1
|
Briega I, Garde S, Sánchez C, Rodríguez-Mínguez E, Picon A, Ávila M. Evaluation of Biofilm Production and Antibiotic Resistance/Susceptibility Profiles of Pseudomonas spp. Isolated from Milk and Dairy Products. Foods 2025; 14:1105. [PMID: 40238238 PMCID: PMC11989221 DOI: 10.3390/foods14071105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Dairy-borne Pseudomonas spp., known for causing spoilage, may also exhibit antibiotic resistance and form biofilms, enhancing their persistence in dairy environments and contaminating final products. This study examined biofilm formation and antibiotic resistance in 106 Pseudomonas spp. strains isolated from milk, whey, and spoiled dairy products. Phylogenetic analysis (based on partial ileS sequences) grouped most strains within the P. fluorescens group, clustering into the P. fluorescens, P. gessardii, P. koorensis, and P. fragi subgroups. Biofilm formation in polystyrene microplates was assessed at 6 °C and 25 °C by crystal violet staining. After 48 h, 72% and 65% of Pseudomonas strains formed biofilms at 6 °C and 25 °C, respectively, with higher biomass production at 6 °C. High biofilm producers included most P. fluorescens, P. shahriarae, P. salmasensis, P. atacamensis, P. gessardii, P. koreensis, and P. lundensis strains. The adnA gene, associated with biofilm formation, was detected in 60% of the biofilm producers, but was absent in P. fragi, P. lundensis, P. weihenstephanensis, and P. putida. Antibiotic susceptibility was tested using the disk diffusion method. All strains were susceptible to amikacin and tobramycin; however, 73% of the strains were resistant to aztreonam, 28% to imipenem and doripenem, 19% to ceftazidime, 13% to meropenem, and 7% to cefepime. A multiple antibiotic resistance index (MARI) > 0.2 was found in 30% of the strains, including multidrug-resistant (n = 15) and extensively drug-resistant (n = 3) strains. These findings highlight Pseudomonas spp. as persistent contaminants and antibiotic resistance reservoirs in dairy environments and products, posing public health risks and economic implications for the dairy industry.
Collapse
Affiliation(s)
| | - Sonia Garde
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Carretera de La Coruña km 7, 28040 Madrid, Spain; (I.B.); (C.S.); (E.R.-M.); (A.P.)
| | | | | | | | - Marta Ávila
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Carretera de La Coruña km 7, 28040 Madrid, Spain; (I.B.); (C.S.); (E.R.-M.); (A.P.)
| |
Collapse
|
2
|
Xue Y, Kang X. Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy. NPJ Biofilms Microbiomes 2025; 11:21. [PMID: 39880834 PMCID: PMC11779841 DOI: 10.1038/s41522-025-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period. The mature biofilm, established within 48 h, undergoes significant degradation in following 72 h. The steepest decline of proteins precedes that of exopolysaccharides, likely reflecting their distinct spatial distribution. Exopolysaccharide sugar units display clustered temporal patterns, suggesting the presence of distinct polysaccharide types. A sharp rise in aliphatic carbon signals on day 4 probably corresponds to a surge in biosurfactant production. Different dynamic regimes respond differently to dispersal: the mobile domain exhibits increased rigidity, while the rigid domain remains stable. These findings provide novel insights and perspectives on the complex process of biofilm dispersal.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
3
|
Deyell M, Opuu V, Griffiths AD, Tans SJ, Nghe P. Global regulators enable bacterial adaptation to a phenotypic trade-off. iScience 2025; 28:111521. [PMID: 39811663 PMCID: PMC11731283 DOI: 10.1016/j.isci.2024.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular fitness depends on multiple phenotypes that must be balanced during evolutionary adaptation. For instance, coordinating growth and motility is critical for microbial colonization and cancer invasiveness. In bacteria, these phenotypes are controlled by local regulators that target single operons, as well as by global regulators that impact hundreds of genes. However, how the different levels of regulation interact during evolution is unclear. Here, we measured in Escherichia coli how CRISPR-mediated knockdowns of global and local transcription factors impact growth and motility in three environments. We found that local regulators mostly modulate motility, whereas global regulators jointly modulate growth and motility. Simulated evolutionary trajectories indicate that local regulators are typically altered first to improve motility before global regulators adjust growth and motility following their trade-off. These findings highlight the role of pleiotropic regulators in the adaptation of multiple phenotypes.
Collapse
Affiliation(s)
- Matthew Deyell
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Vaitea Opuu
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| | - Andrew D. Griffiths
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| | - Sander J. Tans
- AMOLF, Science Park 104, XG, Amsterdam 1098, the Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL Research University, ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
4
|
Liu X, Zou L, Li B, Di Martino P, Rittschof D, Yang JL, Maki J, Liu W, Gu JD. Chemical signaling in biofilm-mediated biofouling. Nat Chem Biol 2024; 20:1406-1419. [PMID: 39349970 DOI: 10.1038/s41589-024-01740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/14/2024] [Indexed: 10/27/2024]
Abstract
Biofouling is the undesirable accumulation of living organisms and their metabolites on submerged surfaces. Biofouling begins with adhesion of biomacromolecules and/or microorganisms and can lead to the subsequent formation of biofilms that are predominantly regulated by chemical signals, such as cyclic dinucleotides and quorum-sensing molecules. Biofilms typically release chemical cues that recruit or repel other invertebrate larvae and algal spores. As such, harnessing the biochemical mechanisms involved is a promising avenue for controlling biofouling. Here, we discuss how chemical signaling affects biofilm formation and dispersion in model species. We also examine how this translates to marine biofouling. Both inductive and inhibitory effects of chemical cues from biofilms on macrofouling are also discussed. Finally, we outline promising mitigation strategies by targeting chemical signaling to foster biofilm dispersion or inhibit biofouling.
Collapse
Affiliation(s)
- Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.
| | - Ling Zou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Boqiao Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Patrick Di Martino
- Groupe Biofilm et Comportement Microbien aux Interfaces, Laboratoire ERRMECe, Cergy Paris Université, Cergy-Pontoise, France
| | - Daniel Rittschof
- Duke Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - James Maki
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Ji-Dong Gu
- Environmental Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China.
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, China.
| |
Collapse
|
5
|
Guo M, Tan S, Wu Y, Zheng C, Du P, Zhu J, Sun A, Liu X. BrfA functions as a bacterial enhancer-binding protein to regulate functional amyloid Fap-dependent biofilm formation in Pseudomonas fluorescens by sensing cyclic diguanosine monophosphate. Microbiol Res 2024; 287:127864. [PMID: 39116779 DOI: 10.1016/j.micres.2024.127864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The functional amyloid of Pseudomonas (Fap) is essential for the formation of macrocolony biofilms, pellicles, and solid surface-associated (SSA) biofilms of Pseudomonas fluorescens PF07, an isolate from refrigerated marine fish. However, limited information on the expression regulation of fap genes is available. Herein, we found that a novel bacterial enhancer-binding protein (bEBP), BrfA, regulated Fap-dependent biofilm formation by directly sensing cyclic diguanosine monophosphate (c-di-GMP). Our in vivo data showed that the REC domain deletion of BrfA promoted fap gene expression and biofilm formation, and c-di-GMP positively regulated the transcription of fapA in a BrfA-dependent manner. In in vitro experiments, we found that the ATPase activity of BrfA was inhibited by the REC domain and was activated by c-di-GMP. BrfA and the sigma factor RpoN bound to the upstream region of fapA, and the binding ability of BrfA was not affected by either deletion of the REC domain or c-di-GMP. BrfA specifically bound to the three enhancer sites upstream of the fapA promoter, which contain the consensus sequence CA-(N4)-TGA(A/T)ACACC. In vivo experiments using a lacZ fusion reporter indicated that all three BrfA enhancer sites were essential for the activation of fapA transcription. Overall, these findings reveal that BrfA is a new type of c-di-GMP-responsive transcription factor that directly controls the transcription of Fap biosynthesis genes in P. fluorescens. Fap functional amyloids and BrfA-type transcription factors are widespread in Pseudomonas species. The novel insights into the c-di-GMP- and BrfA-dependent expression regulation of fap provided by this work will contribute to the development of antibiofilm strategies.
Collapse
Affiliation(s)
- Miao Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; Zouping Center for Disease Control and Prevention, Zouping, Shandong, 256200, China
| | - Siqi Tan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Yinying Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Chongni Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
6
|
Furuichi M, Kawaguchi T, Pust MM, Yasuma-Mitobe K, Plichta DR, Hasegawa N, Ohya T, Bhattarai SK, Sasajima S, Aoto Y, Tuganbaev T, Yaginuma M, Ueda M, Okahashi N, Amafuji K, Kiridoshi Y, Sugita K, Stražar M, Avila-Pacheco J, Pierce K, Clish CB, Skelly AN, Hattori M, Nakamoto N, Caballero S, Norman JM, Olle B, Tanoue T, Suda W, Arita M, Bucci V, Atarashi K, Xavier RJ, Honda K. Commensal consortia decolonize Enterobacteriaceae via ecological control. Nature 2024; 633:878-886. [PMID: 39294375 PMCID: PMC11424487 DOI: 10.1038/s41586-024-07960-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/19/2024] [Indexed: 09/20/2024]
Abstract
Persistent colonization and outgrowth of potentially pathogenic organisms in the intestine can result from long-term antibiotic use or inflammatory conditions, and may perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, although an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. Here we isolated and down-selected commensal bacterial consortia from stool samples from healthy humans that could strongly and specifically suppress intestinal Enterobacteriaceae. One of the elaborated consortia, comprising 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby re-establishing colonization resistance and alleviating Klebsiella- and Escherichia-driven intestinal inflammation in mice. Harnessing these activities in the form of live bacterial therapies may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant Enterobacteriaceae infection.
Collapse
Affiliation(s)
- Munehiro Furuichi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takaaki Kawaguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Marie-Madlen Pust
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Keiko Yasuma-Mitobe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Damian R Plichta
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Naomi Hasegawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Satoshi Sasajima
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimasa Aoto
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Timur Tuganbaev
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
| | - Mizuki Yaginuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Ueda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Okahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Kimiko Amafuji
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kiridoshi
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo, Japan
| | - Kayoko Sugita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Martin Stražar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julian Avila-Pacheco
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kerry Pierce
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Clary B Clish
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashwin N Skelly
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | - Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Makoto Arita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, Program in Microbiome Dynamics, UMass Chan Medical School, Worcester, MA, USA
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
7
|
Dubois Q, Brual T, Oriol C, Mandin P, Condemine G, Gueguen E. Function and mechanism of action of the small regulatory RNA ArcZ in Enterobacterales. RNA (NEW YORK, N.Y.) 2024; 30:1107-1121. [PMID: 38839110 PMCID: PMC11331407 DOI: 10.1261/rna.080010.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
ArcZ is a small regulatory RNA conserved in Enterobacterales It is an Hfq-dependent RNA that is cleaved by RNase E in a processed form of 55-60 nucleotides. This processed form is highly conserved for controlling the expression of target mRNAs. ArcZ expression is induced by abundant oxygen levels and reaches its peak during the stationary growth phase. This control is mediated by the oxygen-responsive two-component system ArcAB, leading to the repression of arcZ transcription under low-oxygen conditions in most bacteria in which it has been studied. ArcZ displays multiple targets, and it can control up to 10% of a genome and interact directly with more than 300 mRNAs in Escherichia coli and Salmonella enterica ArcZ displays a multifaceted ability to regulate its targets through diverse mechanisms such as RNase recruitment, modulation of ribosome accessibility on the mRNA, and interaction with translational enhancing regions. By influencing stress response, motility, and virulence through the regulation of master regulators such as FlhDC or RpoS, ArcZ emerges as a major orchestrator of cell physiology within Enterobacterales.
Collapse
Affiliation(s)
- Quentin Dubois
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Typhaine Brual
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Charlotte Oriol
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, IMM, IM2B, F-13009 Marseille, France
| | - Pierre Mandin
- CNRS, Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UMR7283, IMM, IM2B, F-13009 Marseille, France
| | - Guy Condemine
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, UMR5240 MAP Lyon, France
| |
Collapse
|
8
|
Puri D, Allison KR. Escherichia coli self-organizes developmental rosettes. Proc Natl Acad Sci U S A 2024; 121:e2315850121. [PMID: 38814871 PMCID: PMC11161754 DOI: 10.1073/pnas.2315850121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Rosettes are self-organizing, circular multicellular communities that initiate developmental processes, like organogenesis and embryogenesis, in complex organisms. Their formation results from the active repositioning of adhered sister cells and is thought to distinguish multicellular organisms from unicellular ones. Though common in eukaryotes, this multicellular behavior has not been reported in bacteria. In this study, we found that Escherichia coli forms rosettes by active sister-cell repositioning. After division, sister cells "fold" to actively align at the 2- and 4-cell stages of clonal division, thereby producing rosettes with characteristic quatrefoil configuration. Analysis revealed that folding follows an angular random walk, composed of ~1 µm strokes and directional randomization. We further showed that this motion was produced by the flagellum, the extracellular tail whose rotation generates swimming motility. Rosette formation was found to require de novo flagella synthesis suggesting it must balance the opposing forces of Ag43 adhesion and flagellar propulsion. We went on to show that proper rosette formation was required for subsequent morphogenesis of multicellular chains, rpoS gene expression, and formation of hydrostatic clonal-chain biofilms. Moreover, we found self-folding rosette-like communities in the standard motility assay, indicating that this behavior may be a general response to hydrostatic environments in E. coli. These findings establish self-organization of clonal rosettes by a prokaryote and have implications for evolutionary biology, synthetic biology, and medical microbiology.
Collapse
Affiliation(s)
- Devina Puri
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA30322
| | - Kyle R. Allison
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA30322
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA30322
| |
Collapse
|
9
|
Long J, Yang C, Liu J, Ma C, Jiao M, Hu H, Xiong J, Zhang Y, Wei W, Yang H, He Y, Zhu M, Yu Y, Fu L, Chen H. Tannic acid inhibits Escherichia coli biofilm formation and underlying molecular mechanisms: Biofilm regulator CsgD. Biomed Pharmacother 2024; 175:116716. [PMID: 38735084 DOI: 10.1016/j.biopha.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.
Collapse
Affiliation(s)
- Jinying Long
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Can Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - JingJing Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Chengjun Ma
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Min Jiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Huiming Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jing Xiong
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yang Zhang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Hongzao Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China
| | - Yuzhang He
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| | - Maixun Zhu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Yuandi Yu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Lizhi Fu
- National Center of Technology Innovation for Pigs, Chongqing 402460, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China.
| | - Hongwei Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China; Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Chongqing 402460, China.
| |
Collapse
|
10
|
Vasenina A, Fu Y, O'Toole GA, Mucha PJ. Local control: a hub-based model for the c-di-GMP network. mSphere 2024; 9:e0017824. [PMID: 38591888 PMCID: PMC11237430 DOI: 10.1128/msphere.00178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The genome of Pseudomonas fluorescens encodes >50 proteins predicted to play a role in bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)-mediated biofilm formation. We built a network representation of protein-protein interactions and extracted key information via multidimensional scaling (i.e., principal component analysis) of node centrality measures, which measure features of proteins in a network. Proteins of different domain types (diguanylate cyclase, dual domain, phosphodiesterase, PilZ) exhibit unique network behavior and can be accurately classified by their network centrality values (i.e., roles in the network). The predictive power of protein-protein interactions in biofilm formation indicates the possibility of localized pools of c-di-GMP. A regression model showed a statistically significant impact of protein-protein interactions on the extent of biofilm formation in various environments. These results highlight the importance of a localized c-di-GMP signaling, extend our understanding of signaling by this second messenger beyond the current "Bow-tie Model," support a newly proposed "Hub Model," and suggest future avenues of investigation.
Collapse
Affiliation(s)
- Anna Vasenina
- Department of Mathematics, Dartmouth College, Hanover, New Hampshire, USA
| | - Yu Fu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Peter J. Mucha
- Department of Mathematics, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
11
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Evans CR, Smiley MK, Asahara Thio S, Wei M, Florek LC, Dayton H, Price-Whelan A, Min W, Dietrich LEP. Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation. Proc Natl Acad Sci U S A 2023; 120:e2313208120. [PMID: 37847735 PMCID: PMC10614215 DOI: 10.1073/pnas.2313208120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Within biofilms, gradients of electron acceptors such as oxygen stimulate the formation of physiological subpopulations. This heterogeneity can enable cross-feeding and promote drug resilience, features of the multicellular lifestyle that make biofilm-based infections difficult to treat. The pathogenic bacterium Pseudomonas aeruginosa produces pigments called phenazines that can support metabolic activity in hypoxic/anoxic biofilm subzones, but these compounds also include methylated derivatives that are toxic to their producer under some conditions. In this study, we uncover roles for the global regulators RpoS and Hfq/Crc in controlling the beneficial and detrimental effects of methylated phenazines in biofilms. Our results indicate that RpoS controls phenazine methylation by modulating activity of the carbon catabolite repression pathway, in which the Hfq/Crc complex inhibits translation of the phenazine methyltransferase PhzM. We find that RpoS indirectly inhibits expression of CrcZ, a small RNA that binds to and sequesters Hfq/Crc, specifically in the oxic subzone of P. aeruginosa biofilms. Deletion of rpoS or crc therefore leads to overproduction of methylated phenazines, which we show leads to increased metabolic activity-an apparent beneficial effect-in hypoxic/anoxic subpopulations within biofilms. However, we also find that under specific conditions, biofilms lacking RpoS and/or Crc show increased sensitivity to phenazines indicating that the increased metabolic activity in these mutants comes at a cost. Together, these results suggest that complex regulation of PhzM allows P. aeruginosa to simultaneously exploit the benefits and limit the toxic effects of methylated phenazines.
Collapse
Affiliation(s)
| | - Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Sean Asahara Thio
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY10027
| | - Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY10027
| | | |
Collapse
|
13
|
Honda K, Furuichi M, Kawaguchi T, Pust MM, Yasuma-Mitobe K, Plichta D, Hasegawa N, Ohya T, Bhattarai S, Sasajima S, Yoshimasa A, Tuganbaev T, Yaginuma M, Ueda M, Okahashi N, Amafuji K, Kiridooshi Y, Sugita K, Stražar M, Skelly A, Suda W, Hattori M, Nakamoto N, Caballero S, Norman J, Olle B, Tanoue T, Arita M, Bucci V, Atarashi K, Xavier R. Rationally-defined microbial consortia suppress multidrug-resistant proinflammatory Enterobacteriaceae via ecological control. RESEARCH SQUARE 2023:rs.3.rs-3462622. [PMID: 37961431 PMCID: PMC10635318 DOI: 10.21203/rs.3.rs-3462622/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Persistent colonization and outgrowth of pathogenic organisms in the intestine may occur due to long-term antibiotic usage or inflammatory conditions, which perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, though an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. In this study, we rationally isolated and down-selected commensal bacterial consortia from healthy human stool samples capable of strongly and specifically suppressing intestinal Enterobacteriaceae. One of the elaborated consortia, consisting of 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby reestablishing colonization resistance and alleviating antibiotic-resistant Klebsiella-driven intestinal inflammation in mice. Harnessing these microbial activities in the form of live bacterial therapeutics may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Aoto Yoshimasa
- JSR-Keio University Medical and Chemical Innovation Center
| | | | | | | | | | | | | | | | | | | | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences
| | | | | | - Silvia Caballero
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Melamed S, Zhang A, Jarnik M, Mills J, Silverman A, Zhang H, Storz G. σ 28-dependent small RNA regulation of flagella biosynthesis. eLife 2023; 12:RP87151. [PMID: 37843988 PMCID: PMC10578931 DOI: 10.7554/elife.87151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Flagella are important for bacterial motility as well as for pathogenesis. Synthesis of these structures is energy intensive and, while extensive transcriptional regulation has been described, little is known about the posttranscriptional regulation. Small RNAs (sRNAs) are widespread posttranscriptional regulators, most base pairing with mRNAs to affect their stability and/or translation. Here, we describe four UTR-derived sRNAs (UhpU, MotR, FliX and FlgO) whose expression is controlled by the flagella sigma factor σ28 (fliA) in Escherichia coli. Interestingly, the four sRNAs have varied effects on flagellin protein levels, flagella number and cell motility. UhpU, corresponding to the 3´ UTR of a metabolic gene, likely has hundreds of targets including a transcriptional regulator at the top flagella regulatory cascade connecting metabolism and flagella synthesis. Unlike most sRNAs, MotR and FliX base pair within the coding sequences of target mRNAs and act on ribosomal protein mRNAs connecting ribosome production and flagella synthesis. The study shows how sRNA-mediated regulation can overlay a complex network enabling nuanced control of flagella synthesis.
Collapse
Affiliation(s)
- Sahar Melamed
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Aixia Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Michal Jarnik
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Joshua Mills
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Aviezer Silverman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Hongen Zhang
- Bioinformatics and Scientific Computing Core, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| |
Collapse
|
15
|
Ma X, Wang L, Yang F, Li J, Guo L, Guo Y, He S. Drug sensitivity and genome-wide analysis of two strains of Mycoplasma gallisepticum with different biofilm intensity. Front Microbiol 2023; 14:1196747. [PMID: 37621399 PMCID: PMC10445764 DOI: 10.3389/fmicb.2023.1196747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is one of the major causative agents of chronic respiratory diseases in poultry. The biofilms of MG are highly correlated to its chronic infection. However data on genes involved in biofilm formation ability are still scarse. MG strains with distinct biofilm intensity were screened by crystal violet staining morphotyped and characterized for the drug sensitivity. Two MG strains NX-01 and NX-02 showed contrasted ability to biofilm formation. The biofilm formation ability of NX-01 strain was significantly higher than that of NX-02 strain (p < 0.01). The drug sensitivity test showed that the stronger the ability of MG stain to form biofilms, the weaker its sensitivity to 17 antibiotic drugs. Moreover, putative key genes related to biofilm formation were screened by genome-wide analysis. A total of 13 genes and proteins related to biofilm formation, including ManB, oppA, oppD, PDH, eno, RelA, msbA, deoA, gapA, rpoS, Adhesin P1 precursor, S-adenosine methionine synthetase, and methionyl tRNA synthetase were identified. There were five major discrepancies between the two isolated MG strains and the five NCBI-published MG strains. These findings provide potential targets for inhibiting the formation of biofilm of MG, and lay a foundation for treating chronic infection.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Li Wang
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Fei Yang
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Jidong Li
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Lei Guo
- Ningxia Xiaoming Agriculture and Animal Husbandry Co., Ltd., Yinchuan, China
| | - Yanan Guo
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Shenghu He
- Clinical Veterinary Laboratory, Institute of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
16
|
Machado MAM, Castro VS, da Cunha-Neto A, Vallim DC, Pereira RDCL, Dos Reis JO, de Almeida PV, Galvan D, Conte-Junior CA, Figueiredo EEDS. Heat-resistant and biofilm-forming Escherichia coli in pasteurized milk from Brazil. Braz J Microbiol 2023; 54:1035-1046. [PMID: 36811769 PMCID: PMC10235242 DOI: 10.1007/s42770-023-00920-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Escherichia coli harboring a transmissible locus of stress tolerance (tLST) and the ability to form biofilms represent a serious risk in dairy production. Thus, we aimed to evaluate the microbiological quality of pasteurized milk from two dairy producers in Mato Grosso, Brazil, with a focus on determining the possible presence of E. coli with heat resistance (60 °C/6 min), biofilm-forming potential phenotypes and genotypes, and antimicrobial susceptibility. For this, fifty pasteurized milk samples from producers named A and B were obtained for 5 weeks to investigate the presence of Enterobacteriaceae members, coliforms, and E. coli. For heat resistance, E. coli isolates were exposed to a water bath at 60 °C for 0 and 6 min. In antibiogram analysis, eight antibiotics belonging to six antimicrobial classes were analyzed. The potential to form biofilms was quantified at 570 nm, and curli expression by Congo Red was analyzed. To determine the genotypic profile, we performed PCR for the tLST and rpoS genes, and pulsed-field gel electrophoresis (PFGE) was used to investigate the clonal profile of the isolates. Thus, producer A presented unsatisfactory microbiological conditions regarding Enterobacteriaceae and coliforms for weeks 4 and 5, while all samples analyzed for producer B were contaminated at above-the-limit levels established by national and international legislation. These unsatisfactory conditions enabled us to isolate 31 E. coli from both producers (7 isolates from producer A and 24 isolates from producer B). In this way, 6 E. coli isolates (5 from producer A and 1 from producer B) were highly heat resistant. However, although only 6 E. coli showed a highly heat-resistant profile, 97% (30/31) of all E. coli were tLST-positive. In contrast, all isolates were sensitive to all antimicrobials tested. In addition, moderate or weak biofilm potential was verified in 51.6% (16/31), and the expression of curli and presence of rpoS was not always related to this biofilm potential. Therefore, the results emphasize the spreading of heat-resistant E. coli with tLST in both producers and indicate the biofilm as a possible source of contamination during milk pasteurization. However, the possibility of E. coli producing biofilm and surviving pasteurization temperatures cannot be ruled out, and this should be investigated.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Graduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adelino da Cunha-Neto
- Department of Food and Nutrition, Federal University of Mato Grosso - Campus Cuiabá, Fernando Correa da Costa. Avenue, Boa Esperança, Mato Grosso, 78060-900, Brazil
| | | | | | | | | | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- Department of Food and Nutrition, Federal University of Mato Grosso - Campus Cuiabá, Fernando Correa da Costa. Avenue, Boa Esperança, Mato Grosso, 78060-900, Brazil.
- Graduate Program in Animal Science, Federal University of Mato Grosso, Mato Grosso, Brazil.
| |
Collapse
|
17
|
Fuchs M, Lamm-Schmidt V, Lenče T, Sulzer J, Bublitz A, Wackenreuter J, Gerovac M, Strowig T, Faber F. A network of small RNAs regulates sporulation initiation in Clostridioides difficile. EMBO J 2023:e112858. [PMID: 37140366 DOI: 10.15252/embj.2022112858] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
The obligate anaerobic, enteric pathogen Clostridioides difficile persists in the intestinal tract by forming antibiotic-resistant endospores that contribute to relapsing and recurrent infections. Despite the importance of sporulation for C. difficile pathogenesis, environmental cues and molecular mechanisms that regulate sporulation initiation remain ill-defined. Here, by using RIL-seq to globally capture the Hfq-dependent RNA-RNA interactome, we discovered a network of small RNAs that bind to mRNAs encoding sporulation-related genes. We show that two of these small RNAs, SpoX and SpoY, regulate translation of the master regulator of sporulation, Spo0A, in an opposing manner, which ultimately leads to altered sporulation rates. Infection of antibiotic-treated mice with SpoX and SpoY deletion mutants revealed a global effect on gut colonization and intestinal sporulation. Our work uncovers an elaborate RNA-RNA interactome controlling the physiology and virulence of C. difficile and identifies a complex post-transcriptional layer in the regulation of spore formation in this important human pathogen.
Collapse
Affiliation(s)
- Manuela Fuchs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Vanessa Lamm-Schmidt
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Tina Lenče
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Johannes Sulzer
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Arne Bublitz
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Janet Wackenreuter
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Milan Gerovac
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Till Strowig
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Franziska Faber
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| |
Collapse
|
18
|
He X, Ding H, Gao Z, Zhang X, Wu R, Li K. Variations in the motility and biofilm formation abilities of Escherichia coli O157:H7 during noodle processing. Food Res Int 2023; 168:112670. [PMID: 37120241 DOI: 10.1016/j.foodres.2023.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Motility and biofilm formation help to protect bacteria from host immune responses and facilitate tolerance of environmental stimuli to improve their adaptability. However, few reports have investigated the adaptability of bacteria that live in food substrates undergoing food processing-induced stress. In this study, variations in the surface morphology, bacterial count, motility, and biofilm formation abilities of Escherichia coli O157:H7 NCTC12900 were investigated during noodle processing, including the kneading, squeezing, resting, and sheeting phases. The results showed that bacterial surface morphology, count, and motility were impaired in the squeezing phase, whereas biofilm biomass continuously increased across all processing phases. Twenty-one genes and sRNAs were measured using RT-qPCR to reveal the mechanisms underlying these changes. Of these, the genes adrA, csrA, flgM, flhD, fliM, ydaM, and the sRNA McaS were significantly upregulated, whereas the genes fliA, fliG, and the sRNAs CsrC, DsrA, GcvB, and OxyS were evidently repressed. According to the correlation matrix results based on the reference gene adrA, we found that csrA, GcvB, McaS, and OxyS were the most relevant genes and sRNAs for biofilm formation and motility. For each of them, their overexpressions was found to inhibit bacterial motility and biofilm formation to varying degrees during noodle processing. Among these, 12900/pcsrA had the highest inhibitory potential against motility, yielding a minimum of 11.2 mm motility diameter in the resting phase. Furthermore, 12900/pOxyS showed the most significant inhibitory effect against biofilm formation, yielding a minimum biofilm formation value of 5% of that exhibited the wild strain in the sheeting phase. Therefore, we prospect to find an effective and feasible novel approach to weaken bacterial survival during food processing by regulating the genes or sRNAs related to motility and biofilm formation.
Collapse
|
19
|
Sano K, Kobayashi H, Chuta H, Matsuyoshi N, Kato Y, Ogasawara H. CsgI (YccT) Is a Novel Inhibitor of Curli Fimbriae Formation in Escherichia coli Preventing CsgA Polymerization and Curli Gene Expression. Int J Mol Sci 2023; 24:ijms24054357. [PMID: 36901788 PMCID: PMC10002515 DOI: 10.3390/ijms24054357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Curli fimbriae are amyloids-found in bacteria (Escherichia coli)-that are involved in solid-surface adhesion and bacterial aggregation during biofilm formation. The curli protein CsgA is coded by a csgBAC operon gene, and the transcription factor CsgD is essential to induce its curli protein expression. However, the complete mechanism underlying curli fimbriae formation requires elucidation. Herein, we noted that curli fimbriae formation was inhibited by yccT-i.e., a gene that encodes a periplasmic protein of unknown function regulated by CsgD. Furthermore, curli fimbriae formation was strongly repressed by CsgD overexpression caused by a multicopy plasmid in BW25113-the non-cellulose-producing strain. YccT deficiency prevented these CsgD effects. YccT overexpression led to intracellular YccT accumulation and reduced CsgA expression. These effects were addressed by deleting the N-terminal signal peptide of YccT. Localization, gene expression, and phenotypic analyses revealed that YccT-dependent inhibition of curli fimbriae formation and curli protein expression was mediated by the two-component regulatory system EnvZ/OmpR. Purified YccT inhibited CsgA polymerization; however, no intracytoplasmic interaction between YccT and CsgA was detected. Thus, YccT-renamed CsgI (curli synthesis inhibitor)-is a novel inhibitor of curli fimbriae formation and has a dual role as an OmpR phosphorylation modulator and CsgA polymerization inhibitor.
Collapse
Affiliation(s)
- Kotaro Sano
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroaki Kobayashi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hirotaka Chuta
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Nozomi Matsuyoshi
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Yuki Kato
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Department of Applied Biology, Graduated School of Science and Technology, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
| | - Hiroshi Ogasawara
- Research Center for Advanced Science and Technology, Division of Gene Research, Shinshu University, 3-15-1 Ueda, Nagano 386-8567, Japan
- Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
- Renaissance Center for Applied Microbiology, Shinshu University, Nagano-shi, Nagano 380-8553, Japan
- Correspondence: ; Tel.: +81-268-21-5803
| |
Collapse
|
20
|
Evans CR, Smiley MK, Thio SA, Wei M, Price-Whelan A, Min W, Dietrich LE. Spatial heterogeneity in biofilm metabolism elicited by local control of phenazine methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528762. [PMID: 36824979 PMCID: PMC9949047 DOI: 10.1101/2023.02.15.528762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Within biofilms, gradients of electron acceptors such as oxygen stimulate the formation of physiological subpopulations. This heterogeneity can enable cross-feeding and promote drug resilience, features of the multicellular lifestyle that make biofilm-based infections difficult to treat. The pathogenic bacterium Pseudomonas aeruginosa produces pigments called phenazines that can support metabolic activity in hypoxic/anoxic biofilm subzones, but these compounds also include methylated derivatives that are toxic to their producer under some conditions. Here, we uncover roles for the global regulators RpoS and Hfq/Crc in controlling the beneficial and detrimental effects of methylated phenazines in biofilms. Our results indicate that RpoS controls phenazine methylation by modulating activity of the carbon catabolite repression pathway, in which the Hfq/Crc complex inhibits translation of the phenazine methyltransferase PhzM. We find that RpoS indirectly inhibits expression of CrcZ, a small RNA that binds to and sequesters Hfq/Crc, specifically in the oxic subzone of P. aeruginosa biofilms. Deletion of rpoS or crc therefore leads to overproduction of methylated phenazines, which we show leads to increased metabolic activity-an apparent beneficial effect-in hypoxic/anoxic subpopulations within biofilms. However, we also find that biofilms lacking Crc show increased sensitivity to an exogenously added methylated phenazine, indicating that the increased metabolic activity in this mutant comes at a cost. Together, these results suggest that complex regulation of PhzM allows P. aeruginosa to simultaneously exploit the benefits and limit the toxic effects of methylated phenazines.
Collapse
Affiliation(s)
| | - Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Sean Asahara Thio
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
21
|
An Estuarine Cyanophage S-CREM1 Encodes Three Distinct Antitoxin Genes and a Large Number of Non-Coding RNA Genes. Viruses 2023; 15:v15020380. [PMID: 36851594 PMCID: PMC9964418 DOI: 10.3390/v15020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cyanophages play important roles in regulating the population dynamics, community structure, metabolism, and evolution of cyanobacteria in aquatic ecosystems. Here, we report the genomic analysis of an estuarine cyanophage, S-CREM1, which represents a new genus of T4-like cyanomyovirus and exhibits new genetic characteristics. S-CREM1 is a lytic phage which infects estuarine Synechococcus sp. CB0101. In contrast to many cyanomyoviruses that usually have a broad host range, S-CREM1 only infected the original host strain. In addition to cyanophage-featured auxiliary metabolic genes (AMGs), S-CREM1 also contains unique AMGs, including three antitoxin genes, a MoxR family ATPase gene, and a pyrimidine dimer DNA glycosylase gene. The finding of three antitoxin genes in S-CREM1 implies a possible phage control of host cells during infection. One small RNA (sRNA) gene and three cis-regulatory RNA genes in the S-CREM1 genome suggest potential molecular regulations of host metabolism by the phage. In addition, S-CREM1 contains a large number of tRNA genes which may reflect a genomic adaption to the nutrient-rich environment. Our study suggests that we are still far from understanding the viral diversity in nature, and the complicated virus-host interactions remain to be discovered. The isolation and characterization of S-CREM1 further our understanding of the gene diversity of cyanophages and phage-host interactions in the estuarine environment.
Collapse
|
22
|
Naaz S, Sakib N, Houserova D, Badve R, Crucello A, Borchert GM. Characterization of a novel sRNA contributing to biofilm formation in Salmonella enterica serovar Typhimurium. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000796. [PMID: 37151214 PMCID: PMC10160853 DOI: 10.17912/micropub.biology.000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 01/01/1970] [Indexed: 05/09/2023]
Abstract
Small RNAs (sRNAs) are short noncoding RNAs of ~50-200 nucleotides believed to primarily function in regulating crucial activities in bacteria during periods of cellular stress. This study examined the relevance of specific sRNAs on biofilm formation in nutrient starved Salmonella enterica serovar Typhimurium. Eight unique sRNAs were selected for deletion primarily based on their genomic location and/or putative targets. Quantitative and qualitative analyses confirm one of these, sRNA1186573, is required for efficient biofilm formation in S. enterica further highlighting the significance of sRNAs during Salmonella stress response.
Collapse
Affiliation(s)
- Sayema Naaz
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Najmuj Sakib
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Dominika Houserova
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Rani Badve
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Aline Crucello
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Correspondence to: Glen M Borchert (
)
| |
Collapse
|
23
|
Puri D, Fang X, Allison KR. Evidence of a possible multicellular life cycle in Escherichia coli. iScience 2022; 26:105795. [PMID: 36594031 PMCID: PMC9804144 DOI: 10.1016/j.isci.2022.105795] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Biofilms are surface-attached multicellular microbial communities. Their genetics have been extensively studied, but the cell-scale morphogenetic events of their formation are largely unknown. Here, we recorded the entirety of morphogenesis in Escherichia coli, and discovered a previously unknown multicellular self-assembly process. Unattached, single-cells formed 4-cell rosettes which grew into constant-width chains. After ∼10 cell generations, these multicellular chains attached to surfaces and stopped growing. Chains remained clonal throughout morphogenesis. We showed that this process generates biofilms, which we found are composed of attached clonal chains, aligned in parallel. We investigated genetics of chain morphogenesis: Ag43 facilitates rosette formation and clonality; type-1 fimbriae and curli promote stability and configuration; and extracellular polysaccharide production facilitates attachment. Our study establishes that E. coli, a unicellular organism, can follow a multistage, clonal, genetically-regulated, rosette-initiated multicellular life cycle. These findings have implications for synthetic biology, multicellular development, and the treatment and prevention of bacterial diseases.
Collapse
Affiliation(s)
- Devina Puri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Xin Fang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Kyle R. Allison
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA,Corresponding author
| |
Collapse
|
24
|
Wu J, Liu Y, Li W, Li F, Liu R, Sun H, Qin J, Feng X, Huang D, Liu B. MlrA, a MerR family regulator in Vibrio cholerae, senses the anaerobic signal in the small intestine of the host to promote bacterial intestinal colonization. Gut Microbes 2022; 14:2143216. [PMID: 36369865 PMCID: PMC9662190 DOI: 10.1080/19490976.2022.2143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrio cholerae (V. cholerae), one of the most important bacterial pathogens in history, is a gram-negative motile bacterium that causes fatal pandemic disease in humans via oral ingestion of contaminated water or food. This process involves the coordinated actions of numerous regulatory factors. The MerR family regulators, which are widespread in prokaryotes, have been reported to be associated with pathogenicity. However, the role of the MerR family regulators in V. cholerae virulence remains unknown. Our study systematically investigated the influence of MerR family regulators on intestinal colonization of V. cholerae within the host. Among the five MerR family regulators, MlrA was found to significantly promote the colonization capacity of V. cholerae in infant mice. Furthermore, we revealed that MlrA increases bacterial intestinal colonization by directly enhancing the expression of tcpA, which encodes one of the most important virulence factors in V. cholerae, by binding to its promoter region. In addition, we revealed that during infection, mlrA is activated by anaerobic signals in the small intestine of the host through Fnr. In summary, our findings reveal a MlrA-mediated virulence regulation pathway that enables V. cholerae to sense environmental signals at the infection site to precisely activate virulence gene expression, thus providing useful insights into the pathogenic mechanisms of V. cholerae.
Collapse
Affiliation(s)
- Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Fan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,Di Huang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,CONTACT Bin Liu TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| |
Collapse
|
25
|
Synthetic Genetic Interactions Reveal a Dense and Cryptic Regulatory Network of Small Noncoding RNAs in Escherichia coli. mBio 2022; 13:e0122522. [PMID: 35920556 PMCID: PMC9426594 DOI: 10.1128/mbio.01225-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Over the past 20 years, we have learned that bacterial small noncoding RNAs (sRNAs) can rapidly effect changes in gene expression in response to stress. However, the broader role and impact of sRNA-mediated regulation in promoting bacterial survival has remained elusive. Indeed, there are few examples where disruption of sRNA-mediated gene regulation results in a discernible change in bacterial growth or survival. The lack of phenotypes attributable to loss of sRNA function suggests that either sRNAs are wholly dispensable or functional redundancies mask the impact of deleting a single sRNA. We investigated synthetic genetic interactions among sRNA genes in Escherichia coli by constructing pairwise deletions in 54 genes, including 52 sRNAs. Some 1,373 double deletion strains were studied for growth defects under 32 different nutrient stress conditions and revealed 1,131 genetic interactions. In one example, we identified a profound synthetic lethal interaction between ArcZ and CsrC when E. coli was grown on pyruvate, lactate, oxaloacetate, or d-/l-alanine, and we provide evidence that the expression of ppsA is dysregulated in the double deletion background, causing the conditionally lethal phenotype. This work employs a unique platform for studying sRNA-mediated gene regulation and sheds new light on the genetic network of sRNAs that underpins bacterial growth.
Collapse
|
26
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
27
|
Guo M, Tan S, Zhu J, Sun A, Du P, Liu X. Genes Involved in Biofilm Matrix Formation of the Food Spoiler Pseudomonas fluorescens PF07. Front Microbiol 2022; 13:881043. [PMID: 35733961 PMCID: PMC9207406 DOI: 10.3389/fmicb.2022.881043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix is essential for the biofilm formation of food spoilers. Pseudomonas fluorescens PF07 is a previous isolate from spoiled marine fish; however, the genes involved in the extracellular matrix formation of PF07 biofilms remain poorly defined. In this study, PF07 formed a wrinkled macrocolony biofilm through the high production of extracellular matrix. The genes involved in biofilm matrix formation and regulation were screened and identified by RNA-seq-dependent transcriptomic analysis and gene knock-out analysis. The macrocolony biofilms of PF07 grown for 5 days (PF07_5d) were compared with those grown for 1 day (PF07_1d). A total of 1,403 genes were significantly differentially expressed during biofilm formation. These mainly include the genes related to biofilm matrix proteins, polysaccharides, rhamnolipids, secretion system, biofilm regulation, and metabolism. Among them, functional amyloid genes fapABCDE were highly upregulated in the mature biofilm, and the operon fapA-E had a –24/–12 promoter dependent on the sigma factor RpoN. Moreover, the RNA-seq analyses of the rpoN mutant, compared with PF07, revealed 159 genes were differentially expressed in the macrocolony biofilms, and fapA-E genes were positively regulated by RpoN. In addition, the deletion mutants of fapC, rpoN, and brfA (a novel gene coding for an RpoN-dependent transcriptional regulator) were defective in forming mature macrocolony biofilms, solid surface-associated (SSA) biofilms, and pellicles, and they showed significantly reduced biofilm matrices. The fap genes were significantly downregulated in ΔbrfA, as in ΔrpoN. These findings suggest that the functional amyloid Fap is the main component of PF07 biofilm matrices, and RpoN may directly regulate the transcription of fap genes, in conjunction with BrfA. These genes may serve as potential molecular targets for screening new anti-biofilm agents or for biofilm detection in food environments.
Collapse
Affiliation(s)
- Miao Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Siqi Tan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoxiang Liu,
| |
Collapse
|
28
|
Tan Y, Neto FBL, Neto UB. PALLAS: Penalized mAximum LikeLihood and pArticle Swarms for Inference of Gene Regulatory Networks From Time Series Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1807-1816. [PMID: 33170782 DOI: 10.1109/tcbb.2020.3037090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present PALLAS, a practical method for gene regulatory network (GRN) inference from time series data, which employs penalized maximum likelihood and particle swarms for optimization. PALLAS is based on the Partially-Observable Boolean Dynamical System (POBDS) model and thus does not require ad-hoc binarization of the data. The penalty in the likelihood is a LASSO regularization term, which encourages the resulting network to be sparse. PALLAS is able to scale to networks of realistic size under no prior knowledge, by virtue of a novel continuous-discrete Fish School Search particle swarm algorithm for efficient simultaneous maximization of the penalized likelihood over the discrete space of networks and the continuous space of observational parameters. The performance of PALLAS is demonstrated by a comprehensive set of experiments using synthetic data generated from real and artificial networks, as well as real time series microarray and RNA-seq data, where it is compared to several other well-known methods for gene regulatory network inference. The results show that PALLAS can infer GRNs more accurately than other methods, while being capable of working directly on gene expression data, without need of ad-hoc binarization. PALLAS is a fully-fledged program, written in python, and available on GitHub (https://github.com/yukuntan92/PALLAS).
Collapse
|
29
|
Valencia EY, Barros JP, Ferenci T, Spira B. A Broad Continuum of E. coli Traits in Nature Associated with the Trade-off Between Self-preservation and Nutritional Competence. MICROBIAL ECOLOGY 2022; 83:68-82. [PMID: 33846820 DOI: 10.1007/s00248-021-01751-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
A trade-off between reproduction and survival is a characteristic of many organisms. In bacteria, growth is constrained when cellular resources are channelled towards environmental stress protection. At the core of this trade-off in Escherichia coli is RpoS, a sigma factor that diverts transcriptional resources towards general stress resistance. The constancy of RpoS levels in natural isolates is unknown. A uniform RpoS content in E. coli would impart a narrow range of resistance properties to the species, whereas a diverse set of RpoS levels in nature should result in a diverse range of stress susceptibilities. We explore the diversity of trade-off settings and phenotypes by measuring the level of RpoS protein in strains of E. coli cohabiting in a natural environment. Strains from a stream polluted with domestic waste were investigated in monthly samples. Analyses included E. coli phylogroup classification, RpoS protein level, RpoS-dependent stress phenotypes and the sequencing of rpoS mutations. The most striking finding was the continuum of RpoS levels, with a 100-fold range of RpoS amounts consistently found in individuals in the stream. Approximately 1.8% of the sampled strains carried null or non-synonymous mutations in rpoS. The natural isolates also exhibited a broad (>100-fold) range of stress resistance responses. Our results are consistent with the view that a multiplicity of survival-multiplication trade-off settings is a feature of the species E. coli. The phenotypic diversity resulting from the trade-off permits bet-hedging and the adaptation of E. coli strains to a very broad range of environments.
Collapse
Affiliation(s)
- Estela Ynes Valencia
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jackeline Pinheiro Barros
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thomas Ferenci
- School of Life and Environmental Sciences, University of Sydney, 6/403 Pacific Highway, Sydney, New South Wales, 2070, Australia
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Sande C, Whitfield C. Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella. EcoSal Plus 2021; 9:eESP00332020. [PMID: 34910576 PMCID: PMC11163842 DOI: 10.1128/ecosalplus.esp-0033-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Escherichia coli and Salmonella isolates produce a range of different polysaccharide structures that play important roles in their biology. E. coli isolates often possess capsular polysaccharides (K antigens), which form a surface structural layer. These possess a wide range of repeat-unit structures. In contrast, only one capsular polymer (Vi antigen) is found in Salmonella, and it is confined to typhoidal serovars. In both genera, capsules are vital virulence determinants and are associated with the avoidance of host immune defenses. Some isolates of these species also produce a largely secreted exopolysaccharide called colanic acid as part of their complex Rcs-regulated phenotypes, but the precise function of this polysaccharide in microbial cell biology is not fully understood. E. coli isolates produce two additional secreted polysaccharides, bacterial cellulose and poly-N-acetylglucosamine, which play important roles in biofilm formation. Cellulose is also produced by Salmonella isolates, but the genes for poly-N-acetylglucosamine synthesis appear to have been lost during its evolution toward enhanced virulence. Here, we discuss the structures, functions, relationships, and sophisticated assembly mechanisms for these important biopolymers.
Collapse
Affiliation(s)
- Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Biofilm-Forming Capacity of Escherichia coli Isolated from Cattle and Beef Packing Plants: Relation to Virulence Attributes, Stage of Processing, Antimicrobial Interventions, and Heat Tolerance. Appl Environ Microbiol 2021; 87:e0112621. [PMID: 34550756 DOI: 10.1128/aem.01126-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the importance of biofilm formation in the contamination of meat by pathogenic Escherichia coli at slaughter plants, drivers for biofilm remain unclear. To identify selection pressures for biofilm, we evaluated 745 isolates from cattle and 700 generic E. coli isolates from two beef slaughter plants for motility, the expression of curli and cellulose, and biofilm-forming potential. Cattle isolates were also screened for serogroup, stx1, stx2, eae, and rpoS. Generic E. coli isolates were compared by source (hide of carcass, hide-off carcass, and processing equipment) before and after the implementation of antimicrobial hurdles. The proportion of E. coli isolates capable of forming biofilms was lowest (7.1%; P < 0.05) for cattle isolates and highest (87.3%; P < 0.05) from equipment. Only one enterohemorrhagic E. coli (EHEC) isolate was an extremely strong biofilm former, in contrast to 73.4% of E. coli isolates from equipment. Isolates from equipment after sanitation had a greater biofilm-forming capacity (P < 0.001) than those before sanitation. Most cattle isolates were motile and expressed curli, although these traits along with the expression of cellulose and the detection of rpoS were not necessary for biofilm formation. In contrast, isolates capable of forming biofilms on equipment were almost exclusively motile and able to express curli. The results of the present study indicate that cattle rarely carry EHEC capable of making strong biofilms in slaughter plants. However, if biofilm-forming EHEC contaminates equipment, current sanitation procedures may not eliminate the most robust biofilm-forming strains. Accordingly, new and effective antibiofilm hurdles for meat-processing equipment are required to reduce future instances of foodborne disease. IMPORTANCE As the majority of enterohemorrhagic E. coli (EHEC) isolates are not capable of forming biofilms, sources were undetermined for biofilm-forming EHEC isolated from "high-event periods" in beef slaughter plants. This study demonstrated that sanitation procedures used on beef-processing equipment may inadvertently lead to the survival of robust biofilm-forming strains of E. coli. Cattle only rarely carry EHEC capable of forming strong biofilms (1/745 isolates evaluated), but isolates with greater biofilm-forming capacity were more likely (P < 0.001) to survive equipment sanitation. In contrast, chilling carcasses for 3 days at 0°C reduced (P < 0.05) the proportion of biofilm-forming E. coli. Consequently, an additional antibiofilm hurdle for meat-processing equipment, perhaps involving cold exposure, is necessary to further reduce the risk of foodborne disease.
Collapse
|
32
|
Qasemi A, Rahimi F, Katouli M. Genetic diversity and virulence characteristics of biofilm-producing uropathogenic Escherichia coli. Int Microbiol 2021; 25:297-307. [PMID: 34705131 DOI: 10.1007/s10123-021-00221-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
Uropathogenic E. coli (UPEC) strains exhibit different levels of biofilm formation that help adhesion of the bacteria to uroepithelial cells. We investigated the genetic diversity and virulence-associated genes (VAGs) of biofilm-producing UPEC. A collection of 107 biofilm-producing (BFP) UPEC strains isolated from patients with UTI in Iran were divided into three groups of strong, moderate, and weak BFPs after a quantitative microtiter plate assay, and the involvement of curli and cellulose in adhesion of the strains to T24 cell line was confirmed by the construction of csgD and yedQ mutants of two representative UPEC strains. BFP strains were tested for their genetic diversity, phylogenetic groups, and the presence of 15 VAGs. A significant decrease in adhesion of csgD and yedQ mutant strains confirmed the role of biofilm production in adhesion to uroepithelial cells. A high diversity was found among all three groups of strong (Di = 0.998), moderate (Di = 0.998), and weak (Di = 0.988) BFPs with majority of the strains belonging to phylogroups B2 (44.9%) and A (24.3%). Strong BFP strains carried significantly higher level papEF, hlyA, and iutA than other BFP groups. In contrast, the presence of fimH, focG, sfaS, set-1, and cvaC was more pronounced among weak BFP strains. There exists a high genetic diversity among the BFP strains with different VGA profiles. However, the high prevalence of phylogroup A among BFP strains suggests the fitness of commensal E. coli strains to cause UTI in this country.
Collapse
Affiliation(s)
- Ali Qasemi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezarjarib St., Isfahan, Iran
| | - Fateh Rahimi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezarjarib St., Isfahan, Iran.
| | - Mohammad Katouli
- Genecology Research Center, Maroochydore, QLD, Australia.,School of Science, Technology and Education, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
33
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
34
|
Serra DO, Hengge R. Bacterial Multicellularity: The Biology of Escherichia coli Building Large-Scale Biofilm Communities. Annu Rev Microbiol 2021; 75:269-290. [PMID: 34343018 DOI: 10.1146/annurev-micro-031921-055801] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widespread multicellular form of bacterial life. The spatial structure and emergent properties of these communities depend on a polymeric extracellular matrix architecture that is orders of magnitude larger than the cells that build it. Using as a model the wrinkly macrocolony biofilms of Escherichia coli, which contain amyloid curli fibers and phosphoethanolamine (pEtN)-modified cellulose as matrix components, we summarize here the structure, building, and function of this large-scale matrix architecture. Based on different sigma and other transcription factors as well as second messengers, the underlying regulatory network reflects the fundamental trade-off between growth and survival. It controls matrix production spatially in response to long-range chemical gradients, but it also generates distinct patterns of short-range matrix heterogeneity that are crucial for tissue-like elasticity and macroscopic morphogenesis. Overall, these biofilms confer protection and a potential for homeostasis, thereby reducing maintenance energy, which makes multicellularity an emergent property of life itself. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Diego O Serra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| |
Collapse
|
35
|
Toward a Comprehensive Analysis of Posttranscriptional Regulatory Networks: a New Tool for the Identification of Small RNA Regulators of Specific mRNAs. mBio 2021; 12:mBio.03608-20. [PMID: 33622723 PMCID: PMC8545128 DOI: 10.1128/mbio.03608-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of computational or experimental tools have been developed to identify targets of small RNA (sRNA) regulation. Here, we modified one of these methods, based on in vivo proximity ligation of sRNAs bound to their targets, referred to as rGRIL-seq, that can be used to capture sRNA regulators of a gene of interest. Intracellular expression of bacteriophage T4 RNA ligase leads to a covalent linking of sRNAs base-paired with mRNAs, and the chimeras are captured using oligonucleotides complementary to the mRNA, followed by sequencing. This allows the identification of known as well as novel sRNAs. We applied rGRIL-seq toward finding sRNA regulators of expression of the stress response sigma factor RpoS in Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae. In E. coli, we confirmed the regulatory role of known sRNAs and discovered a new negative regulator, asYbiE. When applied to P. aeruginosa and V. cholerae, we identified two novel sRNAs (s03661 and s0223) in P. aeruginosa and two known sRNAs (TfoR and Vcr043) in V. cholerae as direct regulators of rpoS. The use of rGRIL-seq for defining multiple posttranscriptional regulatory inputs into individual mRNAs represents a step toward a more comprehensive understanding of the workings of bacterial regulatory networks.
Collapse
|
36
|
Pervasive RNA Regulation of Metabolism Enhances the Root Colonization Ability of Nitrogen-Fixing Symbiotic α-Rhizobia. mBio 2021; 13:e0357621. [PMID: 35164560 PMCID: PMC8844928 DOI: 10.1128/mbio.03576-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rhizosphere and rhizoplane are nutrient-rich but selective environments for the root microbiome. Here, we deciphered a posttranscriptional network regulated by the homologous trans-small RNAs (sRNAs) AbcR1 and AbcR2, which rewire the metabolism of the nitrogen-fixing α-rhizobium Sinorhizobium meliloti during preinfection stages of symbiosis with its legume host alfalfa. The LysR-type regulator LsrB, which transduces the cell redox state, is indispensable for AbcR1 expression in actively dividing bacteria, whereas the stress-induced transcription of AbcR2 depends on the alternative σ factor RpoH1. MS2 affinity purification coupled with RNA sequencing unveiled exceptionally large and overlapping AbcR1/2 mRNA interactomes, jointly representing ⁓6% of the S. meliloti protein-coding genes. Most mRNAs encode transport/metabolic proteins whose translation is silenced by base pairing to two distinct anti-Shine Dalgarno motifs that function independently in both sRNAs. A metabolic model-aided analysis of the targetomes predicted changes in AbcR1/2 expression driven by shifts in carbon/nitrogen sources, which were confirmed experimentally. Low AbcR1/2 levels in some defined media anticipated overexpression growth phenotypes linked to the silencing of specific mRNAs. As a proof of principle, we confirmed AbcR1/2-mediated downregulation of the l-amino acid AapQ permease. AbcR1/2 interactomes are well represented in rhizosphere-related S. meliloti transcriptomic signatures. Remarkably, a lack of AbcR1 specifically compromised the ability of S. meliloti to colonize the root rhizoplane. The AbcR1 regulon likely ranks the utilization of available substrates to optimize metabolism, thus conferring on S. meliloti an advantage for efficient rhizosphere/rhizoplane colonization. AbcR1 regulation is predicted to be conserved in related α-rhizobia, which opens unprecedented possibilities for engineering highly competitive biofertilizers. IMPORTANCE Nitrogen-fixing root nodule symbioses between rhizobia and legume plants provide more than half of the combined nitrogen incorporated annually into terrestrial ecosystems, rendering plant growth independent of environmentally unfriendly chemical fertilizers. The success of symbiosis depends primarily on the capacity of rhizobia to establish competitive populations in soil and rhizosphere environments. Here, we provide insights into the regulation and architecture of an extensive RNA posttranscriptional network that fine-tunes the metabolism of the alfalfa symbiont S. meliloti, thereby enhancing the ability of this beneficial bacterium to colonize nutrient-rich but extremely selective niches, such as the rhizosphere of its host plant. This pervasive RNA regulation of metabolism is a major adaptive mechanism, predicted to operate in diverse rhizobial species. Because RNA regulation relies on modifiable base-pairing interactions, our findings open unexplored avenues for engineering the legumes rhizobiome within sustainable agricultural practices.
Collapse
|
37
|
Varghese A, Ray S, Verma T, Nandi D. Multicellular String-Like Structure Formation by Salmonella Typhimurium Depends on Cellulose Production: Roles of Diguanylate Cyclases, YedQ and YfiN. Front Microbiol 2021; 11:613704. [PMID: 33381103 PMCID: PMC7769011 DOI: 10.3389/fmicb.2020.613704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bacteria face diverse stresses in the environment and, sometimes, respond by forming multi-cellular structures, e.g., biofilms. Here, we report a novel macroscopic and multi-cellular structure formed by Salmonella Typhimurium, which resembles small strings. These string-like structures, ∼1 cm long, are induced under some stress conditions: iron deprivation by 2,2-Bipyridyl or low amounts of antibiotics or ethanol in minimal media. However, cells in strings revert back to planktonic growth upon return to nutrient rich media. Compared to planktonic cells, strings are more resistant to antibiotics and oxidative stress. Also, strains lacking csgD or rpoS, which are defective in the classical rdar biofilm formation, form strings. Furthermore, some biofilm inducing conditions do not result in strings and vice-versa, demonstrating that strings are not related to classical CsgD-dependent biofilms. Cells in a string are held together by cellulose and a strain lacking bcsA, which is defective in cellulose production, does not form strings. In addition, reductive stress conditions such as dithiothreitol (DTT) or mutations in the Disulfide bonding system (DSB) also give rise to strings. The amounts of c-di-GMP are increased upon string formation and studies with single and double deletion strains of the diguanylate cyclases, yedQ (STM1987) primarily and yfiN (STM2672) partly, revealed their importance for string formation. This is the first study showcasing the ability of Salmonella to produce high amounts of cellulose in liquid culture, instead of an interface, in a CsgD-independent manner. The relevance and possible applications of strings in the production of bacterial cellulose and bioremediation are discussed.
Collapse
Affiliation(s)
- Alan Varghese
- Undergraduate program, Indian Institute of Science, Bengaluru, India
| | - Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Taru Verma
- Centre for Biosystems science and engineering, Indian Institute of Science, Bengaluru, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
38
|
Ogasawara H, Ishizuka T, Hotta S, Aoki M, Shimada T, Ishihama A. Novel regulators of the csgD gene encoding the master regulator of biofilm formation in Escherichia coli K-12. Microbiology (Reading) 2020; 166:880-890. [DOI: 10.1099/mic.0.000947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under stressful conditions,
Escherichia coli
forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.
Collapse
Affiliation(s)
- Hiroshi Ogasawara
- Academic Assembly School of Humanities and Social Sciences Institute of Humanities, Shinshu University, Asahi 3-1-1, Matsumoto, 390–8621, Japan
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Toshiyuki Ishizuka
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Shuhei Hotta
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Michiko Aoki
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Higashi Mita, Tama-ku, Kawasaki, Kanagawa 214–8571, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
39
|
Barth SA, Weber M, Schaufler K, Berens C, Geue L, Menge C. Metabolic Traits of Bovine Shiga Toxin-Producing Escherichia Coli (STEC) Strains with Different Colonization Properties. Toxins (Basel) 2020; 12:toxins12060414. [PMID: 32580365 PMCID: PMC7354573 DOI: 10.3390/toxins12060414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Cattle harbor Shiga toxin-producing Escherichia coli (STEC) in their intestinal tract, thereby providing these microorganisms with an ecological niche, but without this colonization leading to any clinical signs. In a preceding study, genotypic characterization of bovine STEC isolates unveiled that their ability to colonize cattle persistently (STECper) or only sporadically (STECspo) is more closely associated with the overall composition of the accessory rather than the core genome. However, the colonization pattern could not be unequivocally linked to the possession of classical virulence genes. This study aimed at assessing, therefore, if the presence of certain phenotypic traits in the strains determines their colonization pattern and if these can be traced back to distinctive genetic features. STECspo strains produced significantly more biofilm than STECper when incubated at lower temperatures. Key substrates, the metabolism of which showed a significant association with colonization type, were glyoxylic acid and L-rhamnose, which were utilized by STECspo, but not or only by some STECper. Genomic sequences of the respective glc and rha operons contained mutations and frameshifts in uptake and/or regulatory genes, particularly in STECper. These findings suggest that STECspo conserved features leveraging survival in the environment, whereas the acquisition of a persistent colonization phenotype in the cattle reservoir was accompanied by the loss of metabolic properties and genomic mutations in the underlying genetic pathways.
Collapse
Affiliation(s)
- Stefanie A. Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
- Correspondence: ; Tel.: +49-3641-804-2270; Fax: +49-3641-804-2482
| | - Michael Weber
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Katharina Schaufler
- Free University Berlin, Institute of Microbiology and Epizootics, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany;
- University of Greifswald, Pharmaceutical Microbiology, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Lutz Geue
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| |
Collapse
|
40
|
Hu H, Jia K, Wang H, Xu X, Zhou G, He S. Novel sRNA and regulatory genes repressing the adhesion of Salmonella enteritidis exposed to meat-related environment. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Hengge R. Linking bacterial growth, survival, and multicellularity - small signaling molecules as triggers and drivers. Curr Opin Microbiol 2020; 55:57-66. [PMID: 32244175 DOI: 10.1016/j.mib.2020.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 02/05/2023]
Abstract
An overarching theme of cellular regulation in bacteria arises from the trade-off between growth and stress resilience. In addition, the formation of biofilms contributes to stress survival, since these dense multicellular aggregates, in which cells are embedded in an extracellular matrix of self-produced polymers, represent a self-constructed protective and homeostatic 'niche'. As shown here for the model bacterium Escherichia coli, the inverse coordination of bacterial growth with survival and the transition to multicellularity is achieved by a highly integrated regulatory network with several sigma subunits of RNA polymerase and a small number of transcriptional hubs as central players. By conveying information about the actual (micro)environments, nucleotide second messengers such as cAMP, (p)ppGpp, and in particular c-di-GMP are the key triggers and drivers that promote either growth or stress resistance and organized multicellularity in a world of limited resources.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
42
|
Romilly C, Hoekzema M, Holmqvist E, Wagner EGH. Small RNAs OmrA and OmrB promote class III flagellar gene expression by inhibiting the synthesis of anti-Sigma factor FlgM. RNA Biol 2020; 17:872-880. [PMID: 32133913 PMCID: PMC7549644 DOI: 10.1080/15476286.2020.1733801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacteria can move by a variety of mechanisms, the best understood being flagella-mediated motility. Flagellar genes are organized in a three-tiered cascade allowing for temporally regulated expression that involves both transcriptional and post-transcriptional control. The class I operon encodes the master regulator FlhDC that drives class II gene transcription. Class II genes include fliA and flgM, which encode the Sigma factor σ28, required for class III transcription, and the anti-Sigma factor FlgM, which inhibits σ28 activity, respectively. The flhDC mRNA is regulated by several small regulatory RNAs (sRNAs). Two of these, the sequence-related OmrA and OmrB RNAs, inhibit FlhD synthesis. Here, we report on a second layer of sRNA-mediated control downstream of FhlDC in the flagella pathway. By mutational analysis, we confirm that a predicted interaction between the conserved 5ʹ seed sequences of OmrA/B and the early coding sequence in flgM mRNA reduces FlgM expression. Regulation is dependent on the global RNA-binding protein Hfq. In vitro experiments support a canonical mechanism: binding of OmrA/B prevents ribosome loading and decreases FlgM protein synthesis. Simultaneous inhibition of both FlhD and FlgM synthesis by OmrA/B complicated an assessment of how regulation of FlgM alone impacts class III gene transcription. Using a combinatorial mutation strategy, we were able to uncouple these two targets and demonstrate that OmrA/B-dependent inhibition of FlgM synthesis liberates σ28 to ultimately promote higher expression of the class III flagellin gene fliC.
Collapse
Affiliation(s)
- Cédric Romilly
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| | - Mirthe Hoekzema
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University , Uppsala, Sweden
| |
Collapse
|
43
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
44
|
Wang H, Huang M, Zeng X, Peng B, Xu X, Zhou G. Resistance Profiles of Salmonella Isolates Exposed to Stresses and the Expression of Small Non-coding RNAs. Front Microbiol 2020; 11:130. [PMID: 32180763 PMCID: PMC7059537 DOI: 10.3389/fmicb.2020.00130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/21/2020] [Indexed: 01/21/2023] Open
Abstract
Salmonella can resist various stresses and survive during food processing, storage, and distribution, resulting in potential health risks to consumers. Therefore, evaluation of bacterial survival profiles under various environmental stresses is necessary. In this study, the resistance profiles of five Salmonella isolates [serotypes with Agona, Infantis, Typhimurium, Enteritidis, and a standard strain (ATCC 13076, Enteritidis serotype)] to acidic, hyperosmotic, and oxidative stresses were examined, and the relative expressions of non-coding small RNAs were also evaluated, including CyaR, MicC, MicA, InvR, RybB, and DsrA, induced by specific stresses. The results indicated that although all tested strains displayed a certain resistance to stresses, there was great diversity in stress resistance among the strains. According to the reduction numbers of cells exposed to stress for 3 h, S. Enteritidis showed the highest resistance to acidic and hyperosmotic stresses, whereas ATCC 13076 showed the greatest resistance to oxidative stress, with less than 0.1 Log CFU/ml of cell reduction. Greater resistance of cells to acidic, hyperosmotic, and oxidative stresses was observed within 1 h, after 2 h, and from 1 to 2 h, respectively. The relative expression of sRNAs depended on the isolate for each stress; acidic exposure for the tested isolates induced high expression levels of DsrA, MicC, InvR, RybB, MicA, and CyaR. The sRNA RybB, associated with sigma E and outer membrane protein in bacteria, showed a fold change of greater than 7 in S. Enteritidis exposed to the tested stresses. CyaR and InvR involved in general stress responses and stress adaptation were also induced to show high expression levels of Salmonella exposed to hyperosmotic stress. Overall, these findings demonstrated that the behaviors of Salmonella under specific stresses varied according to strain and were likely not related to other profiles. The finding also provided insights into the survival of Salmonella subjected to short-term stresses and for controlling Salmonella in the food industry.
Collapse
Affiliation(s)
- Huhu Wang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Mingyuan Huang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Xianming Zeng
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Bing Peng
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
- College of Animal Medicine, Xinjiang Agricultural University, Ürümqi, China
| | - Xinglian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Guanghong Zhou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Martín-Rodríguez AJ, Rhen M, Melican K, Richter-Dahlfors A. Nitrate Metabolism Modulates Biosynthesis of Biofilm Components in Uropathogenic Escherichia coli and Acts as a Fitness Factor During Experimental Urinary Tract Infection. Front Microbiol 2020; 11:26. [PMID: 32082279 PMCID: PMC7005491 DOI: 10.3389/fmicb.2020.00026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/08/2020] [Indexed: 11/15/2022] Open
Abstract
To successfully colonize a variety of environments, bacteria can coordinate complex collective behaviors such as biofilm formation. To thrive in oxygen limited niches, bacteria’s versatile physiology enables the utilization of alternative electron acceptors. Nitrate, the second most favorable electron acceptor after oxygen, plays a prominent role in the physiology of uropathogenic Escherichia coli (UPEC) and is abundantly found in urine. Here we analyzed the role of extracellular nitrate in the pathogenesis of the UPEC strain CFT073 with an initial focus on biofilm formation. Colony morphotyping in combination with extensive mutational, transcriptional, and protein expression analyses of CFT073 wild-type and mutants deficient in one or several nitrate reductases revealed an association between nitrate reduction and the biosynthesis of biofilm extracellular matrix components. We identified a role for the nitrate response regulator NarL in modulating expression of the biofilm master regulator CsgD. To analyze the role of nitrate reduction during infection in vivo, we tested wild-type CFT073 and a nitrate reductase null mutant in an ascending urinary tract infection (UTI) model. Individually, each strain colonized extensively, suggesting that nitrate reduction is expendable during UTI. However, during competitive co-infection, the strain incapable of nitrate reduction was strongly outcompeted. This suggests that nitrate reduction can be considered a non-essential but advantageous fitness factor for UPEC pathogenesis. This implies that UPEC rapidly adapts their metabolic needs to the microenvironment of infected tissue. Collectively, this work demonstrates a unique association between nitrate respiration, biofilm formation, and UPEC pathogenicity, highlighting how the use of alternative electron acceptors enables bacterial pathogens to adapt to challenging infectious microenvironments.
Collapse
Affiliation(s)
| | - Mikael Rhen
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Solna, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Keira Melican
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Solna, Sweden
| | - Agneta Richter-Dahlfors
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
46
|
Li J, Yu H, Yang X, Dong R, Liu Z, Zeng M. Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp. Genomics 2020; 112:736-748. [DOI: 10.1016/j.ygeno.2019.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
|
47
|
The Pseudomonas stutzeri-Specific Regulatory Noncoding RNA NfiS Targets katB mRNA Encoding a Catalase Essential for Optimal Oxidative Resistance and Nitrogenase Activity. J Bacteriol 2019; 201:JB.00334-19. [PMID: 31262840 PMCID: PMC6755748 DOI: 10.1128/jb.00334-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas stutzeri A1501 is a versatile nitrogen-fixing bacterium capable of living in diverse environments and coping with various oxidative stresses. NfiS, a regulatory noncoding RNA (ncRNA) involved in the control of nitrogen fixation in A1501, was previously shown to be required for optimal resistance to H2O2; however, the precise role of NfiS and the target genes involved in the oxidative stress response is entirely unknown. In this work, we systematically investigated the NfiS-based mechanisms underlying the response of this bacterium to H2O2 at the cellular and molecular levels. A mutant strain carrying a deletion of nfiS showed significant downregulation of oxidative stress response genes, especially katB, a catalase gene, and oxyR, an essential regulator for transcription of catalase genes. Secondary structure prediction revealed two binding sites in NfiS for katB mRNA. Complementation experiments using truncated nfiS genes showed that each of two sites is functional, but not sufficient, for NfiS-mediated regulation of oxidative stress resistance and nitrogenase activities. Microscale thermophoresis assays further indicated direct base pairing between katB mRNA and NfiS at both sites 1 and 2, thus enhancing the half-life of the transcript. We also demonstrated that katB expression is dependent on OxyR and that both OxyR and KatB are essential for optimal oxidative stress resistance and nitrogenase activities. H2O2 at low concentrations was detoxified by KatB, leaving O2 as a by-product to support nitrogen fixation under O2-insufficient conditions. Moreover, our data suggest that the direct interaction between NfiS and katB mRNA is a conserved and widespread mechanism among P. stutzeri strains.IMPORTANCE Protection against oxygen damage is crucial for survival of nitrogen-fixing bacteria due to the extreme oxygen sensitivity of nitrogenase. This work exemplifies how the small ncRNA NfiS coordinates oxidative stress response and nitrogen fixation via base pairing with katB mRNA and nifK mRNA. Hence, NfiS acts as a molecular link to coordinate the expression of genes involved in oxidative stress response and nitrogen fixation. Our study provides the first insight into the biological functions of NfiS in oxidative stress regulation and adds a new regulation level to the mechanisms that contribute to the oxygen protection of the MoFe nitrogenase.
Collapse
|
48
|
Abstract
Phosphorus is required for many biological molecules and essential functions, including DNA replication, transcription of RNA, protein translation, posttranslational modifications, and numerous facets of metabolism. In order to maintain the proper level of phosphate for these processes, many bacteria adapt to changes in environmental phosphate levels. The mechanisms for sensing phosphate levels and adapting to changes have been extensively studied for multiple organisms. The phosphate response of Escherichia coli alters the expression of numerous genes, many of which are involved in the acquisition and scavenging of phosphate more efficiently. This review shares findings on the mechanisms by which E. coli cells sense and respond to changes in environmental inorganic phosphate concentrations by reviewing the genes and proteins that regulate this response. The PhoR/PhoB two-component signal transduction system is central to this process and works in association with the high-affinity phosphate transporter encoded by the pstSCAB genes and the PhoU protein. Multiple models to explain how this process is regulated are discussed.
Collapse
Affiliation(s)
- Stewart G Gardner
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801
| | - William R McCleary
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602
| |
Collapse
|
49
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
50
|
Lalaouna D, Prévost K, Laliberté G, Houé V, Massé E. Contrasting silencing mechanisms of the same target mRNA by two regulatory RNAs in Escherichia coli. Nucleic Acids Res 2019; 46:2600-2612. [PMID: 29294085 PMCID: PMC5861431 DOI: 10.1093/nar/gkx1287] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
Small RNAs are key components of complex regulatory networks. These molecules can integrate multiple cellular signals to control specific target mRNAs. The recent development of high-throughput methods tremendously helped to characterize the full targetome of sRNAs. Using MS2-affinity purification coupled with RNA sequencing (MAPS) technology, we reveal the targetomes of two sRNAs, CyaR and RprA. Interestingly, both CyaR and RprA interact with the 5′-UTR of hdeD mRNA, which encodes an acid-resistance membrane protein. We demonstrate that CyaR classically binds to the RBS of hdeD, interfering with translational initiation. We identified an A/U-rich motif on hdeD, which is bound by the RNA chaperone Hfq. Our results indicate that binding of this motif by Hfq is required for CyaR-induced degradation of hdeD mRNA. Additional data suggest that two molecules of RprA must bind the 5′-UTR of hdeD to block translation initiation. Surprisingly, while both CyaR and RprA sRNAs bind to the same motif on hdeD mRNA, RprA solely acts at the translational level, leaving the target RNA intact. By interchanging the seed region of CyaR and RprA sRNAs, we also swap their regulatory behavior. These results suggest that slight changes in the seed region could modulate the regulation of target mRNAs.
Collapse
Affiliation(s)
- David Lalaouna
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karine Prévost
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guillaume Laliberté
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Houé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|