1
|
Krupa-Kozak U, Płatosz N, Bączek N, Šimková K, Starowicz M. Increased content of bioactive compounds and health benefits of gluten-free sponge cakes resulting from enrichment with freeze-dried berry powders. Food Chem 2025; 472:142861. [PMID: 39967066 DOI: 10.1016/j.foodchem.2025.142861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025]
Abstract
Berries are not only appreciated for their distinctive taste and flavor, but they are also highly valued for their nutritional and health-promoting properties. This study aimed to develop appealing new gluten-free sponge cakes (GFS) enriched with bioactive phytochemicals using berry powders. Freeze-dried powders of raspberry (R), blackberry (B), and blueberry (L) were used to replace 2 % of the starch in the experimental GFS formulation. This study analyzed the profile and content of phenolic acids, flavonoids, and anthocyanins, and assessed the antiglycation activity using spectrophotometric methods. Additionally, the color and textural parameters, as well as consumer preferences for the GFS, were evaluated. The application of berry powders in the experimental formulation significantly increased (p < 0.05) the content of phenolic acids, flavonoids, and anthocyanins in all the berry-enriched sponge cakes, although the degree of increase varied, depending on the berry used. All the berry-enriched sponge cakes acquired a pleasant reddish tint, with the raspberry sponge cake (GFR) receiving the highest scores for sensory attractiveness. However, the textural parameters (hardness, gumminess, and chewiness) of all the berry-enriched sponge cakes were negatively affected compared to the control. These findings indicate that incorporating berry powders into GFS formulations can create a visually appealing and tasty option for health-conscious consumers, particularly those with dietary restrictions such as celiac disease.
Collapse
Affiliation(s)
- Urszula Krupa-Kozak
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland.
| | - Natalia Płatosz
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland.
| | - Natalia Bączek
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland.
| | - Kristýna Šimková
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland; University of Ljubljana, Biotechnology Faculty, Department of Agronomy, Jamnikarjeva 101, Ljubljana 1000, Slovenia.
| | - Małgorzata Starowicz
- Chemistry and Biodynamics of Food Team, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland.
| |
Collapse
|
2
|
Alghamdi SA, Hindi EA, Abuljadayel L, Alwafi H, Bagher AM, Khunkar S, Bakhsh N, Ali S, Mirza L, Alrafiah AR, Alsomali NI. Red Bull Energy Drink Impact on Salivary Glands in Wistar Rats: Can Blueberry Extract Reverse the Damage? Nutrients 2024; 16:2958. [PMID: 39275275 PMCID: PMC11397545 DOI: 10.3390/nu16172958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Energy drink (ED) consumption has become increasingly popular. Due to a lack of evidence, it was crucial to assess the effects of Red Bull (RB) consumption on the rat submandibular salivary gland and the potential therapeutic impact of blueberry (BB). Thirty rats were randomly assigned to five groups. Group 1 (Control) received distilled water. Group 2 (RB) received RB (10 mL/100 g/day) for 8 weeks. Group 3 (BB) rats were administered BB (500 mg/day for 8 weeks). Group 4 (RB + BB (L)) received RB for 8 weeks, and from the 5th week, were concurrently given BB (250 mg/day) for 4 weeks. Group 5 (RB + BB (H)) received RB for 8 weeks, and from the 5th week, were concurrently given BB (500 mg/day) for 4 weeks. At the end of the experiment, blood samples were collected, the animals were euthanized, and their submandibular salivary glands were harvested. Oxidative stress markers (MDA, GPx, CAT, and SOD) were assessed in both serum and tissue. Inflammatory markers (TNF-α, IL-6, and IL-10) were quantified in tissue. Submandibular gland specimens were prepared for light microscopy, and immunohistochemical staining was performed using anti-α-SMA. RB consumption resulted in a significant increase in MDA, TNF-α, IL-6, and IL-10, while GPx, CAT, and SOD levels decreased significantly. Degenerative changes in the gland's structure were observed in the RB group. A significant increase in α-SMA immunoreaction was detected in myoepithelial cells. Administration of BB, particularly at a high dose, ameliorated the aforementioned findings. In conclusion, blueberry administration exhibited therapeutic effects due to its antioxidative and anti-inflammatory properties.
Collapse
Affiliation(s)
- Samar A Alghamdi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Emad A Hindi
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Layla Abuljadayel
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanadi Alwafi
- Department of Pediatric and Prevention Dentistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sahar Khunkar
- Department of Restorative, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Nadia Bakhsh
- AGD Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Soad Ali
- Department of Histology and Cell Biology, Faculty of Medicine, Assuit University, Assuit 98467, Egypt
| | - Linda Mirza
- King Abdullah Medical Complex, Ministry of Health, Jeddah 23816, Saudi Arabia
| | - Aziza R Alrafiah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nimah I Alsomali
- Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| |
Collapse
|
3
|
Chu L, Du Q, Zuo S, Liu G, Wang H, Liu G, Zhao L, Xu G. Assembly and comparative analysis of the complete mitochondrial genome of Vaccinium carlesii Dunn. Genomics 2024; 116:110897. [PMID: 39032617 DOI: 10.1016/j.ygeno.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Vaccinium L. is an important fruit tree with nutritional, medicinal, and ornamental values. However, the mitochondrial (mt) genome of Vaccinium L. remains largely unexplored. Vaccinium carlesii Dunn is an endemic wild resource in China, which is crucial for blueberry breeding. The V. carlesii mt genomes were sequenced using Illumina and Nanopore, which total length was 636,904 bp with 37 protein coding genes, 20 tRNA genes, and three rRNA genes. We found four pairs of long repeat fragments homologous recombination mediated the generation of substructures in the V. carlesii mt genome. We predicted 383 RNA editing sites, all converting cytosine (C) to uracil (U). According to the phylogenetic analysis, V. carlesii and V. macrocarpon of the Ericaceae exhibited the closest genetic relationship. This study provides a theoretical basis for understanding the evolution of higher plants, species classification and identification, and will also be useful for further utilization of Vaccinium germplasm resources.
Collapse
Affiliation(s)
- Liwei Chu
- College of Life and Health, Dalian University, Dalian 116622, China; Key Laboratory of Saccharide and Lipid Metabolism Research in Liaoning Province, Dalian University, Dalian 116622, China
| | - Qianhui Du
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Siyu Zuo
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Guiting Liu
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Hexin Wang
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Guoling Liu
- Dalian Senmao Modern Agriculture Co., Ltd., Dalian 116622, China
| | - Lina Zhao
- Dalian Senmao Modern Agriculture Co., Ltd., Dalian 116622, China
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian 116622, China.
| |
Collapse
|
4
|
Ejaz A, Waliat S, Afzaal M, Saeed F, Ahmad A, Din A, Ateeq H, Asghar A, Shah YA, Rafi A, Khan MR. Biological activities, therapeutic potential, and pharmacological aspects of blackcurrants ( Ribes nigrum L): A comprehensive review. Food Sci Nutr 2023; 11:5799-5817. [PMID: 37823094 PMCID: PMC10563683 DOI: 10.1002/fsn3.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 10/13/2023] Open
Abstract
Blackcurrant possesses various health-endorsing attributes owing to its polyphenol profile. Recent studies have demonstrated its therapeutic potential against various health disorders. Various bioactives present in blackcurrants have different functional and pharmacological aspects including anti-inflammatory, antioxidant, and antimicrobial properties. The most dominant and important bioactive include anthocyanins, flavonols, phenolic acids, and polyunsaturated fatty acids. Food formats derived from blackcurrants comprise pomace, juice, powder, and extracts. All these food formats have industrial, prebiotic, and pharmacological benefits. In the current article, the nutritional composition, industrial applications, and therapeutic potential are discussed in the recent literature. Moreover, novel extraction techniques for the extraction of bioactive compounds present in blackcurrants and their safety concerns have been elaborated.
Collapse
Affiliation(s)
- Afaf Ejaz
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Sadaf Waliat
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmad
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Din
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Asma Asghar
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmad Rafi
- National Institute of Food Science & TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
5
|
Zhao F, Wang J, Wang W, Lyu L, Wu W, Li W. The Extraction and High Antiproliferative Effect of Anthocyanin from Gardenblue Blueberry. Molecules 2023; 28:molecules28062850. [PMID: 36985822 PMCID: PMC10054926 DOI: 10.3390/molecules28062850] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Blueberries are rich in flavonoids, anthocyanins, phenolic acids, and other bioactive substances. Anthocyanins are important functional components in blueberries. We collected 65 varieties of blueberries to investigate their nutritional and functional values. Among them, Gardenblue had the highest anthocyanin content, with 2.59 mg/g in fresh fruit. After ultrasound-assisted solvent extraction and macroporous resin absorption, the content was increased to 459.81 mg/g in the dried powder. Biological experiments showed that Gardenblue anthocyanins (L1) had antiproliferative effect on cervical cancer cells (Hela, 51.98 μg/mL), liver cancer cells (HepG2, 23.57 μg/mL), breast cancer cells (MCF-7, 113.39 μg/mL), and lung cancer cells (A549, 76.10 μg/mL), and no apparent toxic effects were indicated by methyl thiazolyl tetrazolium (MTT) assay, especially against HepG2 cells both in vitro and in vivo. After combining it with DDP (cisplatin) and DOX (doxorubicin), the antiproliferative effects were enhanced, especially when combined with DOX against HepG2 cells; the IC50 value was 0.02 μg/mL. This was further evidence that L1 could inhibit cell proliferation by inducing apoptosis. The detailed mechanism might be L1 interacting with DNA in an intercalation mode that changes or destroys DNA, causing apoptosis and inhibiting cell proliferation. The findings of this study suggest that L1 extract can be used as a functional agent against hepatoma carcinoma cells.
Collapse
Affiliation(s)
- Fengyi Zhao
- Fruit Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jialuan Wang
- Fruit Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weifan Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lianfei Lyu
- Fruit Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenlong Wu
- Fruit Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Zou H, Ye H, Zhang J, Ren L. Recent advances in nuclear receptors-mediated health benefits of blueberry. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154063. [PMID: 35344717 DOI: 10.1016/j.phymed.2022.154063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Blueberry is rich in bioactive substances and has anti-oxidant, anti-inflammatory, anti-obesity, anti-cancer, neuroprotective, and other activities. Blueberry has been shown to treat diseases by mediating the transcription of nuclear receptors. However, evidence for nuclear receptor-mediated health benefits of blueberry has not been systematically reviewed. PURPOSE This review aims to summarize the nuclear receptor-mediated health benefits of blueberry. METHODS This study reviews all relevant literature published in NCBI PubMed, Scopus, Web of Science, and Google Scholar by January 2022. The relevant literature was extracted from the databases with the following keyword combinations: "biological activities" OR "nuclear receptors" OR "phytochemicals" AND "blueberry" OR "Vaccinium corymbosum" as well as free-text words. RESULTS In vivo and in vitro experimental results and clinical evidence have demonstrated that blueberry has health-promoting effects. Supplementing blueberry is beneficial to the treatment of cancer, the alleviation of metabolic syndrome, and liver protection. Blueberry can regulate the transcription of PPARs, ERs, AR, GR, MR, LXRs, and FXR and mediate the expressions of Akt, CYP 1Al, p53, and Bcl-2. CONCLUSION Blueberry can be targeted to treat various diseases by mediating the transcription of nuclear receptors. Nevertheless, further human research is needed.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
de la Luz Cádiz-Gurrea M, Fernández-Ochoa Á, Del Carmen Villegas-Aguilar M, Arráez-Román D, Segura-Carretero A. Therapeutic Targets for Phenolic Compounds from Agro-industrial Byproducts against Obesity. Curr Med Chem 2021; 29:1083-1098. [PMID: 34544333 DOI: 10.2174/0929867328666210920103815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is considered as a global epidemic worldwide. This disorder is associated to several health effects such as metabolic disturbances that need both prevention and treatment actions. In this sense, bioactive secondary metabolites can be obtained from cheap sources such as agro-industrial waste providing a sustainable alternative against obesity. Among these secondary metabolites, phenolic compounds present a common chemical structure core with different substitutions that provides them biological properties such as antioxidant, inflammatory, anti-aging capacities. OBJECTIVE The aim of this review is to compile anti-obesity therapeutic targets for phenolic compounds from agro-industrial byproducts. METHOD Scientific information has been obtained from different databases such as Scopus, PubMed and Google Scholar in order to select the available full text studies in last years. RESULTS This review shows that peel, seed, pomace and other byproducts from agro-industry have different effects inhibiting enzymes related to lipid or glucose metabolism and modulating biomarkers, genes and gut microbiota in animal models. CONCLUSION Revalorizing actions of agro-industrial byproducts in the prevention or treatment of obesity or associated disorders can be considered to develop new high value products that act on lipid, glucose and energy metabolisms, oxidative stress, inflammation, adipose tissue or gut microbiota. However, further human studies are need in order to stablish the optimal administration parameters.
Collapse
Affiliation(s)
| | - Álvaro Fernández-Ochoa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin. Germany
| | | | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Granada. Spain
| | | |
Collapse
|
8
|
Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic Biol Med 2021; 172:152-166. [PMID: 34087429 DOI: 10.1016/j.freeradbiomed.2021.05.040] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis develops due to lipid accumulation in the arterial wall and sclerosis as result of increased hyperlipidemia, oxidative stress, lipid oxidation, and protein oxidation. However, improving antioxidant status through diet may prevent the progression of atherosclerotic cardiovascular disease. It is believed that polyphenol-rich plants contribute to the inverse relationship between fruit and vegetable intake and chronic disease. Anthocyanins are flavonoid polyphenols with antioxidant properties that have been associated with reduced risk of cardiovascular disease. The consumption of anthocyanins increases total antioxidant capacity, antioxidant defense enzymes, and HDL antioxidant properties by several measures in preclinical and clinical populations. Anthocyanins appear to impart antioxidant actions via direct antioxidant properties, as well as indirectly via inducing intracellular Nrf2 activation and antioxidant gene expression. These actions counter oxidative stress and inflammatory signaling in cells present in atherosclerotic plaques, including macrophages and endothelial cells. Overall, anthocyanins may protect against atherosclerosis and cardiovascular disease through their effects on cellular antioxidant status, oxidative stress, and inflammation; however, their underlying mechanisms of action appear to be complex and require further elucidation.
Collapse
Affiliation(s)
- Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
9
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Seung J. Baek
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Bruce D. Hammock
- Department of Entomology, University of California, Davis, CA 95616, USA;
| | - In-Koo Hwang
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Qingxiao Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences & Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX 77843, USA;
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Sun-Shin Yi
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Darryl C. Zeldin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Qixin Zhong
- Department of Food Sciences, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jennifer Alyce Bradbury
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Matthew L. Edin
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Joan P. Graves
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Hyo-Young Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Young-Hyun Jung
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Woosuk Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Jaehak Lee
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| | - Hong Li
- National Institutes of Environmental Health, National Institutes of Health, Research Triangle Park, NC 27709, USA; (D.C.Z.); (J.A.B.); (M.L.E.); (J.P.G.); (H.L.)
| | - Jong-Seok Moon
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Ik-Dong Yoo
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea; (S.-S.Y.); (J.-S.M.); (I.-D.Y.)
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Y.P.); (Y.Y.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ho-Jae Han
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.J.B.); (I.-K.H.); (H.-Y.J.); (Y.-H.J.); (W.K.); (J.L.)
| |
Collapse
|
10
|
Hui X, Wu G, Han D, Gong X, Stipkovits L, Wu X, Tang S, Brennan MA, Brennan CS. Bioactive compounds from blueberry and blackcurrant powder alter the physicochemical and hypoglycaemic properties of oat bran paste. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Land Lail H, Feresin RG, Hicks D, Stone B, Price E, Wanders D. Berries as a Treatment for Obesity-Induced Inflammation: Evidence from Preclinical Models. Nutrients 2021; 13:nu13020334. [PMID: 33498671 PMCID: PMC7912458 DOI: 10.3390/nu13020334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation that accompanies obesity is associated with the infiltration of metabolically active tissues by inflammatory immune cells. This propagates a chronic low-grade inflammation associated with increased signaling of common inflammatory pathways such as NF-κB and Toll-like receptor 4 (TLR4). Obesity-associated inflammation is linked to an increased risk of chronic diseases, including type 2 diabetes, cardiovascular disease, and cancer. Preclinical rodent and cell culture studies provide robust evidence that berries and their bioactive components have beneficial effects not only on inflammation, but also on biomarkers of many of these chronic diseases. Berries contain an abundance of bioactive compounds that have been shown to inhibit inflammation and to reduce reactive oxygen species. Therefore, berries represent an intriguing possibility for the treatment of obesity-induced inflammation and associated comorbidities. This review summarizes the anti-inflammatory properties of blackberries, blueberries, strawberries, and raspberries. This review highlights the anti-inflammatory mechanisms of berries and their bioactive components that have been elucidated through the use of preclinical models. The primary mechanisms mediating the anti-inflammatory effects of berries include a reduction in NF-κB signaling that may be secondary to reduced oxidative stress, a down-regulation of TLR4 signaling, and an increase in Nrf2.
Collapse
|
12
|
Kang SH, Bak DH, Chung BY, Bai HW, Kang BS. Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:413-422. [PMID: 32830148 PMCID: PMC7445475 DOI: 10.4196/kjpp.2020.24.5.413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Delphinidin is a major anthocyanidin compound found in various vegetables and fruits. It has anti-oxidant, anti-inflammatory, and various other biological activities. In this study we demonstrated the anti-cancer activity of delphinidin, which was related to autophagy, in radiation-exposed non-small cell lung cancer (NSCLC). Radiosensitising effects were assessed in vitro by treating cells with a sub-cytotoxic dose of delphinidin (5 µM) before exposure to γ-ionising radiation (IR). We found that treatment with delphinidin or IR induced NSCLC cell death in vitro; however the combination of delphinidin pre-treatment and IR was more effective than either agent alone, yielding a radiation enhancement ratio of 1.54 at the 50% lethal dose. Moreover, combined treatment with delphinidin and IR, enhanced apoptotic cell death, suppressed the mTOR pathway, and activated the JNK/MAPK pathway. Delphinidin inhibited the phosphorylation of PI3K, AKT, and mTOR, and increased the expression of autophagy-induced cell death associated-protein in radiation-exposed NSCLC cells. In addition, JNK phosphorylation was upregulated by delphinidin pre-treatment in radiation-exposed NSCLC cells. Collectively, these results show that delphinidin acts as a radiation-sensitizing agent through autophagy induction and JNK/MAPK pathway activation, thus enhancing apoptotic cell death in NSCLC cells.
Collapse
Affiliation(s)
- Seong Hee Kang
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea.,Department of Medical Science, Konyang University, Daejeon 35365, Korea
| | - Dong-Ho Bak
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea
| | - Byung Yeoup Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea
| | - Hyoung-Woo Bai
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Korea
| | - Bo Sun Kang
- Department of Medical Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
13
|
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020; 12:E2538. [PMID: 32825710 PMCID: PMC7551116 DOI: 10.3390/nu12092538] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are considered "promising functional fruits" due to their distinct and ubiquitous therapeutic contents of anthocyanins, proanthocyanidins, phenolic acids, flavonoids, flavanols, alkaloids, polysaccharides, hydroxycinnamic, ellagic acid derivatives, and organic acids. These polyphenols are part of berries and the human diet, and evidence suggests that their intake is associated with a reduced risk or the reversal of metabolic pathophysiologies related to diabetes, obesity, oxidative stress, inflammation, and hypertension. This work reviewed and summarized both clinical and non-clinical findings that the consumption of berries, berry extracts, purified compounds, juices, jams, jellies, and other berry byproducts aided in the prevention and or otherwise management of type 2 diabetes mellitus (T2DM) and related complications. The integration of berries and berries-derived byproducts into high-carbohydrate (HCD) and high-fat (HFD) diets, also reversed/reduced the HCD/HFD-induced alterations in glucose metabolism-related pathways, and markers of oxidative stress, inflammation, and lipid oxidation in healthy/obese/diabetic subjects. The berry polyphenols also modulate the intestinal microflora ecology by opposing the diabetic and obesity rendered symbolic reduction of Bacteroidetes/Firmicutes ratio, intestinal mucosal barrier dysfunction-restoring bacteria, short-chain fatty acids, and organic acid producing microflora. All studies proposed a number of potential mechanisms of action of respective berry bioactive compounds, although further mechanistic and molecular studies are warranted. The metabolic profiling of each berry is also included to provide up-to-date information regarding the potential anti-oxidative/antidiabetic constituents of each berry.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| |
Collapse
|
14
|
Matacchione G, Gurău F, Baldoni S, Prattichizzo F, Silvestrini A, Giuliani A, Pugnaloni A, Espinosa E, Amenta F, Bonafè M, Procopio AD, Rippo MR, Olivieri F, Sabbatinelli J. Pleiotropic effects of polyphenols on glucose and lipid metabolism: Focus on clinical trials. Ageing Res Rev 2020; 61:101074. [PMID: 32335301 DOI: 10.1016/j.arr.2020.101074] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Epidemiological evidence from observational studies suggests that dietary polyphenols (PPs) - phytochemicals found in a variety of plant-based foods - can reduce the risk of developing type 2 diabetes mellitus (T2DM). Clinical trials have also indicated that PPs may help manage the two key features of T2DM, hyperglycemia and dyslipidemia. Since the incidence of T2DM is dramatically increasing worldwide, identifying food-based approaches that can reduce the risk of developing it and help manage its main risk factors in early-stage disease has clinical and socioeconomic relevance. After a brief overview of current epidemiological data on the incidence of T2DM in individuals consuming PP-rich diets, we review the evidence from clinical trials investigating PP-enriched foods and/or PP-based nutraceutical compounds, report their main results, and highlight the knowledge gaps that should be bridged to enhance our understanding of the role of PPs in T2DM development and management.
Collapse
|
15
|
Mofasser Hossain A, Brennan MA, Guo X, Zeng XA, Brennan CS. Cellular biological activity and regulation of gene expression of antioxidant dietary fibre fraction isolated from blackcurrant incorporated in the wholemeal cereals cookies. Food Chem 2020; 312:125829. [DOI: 10.1016/j.foodchem.2019.125829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
|
16
|
Speer H, D’Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. Anthocyanins and Human Health-A Focus on Oxidative Stress, Inflammation and Disease. Antioxidants (Basel) 2020; 9:antiox9050366. [PMID: 32353990 PMCID: PMC7278778 DOI: 10.3390/antiox9050366] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022] Open
Abstract
Consumption of anthocyanins (ACNs), due to their antioxidant, anti-inflammatory and anti-apoptotic effects, has been proposed for the prevention and treatment of several different diseases and conditions. ACNs are recognized as one of the leading nutraceuticals for prolonging health benefits through the attenuation of oxidative stress, and inflammatory or age-related diseases. Increased consumption of ACNs has the potential to attenuate the damage ensuing from oxidative stress, inflammation, enhance cardiometabolic health, and delay symptoms in predisposed neuropathology. A myriad of evidence supports ACN consumption as complementary or standalone treatment strategies for non-communicable diseases (NCDs) including obesity, diabetes, cardiovascular disease (CVD), neurodegenerative diseases, as well as, more recently, for the modulation of gut bacteria and bone metabolism. While these findings indicate the beneficial effects of ACN consumption, their food sources differ vastly in ACN composition and thus potentially in their physiological effects. Consumption of foods high in ACNs can be recommended for their potential beneficial health effects due to their relatively easy and accessible addition to the everyday diet.
Collapse
Affiliation(s)
- Hollie Speer
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; (H.S.); (N.M.D.); (A.J.M.)
- Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia
- University of Canberra Research Institute for Sport and Exercise (UC-RISE), University of Canberra, Bruce, ACT 2617, Australia
| | - Nathan M. D’Cunha
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; (H.S.); (N.M.D.); (A.J.M.)
| | | | - Andrew J. McKune
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; (H.S.); (N.M.D.); (A.J.M.)
- University of Canberra Research Institute for Sport and Exercise (UC-RISE), University of Canberra, Bruce, ACT 2617, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal 4000, South Africa
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Bruce, ACT 2617, Australia; (H.S.); (N.M.D.); (A.J.M.)
- Correspondence: ; Tel.: +612-6206-8719
| |
Collapse
|
17
|
Long-Term Blackcurrant Supplementation Modified Gut Microbiome Profiles in Mice in an Age-Dependent Manner: An Exploratory Study. Nutrients 2020; 12:nu12020290. [PMID: 31973241 PMCID: PMC7070352 DOI: 10.3390/nu12020290] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies have suggested that blackcurrant (BC) anthocyanins have promising health benefits, possibly through regulating gut microbiome. Three- and eighteen-month old female mice were fed standard mouse diets for 4 months, each with or without BC (1% w/w) supplementation (n = 3 in each treatment group, 12 in total). We then assessed gut microbiome profiles using 16S sequencing of their feces. Old mice had a less diverse microbiome community compared to young mice and there was a remarkable age-related difference in microbiome composition in the beta diversity analysis. BC supplementation did not significantly affect alpha or beta diversity. The relative abundance of several phyla, including Firmicutes, Bacteroidetes, Proteobacteria and Tenericutes, was lower in old mice. BC downregulated Firmicutes abundance in young mice and upregulated Bacteroidetes in both age groups, leading to a decreased Firmicutes/Bacteroidetes ratio. There were age-specific differences in the effect of BC supplementation on the microbiome. Twenty-four operational taxonomic units showed a significant interaction between age and BC supplementation (p < 0.01), which suggests that the ecosystem and the host health status affect the functions and efficiency of BC intake. These results indicate that BC supplementation favorably modulates gut microbiome, but there are distinct age-specific differences. Studies with human hosts are needed to better understand BC’s regulatory effects on the gut microbiome.
Collapse
|
18
|
Jayarathne S, Stull AJ, Park OH, Kim JH, Thompson L, Moustaid-Moussa N. Protective Effects of Anthocyanins in Obesity-Associated Inflammation and Changes in Gut Microbiome. Mol Nutr Food Res 2019; 63:e1900149. [PMID: 31389663 DOI: 10.1002/mnfr.201900149] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Obesity is a complex disease and a major public health epidemic. Chronic, low-grade inflammation is a common underlying feature of obesity and associated metabolic diseases; adipose tissue is a major contributor to this systemic inflammation. Evidence shows that obesity-associated inflammation may originate from gut dysfunction, including changes in intestinal bacteria or microbiome profiles. Increasingly, food and plant bioactive compounds with antioxidant and anti-inflammatory properties are proposed to ameliorate obesity-associated inflammation. Among these, the health-promoting effects of anthocyanin-rich foods are of interest here. Specifically, this review summarizes the reported benefits of anthocyanins in obesity-associated inflammation and underlying molecular mechanisms, including the role of gut microbiome and cell signaling pathways regulated by anthocyanins both in vivo and in vitro.
Collapse
Affiliation(s)
- Shasika Jayarathne
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - April J Stull
- Department of Human Ecology, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Oak-Hee Park
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Leslie Thompson
- Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA.,Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,College of Human Sciences, Texas Tech University, Lubbock, TX, 79409, USA.,Obesity Research Institute, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
19
|
Lee Y, Lee JY. Blackcurrant ( Ribes nigrum) Extract Exerts an Anti-Inflammatory Action by Modulating Macrophage Phenotypes. Nutrients 2019; 11:E975. [PMID: 31035378 PMCID: PMC6566326 DOI: 10.3390/nu11050975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages are polarized into different phenotypes depending on tissue microenvironment where they reside. In obesity-associated inflammation, M1-type macrophages are predominant in the inflamed tissue, exerting pro-inflammatory responses. Our previous studies demonstrate that blackcurrant consumption attenuates hepatic inflammation and lipopolysaccharide-stimulated inflammatory responses of splenocytes in obese mice. In this study, we determined whether blackcurrant modulates macrophage phenotypes to exert its anti-inflammatory action. Mouse bone marrow-derived macrophages (BMDM) and human THP-1 macrophages were polarized into M1 macrophages in the presence or absence of blackcurrant extract (BCE). BCE repressed M1 polarization of both murine and human macrophages. Also, to gain insight into the role of blackcurrant metabolites produced in vivo in the regulation of macrophage phenotypes, BMDM were treated with serum obtained from lean or obese mice fed blackcurrant. While serum from lean mice fed blackcurrant did not exert either anti-inflammatory actions or suppressive effects on M1 polarization, serum from obese mice fed blackcurrant reduced the expression of pro-inflammatory genes in BMDM. Our data demonstrate that BCE suppresses M1 polarization, with reduced pro-inflammatory responses. Moreover, this study suggests that blackcurrant metabolites may not exert their anti-inflammatory effect directly by altering macrophage phenotypes, but possibly by inhibiting the production of obesity-associated inflammatory factors.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
20
|
Lee Y, Pham TX, Bae M, Hu S, O'Neill E, Chun OK, Han MJ, Koo SI, Park YK, Lee JY. Blackcurrant (Ribes nigrum) Prevents Obesity-Induced Nonalcoholic Steatohepatitis in Mice. Obesity (Silver Spring) 2019; 27:112-120. [PMID: 30569636 DOI: 10.1002/oby.22353] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE With increasing prevalence of nonalcoholic steatohepatitis (NASH), effective strategies to prevent NASH are needed. This study investigated whether the consumption of blackcurrant (Ribes nigrum) can prevent the development of obesity-induced NASH in vivo. METHODS Male C57BL/6J mice were fed a low-fat control diet, a low-fat diet with 6% whole blackcurrant powder, an obesogenic high-fat/high-sucrose control diet (HF), or a high-fat/high-sucrose diet containing 6% whole blackcurrant powder (HF-B) for 24 weeks. RESULTS HF significantly increased, whereas HF-B markedly decreased, liver weights and triglyceride. Furthermore, blackcurrant attenuated obesity-induced infiltration of macrophages in the liver, in particular, the M1 type, and also suppressed the hepatic expression of fibrogenic genes and fibrosis. Flow cytometric analysis showed that HF significantly increased the percentages of monocytes of total splenocytes, which was markedly attenuated by blackcurrant. HF-B decreased lipopolysaccharide-stimulated mRNA expression of interleukin 1β and tumor necrosis factor α in splenocytes, compared with those from HF controls. Moreover, the levels of circulating and hepatic miR-122-5p and miR-192-5p, known markers for nonalcoholic fatty liver disease, were significantly increased by HF but decreased by HF-B. CONCLUSIONS The study's findings indicate that blackcurrant consumption prevents obesity-induced steatosis, inflammation, and fibrosis in the liver.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Edward O'Neill
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Ock K Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Sung I Koo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
21
|
Udomkasemsab A, Ngamlerst C, Kwanbunjun K, Krasae T, Amnuaysookkasem K, Chunthanom P, Prangthip P. Maoberry (Antidesma bunius) Improves Glucose Metabolism, Triglyceride Levels, and Splenic Lesions in High-Fat Diet-Induced Hypercholesterolemic Rats. J Med Food 2018; 22:29-37. [PMID: 30277837 DOI: 10.1089/jmf.2018.4203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excessive consumption of a high-fat diet (HFD) is associated with hypercholesterolemia and cardiovascular disease (CVD). Dark purple maoberry (Antidesma bunius) fruit is a very good source of antioxidants. We investigated the effects of maoberry on immune function, lipid profiles, and oxidative stress in HFD-induced hypercholesterolemia. Seventy-two male Sprague Dawley rats were divided into the normal group fed with standard diet (ND); HFD groups (HF); and low, medium, and high dose of maoberry extract groups and a simvastatin group (HF-L, HF-M, HF-H, and HF-S, respectively). Maoberry groups were given maoberry extract at concentrations of 0.38, 0.76, and 1.52 g/kg per day. At the same time, HF-S groups were administered simvastatin 10 mg/kg per day. After 12 weeks of maoberry treatment, significant reductions in body weight and triglyceride levels were observed in HF-L, HF-M, and HF-H groups in comparison with HF groups (P < .05). Obvious negative changes in spleen histology were found in HF groups, but not in maoberry-treated groups. Modest, but not significant, improvements were observed in other lipid profiles, immune cells in peripheral blood, oxidative stress, and antioxidant capacity after maoberry supplementation. In summary, these findings suggest that maoberry was helpful in reducing atherogenic risk factors such as lipid profiles, especially triglyceride, inflammation, oxidative stress related to CVD, and lesions in spleen histopathology.
Collapse
Affiliation(s)
- Arunwan Udomkasemsab
- 1 Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Karunee Kwanbunjun
- 1 Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thanyaluk Krasae
- 3 Laboratory Animal Science Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Pornprapha Chunthanom
- 4 Division of Food Science and Technology, Faculty of Natural Resources, Rajamangala University of Technology Isan, Sakon Nakhon Campus, Sakon Nakhon, Thailand
| | - Pattaneeya Prangthip
- 1 Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Wu T, Gao Y, Guo X, Zhang M, Gong L. Blackberry and Blueberry Anthocyanin Supplementation Counteract High-Fat-Diet-Induced Obesity by Alleviating Oxidative Stress and Inflammation and Accelerating Energy Expenditure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4051232. [PMID: 30057677 PMCID: PMC6051031 DOI: 10.1155/2018/4051232] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/14/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
Many studies indicate that an anthocyanin-rich diet has beneficial effects preventing metabolic disease. In the present study, the molecular mechanism underlying the antiobesity effect of consuming blackberry anthocyanins (BLA) and blueberry anthocyanins (BBA) was investigated in high-fat-diet- (HFD-) fed C57BL/6 mice. Sixty mice were administered a low-fat diet (LFD), a HFD, or a HFD plus orlistat, and BLA or BBA in their daily food for 12 weeks. As a result, the consumption of BLA and BBA inhibited body weight gain by 40.5% and 55.4%, respectively, in HFD-fed mice. The BLA and BBA treatments markedly reduced serum and hepatic lipid levels and significantly increased hepatic superoxide dismutase and glutathione peroxidase activities. In addition, the treatments effectively increased fecal acetate and butyrate levels and significantly attenuated expression of tumor necrosis factor TNF-α, interleukin-6, and nuclear factor-kappaB genes. Moreover, gas chromatography time-of-flight mass spectroscopy results suggested that BLA and BBA significantly affected the hepatic lipid and glucose metabolic pathways, including glycerophospholipid metabolism, glutathione metabolism, and the insulin-signaling pathway. Therefore, BLA and BBA ameliorated diet-induced obesity by alleviating oxidative stress and inflammation and accelerating energy expenditure.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
| | - Yufang Gao
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
| | - Xueqi Guo
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
| |
Collapse
|
23
|
Rocha DMUP, Caldas APS, da Silva BP, Hermsdorff HHM, Alfenas RDCG. Effects of blueberry and cranberry consumption on type 2 diabetes glycemic control: A systematic review. Crit Rev Food Sci Nutr 2018; 59:1816-1828. [PMID: 29345498 DOI: 10.1080/10408398.2018.1430019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The metabolic effects of cranberry and blueberry consumption on glycemic control have been evaluated in vitro and in animal models as well as in human studies, although findings have not been systematically reviewed yet. Therefore, a systematic review was carried out of relevant randomized clinical trials (RCTs) in order to assess the effect of berries (blueberry and cranberry) consumption on type 2 diabetes (T2DM) glycemic control. Some evidences were also discussed on the anti-diabetic mechanisms exerted by berries polyphenols. Studies were identified by searching electronic databases: LILACS, PubMed/MEDLINE, Scopus, The Cochrane Library and Web of Science. Three authors independently searched and extracted RCTs in which the effect of berries (cranberry or blueberry) consumption on T2DM glycemic control was assessed. A total of 7 RCTs, involving 270 adults with type 2 diabetes were included. Despite the heterogeneity of the administration forms (in natura, dried, extract, preparations - juice), dosage, duration of the intervention and type of population of the studies involving these two berries some studies highlight the potential benefit of berries, especially of blueberry, on glucose metabolism in T2DM subjects. Daily cranberry juice (240 mL) consumption for 12 weeks and blueberry extract or powder supplementation (9.1 to 9.8 mg of anthocyanins, respectively) for 8 to 12 weeks showed a beneficial effect on glucose control in T2DM subjects. Those results indicate a promising use of these berries in T2DM management; although more studies are required to better understand the mechanisms involved.
Collapse
Affiliation(s)
| | - Ana Paula Silva Caldas
- a Department of Nutrition and Health , Universidade Federal de Viçosa , Viçosa , MG , Brazil
| | | | | | | |
Collapse
|
24
|
Skates E, Overall J, DeZego K, Wilson M, Esposito D, Lila MA, Komarnytsky S. Berries containing anthocyanins with enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage. Food Chem Toxicol 2017; 111:445-453. [PMID: 29196236 DOI: 10.1016/j.fct.2017.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022]
Abstract
Driven by the need for alternative whole food options to manage metabolic syndrome, multiple dietary interventions are suggested to achieve a better control of metabolic risk factors and molecular networks that regulate cellular energy metabolism. It is generally accepted that anthocyanin-rich diets are beneficial for maintaining healthy body weight, improving glucose and lipid metabolism, and determining inflammatory status of key metabolic tissues. However, anthocyanins are a structurally diverse group of phenolic compounds and their individual contributions to improving metabolic health are not clear. In this study, we show that consumption of berries containing anthocyanins with enhanced methylation profiles (malvidin and petunidin) is more effective at reducing high fat diet-induced metabolic damage in the C57BL/6 mouse model of polygenic obesity. Blueberries and Concord grapes (57% and 33% anthocyanins as malvidin, petunidin, or peonidin, respectively) improved body composition through individual significant effects on energy expenditure and increased activity. Methylated anthocyanins are also more effective at enhancing mitochondrial respiration and dissipation of the mitochondrial proton gradient (proton leak) in adipose tissue, thus counteracting mitochondrial dysfunction associated with metabolic stress. Together, these results provide direct proof of the higher protective potential of methylated anthocyanins against the metabolic consequences of chronic exposure to calorie-dense foods.
Collapse
Affiliation(s)
- Emily Skates
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC, 28081, United States; School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - John Overall
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC, 28081, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC, 27695, United States
| | - Katelyn DeZego
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC, 28081, United States; Department of Biology, Catawba College, 2300 W Innes St, Salisbury, NC, 28144, United States
| | - Mickey Wilson
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC, 28081, United States
| | - Debora Esposito
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC, 28081, United States; Department of Animal Science, NC State University, 120 Broughton Drive, Raleigh, NC, 27695, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC, 28081, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC, 27695, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC, 28081, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC, 27695, United States.
| |
Collapse
|
25
|
Azzini E, Giacometti J, Russo GL. Antiobesity Effects of Anthocyanins in Preclinical and Clinical Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2740364. [PMID: 28785373 PMCID: PMC5530435 DOI: 10.1155/2017/2740364] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/23/2017] [Accepted: 06/13/2017] [Indexed: 01/08/2023]
Abstract
The natural phytochemicals present in foods, including anthocyanins, might play a role in attenuating obesity by producing a decrease in weight and adipose tissue. This review focused on current knowledge about anthocyanins' role in obesity and its related comorbidities reported in animal models and humans. We summarized their target identification and mechanism of action through several pathways and their final effects on health and well-being. Into consideration of ongoing researches, we highlighted the following key points: a healthy relationship between anthocyanin supplementation and antiobesity effects suffers of the same pros and cons evidenced when the beneficial responses to other phytochemical treatments towards different degenerative diseases have been considered; the different dosage applied in animal versus clinical studies; the complex metabolism and biotransformation to which anthocyanins and phytochemicals are subjected in the intestine and tissues; the possibility that different components present in the supplemented mixtures can interact generating antagonistic, synergistic, or additive effects difficult to predict, and the difference between prevention and therapy. The evolution of the field must seriously consider the need to establish new and adequate cellular and animal models which may, in turn, allow the design of more efficient and prevention-targeted clinical studies.
Collapse
Affiliation(s)
- Elena Azzini
- Council for Agricultural Research and Economics (CREA), Research Center for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| |
Collapse
|
26
|
Anthocyanin supplementation in alleviating thrombogenesis in overweight and obese population: A randomized, double-blind, placebo-controlled study. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|