1
|
Hu Y, Wu Y, Wang C, Jin Q, Chen X. Synergistic Impact of Aerobic Exercise and Resveratrol on White Adipose Tissue Browning in Obese Rats: Mechanistic Exploration and Biological Insights. Metabolites 2025; 15:331. [PMID: 40422907 DOI: 10.3390/metabo15050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025] Open
Abstract
Obesity, marked by excessive white adipose tissue (WAT) accumulation, worsens metabolic disorders, and inducing WAT browning is a promising therapy. This study examined the synergistic effects of moderate-intensity aerobic training and resveratrol (RES) on WAT browning and its underlying mechanisms in obese male rats. Methods: Male Sprague Dawley rats were divided into a normal diet control group (n = 8) and a high-fat-diet modeling group (n = 32), with the rats in the latter group being further divided randomly in groups of eight into a high-fat group; a high-fat, exercise group; a high-fat, RES group; and a high-fat, exercise-combined-with-RES group. The rats in the exercise intervention groups underwent moderate-intensity aerobic treadmill exercise for one hour daily, six days a week, while those in the RES groups received a 50 mg/kg/d RES solution via gavage before exercise, once daily, six days a week. Both interventions lasted eight weeks. Results: The combined intervention synergistically suppressed weight gain and visceral fat accumulation. WAT browning was enhanced, evidenced by upregulated UCP1 and CIDEA expression. Mitochondrial biogenesis was activated via the SIRT1-PGC-1α-NRF-1-TFAM pathway, accompanied by elevated mitochondrial enzyme activity and improved lipid mobilization (reduced serum free fatty acids and triglycerides). Conclusions: The combination of aerobic exercise and RES promotes WAT browning and lipolysis by enhancing mitochondrial biogenesis and stimulating mitochondrial thermogenesis through the modulation of the SIRT1-PGC-1α-NRF-1-TFAM pathway.
Collapse
Affiliation(s)
- Yulong Hu
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Yihan Wu
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Chunlong Wang
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Qiguan Jin
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Laghari F, Chang Q, Zhang H, Zhang J, Pan L, Pu Z, Bao J, Zhang R. Potential mechanisms and therapeutic effect of dietary resveratrol supplementation on the spleen organ of chicken in chronic unpredictable mild stress transcriptomic analysis. Poult Sci 2025; 104:104940. [PMID: 40031383 PMCID: PMC11919410 DOI: 10.1016/j.psj.2025.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Chronic unpredictable mild stress (CUMS) affects chicken immune system and welfare, causing huge losses of growth performance and welfare. Resveratrol (RSV), an antioxidant and anti-inflammatory natural plant polyphenol, is widely used for the prevention of stress related disease. The aim of this study is to explore the therapeutic effect of RSV on spleen damage in CUMS. We successfully constructed a CUMS model. A total of 288 healthy one-day-old chicks were used in this study and were divided in 3 groups, control, CUMS and CUMS+RSV group. During 42 days of age, spleen tissue samples were collected and analyzed. Transmission electron microscope (TEM), Hematoxylin and eosin (H&E) staining, immunofluorescence, qRT- PCR, Western blots, immunohistochemical staining and RNA- sequencing (RNA-seq) technology was used to determine any changes and analyzed the mRNA and enrichment pathways. Histopathology and ultrastructure showed there was a severe damage of tissues. The results of RNA-seq showed that a total of 206, 267 and 211 DEGs were identified (log2 Fold Change| >1, P < 0.05) in control -vs- CUMS group, CUMS -vs- CUMS+RSV group and control -vs- CUMS+RSV group, respectively. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the SDEGs, two immune/stress- related pathways including PPAR signaling pathway and neuroactive ligand receptor interaction were selected. The genes related to PPAR signaling pathway identified were PLIN1, MMP1, ANGPTL4 and FABP4 and Neuroactive ligand-receptor interaction genes were GRPR, NTSR1, KNG1 and AGT. The PLIN1, MMP1, ANGPTL4, FABP4, GRPR, KNG1 and AGT were up regulated and NTSR1 was down regulated in CUMS group. When compared to CUMS -vs- CUMS+RSV group, PLIN1, FABP4, KNG1 and AGT were down regulated genes and NTSR1 was up regulated gene. Taken together, KEGG pathway analyses of DEGs, verified by qRT-PCR and Western blots, the current study suggested that these data reveal the promising role of RSV in the prevention and therapy of a wide variety of tissue damage and PPAR signaling pathway, neuroactive ligand-receptor interaction in chronic unpredictable mild stress.
Collapse
Affiliation(s)
- Farooque Laghari
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Qingqing Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Haoran Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Liying Pan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Zhaohong Pu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, PR China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
3
|
Terzo M, Iantomasi M, Tsiani E. Effects of Resveratrol on Adipocytes: Evidence from In Vitro and In Vivo Studies. Molecules 2024; 29:5359. [PMID: 39598748 PMCID: PMC11596734 DOI: 10.3390/molecules29225359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Obesity, a prevalent global health issue, arises from an imbalance between caloric intake and energy expenditure, leading to the expansion of adipose tissue and metabolic dysfunction. White adipose tissue (WAT) stores energy as lipids, while brown adipose tissue (BAT) plays a pivotal role in energy dissipation through adaptive thermogenesis. Recent research initiatives have focused on finding strategies to decrease adipogenesis and fat mass accumulation and increase thermogenesis. Finding chemicals with anti-obesity properties would be beneficial. Resveratrol, a polyphenolic compound abundantly found in the skin of grapes and red wine, possesses anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity properties. This literature review examines the effects of resveratrol on adipocytes in culture and adipose tissue in animal models of obesity. The existing evidence indicates that resveratrol may exert its anti-obesity effects by inhibiting adipogenesis, promoting the apoptosis of mature adipocytes, reducing lipid accumulation, and increasing thermogenesis. Further research utilizing animal and clinical studies is required to understand in detail the anti-obesity potential of resveratrol.
Collapse
Affiliation(s)
- Matthew Terzo
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Michael Iantomasi
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
4
|
Vrânceanu M, Hegheş SC, Cozma-Petruţ A, Banc R, Stroia CM, Raischi V, Miere D, Popa DS, Filip L. Plant-Derived Nutraceuticals Involved in Body Weight Control by Modulating Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:2273. [PMID: 37375898 DOI: 10.3390/plants12122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Obesity is the most prevalent health problem in the Western world, with pathological body weight gain associated with numerous co-morbidities that can be the main cause of death. There are several factors that can contribute to the development of obesity, such as diet, sedentary lifestyle, and genetic make-up. Genetic predispositions play an important role in obesity, but genetic variations alone cannot fully explain the explosion of obesity, which is why studies have turned to epigenetics. The latest scientific evidence suggests that both genetics and environmental factors contribute to the rise in obesity. Certain variables, such as diet and exercise, have the ability to alter gene expression without affecting the DNA sequence, a phenomenon known as epigenetics. Epigenetic changes are reversible, and reversibility makes these changes attractive targets for therapeutic interventions. While anti-obesity drugs have been proposed to this end in recent decades, their numerous side effects make them not very attractive. On the other hand, the use of nutraceuticals for weight loss is increasing, and studies have shown that some of these products, such as resveratrol, curcumin, epigallocatechin-3-gallate, ginger, capsaicin, and caffeine, can alter gene expression, restoring the normal epigenetic profile and aiding weight loss.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Viorica Raischi
- Laboratory of Physiology of Stress, Adaptation and General Sanocreatology, Institute of Physiology and Sanocreatology, 1 Academiei Street, 2028 Chișinău, Moldova
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Daniela-Saveta Popa
- Department of Toxicology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Zhu Z, Ali A, Wang J, Qi S, Hua Z, Ren H, Zhang L, Gu H, Molenaar A, Babar ME, Bi Y. Myostatin increases the expression of matrix metalloproteinase genes to promote preadipocytes differentiation in pigs. Adipocyte 2022; 11:266-275. [PMID: 35443856 PMCID: PMC9037494 DOI: 10.1080/21623945.2022.2065715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
ABSTACTMyostatin (MSTN) resulted in reduced backfat thickness in MSTN-knockout (MSTN-KO) pigs, whereas the underlying mechanism remains elusive. In this study, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) in porcine fat tissues. We identified 285 DEGs, including 4 adipocyte differentiation-related genes (ADRGs). Matrix Metalloproteinase-2/7 (MMP-2/7), fibronectin (FN), and laminin (LN) were differentially expressed in MSTN-KO pigs compared with wild-type (WT) pigs. To investigate the molecular mechanism, we treated the preadipocytes with siRNA and recombinant MSTN protein. The results indicated that MSTN increased the expression of MMP-2/7/9 and promoted the preadipocyte differentiation. To further validate the effect of MSTN on MMP-2/7/9 expression, we treated MSTN-KO PK15 cells with recombinant MSTN protein and detected the expression of MMP-2/7/9. The data showed that MSTN increases the expression of MMP-2/7/9 in PK15. This study revealed that MSTN promoted preadipocyte differentiation and provided the basis for the mechanism of fatty deposition in pigs.
Collapse
Affiliation(s)
- Zhe Zhu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Akhtar Ali
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Jing Wang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Shijin Qi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zaidong Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Liping Zhang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Adrian Molenaar
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- Rumen Microbiology and Animal Nutrition and Physiology AgResearch, Grasslands Campus, Fitzherbert Research Centre, Palmerston North, New Zealand
| | | | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
6
|
Obesity and Male Reproduction: Do Sirtuins Play a Role? Int J Mol Sci 2022; 23:ijms23020973. [PMID: 35055159 PMCID: PMC8779691 DOI: 10.3390/ijms23020973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major current public health problem of global significance. A progressive sperm quality decline, and a decline in male fertility, have been reported in recent decades. Several studies have reported a strict relationship between obesity and male reproductive dysfunction. Among the many mechanisms by which obesity impairs male gonadal function, sirtuins (SIRTs) have an emerging role. SIRTs are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that play a role in gene regulation, metabolism, aging, and cancer. SIRTs regulate the energy balance, the lipid balance, glucose metabolism, and adipogenesis, but current evidence also indicates a role for SIRTs in male reproduction. However, the majority of the studies have been conducted in animal models and very few have been conducted with humans. This review shows that SIRTs play an important role among the molecular mechanisms by which obesity interferes with male fertility. This highlights the need to deepen this relationship. It will be of particular interest to evaluate whether synthetic and/or natural compounds capable of modifying the activity of SIRTs may also be useful for the treatment of obesity and its effects on gonadal function. Although few studies have explored the role of SIRT activators in obesity-induced male infertility, some molecules, such as resveratrol, appear to be effective in modulating SIRT activity, as well as counteracting the negative effects of obesity on male fertility. The search for strategies to improve male reproductive function in overweight/obese patients is a challenge and understanding the role of SIRTs and their activators may open new interesting scenarios in the coming years.
Collapse
|
7
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
8
|
Li L, Li J, Wang Y, Liu X, Li S, Wu Y, Tang W, Qiu Y. Resveratrol prevents inflammation and oxidative stress response in LPS-induced human gingival fibroblasts by targeting the PI3K/AKT and Wnt/β-catenin signaling pathways. Genet Mol Biol 2021; 44:e20200349. [PMID: 34227646 PMCID: PMC8258621 DOI: 10.1590/1678-4685-gmb-2020-0349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to elucidate the anti-inflammatory and antioxidant properties of resveratrol (RSV) in human gingival fibroblasts (HGFs) following stimulation by P. gingivalis lipopolysaccharide (LPS). The levels of the inflammatory cytokines IL-1β, IL-6, IL-8 and TNFα, the activity of the antioxidant enzymes SOD and GSH-Px, and the levels of MDA, were evaluated by ELISA. It was observed that the expression of IL-1β, IL-6, IL-8 and TNFα in LPS-induced HGFs was significantly downregulated by RSV in a dose-dependent manner. RSV also partly increased oxidative stress (OS)-related factors, including SOD and GSH-Px, which was accompanied by a decrease in MDA production, although the results were not statistically significant. Additionally, RSV-induced deactivation of the PI3K/AKT and Wnt/β-catenin pathways in LPS-induced HGFs was observed by western blot analysis. Subsequently, it was demonstrated treatment with PI3K/AKT pathway inhibitor (LY294002) or Wnt/β-catenin pathway inhibitor (Dickkopf-1, DKK-1) could further enhance the anti-inflammatory and antioxidant effects of RSV by downregulating the expression of IL-1β, IL-6, IL-8 and TNFα, and the production of MDA, and increasing the activity of SOD and GSH-Px in LPS-induced HGFs. These results suggested RSV attenuated the inflammation and OS injury of P. gingivalis LPS-treated HGFs by deactivating the PI3K/AKT and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Lihua Li
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Junxiong Li
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Yujiao Wang
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Xin Liu
- University of Chinese Academy of Sciences, Chongqing Savaid Stomatology Hospital, Department of General Dentistry, Chongqing, P.R. China
| | - Siyu Li
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Yan Wu
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Wanrong Tang
- North Sichuan Medical College, Department of Dentistry, Nanchong, Sichuan, P.R. China
| | - Ya Qiu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| |
Collapse
|
9
|
Mongioì LM, La Vignera S, Cannarella R, Cimino L, Compagnone M, Condorelli RA, Calogero AE. The Role of Resveratrol Administration in Human Obesity. Int J Mol Sci 2021; 22:ijms22094362. [PMID: 33921991 PMCID: PMC8122246 DOI: 10.3390/ijms22094362] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Obesity is a widespread disease that is associated with numerous and serious comorbidities. These include metabolic syndrome, diabetes mellitus, cardiovascular-cerebrovascular disease, hypertension, obstructive sleep apnea syndrome, cancer, and sexual and hormonal disorders. The treatment of obesity has therefore become a goal of great clinical and social relevance. Among the therapeutic strategies against obesity, resveratrol has aroused great interest. This polyphenol has anticancer and antioxidant properties and cytoprotective and anti-inflammatory effects. Other favorable effects attributed to resveratrol are anti-lipid, anti-aging, anti-bacterial, anti-viral, and neuroprotective actions. Administration of resveratrol appears to improve the metabolic profile in obese and/or insulin-resistant patients. This article aims to review the main results of clinical studies evaluating the effects of administering resveratrol alone in overweight/obese patients.
Collapse
|
10
|
Leptin and Adiponectin Signaling Pathways Are Involved in the Antiobesity Effects of Peanut Skin Extract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2935315. [PMID: 31737168 PMCID: PMC6815585 DOI: 10.1155/2019/2935315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
Excessive food intake and metabolic disorder promote obesity and diabetes. In China, peanut skin is used as a herbal medicine to treat hemophilia, thrombocytopenic purpura, and hepatic hemorrhage. In the present study, we demonstrated that peanut skin extract (PSE) safely reduced appetite, body weight, fat tissue, plasma TG and TC, and blood glucose level in mice with diet-induced obesity (DIO). Moreover, the leptin/leptin receptor/neuropeptide Y (NPY) and adiponectin signaling pathways involved in the antiobesity effects of PSE are confirmed through leptin and adiponectin overexpression and leptin receptor silencing in mice. PSE consisted of oligosaccharide and polyphenol in a mass ratio of 45 : 55, and both parts were important for the antiobesity function of PSE. Our results suggested that PSE can be developed as functional medical food to treat metabolic disorders and obesity.
Collapse
|
11
|
Santamarina AB, Jamar G, Mennitti LV, Cesar HDC, Vasconcelos JR, Oyama LM, de Rosso VV, Pisani LP. Obesity-related inflammatory modulation by juçara berry (Euterpe edulis Mart.) supplementation in Brazilian adults: a double-blind randomized controlled trial. Eur J Nutr 2019; 59:1693-1705. [PMID: 31197507 DOI: 10.1007/s00394-019-02024-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Obesity is an inflammatory-related disease, which recruits immune system cells triggering to imbalanced production of cytokines. Obesity management and treatment using foods bioactive compounds have gained clinical and scientific relevance. Juçara (Euterpe edulis Mart.) fruit is rich in fibers, unsaturated lipids and, anthocyanins showing potential health benefits. Thus, we investigated the effect of juçara pulp intake on inflammatory status of monocytes from obese individuals. METHODS It is a placebo-controlled, randomized double-blind trial. Twenty-seven obese participants (BMI between 30.0 and 39.9 kg/m2) of both genders from 31 to 59-year-old, divided into two groups: 5 g juçara freeze-dried pulp or 5 g of placebo for 6 weeks. Before and after supplementation, blood samples were collected and monocytes obtained and stimulated with lipopolysaccharides. After 24 h of incubation, the cells and supernatants were analyzed. RESULTS Post-treatment, juçara reduced TLR4, and IL-6 mRNA compared to placebo. Juçara also increased IL-10 mRNA in post-treatment. The protein expression of TLR4 pathway post-treatment, MYD88 expression reduced in juçara group compared to placebo. The juçara post-treatment reduced pIKKα/β compared to the placebo. Ob-R protein levels were higher in the juçara group post-treatment compared to pre-treatment. IL-6, TNF-α, and MCP-1 production by monocytes were reduced by juçara in post-treatment compared to pre-treatment levels. The supplementation increased IL-10 in juçara group with LPS compared to pre-treatment and versus juçara group without LPS. CONCLUSION These results demonstrated a proinflammatory state at the beginning, which was improved by juçara pulp consumption. Our results suggest juçara pulp as a potential tool against the proinflammatory status of obesity.
Collapse
Affiliation(s)
- Aline Boveto Santamarina
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, 11015-020, Brazil
| | - Giovana Jamar
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, 11015-020, Brazil
| | - Laís Vales Mennitti
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, 11015-020, Brazil
| | - Helena de Cássia Cesar
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, 11015-020, Brazil
| | - José Ronnie Vasconcelos
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Rua Silva Jardim, 136, Térreo, Vila Mathias, Santos, São Paulo, 11015-020, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, 04023-062, Brazil
| | - Veridiana Vera de Rosso
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Rua Silva Jardim, 136, Térreo, Vila Mathias, Santos, São Paulo, 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Rua Silva Jardim, 136, Térreo, Vila Mathias, Santos, São Paulo, 11015-020, Brazil.
| |
Collapse
|
12
|
Asgary S, Karimi R, Momtaz S, Naseri R, Farzaei MH. Effect of resveratrol on metabolic syndrome components: A systematic review and meta-analysis. Rev Endocr Metab Disord 2019; 20:173-186. [PMID: 31065943 DOI: 10.1007/s11154-019-09494-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We summarized 16 controlled studies and evaluated the correlation of resveratrol supplementation with metabolic parameters such as the body weight, waist circumference (WC), systolic blood pressure (sbp), HDL, total cholesterol, triglyceride and glucose levels. This meta-analysis was carried out to determine the association between the resveratrol intake with metabolic parameters in metabolic syndrome patients. PubMed, Scopus, Cochrane and Google Scholar were searched from inception to December 2018 using relevant keywords. All articles were independently reviewed by two authors using predetermined selection criteria. We have selected the studies that investigated the effects of resveratrol on metabolic parameters. Of 16 studies, 10 were performed on human subjects, and in 6 studies animal models were used. Standard mean difference (SMD) with 95% confidence interval were determined using Der Simonian and Laird random-effects modeling, when there was a significant heterogeneity between studies. Funnel plot and Egger's test were conducted to examine the risk of publication bias. Pooled effect sizes in human studies indicated a significant impact of resveratrol supplementation on glucose level [-1.73 (-2.99, -0.47); p = 0.007)] and WC [-1.73 (-2.79, -0.67); p = 0.001] compared with the control group. Also combining the results of studies on rat samples (n = 6), indicated significant effect of resveratrol on decreasing weight [-22.95 (-44.74, -1.17); p = 0.04], TGs [-6.76 (-11.10, -2.42); p = 0.001], sbp [-7.30 (-12.48, -2.13); p = 0.006], and it can influence significantly on increasing HDL level (4.75 (1.87, 7.63); p = 0.001). However, resveratrol was not significantly effective on total cholesterol in both samples. The results of subgroup analysis of human studies showed that resveratrol has significant effect on metabolic parameters (glucose level and WC) at the dosage of > 500 mg and with long-term interventions ≥ 10 weeks. Administration of resveratrol can meaningfully reduce the BW, WC, TGs, and glucose level, also it can increase HDL, but not total cholesterol.
Collapse
Affiliation(s)
- Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Raheleh Karimi
- Epidemiology and Biostatistics Department, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Rozita Naseri
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Hung MW, Wu CW, Kokubu D, Yoshida S, Miyazaki H. ε-Viniferin is More Effective than Resveratrol in Promoting Favorable Adipocyte Differentiation with Enhanced Adiponectin Expression and Decreased Lipid Accumulation. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ming-Wei Hung
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Che-Wei Wu
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Daichi Kokubu
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Shigeki Yoshida
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Hitoshi Miyazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
14
|
Wiciński M, Leis K, Szyperski P, Węclewicz M, Mazur E, Pawlak-Osińska K. Impact of resveratrol on exercise performance: A review. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Ros P, Díaz F, Freire-Regatillo A, Argente-Arizón P, Barrios V, Argente J, Chowen JA. Resveratrol Intake During Pregnancy and Lactation Modulates the Early Metabolic Effects of Maternal Nutrition Differently in Male and Female Offspring. Endocrinology 2018; 159:810-825. [PMID: 29186387 DOI: 10.1210/en.2017-00610] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
Abstract
Poor maternal nutrition can have detrimental long-term consequences on energy homeostasis in the offspring. Resveratrol exerts antioxidant and antiobesity actions, but its impact during development remains largely unknown. We hypothesized that resveratrol intake during pregnancy and lactation could improve the effects of poor maternal nutrition on offspring metabolism. Wistar rats received a low-fat diet (LFD; 10.2% kcal from fat) or high-fat diet (HFD; 61.6% kcal from fat), with half of each group receiving resveratrol in their drinking water (50 mg/L) during pregnancy and lactation. Body weight (BW) of dams was measured at treatment onset and weaning [postnatal day (PND) 21] and of pups at birth and PND21, at which time dams and pups were euthanized. Although HFD dams consumed more energy, their BW at the end of lactation was unaffected. Mean litter size was not modified by maternal diet or resveratrol. At birth, male offspring from HFD and resveratrol (HFD + R) dams weighed less than those from LFD and resveratrol (LFD + R) dams. On PND21, pups of both sexes from HFD dams weighed more, had more visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT), and had higher serum leptin levels than those from LFD dams. Resveratrol reduced BW, leptin, VAT, and SCAT, with females being more affected, but increased glycemia. Neuropeptide levels were unaffected by resveratrol. In conclusion, resveratrol intake during pregnancy and lactation decreased BW and adipose tissue content in offspring of dams on an HFD but did not affect offspring from LFD-fed dams, suggesting that the potential protective effects of resveratrol during gestation/lactation are diet dependent.
Collapse
Affiliation(s)
- Purificación Ros
- Hospital Universitario Puerto de Hierro-Majadahonda, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma of Madrid, Madrid, Spain
| | - Francisca Díaz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Pediatrics, Universidad Autónoma of Madrid, Madrid, Spain
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Pediatrics, Universidad Autónoma of Madrid, Madrid, Spain
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma of Madrid, Madrid, Spain
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados Food Institute, Campus of International Excellence, Universidad Autónoma of Madrid + Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Abstract
Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Michael Yi Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
17
|
Song J, Jun M, Ahn MR, Kim OY. Involvement of miR-Let7A in inflammatory response and cell survival/apoptosis regulated by resveratrol in THP-1 macrophage. Nutr Res Pract 2016; 10:377-84. [PMID: 27478543 PMCID: PMC4958639 DOI: 10.4162/nrp.2016.10.4.377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/25/2016] [Accepted: 04/14/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND/OBJECTIVES Resveratrol, a natural polyphenol, has multiple functions in cellular responses including apoptosis, survival, and differentiation. It also participates in the regulation of inflammatory response and oxidative stress. MicroRNA-Let-7A (miR-Let7A), known as a tumor suppressor miRNA, was recently reported to play a crucial role in both inflammation and apoptosis. Therefore, we examined involvement of miR-Let7A in the modulation of inflammation and cell survival/apoptosis regulated by resveratrol. MATERIALS/METHODS mRNA expression of pro-/anti-inflammatory cytokines and sirtuin 1 (SIRT1), and protein expression of apoptosis signal-regulating kinase 1 (ASK1), p-ASK1, and caspase-3 and cleaved caspase-3 were measured, and cell viability and Hoechst/PI staining for apoptosis were observed in Lipopolysaccharide (LPS)-stimulated human THP-1 macrophages with the treatment of resveratrol and/or miR-Let7A overexpression. RESULTS Pre-treatment with resveratrol (25-200 µM) resulted in significant recovery of the reduced cell viabilities under LPS-induced inflammatory condition and in markedly increased expression of miR-Let7A in non-stimulated or LPS-stimulated cells. Increased mRNA levels of tumor necrosis factor-α and interleukin (IL)-6 induced by LPS were significantly attenuated, and decreased levels of IL-10 and brain-derived neurotrophic factor were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. Decreased expression of IL-4 mRNA by LPS stimulation was also significantly increased by miR-Let7A overexpression co-treated with resveratrol. In addition, decreased SIRT1 mRNA levels, and increased p-ASK1 levels and PI-positive cells by LPS stimulation were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. CONCLUSIONS miR-Let7A may be involved in the inflammatory response and cell survival/apoptosis modulated by resveratrol in human THP-1 macrophages.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Engineering, Dongguk University, Gyeonggi 10326, Korea.; Department of Biology, York University, Toronto, Ontario, Canada
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, 37 Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Korea
| | - Mok-Ryeon Ahn
- Department of Food Science and Nutrition, Dong-A University, 37 Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, 37 Nakdong-daero 550beon-gil, Saha-gu, Busan 49315, Korea
| |
Collapse
|
18
|
Antiobesity Effects of Unripe Rubus coreanus Miquel and Its Constituents: An In Vitro and In Vivo Characterization of the Underlying Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4357656. [PMID: 26904142 PMCID: PMC4745304 DOI: 10.1155/2016/4357656] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/07/2015] [Accepted: 12/27/2015] [Indexed: 01/04/2023]
Abstract
Background. The objective of the present study was to perform a bioguided fractionation of unripe Rubus coreanus Miquel (uRC) and evaluate the lipid accumulation system involvement in its antiobesity activity as well as study the uRC mechanism of action. Results. After the fractionation, the BuOH fraction of uRC (uRCB) was the most active fraction, suppressing the differentiation of 3T3-L1 adipocytes in a dose-dependent manner. Moreover, after an oral administration for 8 weeks in HFD-induced obese mice, uRCB (10 and 50 mg/kg/day) produced a significant decrease in body weight, food efficiency ratio, adipose tissue weight and LDL-cholesterol, serum glucose, TC, and TG levels. Similarly, uRCB significantly suppressed the elevated mRNA levels of PPARγ in the adipose tissue in vivo. Next, we investigated the antiobesity effects of ellagic acid, erycibelline, 5-hydroxy-2-pyridinemethanol, m-hydroxyphenylglycine, and 4-hydroxycoumarin isolated from uRCB. Without affecting cell viability, five bioactive compounds decreased the lipid accumulation in the 3T3-L1 cells and the mRNA expression levels of key adipogenic genes such as PPARγ, C/EBPα, SREBP-1c, ACC, and FAS. Conclusion. These results suggest that uRC and its five bioactive compounds may be a useful therapeutic agent for body weight control by downregulating adipogenesis and lipogenesis.
Collapse
|
19
|
Moseti D, Regassa A, Kim WK. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci 2016; 17:ijms17010124. [PMID: 26797605 PMCID: PMC4730365 DOI: 10.3390/ijms17010124] [Citation(s) in RCA: 529] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules.
Collapse
Affiliation(s)
- Dorothy Moseti
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Woo-Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA 30602-2772, USA.
| |
Collapse
|
20
|
Ha AW, Kang NE, Kim WK. Ethanol Extract of Peanut Sprout Lowers Blood Triglyceride Levels, Possibly Through a Pathway Involving SREBP-1c in Rats Fed a High-Fat Diet. J Med Food 2015; 18:850-5. [PMID: 25946626 DOI: 10.1089/jmf.2014.3370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothesis of this study was that peanut sprout extracts (PSE) could reduce fat accumulation through activating the transcription of SREBP-1c genes. Sprague-Dawley (SD) were randomly assigned into two groups and fed the following diet for 4 weeks; 10 normal fat (NF, 7 g of fat/100 g diet) and 30 high fat (HF, 20 g of fat/100 g diet). After 4 weeks, the HF group was divided into three groups; HF, HF with 15 mg of PSE/kg diet (HF+low PSE, 0.025% resveratrol), and HF with 30 mg of PSE/kg diet (HF+high PSE, 0.05% resveratrol) and fed for an additional 5 weeks. The HF+high PSE group had significantly lower weight gain than the HF group. Plasma triglyceride (TG) level and the hepatic total lipid level were significantly lower in the HF+high PSE group compared to the HF group. Fecal excretions of total lipids, cholesterol, and TG in the HF+high PSE group tended to be higher than in the HF group, but these differences were not significant. The mRNA expressions of fatty acid synthase, glucose-6-phosphate dehydrogenase, and sterol regulatory element binding protein-c (SREBP-1c) were significantly lower in the HF+high PSE group than in the HF group. The mRNA expressions of hydroxy-3-methylglutaryl coenzyme A reductase and acyl-CoA cholesterol acyltransferase were significantly lower in the HF+high PSE groups compared to the HF group. The mRNA expression of cholesterol 7α-hydroxylase1 was significantly higher than the HF group in both the HF+low PSE and HF+high PSE groups, with much greater increase observed in the HF+high PSE group. In conclusion, consumption of PSE was effective for improving blood lipid levels, possibly by suppressing the expression of SREBP-1c, in rats fed a high-fat diet.
Collapse
Affiliation(s)
- Ae Wha Ha
- 1 Department of Food Science and Nutrition, Dankook University , Gyeonggi, Korea
| | - Nam E Kang
- 2 Department of Food and Nutrition, Eulji University , Gyeonggi, Korea
| | - Woo Kyoung Kim
- 1 Department of Food Science and Nutrition, Dankook University , Gyeonggi, Korea
| |
Collapse
|
21
|
Anti-adipogenic activity of blue mussel (Mytilus edulis) extract by regulation of 3T3-L1 adipogenesis through Wnt/β-catenin signaling pathway. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Seo EY. Effects of (6)-gingerol, ginger component on adipocyte development and differentiation in 3T3-L1. ACTA ACUST UNITED AC 2015. [DOI: 10.4163/jnh.2015.48.4.327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eun Young Seo
- Department of Food Service Industry, Jangan University, Gyeonggi 445-756, Korea
| |
Collapse
|
23
|
Aguirre L, Fernández-Quintela A, Arias N, Portillo MP. Resveratrol: anti-obesity mechanisms of action. Molecules 2014; 19:18632-55. [PMID: 25405284 PMCID: PMC6271102 DOI: 10.3390/molecules191118632] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/28/2014] [Accepted: 11/10/2014] [Indexed: 12/17/2022] Open
Abstract
Resveratrol is a non-flavonoid polyphenol which belongs to the stilbenes group and is produced naturally in several plants in response to injury or fungal attack. Resveratrol has been recently reported as preventing obesity. The present review aims to compile the evidence concerning the potential mechanisms of action which underlie the anti-obesity effects of resveratrol, obtained either in cultured cells lines and animal models. Published studies demonstrate that resveratrol has an anti-adipogenic effect. A good consensus concerning the involvement of a down-regulation of C/EBPα and PPARγ in this effect has been reached. Also, in vitro studies have demonstrated that resveratrol can increase apoptosis in mature adipocytes. Furthermore, different metabolic pathways involved in triacylglycerol metabolism in white adipose tissue have been shown to be targets for resveratrol. Both the inhibition of de novo lipogenesis and adipose tissue fatty acid uptake mediated by lipoprotein lipase play a role in explaining the reduction in body fat which resveratrol induces. As far as lipolysis is concerned, although this compound per se seems to be unable to induce lipolysis, it increases lipid mobilization stimulated by β-adrenergic agents. The increase in brown adipose tissue thermogenesis, and consequently the associated energy dissipation, can contribute to explaining the body-fat lowering effect of resveratrol. In addition to its effects on adipose tissue, resveratrol can also acts on other organs and tissues. Thus, it increases mitochondriogenesis and consequently fatty acid oxidation in skeletal muscle and liver. This effect can also contribute to the body-fat lowering effect of this molecule.
Collapse
Affiliation(s)
- Leixuri Aguirre
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, 01006 Vitoria, Spain.
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, 01006 Vitoria, Spain.
| | - Noemí Arias
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, 01006 Vitoria, Spain.
| | - Maria P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of Basque Country (UPV/EHU) and Lucio Lascaray Research Center, 01006 Vitoria, Spain.
| |
Collapse
|
24
|
Scapagnini G, Davinelli S, Kaneko T, Koverech G, Koverech A, Calabrese EJ, Calabrese V. Dose response biology of resveratrol in obesity. J Cell Commun Signal 2014; 8:385-91. [PMID: 25387453 DOI: 10.1007/s12079-014-0257-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/04/2014] [Indexed: 11/29/2022] Open
Abstract
Obesity is a major health problem throughout the world, and it is increasing both in prevalence and severity. Pharmaceutical approaches developed for the treatment of obesity, despite short-term benefits, often are associated with rebound weight gain after the cessation of drug use and serious side effects deriving from the medication can occur. Resveratrol has been well recognized as an anti-obesity substance for its lipid-lowering function as well as calorie-restriction effect. This polyphenol induces hormetic dose responses in a wide range of biological models, affecting numerous endpoints of biomedical and therapeutic significance. From an hormetic standpoint, we will discuss the potential relevance of resveratrol in the management of obesity and related comorbid conditions, emphasizing its ability to control simultaneously various pathological mechanisms associated with obesity.
Collapse
Affiliation(s)
- Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Effects of yerba maté, a plant extract formulation ("YGD") and resveratrol in 3T3-L1 adipogenesis. Molecules 2014; 19:16909-24. [PMID: 25338179 PMCID: PMC6271528 DOI: 10.3390/molecules191016909] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/21/2022] Open
Abstract
We aimed to evaluate the in vitro effects of yerba maté, YGD (a herbal preparation containing yerba maté, guarana and damiana), and resveratrol on adipogenesis. The anti-adipogenic effects of yerba mate, YGD, resveratrol and YGD + resveratrol and yerba mate + resveratrol combinations were evaluated in 3T3-L1 cells by Oil Red staining, cellular triglyceride content, and PCR quantitative array. The results demonstrated that all of the tested compounds inhibited adipogenesis. Yerba maté extract significantly down-regulated the expression of genes that play an important role in regulating adipogenesis, such as Adig, Axin, Cebpa, Fgf10, Lep, Lpl, and Pparγ2. In addition, these genes, YGD also repressed Bmp2, Ccnd1, Fasn, and Srebf1. Resveratrol also modulated the expression of Adig, Bmp2, Ccnd1, C/EBPα, Fasn, Fgf10, Lep, Lpl, and Pparγ2. Moreover, resveratrol repressed Cebpb, Cdk4, Fgf2, and Klf15. The yerba maté extract and YGD up-regulated the expression of genes involved in inhibiting adipogenesis, such as Dlk-1, Klf2, and Ucp1. Resveratrol also induced the expression of Klf2 and Ucp1. In addition resveratrol modulated the Ddit3, Foxo1, Sirt1, and Sirt2. The combined effects of these compounds on gene expression showed similar results observed from individual treatments. Our data indicates that the synergy between the compounds favors the inhibition of adipogenesis.
Collapse
|
26
|
Bae CR, Park YK, Cha YS. Quercetin-rich onion peel extract suppresses adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 adipocytes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2655-2660. [PMID: 24634340 DOI: 10.1002/jsfa.6604] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Onion peel contains a high amount of quercetin, which has been reported to have anti-cholesterol, antithrombotic and insulin-sensitizing properties. This study aimed to elucidate the anti-adipogenic effects of quercetin-rich onion peel extract (OPE) and to compare it with commercially available quercetin using 3T3-L1 preadipocytes. RESULTS Without affecting cell viability, both OPE and quercetin averted adipogenesis, as characterized by dose-dependent decreases in intracellular triglyceride content and glycerol 3-phosphate dehydrogenase activity, but the effect was more pronounced with OPE than with quercetin. The mRNA expression levels of key adipogenic genes such as PPARγ, C/EBPα, FABP4, aP2 and LPL were decreased in a dose-dependent manner by both OPE and quercetin. CONCLUSION The results indicate that OPE treatment significantly prevents intracellular lipid accumulation via hyperactivation of genes regulating lipolysis as compared with quercetin alone.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Food Science and Human Nutrition, and Research Institute of Humans Ecology, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea
| | | | | |
Collapse
|
27
|
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res 2014; 90:88-115. [PMID: 25151891 DOI: 10.1016/j.phrs.2014.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in Polygonum cuspidatum, grapes, peanuts and berries, as well as their manufactured products, especially red wine. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risks parameters. This review attempts to primarily serve to summarize the current research findings regarding the putative cardioprotective effects of resveratrol and the molecular pathways underlying these effects. One intent is to hopefully provide a relatively comprehensive resource for clues that may prompt ideas for additional mechanistic studies which might further elucidate and strengthen the role of the stilbene family of compounds in cardiovascular disease and cardioprotection. Model systems that incorporate a significant functional association with tissues outside of the cardiovascular system proper, such as adipose (cell culture, obesity models) and pancreatic (diabetes) tissues, were reviewed, and the molecular pathways and/or targets related to these models and influenced by resveratrol are discussed. Because the body of work encompassing the stilbenes and other phytochemicals in the context of longevity and the ability to presumably mitigate a plethora of afflictions is replete with conflicting information and controversy, especially so with respect to the human response, we tried to remain as neutral as possible in compiling and presenting the more current data with minimal commentary, permitting the reader free reign to extract the knowledge most helpful to their own investigations.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Susan Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Gyda
- Life Sciences Multimedia Productions, Drexel Hill, PA, USA.
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China; Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
28
|
Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014; 25:1-18. [PMID: 24314860 DOI: 10.1016/j.jnutbio.2013.09.001] [Citation(s) in RCA: 650] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
Collapse
|
29
|
Hu P, Zhao L, Chen J. Physiologically achievable doses of resveratrol enhance 3T3-L1 adipocyte differentiation. Eur J Nutr 2014; 54:569-79. [PMID: 25030245 DOI: 10.1007/s00394-014-0738-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 07/04/2014] [Indexed: 01/02/2023]
Abstract
PURPOSE Resveratrol is a natural polyphenolic stilbene widely found in grapes, berries, and other plants. Caloric restriction-like effects of resveratrol have been associated with suppressive and apoptotic effects on adipocyte differentiation in vitro when used at high doses (≥ 20 µM), which may not be achievable in vivo. The aim of this study was to investigate the effects of resveratrol at physiologically achievable low doses (1 and 10 μM) on 3T3-L1 adipocyte differentiation. METHODS 3T3-L1 preadipocytes were differentiated into adipocytes using a modified adipogenic cocktail in the presence or absence of resveratrol. Differentiation was determined by lipid accumulation and mRNA expression of marker genes. Activation of glucocorticoid receptor (GR) and peroxisome proliferator-activated receptor γ (PPARγ) was determined by transcription factor-mediated reporter assays and mRNA expression of target genes. Protein samples were collected for the study of AMPK activation. RESULTS Resveratrol at physiologically achievable doses (1 and 10 µM) significantly enhanced 3T3-L1 adipocyte differentiation although the effect was less pronounced compared with that achieved under optimal differentiation cocktail in vitro. Resveratrol (1-50 µM) dose dependently activated or synergized with the synthetic ligand or adipogenic treatment to activate GR and PPARγ. However, resveratrol induced cell death when used at doses above 10 µM in differentiating cells. CONCLUSIONS Our results report for the first time that resveratrol at physiologically achievable doses (1 and 10 µM) enhances 3T3-L1 adipocyte differentiation, which supports the emerging paradigm that enhanced adipocyte differentiation may be associated with caloric restriction-like metabolic effects for resveratrol.
Collapse
Affiliation(s)
- Pan Hu
- Department of Nutrition, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
30
|
Kang NE, Ha AW, Woo HW, Kim WK. Peanut sprouts extract (Arachis hypogaea L.) has anti-obesity effects by controlling the protein expressions of PPARγ and adiponectin of adipose tissue in rats fed high-fat diet. Nutr Res Pract 2014; 8:158-64. [PMID: 24741399 PMCID: PMC3988504 DOI: 10.4162/nrp.2014.8.2.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUD/OBEJECTIVES This study aims to find out the effects of peanut sprout extracts on weight controls and protein expressions of transcription factors related to adipocyte differentiation and adipocytokine in rats under high-fat diets. MATERIALS/METHODS Four week-old Sparague-Dawley (SD) were assigned to 4 groups; normal-fat (NF) diets (7% fat diet), high-fat (HF) diets (20% fat diet), high fat diets with low peanut sprout extract (HF + PSEL) diet (20% fat and 0.025% peanut sprout extract), and high fat diets with high peanut sprout extract (HF + PSEH) diet (20% fat and 0.05% peanut sprout extract). Body weight changes, lipid profiles in adipose tissue, and the mRNA protein expressions, such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBP α), leptin, and adiponectin, were determined. RESULTS After 9 weeks of feeding, the HF + PSEH group had significantly less weight gains than the HF group (P < 0.05). However, the total dietary intakes or food efficiency ratios among groups were not significantly different. The weight of epididymal fat in HF + PSEH group, 3.61 ± 0.5 g, or HF + PSEL group, 3.80 ± 0.7 g, was significantly lower than the HF group, 4.39 ± 0.4g, (P < 0.05). Total lipids and total cholesterol in adipose tissue were significantly decreased in HF + PSEH group compared to those in the HF group, respectively (P < 0.05). PSEH supplementation caused AST and ALT levels to decrease when it compared to HF group, but it was not statistically significant. The protein expression of PPARγ in HF + PSEH group was significantly lower than the HF group (P < 0.05). Comparing with the HF group, the protein expression of adiponectin in HF + PSEH group was significantly increased (P < 0.05). The protein expressions of C/EBP α and leptin in HF + PSEH group were lower than the HF group, but it was not statistical significant. CONCLUSIONS In conclusion, peanut sprout extract has anti-obesity effect by lowering the expressions of PPARγ which regulates the expression of adiponectin.
Collapse
Affiliation(s)
- Nam E Kang
- Department of Food and Nutrition, Eulji University, 553 Sanseong-Daero,Seongnam-Si, Gyeonggi 461-632, Korea
| | - Ae Wha Ha
- Department of Food Science and Nutrition, Dankook University, 152 Jukjeon-Ro, Suji-Gu, Yongin-Si, Gyeonggi 448-701, Korea
| | - Hye Won Woo
- Department of Food Science and Nutrition, Dankook University, 152 Jukjeon-Ro, Suji-Gu, Yongin-Si, Gyeonggi 448-701, Korea
| | - Woo Kyoung Kim
- Department of Food Science and Nutrition, Dankook University, 152 Jukjeon-Ro, Suji-Gu, Yongin-Si, Gyeonggi 448-701, Korea
| |
Collapse
|
31
|
Zhang W, Liu Y, Ge M, Jing J, Chen Y, Jiang H, Yu H, Li N, Zhang Z. Protective effect of resveratrol on arsenic trioxide-induced nephrotoxicity in rats. Nutr Res Pract 2014; 8:220-6. [PMID: 24741408 PMCID: PMC3988513 DOI: 10.4162/nrp.2014.8.2.220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/30/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUD/OBEJECTIVES Arsenic, which causes human carcinogenicity, is ubiquitous in the environment. This study was designed to evaluate modulation of arsenic induced cancer by resveratrol, a phytoalexin found in vegetal dietary sources that has antioxidant and chemopreventive properties, in arsenic trioxide (As2O3)-induced Male Wistar rats. MATERIALS/METHODS Adult rats received 3 mg/kg As2O3 (intravenous injection, iv.) on alternate days for 4 days. Resveratrol (8 mg/kg) was administered (iv.) 1 h before As2O3 treatment. The plasma and homogenization enzymes associated with oxidative stress of rat kidneys were measured, the kidneys were examined histologically and trace element contents were assessed. RESULTS Rats treated with As2O3 had significantly higher oxidative stress and kidney arsenic accumulation; however, pretreatment with resveratrol reversed these changes. In addition, prior to treatment with resveratrol resulted in lower blood urea nitrogen, creatinine and insignificant renal tubular epithelial cell necrosis. Furthermore, the presence of resveratrol preserved the selenium content (0.805 ± 0.059 µg/g) of kidneys in rats treated with As2O3. However, resveratrol had no effect on zinc level in the kidney relative to As2O3-treated groups. CONCLUSIONS Our data show that supplementation with resveratrol alleviated nephrotoxicity by improving antioxidant capacity and arsenic efflux. These findings suggest that resveratrol has the potential to protect against kidney damage in populations exposed to arsenic.
Collapse
Affiliation(s)
- Weiqian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Liu
- School of Life Sciences, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiang Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongxiang Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ning Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
32
|
Kim WK, Kang NE, Kim MH, Ha AW. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes. Nutr Res Pract 2013; 7:160-5. [PMID: 23766875 PMCID: PMC3679323 DOI: 10.4162/nrp.2013.7.3.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/07/2013] [Accepted: 03/19/2013] [Indexed: 11/04/2022] Open
Abstract
3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and 40 µg/mL of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP β and C/EBP α were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBPβ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from 20 µg/mL. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes.
Collapse
Affiliation(s)
- Woo Kyoung Kim
- Department of Food Science and Nutrition, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701, Korea
| | | | | | | |
Collapse
|