsies, highlighting their potential as novel biomarkers and for targeted therapy. This review will examine the growing involvement of lncRNAs in GBC pathophysiology, including related signaling pathways and their wider clinical use.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital 11578, Cairo, Egypt; Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo 11567, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Zahraa Walash
- Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|
20
|
Yaghoobi A, Rezaee M, Behnoush AH, Khalaji A, Mafi A, Houjaghan AK, Masoudkabir F, Pahlavan S. Role of long noncoding RNAs in pathological cardiac remodeling after myocardial infarction: An emerging insight into molecular mechanisms and therapeutic potential. Biomed Pharmacother 2024; 172:116248. [PMID: 38325262 DOI: 10.1016/j.biopha.2024.116248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Myocardial infarction (MI) is the leading cause of heart failure (HF), accounting for high mortality and morbidity worldwide. As a consequence of ischemia/reperfusion injury during MI, multiple cellular processes such as oxidative stress-induced damage, cardiomyocyte death, and inflammatory responses occur. In the next stage, the proliferation and activation of cardiac fibroblasts results in myocardial fibrosis and HF progression. Therefore, developing a novel therapeutic strategy is urgently warranted to restrict the progression of pathological cardiac remodeling. Recently, targeting long non-coding RNAs (lncRNAs) provided a novel insight into treating several disorders. In this regard, numerous investigations have indicated that several lncRNAs could participate in the pathogenesis of MI-induced cardiac remodeling, suggesting their potential therapeutic applications. In this review, we summarized lncRNAs displayed in the pathophysiology of cardiac remodeling after MI, emphasizing molecular mechanisms. Also, we highlighted the possible translational role of lncRNAs as therapeutic targets for this condition and discussed the potential role of exosomes in delivering the lncRNAs involved in post-MI cardiac remodeling.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farzad Masoudkabir
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
21
|
Azam S, Armijo KS, Weindel CG, Chapman MJ, Devigne A, Nakagawa S, Hirose T, Carpenter S, Watson RO, Patrick KL. The early macrophage response to pathogens requires dynamic regulation of the nuclear paraspeckle. Proc Natl Acad Sci U S A 2024; 121:e2312587121. [PMID: 38381785 PMCID: PMC10907238 DOI: 10.1073/pnas.2312587121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024] Open
Abstract
To ensure a robust immune response to pathogens without risking immunopathology, the kinetics and amplitude of inflammatory gene expression in macrophages need to be exquisitely well controlled. There is a growing appreciation for stress-responsive membraneless organelles (MLOs) regulating various steps of eukaryotic gene expression in response to extrinsic cues. Here, we implicate the nuclear paraspeckle, a highly ordered biomolecular condensate that nucleates on the Neat1 lncRNA, in tuning innate immune gene expression in murine macrophages. In response to a variety of innate agonists, macrophage paraspeckles rapidly aggregate (0.5 h poststimulation) and disaggregate (2 h poststimulation). Paraspeckle maintenance and aggregation require active transcription and MAPK signaling, whereas paraspeckle disaggregation requires degradation of Neat1 via the nuclear RNA exosome. In response to lipopolysaccharide treatment, Neat1 KO macrophages fail to properly express a large cohort of proinflammatory cytokines, chemokines, and antimicrobial mediators. Consequently, Neat1 KO macrophages cannot control replication of Salmonella enterica serovar Typhimurium or vesicular stomatitis virus. These findings highlight a prominent role for MLOs in orchestrating the macrophage response to pathogens and support a model whereby dynamic assembly and disassembly of paraspeckles reorganizes the nuclear landscape to enable inflammatory gene expression following innate stimuli.
Collapse
Affiliation(s)
- Sikandar Azam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, School of Medicine, Bryan, TX77807
| | - Kaitlyn S. Armijo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, School of Medicine, Bryan, TX77807
| | - Chi G. Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, School of Medicine, Bryan, TX77807
| | - Morgan J. Chapman
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, School of Medicine, Bryan, TX77807
| | - Alice Devigne
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | | | - Tetsuro Hirose
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka565-0871, Japan
| | - Susan Carpenter
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Robert O. Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, School of Medicine, Bryan, TX77807
| | - Kristin L. Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, School of Medicine, Bryan, TX77807
| |
Collapse
|
22
|
Hussain MS, Afzal O, Gupta G, Goyal A, Almalki WH, Kazmi I, Alzarea SI, Alfawaz Altamimi AS, Kukreti N, Chakraborty A, Singh SK, Dua K. Unraveling NEAT1's complex role in lung cancer biology: a comprehensive review. EXCLI JOURNAL 2024; 23:34-52. [PMID: 38343745 PMCID: PMC10853633 DOI: 10.17179/excli2023-6553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 09/05/2024]
Abstract
This review delves into the pivotal role of the long non-coding RNA NEAT1 in cancer biology, particularly in lung cancer (LC). It emphasizes NEAT1's unique subcellular localization and active involvement in gene regulation and chromatin remodeling. The review highlights NEAT1's impact on LC development and progression, including cell processes such as proliferation, migration, invasion, and resistance to therapy, positioning it as a potential diagnostic marker and therapeutic target. The complex web of NEAT1's regulatory interactions with proteins and microRNAs is explored, alongside challenges in targeting it therapeutically. The review concludes optimistically, suggesting future avenues for research and personalized LC therapies, shedding light on NEAT1's crucial role in LC. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Centre for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelam Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
23
|
Hussain MS, Gupta G, Afzal M, Alqahtani SM, Samuel VP, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Dureja H, Singh SK, Dua K, Thangavelu L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252:154908. [PMID: 37950931 DOI: 10.1016/j.prp.2023.154908] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis. This article explores the function of lncRNA NEAT1 knockdown in regulating apoptosis across multiple cancer types. We explore the existing understanding of NEAT1's involvement in the progression of malignant conditions, including its structure and functions. Additionally, we investigate the molecular mechanisms by which NEAT1 modulates the cell cycle, cellular proliferation, apoptosis, movement, and infiltration in diverse cancer types, including acute myeloid leukemia, breast cancer, cervical cancer, colorectal cancer, esophageal squamous cell carcinoma, glioma, non-small cell lung cancer, ovarian cancer, prostate cancer, and retinoblastoma. Furthermore, we review the recent studies investigating the therapeutic potential of NEAT1 knockdown in cancer treatment. Targeting the lncRNA NEAT1 presents a promising therapeutic approach for treating cancer. It has shown the ability to suppress cancer cell proliferation, migration, and invasion while promoting apoptosis in various cancer types.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK Medical & Health Sciences University, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Kamal Dua
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
24
|
Hu Y, Hao T, Yu H, Miao W, Zheng Y, Tao W, Zhuang J, Wang J, Fan Y, Jia S. lhCLIP reveals the in vivo RNA-RNA interactions recognized by hnRNPK. PLoS Genet 2023; 19:e1011006. [PMID: 37851698 PMCID: PMC10635571 DOI: 10.1371/journal.pgen.1011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/09/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
RNA-RNA interactions play a crucial role in regulating gene expression and various biological processes, but identifying these interactions on a transcriptomic scale remains a challenge. To address this, we have developed a new biochemical technique called pCp-biotin labelled RNA hybrid and ultraviolet crosslinking and immunoprecipitation (lhCLIP) that enables the transcriptome-wide identification of intra- and intermolecular RNA-RNA interactions mediated by a specific RNA-binding protein (RBP). Using lhCLIP, we have uncovered a diverse landscape of intermolecular RNA interactions recognized by hnRNPK in human cells, involving all major classes of noncoding RNAs (ncRNAs) and mRNA. Notably, hnRNPK selectively binds with snRNA U4, U11, and U12, and shapes the secondary structure of these snRNAs, which may impact RNA splicing. Our study demonstrates the potential of lhCLIP as a user-friendly and widely applicable method for discovering RNA-RNA interactions mediated by a particular protein of interest and provides a valuable tool for further investigating the role of RBPs in gene expression and biological processes.
Collapse
Affiliation(s)
- Yuanlang Hu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
- College of basic medical sciences, Three Gorges University, Yichang, People’s Republic of China
| | - Tao Hao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Hanwen Yu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Wenbin Miao
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yi Zheng
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Weihua Tao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Jingshen Zhuang
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yujuan Fan
- Ministry of Science and Education, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Shiqi Jia
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, People’s Republic of China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, People’s Republic of China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, Guangzhou, People’s Republic of China
| |
Collapse
|
25
|
Mitamura R, Nakano M, Isono M, Kurosawa K, Fukami T, Nakajima M. NEAT1_2 and DAZAP1, Paraspeckle Components, Interact with PXR to Negatively Regulate CYP3A4 Induction. Drug Metab Dispos 2023; 51:1230-1237. [PMID: 37349114 DOI: 10.1124/dmd.122.001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Human pregnane X receptor (PXR) is a major nuclear receptor that upregulates the expression of drug-metabolizing enzymes such as CYP3A4. In our recent study, it was revealed that PXR interacts with DAZ-associated protein 1 (DAZAP1), which is an essential component of the paraspeckle, a membraneless nuclear body, and the interaction was disassociated by rifampicin, a ligand of PXR. The purpose of this study was to clarify the roles of paraspeckles in PXR-mediated transcriptional regulation. Immunoprecipitation assays using PXR-overexpressing HepG2 (ShP51) cells revealed that PXR interacts with not only DAZAP1 but also NEAT1_2, a long noncoding RNA included in the paraspeckle, and that the interaction between PXR and NEAT1_2 was disassociated by rifampicin. These results suggest that PXR is trapped in paraspeckles and that the activation of PXR by its ligands facilitates its disassociation from paraspeckles. Induction of CYP3A4 by rifampicin was significantly enhanced by the knockdown of NEAT1_2 or DAZAP1 in ShP51 cells and their parental HepG2 cells. A luciferase assay using a plasmid containing the PXR response elements of CYP3A4 revealed that the increased CYP3A4 induction by siNEAT1_2 or siDAZAP1 was due to the increased transactivation by PXR. These results suggest that paraspeckles play a role in trapping nuclear PXR in the absence of the ligand to negatively regulate transactivation of its downstream gene. Collectively, this is the first study to demonstrate that the paraspeckle components NEAT1_2 and DAZAP1 negatively regulate CYP3A4 induction by PXR. SIGNIFICANCE STATEMENT: This study revealed that PXR interacts with paraspeckle components NEAT1_2 and DAZAP1 to suppress CYP3A4 induction by PXR, and the interaction is dissociated by PXR ligands. This finding provides a novel concept that paraspeckles formed by liquid-liquid phase separation potentially affect drug metabolism via negative regulation of PXR function.
Collapse
Affiliation(s)
- Rei Mitamura
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Motoki Isono
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Kiamu Kurosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
26
|
Li Y, Ye J, Xu S, Wang J. Circulating noncoding RNAs: promising biomarkers in liquid biopsy for the diagnosis, prognosis, and therapy of NSCLC. Discov Oncol 2023; 14:142. [PMID: 37526759 PMCID: PMC10393935 DOI: 10.1007/s12672-023-00686-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 08/02/2023] Open
Abstract
As the second most common malignant tumor in the world, lung cancer is a great threat to human health. In the past several decades, the role and mechanism of ncRNAs in lung cancer as a class of regulatory RNAs have been studied intensively. In particular, ncRNAs in body fluids have attracted increasing attention as biomarkers for lung cancer diagnosis and prognosis and for the evaluation of lung cancer treatment due to their low invasiveness and accessibility. As emerging tumor biomarkers in lung cancer, circulating ncRNAs are easy to obtain, independent of tissue specimens, and can well reflect the occurrence and progression of tumors due to their correlation with some biological processes in tumors. Circulating ncRNAs have a very high potential to serve as biomarkers and hold promise for the development of ncRNA-based therapeutics. In the current study, there has been extensive evidence that circulating ncRNA has clinical significance and value as a biomarker. In this review, we summarize how ncRNAs are generated and enter the circulation, remaining stable for subsequent detection. The feasibility of circulating ncRNAs as biomarkers in the diagnosis and prognosis of non-small cell lung cancer is also summarized. In the current systematic treatment of non-small cell lung cancer, circulating ncRNAs can also predict drug resistance, adverse reactions, and other events in targeted therapy, chemotherapy, immunotherapy, and radiotherapy and have promising potential to guide the systematic treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Jun Ye
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, China.
| |
Collapse
|
27
|
Saquib M, Agnihotri P, Biswas S. Interrelated grid of non-coding RNA: An important aspect in Rheumatoid Arthritis pathogenesis. Mol Biol Rep 2023:10.1007/s11033-023-08543-w. [PMID: 37294467 DOI: 10.1007/s11033-023-08543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Inflammation and autoimmunity are the root cause of rheumatoid arthritis, a destructive disease of joints. Multiple biomolecules are involved in the pathogenesis of RA and are related to various events of molecular biology. RNA is a versatile biomolecule, playing numerous roles at structural, functional, and regulatory stages to maintain cellular homeostasis. The involvement of RNA (coding/non-coding) in disease development and progression has left a wide whole to fill with newer approaches. Non-coding RNAs belong to the housekeeping and regulatory categories and both have their specific roles, and their alteration causes specific implications in disease pathogenesis. Housekeeping RNAs, rRNA, tRNA and regulatory RNA, micro-RNA, circular RNA, piRNA and long non-coding RNA were found to be important regulators of inflammation. They work at the pre-and post-transcriptional levels and were found to be more intriguing to study their regulatory impact on disease pathogenesis. The review addresses a question on how the non-coding RNA gets involved in early RA pathogenesis and can be utilized to know their targets to understand the disease better and make way towards the unresolved mystery of RA development.
Collapse
Affiliation(s)
- Mohd Saquib
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prachi Agnihotri
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sagarika Biswas
- Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Integrative and Functional Biology Department CSIR- Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110 007, India.
| |
Collapse
|
28
|
Farzaneh M, Masoodi T, Ghaedrahmati F, Radoszkiewicz K, Anbiyaiee A, Sheykhi-Sabzehpoush M, Rad NK, Uddin S, Jooybari SPM, Khoshnam SE, Azizidoost S. An updated review of contribution of long noncoding RNA-NEAT1 to the progression of human cancers. Pathol Res Pract 2023; 245:154380. [PMID: 37043964 DOI: 10.1016/j.prp.2023.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) present pivotal roles in cancer tumorigenesis and progression. Recently, nuclear paraspeckle assembly transcript 1 (NEAT1) as a lncRNA has been shown to mediate cell proliferation, migration, and EMT in tumor cells. NEAT1 by targeting several miRNAs/mRNA axes could regulate cancer cell behavior. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of some human cancers. In this review, we summarized various NEAT1-related signaling pathways that are critical in cancer initiation and progression.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Seyedeh Pardis Motiee Jooybari
- Department of Biology, Faculty of Basic Sciences and Engineering, University of Gonbad Kavous, Gonbad Kavus, Golestan, Iran
| | - Seyed Esmaeil Khoshnam
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
29
|
Kumar A, Girisa S, Alqahtani MS, Abbas M, Hegde M, Sethi G, Kunnumakkara AB. Targeting Autophagy Using Long Non-Coding RNAs (LncRNAs): New Landscapes in the Arena of Cancer Therapeutics. Cells 2023; 12:cells12050810. [PMID: 36899946 PMCID: PMC10000689 DOI: 10.3390/cells12050810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/04/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer has become a global health hazard accounting for 10 million deaths in the year 2020. Although different treatment approaches have increased patient overall survival, treatment for advanced stages still suffers from poor clinical outcomes. The ever-increasing prevalence of cancer has led to a reanalysis of cellular and molecular events in the hope to identify and develop a cure for this multigenic disease. Autophagy, an evolutionary conserved catabolic process, eliminates protein aggregates and damaged organelles to maintain cellular homeostasis. Accumulating evidence has implicated the deregulation of autophagic pathways to be associated with various hallmarks of cancer. Autophagy exhibits both tumor-promoting and suppressive effects based on the tumor stage and grades. Majorly, it maintains the cancer microenvironment homeostasis by promoting viability and nutrient recycling under hypoxic and nutrient-deprived conditions. Recent investigations have discovered long non-coding RNAs (lncRNAs) as master regulators of autophagic gene expression. lncRNAs, by sequestering autophagy-related microRNAs, have been known to modulate various hallmarks of cancer, such as survival, proliferation, EMT, migration, invasion, angiogenesis, and metastasis. This review delineates the mechanistic role of various lncRNAs involved in modulating autophagy and their related proteins in different cancers.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.); Tel.: +91-789-600-5326 (G.S.); +91-361-258-2231 (A.B.K.)
| |
Collapse
|
30
|
MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 2023; 226:1226-1235. [PMID: 36442575 DOI: 10.1016/j.ijbiomac.2022.11.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.
Collapse
|
31
|
Jafari-Raddani F, Davoodi-Moghaddam Z, Yousefi AM, Ghaffari SH, Bashash D. An overview of long noncoding RNAs: Biology, functions, therapeutics, analysis methods, and bioinformatics tools. Cell Biochem Funct 2022; 40:800-825. [PMID: 36111699 DOI: 10.1002/cbf.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a diverse class of RNAs whose functions are widespread in all branches of life and have been the focus of attention in the last decade. While a huge number of lncRNAs have been identified, there is still much work to be done and plenty to be learned. In the current review, we begin with the biogenesis and function of lncRNAs as they are involved in the different cellular processes from regulating the architecture of chromosomes to controlling translation and post-translation modifications. Questions on how overexpression, mutations, or deficiency of lncRNAs can affect the cellular status and result in the pathogenesis of various human diseases are responded to. Besides, we allocate an overview of several studies, concerning the application of lncRNAs either as diagnostic and prognostic biomarkers or novel therapeutics. We also introduce the currently available techniques to explore details of lncRNAs such as their function, cellular localization, and structure. In the last section, as exponentially growing data in this area need to be gathered and organized in comprehensive databases, we have a particular focus on presenting general and specialized databases. Taken together, with this review, we aim to provide the latest information on different aspects of lncRNAs to highlight their importance in physiopathologic states and take a step towards helping future studies.
Collapse
Affiliation(s)
- Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Abstract
Recent studies have identified long non-coding RNAs (lncRNAs) as potential regulators of adipogenesis. In this study, we have characterized a lncRNA, LIPE-AS1, that spans genes CEACAM1 to LIPE in man with conservation of genomic organization and tissue expression between mouse and man. Tissue-specific expression of isoforms of the murine lncRNA were found in liver and adipose tissue, one of which, designated mLas-V3, overlapped the Lipe gene encoding hormone-sensitive lipase in both mouse and man suggesting that it may have a functional role in adipose tissue. Knock down of expression of mLas-V3 using anti-sense oligos (ASOs) led to a significant decrease in the differentiation of the OP9 pre-adipocyte cell line through the down regulation of the major adipogenic transcription factors Pparg and Cebpa. Knock down of mLas-V3 induced apoptosis during the differentiation of OP9 cells as shown by expression of active caspase-3, a change in the localization of LIP/LAP isoforms of C/EBPβ, and expression of the cellular stress induced factors CHOP, p53, PUMA, and NOXA. We conclude that mLas-V3 may play a role in protecting against stress associated with adipogenesis, and its absence leads to apoptosis.
Collapse
Affiliation(s)
- Alyssa Thunen
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Deirdre La Placa
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Zhifang Zhang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - John E. Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
33
|
Ronchetti D, Favasuli VK, Silvestris I, Todoerti K, Torricelli F, Bolli N, Ciarrocchi A, Taiana E, Neri A. Expression levels of NONO, a nuclear protein primarily involved in paraspeckles function, are associated with several deregulated molecular pathways and poor clinical outcome in multiple myeloma. Discov Oncol 2022; 13:124. [PMID: 36367609 PMCID: PMC9652193 DOI: 10.1007/s12672-022-00582-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The NONO protein belongs to the multifunctional family of proteins that can bind DNA, RNA and proteins. It is located in the nucleus of most mammalian cells and can affect almost every step of gene regulation. Dysregulation of NONO has been found in many types of cancer; however, data regarding its expression and relevance in Multiple Myeloma (MM) are virtually absent. METHODS We took advantage of a large cohort of MM patients enrolled in the Multiple Myeloma Research Foundation CoMMpass study to elucidate better the clinical and biological relevance of NONO expression in the context of the MM genomic landscape and transcriptome. RESULTS NONO is overexpressed in pathological samples compared to normal controls. In addition, higher NONO expression levels are significant independent prognostic markers of worse clinical outcome in MM. Our results indicate that NONO deregulation may play a pathogenetic role in MM by affecting cell cycle, DNA repair mechanisms, and influencing translation by regulating ribosome biogenesis and assembly. Furthermore, our data suggest NONO involvement in the metabolic reprogramming of glucose metabolism from respiration to aerobic glycolysis, a phenomenon known as the 'Warburg Effect' that supports rapid cancer cell growth, survival, and invasion. CONCLUSION These findings strongly support the need of future investigations for the understanding of the mechanisms of deregulation and the biological role and activity of NONO in MM.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Vanessa Katia Favasuli
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Ilaria Silvestris
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Niccolò Bolli
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Elisa Taiana
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122, Milan, Italy.
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS Reggio Emilia, 42123, Reggio Emilia, Italy
| |
Collapse
|
34
|
Evolving understandings for the roles of non-coding RNAs in autoimmunity and autoimmune disease. J Autoimmun 2022:102948. [DOI: 10.1016/j.jaut.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
35
|
The Long and the Short of It: NEAT1 and Cancer Cell Metabolism. Cancers (Basel) 2022; 14:cancers14184388. [PMID: 36139550 PMCID: PMC9497099 DOI: 10.3390/cancers14184388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Altered metabolism is a hallmark of most cancers. The way that cancer cells regulate their energy production to fuel constant proliferation has been of interest with the hope that it may be exploited therapeutically. The long noncoding RNA, NEAT1, is often dysregulated in tumours. NEAT1 RNA can be transcribed as two isoforms with different lengths, with each variant responsible for different functions. This review explores how the isoforms contribute to cancer metabolism. Abstract The long noncoding RNA NEAT1 is known to be heavily dysregulated in many cancers. A single exon gene produces two isoforms, NEAT1_1 and NEAT1_2, through alternative 3′-end processing. As the longer isoform, NEAT1_2 is an essential scaffold for nuclear paraspeckle formation. It was previously thought that the short NEAT1_1 isoform only exists to keep the NEAT1 locus active for rapid paraspeckle formation. However, a recent glycolysis-enhancing function for NEAT1_1, contributing to cancer cell proliferation and the Warburg effect, has been demonstrated. Previous studies have mainly focused on quantifying total NEAT1 and NEAT1_2 expression levels. However, in light of the NEAT1_1 role in cancer cell metabolism, the contribution from specific NEAT1 isoforms is no longer clear. Here, the roles of NEAT1_1 and NEAT1_2 in metabolism and cancer progression are discussed.
Collapse
|
36
|
Molecular Interactions of the Long Noncoding RNA NEAT1 in Cancer. Cancers (Basel) 2022; 14:cancers14164009. [PMID: 36011001 PMCID: PMC9406559 DOI: 10.3390/cancers14164009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
As one of the best-studied long noncoding RNAs, nuclear paraspeckle assembly transcript 1 (NEAT1) plays a pivotal role in the progression of cancers. NEAT1, especially its isoform NEAT1-1, facilitates the growth and metastasis of various cancers, excluding acute promyelocytic leukemia. NEAT1 can be elevated via transcriptional activation or stability alteration in cancers changing the aggressive phenotype of cancer cells. NEAT1 can also be secreted from other cells and be delivered to cancer cells through exosomes. Hence, elucidating the molecular interaction of NEAT1 may shed light on the future treatment of cancer. Herein, we review the molecular function of NEAT1 in cancer progression, and explain how NEAT1 interacts with RNAs, proteins, and DNA promoter regions to upregulate tumorigenic factors.
Collapse
|
37
|
Altered TDP-43 Structure and Function: Key Insights into Aberrant RNA, Mitochondrial, and Cellular and Systemic Metabolism in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12080709. [PMID: 36005581 PMCID: PMC9415507 DOI: 10.3390/metabo12080709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disorder with no cure available and limited treatment options. ALS is a highly heterogeneous disease, whereby patients present with vastly different phenotypes. Despite this heterogeneity, over 97% of patients will exhibit pathological TAR-DNA binding protein-43 (TDP-43) cytoplasmic inclusions. TDP-43 is a ubiquitously expressed RNA binding protein with the capacity to bind over 6000 RNA and DNA targets—particularly those involved in RNA, mitochondrial, and lipid metabolism. Here, we review the unique structure and function of TDP-43 and its role in affecting the aforementioned metabolic processes in ALS. Considering evidence published specifically in TDP-43-relevant in vitro, in vivo, and ex vivo models we posit that TDP-43 acts in a positive feedback loop with mRNA transcription/translation, stress granules, cytoplasmic aggregates, and mitochondrial proteins causing a relentless cycle of disease-like pathology eventuating in neuronal toxicity. Given its undeniable presence in ALS pathology, TDP-43 presents as a promising target for mechanistic disease modelling and future therapeutic investigations.
Collapse
|
38
|
Parashar D, Singh A, Gupta S, Sharma A, Sharma MK, Roy KK, Chauhan SC, Kashyap VK. Emerging Roles and Potential Applications of Non-Coding RNAs in Cervical Cancer. Genes (Basel) 2022; 13:genes13071254. [PMID: 35886037 PMCID: PMC9317009 DOI: 10.3390/genes13071254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/06/2022] Open
Abstract
Cervical cancer (CC) is a preventable disease using proven interventions, specifically prophylactic vaccination, pervasive disease screening, and treatment, but it is still the most frequently diagnosed cancer in women worldwide. Patients with advanced or metastatic CC have a very dismal prognosis and current therapeutic options are very limited. Therefore, understanding the mechanism of metastasis and discovering new therapeutic targets are crucial. New sequencing tools have given a full visualization of the human transcriptome's composition. Non-coding RNAs (NcRNAs) perform various functions in transcriptional, translational, and post-translational processes through their interactions with proteins, RNA, and even DNA. It has been suggested that ncRNAs act as key regulators of a variety of biological processes, with their expression being tightly controlled under physiological settings. In recent years, and notably in the past decade, significant effort has been made to examine the role of ncRNAs in a variety of human diseases, including cancer. Therefore, shedding light on the functions of ncRNA will aid in our better understanding of CC. In this review, we summarize the emerging roles of ncRNAs in progression, metastasis, therapeutics, chemo-resistance, human papillomavirus (HPV) regulation, metabolic reprogramming, diagnosis, and as a prognostic biomarker of CC. We also discussed the role of ncRNA in the tumor microenvironment and tumor immunology, including cancer stem cells (CSCs) in CC. We also address contemporary technologies such as antisense oligonucleotides, CRISPR-Cas9, and exosomes, as well as their potential applications in targeting ncRNAs to manage CC.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, MI 53226, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| | - Anupam Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur 572107, Karnataka, India;
| | - Manish K. Sharma
- Department of Biotechnology, IP College, Bulandshahr 203001, Uttar Pradesh, India;
| | - Kuldeep K. Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| |
Collapse
|
39
|
Hao WZ, Chen Q, Wang L, Tao G, Gan H, Deng LJ, Huang JQ, Chen JX. Emerging roles of long non-coding RNA in depression. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110515. [PMID: 35077841 DOI: 10.1016/j.pnpbp.2022.110515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
Abstract
Depression is the second most common psychiatric disorder, affecting more than 340 million people of all ages worldwide. However, the mechanisms underlying the development of depression remain unclear, and existing antidepressants may cause clinical dependence and toxic side effects. Recently, emerging evidence from the fields of neuroscience, genetics, and genomics supports the modulatory role of long non-coding RNA (lncRNA) in depression. LncRNAs may mediate the pathogenesis of depression through multiple pathways, including regulating neurotransmitters and neurotrophic factors, affecting synaptic conduction, and regulating the ventriculo-olfactory neurogenic system. In addition, relying on genome-wide association study and molecular biological experiment, the possibility of lncRNA as a potential biomarker for the differential diagnosis of depression and other mental illnesses, including schizophrenia and anxiety disorders, is gradually being revealed. Thus, it is important to explore whether lncRNAs are potential therapeutic targets and diagnostic biomarkers for depression. Here, we summarize the genesis and function of lncRNAs and discuss the aberrant expression and functional roles of lncRNAs in the development, diagnosis, and therapy of depression, as well as the deficiencies and limitations of these studies. Moreover, we established a lncRNA-miRNA-mRNA-pathway-drug network of depression through bioinformatics analysis methods to deepen our understanding of the relationship between lncRNA and depression, promoting the clinical application of epigenetic research.
Collapse
Affiliation(s)
- Wen-Zhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lu Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, United States
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-Juan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
40
|
Shadrina OA, Kikhay TF, Agapkina YY, Gottikh MB. SFPQ and NONO Proteins and Long Non-Coding NEAT1 RNA: Cellular Functions and Role in the HIV-1 Life Cycle. Mol Biol 2022. [DOI: 10.1134/s0026893322020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Wang Q, Dou S, Zhang B, Jiang H, Qi X, Duan H, Wang X, Dong C, Zhang BN, Xie L, Cao Y, Zhou Q, Shi W. Heterogeneity of human corneal endothelium implicates lncRNA NEAT1 in Fuchs endothelial corneal dystrophy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:880-893. [PMID: 35141048 PMCID: PMC8807987 DOI: 10.1016/j.omtn.2022.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022]
Abstract
The corneal endothelium is critical for maintaining corneal clarity by mediating hydration through barrier and pump functions. Progressive loss of corneal endothelial cells during aging has been associated with the development of Fuchs endothelial corneal dystrophy (FECD), one of the main causes of cornea-related vision loss. The mechanisms underlying FECD development remain elusive. Single-cell RNA sequencing of isolated healthy human corneas discovered 4 subpopulations of corneal endothelial cells with distinctive signatures. Unsupervised clustering analysis uncovered nuclear enriched abundant transcript 1 (NEAT1), a long non-coding RNA (lncRNA), as the top expressed gene in the C0-endothelial subpopulation, but markedly downregulated in FECD. Consistent with human corneas, a UVA-induced mouse FECD model validated the loss of NEAT1 expression. Loss of NEAT1 function by an in vivo genetic approach reproduced the exacerbated phenotype of FECD by ablating corneal endothelial cells. Conversely, gain of function by a CRISPR-activated adenoviral delivery system protected corneas from UVA-induced FECD. Our findings provide novel mechanistic insights into the development of FECD, and targeting NEAT1 offers an attractive approach for treating FECD.
Collapse
|
42
|
Zhou H, Wang Y, Liu Z, Zhang Z, Xiong L, Wen Y. Recent advances of NEAT1-miRNA interactions in cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:153-162. [PMID: 35538025 PMCID: PMC9827865 DOI: 10.3724/abbs.2021022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
With high incidence rate, cancer is the main cause of death in humans. Non-coding RNAs, as novel master regulators, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play important roles in the regulation of tumorigenesis. lncRNA NEAT1 has recently gained much attention, as it is dysregulated in a broad spectrum of cancers, where it acts as either an oncogene or a tumor suppressor gene. Accumulating evidence shows that NEAT1 is correlated with the process of carcinogenesis, including proliferation, invasion, survival, drug resistance, and metastasis. NEAT1 is considered to be a biomarker and a novel therapeutic target for the diagnosis and prognosis of different cancer types. The mechanisms by which NEAT1 plays a critical role in cancers are mainly via interactions with miRNAs. NEAT1-miRNA regulatory networks play significant roles in tumorigenesis, which has attracted much attention from researchers around the world. In this review, we summarize the interaction of NEAT1 with miRNAs in the regulation of protein-coding genes in cancer. A better understanding of the NEAT1-miRNA interactions in cancer will help develop new diagnostic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Hui Zhou
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Yongxiang Wang
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Zhongtao Liu
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Zijian Zhang
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Li Xiong
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Yu Wen
- />Department of General SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| |
Collapse
|
43
|
A Non-Canonical Link between Non-Coding RNAs and Cardiovascular Diseases. Biomedicines 2022; 10:biomedicines10020445. [PMID: 35203652 PMCID: PMC8962294 DOI: 10.3390/biomedicines10020445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the top leading causes of mortality worldwide. Besides canonical environmental and genetic changes reported so far for CVDs, non-coding RNAs (ncRNAs) have emerged as key regulators of genetic and epigenetic mechanisms involved in CVD progression. High-throughput and sequencing data revealed that almost 80% of the total genome not only encodes for canonical ncRNAs, such as micro and long ncRNAs (miRNAs and lncRNAs), but also generates novel non-canonical sub-classes of ncRNAs, such as isomiRs and miRNA- and lncRNA-like RNAs. Moreover, recent studies reveal that canonical ncRNA sequences can influence the onset and evolution of CVD through novel “non-canonical” mechanisms. However, a debate exists over the real existence of these non-canonical ncRNAs and their concrete biochemical functions, with most of the dark genome being considered as “junk RNA”. In this review, we report on the ncRNAs with a scientifically validated canonical and non-canonical biogenesis. Moreover, we report on canonical ncRNAs that play a role in CVD through non-canonical mechanisms of action.
Collapse
|
44
|
Li W, Jiang C, Zhang E. Advances in the phase separation-organized membraneless organelles in cells: a narrative review. Transl Cancer Res 2022; 10:4929-4946. [PMID: 35116344 PMCID: PMC8797891 DOI: 10.21037/tcr-21-1111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Membraneless organelles (MLOs) are micro-compartments that lack delimiting membranes, concentrating several macro-molecules with a high local concentration in eukaryotic cells. Recent studies have shown that MLOs have pivotal roles in multiple biological processes, including gene transcription, RNA metabolism, translation, protein modification, and signal transduction. These biological processes in cells have essential functions in many diseases, such as cancer, neurodegenerative diseases, and virus-related diseases. The liquid-liquid phase separation (LLPS) microenvironment within cells is thought to be the driving force for initiating the formation of micro-compartments with a liquid-like property, becoming an important organizing principle for MLOs to mediate organism responses. In this review, we comprehensively elucidated the formation of these MLOs and the relationship between biological functions and associated diseases. The mechanisms underlying the influence of protein concentration and valency on phase separation in cells are also discussed. MLOs undergoing the LLPS process have diverse functions, including stimulation of some adaptive and reversible responses to alter the transcriptional or translational processes, regulation of the concentrations of biomolecules in living cells, and maintenance of cell morphogenesis. Finally, we highlight that the development of this field could pave the way for developing novel therapeutic strategies for the treatment of LLPS-related diseases based on the understanding of phase separation in the coming years.
Collapse
Affiliation(s)
- Weihan Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Chenwei Jiang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.,Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
45
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
46
|
Chen J, Liao X, Cheng J, Su G, Yuan F, Zhang Z, Wu J, Mei H, Tan W. Targeted Methylation of the LncRNA NEAT1 Suppresses Malignancy of Renal Cell Carcinoma. Front Cell Dev Biol 2021; 9:777349. [PMID: 34957107 PMCID: PMC8696001 DOI: 10.3389/fcell.2021.777349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Long-chain non-coding RNA (LncRNA) has been found to play an important role in the regulation of the occurrence and progression of renal cell carcinoma (RCC). In this study, we demonstrated that LncRNA NEAT1 expression and m6A methylation level was decreased in RCC tissues. Further, the downregulated expression level of LncRNA NEAT1 was associated with poor prognosis for RCC patients. Then we used CRIPSR/dCas13b-METTL3 to methylate LncRNA NEAT1 in RCC cells. The results showed that the expression level of LncRNA NEAT1 was upregulated after methylated by dCas13b-METTL3 in RCC cells. And the proliferation and migration ability of RCC cells was decreased after methylated LncRNA NEAT1. Finally, we examined the effect of LncRNA NEAT1 hypermethylation on the transcriptome. We found differentially expressed genes in RCC cells were associated with “cGMP-PKG signaling pathway”, “Cell adhesion molecules” and “Pathways in cancer”. In conclusion, CRISPR/Cas13b-METTL3 targeting LncRNA NEAT1 m6A methylation activates LncRNA NEAT1 expression and provides a new target for treatment of RCC.
Collapse
Affiliation(s)
- Jieqing Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinhui Liao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianli Cheng
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ganglin Su
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fen Yuan
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhongfu Zhang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianting Wu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongbing Mei
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Puvvula PK, Buczkowski S, Moon AM. hnRNPK-derived cell-penetrating peptide inhibits cancer cell survival. Mol Ther Oncolytics 2021; 23:342-354. [PMID: 34820504 PMCID: PMC8586514 DOI: 10.1016/j.omto.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
hnRNPK is a multifunctional protein that plays an important role in cancer cell proliferation and metastasis via its RNA- and DNA-binding properties. Previously we showed that cell-penetrating peptides derived from the RGG RNA-binding domain of SAFA (hnRNPU) disrupt cancer cell proliferation and survival. Here we explore the efficacy of a peptide derived from the RGG domain of hnRNPK. This peptide acts in a dominant-negative manner on several hnRNPK functions to induce death of multiple types of cancer cells. The peptide phenocopies the effect of hnRNPK knockdown on its mRNA-stability targets such as KLF4 and EGR1 and alters the levels and locations of long non-coding RNAs (lncRNAs) and proteins required for nuclear and paraspeckle formation and function. The RGG-derived peptide also decreases euchromatin as evidenced by loss of active marks and polymerase II occupancy. Our findings reveal the potential therapeutic utility of the hnRNPK RGG-derived peptide in a range of cancers.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Corresponding author: Pavan Kumar Puvvula, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| | - Stephanie Buczkowski
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Anne M. Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA
- Corresponding author: Anne M. Moon, MD, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| |
Collapse
|
48
|
Xu X, Zhang Y, Wang X, Li S, Tang L. Substrate Stiffness Drives Epithelial to Mesenchymal Transition and Proliferation through the NEAT1-Wnt/β-Catenin Pathway in Liver Cancer. Int J Mol Sci 2021; 22:ijms222112066. [PMID: 34769497 PMCID: PMC8584463 DOI: 10.3390/ijms222112066] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Extracellular matrix (ECM)-derived mechanical stimuli regulate many cellular processes and phenotypes through mechanotransduction signaling pathways. Substrate stiffness changes cell phenotypes and promotes angiogenesis, epithelial to mesenchymal transition (EMT), and metastasis in tumors. Enhanced liver tissue matrix stiffness plays a crucial role in the tumorigenesis and malignant development of liver cancer and is associated with unfavorable survival outcomes. However, how liver cancer cells sense changes in ECM stiffness and the underlying molecular mechanisms are largely unknown. Methods: Seeding HepG2 cells on the micropillar gels, HepG2 cells were assessed for responsiveness to mechanotransduction using Western blot and immunofluorescence. Conclusions: We found that higher substrate stiffness dramatically enhanced malignant cell phenotypes and promoted G1/S transition in HepG2 cells. Furthermore, nuclear paraspeckle assembly transcript 1 (NEAT1) was identified as a matrix stiffness-responsive long non-coding RNA (lncRNA) regulating proliferation and EMT in response to increasing matrix stiffness during the progression of HepG2 cells towards liver cancer phenotypes. Higher matrix stiffness contributed to enhancing NEAT1 expression, which activated the WNT/β-catenin pathway. β-catenin translocates and enters the nucleus and the EMT transcription factor zinc finger E-box binding homeobox 1 (ZEB1) was upregulated to trigger EMT. Additionally, the proteins required for matrix stiffness-induced proliferation and resistance were strikingly upregulated in HepG2 cells. Therefore, our findings provide evidence that ECM-derived mechanical signals regulate cell proliferation and drive EMT through a NEAT1/WNT/β-catenin mechanotransduction pathway in the tumor microenvironment of liver cancer.
Collapse
Affiliation(s)
- Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.X.); (Y.Z.); (X.W.)
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.X.); (Y.Z.); (X.W.)
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.X.); (Y.Z.); (X.W.)
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
- Correspondence: (S.L.); (L.T.); Tel.: +86-028-62739315 (S.L.); +86-23-65102507 (L.T.)
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.X.); (Y.Z.); (X.W.)
- Correspondence: (S.L.); (L.T.); Tel.: +86-028-62739315 (S.L.); +86-23-65102507 (L.T.)
| |
Collapse
|
49
|
Wang C, Yang Y, Cong L, Jiang Y, Du N, Zhang H. Implication of long non-coding RNA NEAT1 in the pathogenesis of bacterial meningitis-induced blood-brain barrier damage. Microvasc Res 2021; 138:104225. [PMID: 34256086 DOI: 10.1016/j.mvr.2021.104225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Blood-brain barrier (BBB) damage is closely related to various neurological disorders, including bacterial meningitis (BM). Determining a reliable strategy to prevent BBB damage in the context of infection would be highly desirable. In the present study, we investigated the implications of the long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in moderating BBB damage. METHODS In vitro BBB models were developed by co-culturing hCMEC/D3 cells with glioma cells, whereupon the glioma-exposed endothelial cells (GECs) were treated with a series of mimics, inhibitors, overexpression plasmids, and shRNAs for evaluating whether NEAT1, microRNA-135a (miR-135a) and hypoxia-inducible factor 1α (HIF1α) mediated BBB integrity and permeability. Furthermore, the in vivo biological function of NEAT1 was validated in a mouse model of BBB damage. RESULTS NEAT1 and HIF1α were determined to be up-regulated, while miR-135a was under-expressed in GECs. As demonstrated by chromatin immunoprecipitation and dual-luciferase reporter assays, NEAT1 could bind to miR-135a, and HIF1α was confirmed as a target of miR-135a. Either overexpression of NEAT1 or depletion of miR-135a impaired the integrity and augmented the permeability of BBB. However, HIF1α silencing could reverse the BBB damage induced by NEAT1 overexpression or by inhibition of miR-135a. In vivo experiments substantiated that knockdown of NEAT1 could alleviate BBB damage in living mice. CONCLUSIONS Hence, NEAT1 knockdown prevents BBB disruption and exerts promise as a potential target for BM treatment.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Capillary Permeability
- Cell Line, Tumor
- Coculture Techniques
- Disease Models, Animal
- Gene Expression Regulation
- HEK293 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lipopolysaccharides
- Male
- Meningitis, Bacterial/chemically induced
- Meningitis, Bacterial/genetics
- Meningitis, Bacterial/metabolism
- Meningitis, Bacterial/pathology
- Mice, Inbred ICR
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Mice
Collapse
Affiliation(s)
- Chunying Wang
- Department of Clinical Pharmacy, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, PR China.
| | - Yu Yang
- Department of Medical Affairs, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, PR China
| | - Ling Cong
- Second Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, PR China
| | - Yunfei Jiang
- Second Department of Respiratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, PR China
| | - Ning Du
- Department of Pharmacy, The First Hospital of Qiqihar, Qiqihar 161000, PR China
| | - Hui Zhang
- Department of Pharmacy, The First Hospital of Qiqihar, Qiqihar 161000, PR China
| |
Collapse
|
50
|
Balandeh E, Mohammadshafie K, Mahmoudi Y, Hossein Pourhanifeh M, Rajabi A, Bahabadi ZR, Mohammadi AH, Rahimian N, Hamblin MR, Mirzaei H. Roles of Non-coding RNAs and Angiogenesis in Glioblastoma. Front Cell Dev Biol 2021; 9:716462. [PMID: 34646821 PMCID: PMC8502969 DOI: 10.3389/fcell.2021.716462] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
One of the significant hallmarks of cancer is angiogenesis. It has a crucial function in tumor development and metastasis. Thus, angiogenesis has become one of the most exciting targets for drug development in cancer treatment. Here we discuss the regulatory effects on angiogenesis in glioblastoma (GBM) of non-coding RNAs (ncRNAs), including long ncRNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA). These ncRNAs may function in trans or cis forms and modify gene transcription by various mechanisms, including epigenetics. NcRNAs may also serve as crucial regulators of angiogenesis-inducing molecules. These molecules include, metalloproteinases, cytokines, several growth factors (platelet-derived growth factor, vascular endothelial growth factor, fibroblast growth factor, hypoxia-inducible factor-1, and epidermal growth factor), phosphoinositide 3-kinase, mitogen-activated protein kinase, and transforming growth factor signaling pathways.
Collapse
Affiliation(s)
- Ebrahim Balandeh
- Department of Clinical Psychology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Yaser Mahmoudi
- Department of Anatomical Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Ali Rajabi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|