1
|
Ali DS, El-Haddad AE, Mohamed HS, El-Bassuony AA, Hegab MM, AbdElgayed G, Ebaid H, Ahmed SA, Kamel EM. Quercetin Derivatives from Bidens pilosa Suppressed Cell Proliferation via Inhibition of RSK2 Kinase and Aldose Reductase Enzymes: UPLC-MS/MS, GC-MS, In Vitro, and Computational Studies. Appl Biochem Biotechnol 2025; 197:2474-2492. [PMID: 39760986 PMCID: PMC11985646 DOI: 10.1007/s12010-024-05134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Traditionally, Bidens pilosa L. is an edible herb utilized for various ailments. The study accomplished a complete analysis of B. pilosa extract including UPLC/T-TOF-MS/MS, GC-MS, and in vitro antiproliferative activity, in addition to molecular docking on kinase and aldose reductase enzymes. From GC-MS analysis, the percentage of identified unsaturated fatty acids (FAs) (11.38%) was greater than saturated FAs (8.69%), while the sterols percent (39.92%) was higher than the hydrocarbons percent (6.6%). Oleic and palmitic acids are the major FAs (9.48% and 6.14%, respectively). Phytochemical profile uncovered the presence of quercetin, kaempferol, myricetin, and isorhamnetin aglycones and/or glycoside derivatives alongside apigenin, acacetin, and luteolin derivatives. B. pilosa extract suppressed cell proliferation in a concentration-dependent manner against SNB-19 and SK-MEL-5 cell lines (IC50 1.66 ± 0.06 and 4.04 ± 0.14 mg/mL, respectively). These potentials aligned with the molecular docking results on aldose reductase and kinase enzymes with promising binding affinities (- 5.3 to - 8.89 kcal mol-1). B. pilosa metabolites were found as kinases and aldose reductase inhibitors, which rationalize their antiproliferative activity. Unfortunately, toxicity assessments were not performed to assess the safety of B. pilosa extract. Assessment of the therapeutic efficiency via in vivo and clinical studies is required.
Collapse
Affiliation(s)
- Doaa S Ali
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Alaadin E El-Haddad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Hussein S Mohamed
- Chemistry of Medicinal and Aromatic Plants Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Ashraf A El-Bassuony
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Momtaz M Hegab
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Bo2455, 11451, Riyadh, Saudi Arabia
| | - Shimaa A Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
2
|
Shehata AI, Shahin SA, Taha SA, Elmaghraby AM, Alhoshy M, Soliman AA, Amer AA, Hendy AM, Gewaily MS, Teiba II, El Basuini MF. Essential Oil of Bay Laurel (Laurus nobilis) Enhances Growth and Immunity in Cold-Stressed Nile Tilapia (Oreochromis Niloticus). J Anim Physiol Anim Nutr (Berl) 2025. [PMID: 39898367 DOI: 10.1111/jpn.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Bay laurel (Laurus nobilis) essential oil is known for its antimicrobial, anti-inflammatory, and antioxidant properties. This study examined the effects of L. nobilis oil (LN) on Nile tilapia (Oreochromis niloticus) under cold stress conditions (16°C). Tilapia (initial weight, 5.02 ± 0.02 g) were acclimatized to 16°C for 14 days before being fed diets containing 0, 0.5, 1.0, 1.5, 2.0, and 2.5 g/kg LN oil for 84 days. The 1.5 g/kg LN oil group exhibited the highest final body weight and weight gain (p ≤ 0.05), while survival rates peaked at 1 g/kg. Biometric indices and feed efficiency were significantly enhanced, particularly at 1.5 g/kg (p ≤ 0.05). Histological analysis revealed improved intestinal and hepatic structures in LN-supplemented groups, although mild alterations were observed at 2.0 and 2.5 g/kg. Blood biochemical analysis showed increased total protein and reduced cholesterol in supplemented groups. Immune responses, including serum lysozyme activity and bacterial inhibition, were significantly enhanced at 1.5 g/kg or higher (p ≤ 0.05). Antioxidant enzyme activities, including superoxide dismutase (SOD) and catalase (CAT), increased (p ≤ 0.05) with LN oil supplementation, while malondialdehyde (MDA) levels decreased, indicating reduced oxidative stress. Gene expression analysis demonstrated increased insulin-like growth factor 1 and glucose transporter 4 levels with 1.5 g/kg LN oil, and tumor necrosis factor-alpha expression decreased at higher dosages. Dietary LN oil, particularly at 1.5 g/kg, enhances growth, immunity, and antioxidant defense in Nile tilapia under cold stress. Future studies should optimize dosages and explore broader applications across species and conditions.
Collapse
Affiliation(s)
- Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Shimaa A Shahin
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Sara Ahmed Taha
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ayaat M Elmaghraby
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ali A Soliman
- Fish Nutrition Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Asem A Amer
- Department of Fish Nutrition and Feed Technology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Amany M Hendy
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Islam I Teiba
- Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Mohammed F El Basuini
- Faculty of Agriculture, Tanta University, Tanta, Egypt
- Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt
| |
Collapse
|
3
|
Khaled Y, AbdElgawad H, Hegab MM, Okla MK, AlGarawi AM, Tawfik WZ, Sayed M. Priming with multiwalled carbon nanotubes improved biomass accumulation, biological activity and metabolism of four horticultural plants during the sprouting stage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2086-2100. [PMID: 39520146 DOI: 10.1002/jsfa.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND It is imperative to enhance the quality of sprouts since they are a rich source of various primary and secondary metabolites. The objective of this work was to examine how multiwalled carbon nanotubes (MWCNTs) priming at various concentrations affected the nutritional qualities of four horticultural plants (T. foenum-graecum, L. grandiflorum, L. sativum and A. graveolens) and their sprouting processes. RESULTS Among the four applied concentrations (10-60 mgL-1), MWCNTs at 10 and 40 mg L⁻¹ induced the highest biomass accumulation in L. grandiflorum and T. foenum-graecum, respectively, while 60 mg L⁻¹ was most effective for L. sativum and A. graveolent. MWCNTs induced growth by enhancing photosynthesis, as shown by increased chlorophyll content and rubisco activity, which rose by 27%, 17%, 23% and 12% in T. foenum-graecum, L. grandiflorum, L. sativum, and A. graveolens, respectively. Enhanced photosynthesis by MWCNTs improved sugar metabolism as indicated by increased activity of sugar metabolic enzymes such as amylase, starch synthase and invertase. This also supplied the carbon necessary for the production of primary (amino acids, fatty acids and organic acids) and secondary (flavonoids and polyphenols) metabolites. There was consistently higher activity of antioxidant enzymes (catalase and peroxidase). Interestingly, species-specific reactions to MWCNT priming were observed, where L. sativum sprouts showed the highest antioxidant activity, followed by A. graveolens. CONCLUSION MWCNT priming improves sprout growth and nutritional quality by boosting metabolic processes and antioxidant activity, presenting a promising approach for sustainable agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yasmen Khaled
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerpen, Belgium
| | - Momtaz M Hegab
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal Mohamed AlGarawi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wael Z Tawfik
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mona Sayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Sayed GHE, Fadel M, Fouad R, Ahmed HM, Hamed AA. Improving natural red pigment production by Streptomyces phaeolivaceus strain GH27 for functionalization of textiles with in silico ADME prediction. BMC Microbiol 2025; 25:19. [PMID: 39806289 PMCID: PMC11726976 DOI: 10.1186/s12866-024-03697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1. The ideal growth conditions included 1% (w/v) starch, diammonium citrate, dibasic sodium phosphate, 5% (v/v) inoculum, pH 8, a rotation speed of 150 rpm, a temperature of 37 °C, and an incubation period of 9 days. Using ethanol as a solvent, the red pigment was effectively recovered. Data indicates that pigment content remained steady at 40 and 50 °C. Heating the pigment extract to 60, 70, 80, 90, and 100 °C for one hour results in pigment retention of 98%, 96.5%, 95.5%, 94.6%, and 92.6% of its pigment density, respectively. Studies indicate that the pigment extracts exhibited optimal stability at alkaline pH levels. The findings demonstrate that the red pigment extract has a peak absorbance range of 280-340 nm, with a λmax of 300 nm. GC/MS analysis revealed that the primary components of the pigment extract were linolenic acid methyl ester and oleic acid methyl ester, constituting 26.41% and 25.25%, respectively. Fabrics dyed with extracted red pigment exhibit excellent fastness when using the comprehensive green method. In comparison to conventional and nanotechnological attributes, printed samples exhibit significant color strength without environmental repercussions. The treatment of cotton, wool, and polyester samples suppressed pathogen growth to differing extents. Polyester had the most important inhibitory effects on Staphylococcus aureus (50.03%) and Bacillus cereus (39.49%). The ADME physicochemical properties of the predominant medication were assessed, together with its bioavailability. The radar plot demonstrated ideal parameters for size, polarity, lipophilicity, solubility, and saturation, excluding flexibility. It exhibited intermediate synthetic accessibility, exceptional permeability and absorption, elevated gastrointestinal absorption, and blood-brain barrier penetration; nonetheless, it did not adhere to the medicinal chemistry rule of three.
Collapse
Affiliation(s)
- Gehad H El Sayed
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
| | - Mohamed Fadel
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt
| | - Rasha Fouad
- Medicinal and Aromatic Plants Research Department, National Research Centre, Dokki, Giza, Egypt
| | - Hend M Ahmed
- Dyeing, Printing and Intermediate Auxilaries Department, Textile Research and Technology Institute, National Research Center, Dokki, Giza, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center, Dokki, Giza, Egypt.
| |
Collapse
|
5
|
Fathy HM, Awad M, Alfuhaid NA, Ibrahim EDS, Moustafa MAM, El-Zayat AS. Isolation and Characterization of Bacillus Strains from Egyptian Mangroves: Exploring Their Endophytic Potential in Maize for Biological Control of Spodoptera frugiperda. BIOLOGY 2024; 13:1057. [PMID: 39765724 PMCID: PMC11673426 DOI: 10.3390/biology13121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
The widespread use of pesticides to manage Spodoptera frugiperda has led to significant challenges. This insect has developed resistance to 47 active insecticide ingredients. Therefore, endophytic entomopathogenic bacteria have been explored as an alternative pest management strategy, offering the potential to reduce reliance on chemical pesticides. The current study aims to evaluate the colonization potential of indigenous marine Bacillus strains as endophytes in maize plants and to assess their insecticidal activity against S. frugiperda. Four inoculation methods-foliar application, seed treatment, soil drenching, and a combination of all three-were used to establish the Bacillus strains as endophytes in maize plants. Our results showed that the promising native Bacillus strains exhibited both antibacterial and insecticidal effects against S. frugiperda neonates under laboratory conditions. Foliar application of Bacillus sp. Esh39 caused the highest mortality rate (65%), followed by Bacillus tequilensis R39 (60%). However, this method did not significantly enhance plant height or chlorophyll content. The potential of these native Bacillus strains warrants further investigation to improve biological control via endophytic mediation. Our findings provide valuable insights into the bacterial diversity and functionality of mangrove ecosystems and pave the way for innovative, sustainable insect management strategies.
Collapse
Affiliation(s)
- Hayam M. Fathy
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (H.M.F.); (A.S.E.-Z.)
| | - Mona Awad
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.-D.S.I.); (M.A.M.M.)
| | - Nawal A. Alfuhaid
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - El-Desoky S. Ibrahim
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.-D.S.I.); (M.A.M.M.)
| | - Moataz A. M. Moustafa
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.-D.S.I.); (M.A.M.M.)
| | - Ayatollah S. El-Zayat
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (H.M.F.); (A.S.E.-Z.)
| |
Collapse
|
6
|
Hassan HS, Feleafel MN, El-Lahot MSRA, El-Hefny M, Rahman TFMA, Mohamed AA, Abd-Elkader DY, Mahdy RM. Biostimulants for enhancing productivity, bioactive components, and the essential oils of garlic with the potential antifungal activity. AMB Express 2024; 14:130. [PMID: 39604786 PMCID: PMC11602910 DOI: 10.1186/s13568-024-01790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
To feed the world's growing population, the agriculture sector has recently had to strike a balance between reducing its detrimental effects on ecosystems and human health and boosting resource efficiency and production. In reality, pesticides and fertilizers are vital to agriculture and are useful instruments that farmers can employ to increase yield and guarantee steady productivity throughout the seasons under both favorable and unfavorable conditions. Therefore, in the present study, fertilizing with potassium citrate as a foliar spray and humic acid (HA) as a soil application allowed for the evaluation of vegetative growth parameters (plant height, number of leaves/plant), total phenolic content, total carbohydrate, antioxidant activity, the essential oil (EO) composition, and bulb yield of garlic (Allium sativum L.). These were carried out in two field experiments throughout the 2020-2021 and 2021-2022 growth seasons. A gas chromatography-mass spectroscopy (GC-MS) apparatus was performed to determine the chemical composition of the isolated EOs. The antifungal activity of the EOs was assessed against two fungi, Fusarium proliferatum and Macrophomina phaseolina, that cause geranium plants to wilt and decay. The findings indicated that applying HA at a rate of 2 g/L with potassium citrate at a rate of 5 or 10 mL/L produced garlic bulbs with the highest levels of productivity and diameter. The diverse treatments between HA with potassium citrate resulted in significant variations in the bioactive components, such as total phenol content, antioxidant activity, total carbohydrate, and sulfur content. The analysis of the EOs revealed the presence of dimethyl trisulfide, diallyl disulfide, methyl 2-propenyl trisulfide, allitridin, and methyl allyl disulfide and allyl tetrasulfide as main compounds. By gradually increasing the concentration of the garlic EO to 4000 µg/mL compared to the control, the inhibition percentage of fungal growth of F. proliferatum and M. phaseolina was increased. In conclusion, a high concentration of HA with potassium citrate (5 or 10 mL/L), may be suitable and highly appreciated as a fertilizer application to enhance the productivity and EOs content of garlic plants.
Collapse
Affiliation(s)
- Hanaa S Hassan
- Department of Vegetable, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mostafa N Feleafel
- Department of Vegetable, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mina S R Abd El-Lahot
- Department of Food Science and Technology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Mervat El-Hefny
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Taghreed F M Abdel Rahman
- Department of Ornamental, Medicinal and Aromatic Plant Diseases, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Abeer A Mohamed
- Plant Pathology Institute, Agricultural Research Center (ARC), Alexandria, 21616, Egypt
| | - Doaa Y Abd-Elkader
- Department of Vegetable, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - R M Mahdy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
7
|
Abd-Elhakim YM, El-Fatah SSA, Behairy A, Saber TM, El-Sharkawy NI, Moustafa GG, Abdelgawad FE, Saber T, Samaha MM, El Euony OI. Pumpkin seed oil lessens the colchicine-induced altered sex male hormone balance, testicular oxidative status, sperm abnormalities, and collagen deposition in male rats via Caspase3/Desmin/PCNA modulation. Food Chem Toxicol 2024; 193:115029. [PMID: 39362398 DOI: 10.1016/j.fct.2024.115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
This study examined the efficiency of pumpkin seed oil (PSO) to rescue the colchicine (CHC)-induced adverse impacts on sperm characteristics, male sex hormones, testicular architecture, oxidative status, DNA content, collagen deposition, and immune expression of desmin and PCNA. Male Sprague Dawley rats were divided into four experimental groups (n = 10 each): control (distilled water), CHC (0.6 mg/kg b.wt), PSO (4 mL/kg b.wt), and CHC + PSO. After 60 days of dosing, CHC significantly reduced sperm motility (19%), sperm concentration (38%), estradiol (52%), testosterone (37%), luteinizing hormone (54%), and follicle-stimulating hormone (29%) compared to the control. Yet, the testicular tissues of CHC-administered rats exhibited elevated abnormal sperms (156%), malondialdehyde (354%), lactate dehydrogenase (73%), Caspase-3 (66%), and 8-hydroxyguanosine (65%) but lower reduced glutathione (74%), catalase (73%), and superoxide dismutase (78%) compared to the control group. Moreover, CHC induced testicular degeneration, distorted seminiferous tubules, apoptotic cells, exfoliated spermatogenic cells, reduced DNA content, decreased PCNA and desmin immune-expression, and increased collagen deposition. PSO effectively reversed the CHC-induced alterations in sperm quality and testicular function and architecture, likely through its antioxidant, antifibrotic, anti-apoptotic, and DNA-protective properties. These results suggest that PSO may be a beneficial intervention for long-term CHC users and may protect against CHC-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Nabela I El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fathy Elsayed Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mariam M Samaha
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Omnia I El Euony
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| |
Collapse
|
8
|
Reda RM, El-Rahim MIA, Elkerdawy DA, Metwally MMM, Said N. Effects of mandarin peel powder on growth, biochemical, immune, and intestinal health in Oreochromis niloticus at suboptimal temperatures. BMC Vet Res 2024; 20:446. [PMID: 39358762 PMCID: PMC11446141 DOI: 10.1186/s12917-024-04273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
This 60-day study aimed to examine the efficacy of a diet supplemented with mandarin peel powder (MP) in enhancing the health and survival of Oreochromis niloticus under suboptimal temperature conditions (21 ℃). One hundred and eighty Nile tilapia fish (22.51 ± 0.04 g) were randomly distributed into four experimental groups; each of 3 replicates (15 fish per replicate). The first group (CONT) received a basal diet without MP. The second (MP10%), third (MP15%), and fourth (MP20%) groups were fed diets containing 10, 15, and 20% MP powder, respectively. At the end of the feeding trail, growth performance, serum growth hormone, α-amylase enzyme, lysozyme activity, nitric oxide, protease activity, globulin, serum levels of IL-1ß, antioxidant status, and intestinal histology were measured. The results showed insignificant differences between CONT, MP15%, and MP20% groups in the final body weight and specific growth rate. The growth hormones in the MP15% and MP20% groups did not show a significant difference compared to fish fed a normal basal diet (CONT). However, the amylase enzymes were significantly greater in both groups. The MP20% and MP15% groups showed a significant increase in antioxidant, lysozyme, nitric oxide, and protease activities compared to CONT. The results also showed that fish that were fed a diet with MP had significantly less of the pro-inflammatory cytokine interleukin-1 beta, and their intestinal villi got wider, especially in the MP20% group. It could be concluded that feeding tilapia on a diet with 20% MP is an effective strategy to improve their health when the temperature is below 21 °C. This is because the fish exhibit higher levels of antioxidant activity, reduced pro-inflammatory responses, and improved intestinal health without difference in the growth performance in compared to control group.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Mostafa I Abd El-Rahim
- Department of Animal and Poultry Production, Faculty of Technology and Development, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Dawlat A Elkerdawy
- Department of Animal and Poultry Production, Faculty of Technology and Development, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Nermin Said
- Department of Animal and Poultry Production, Faculty of Technology and Development, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
9
|
Almukainzi M, El-Masry TA, Ibrahim HA, Saad HM, El Zahaby EI, Saleh A, El-Nagar MMF. Ameliorative Effect of Chitosan/ Spirulina platensis Ethanolic Extract Nanoformulation against Cyclophosphamide-Induced Ovarian Toxicity: Role of PPAR-γ/Nrf-2/HO-1 and NF-kB/TNF-α Signaling Pathways. Mar Drugs 2024; 22:395. [PMID: 39330276 PMCID: PMC11433581 DOI: 10.3390/md22090395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Cyclophosphamide (CP) is an anticancer drug that causes infertility disorders. This study was designed to evaluate a nanoformulation of chitosan with an ethanolic extract from Spirulina platensis in terms of its protection against cyclophosphamide-induced ovarian toxicity. Nine groups of female Wistar rats were randomly assigned as follows: 1: control vehicle, 2: chitosan polymer, 3: telmisartan, 4: Spirulina platensis extract, 5: nanoformulation of the Spirulina platensis, and 6: single injection of CP; groups 7, 8, and 9 received the same treatments as those used in groups 3, 4, and 5, respectively, with a single dose of CP (200 mg/kg, I.P). The results displayed that the CP treatment decreased estradiol, progesterone, anti-mullerian hormone, and GSH content, and it downregulated PPAR-γ, Nrf-2, and HO-1 gene expression. In addition, the CP treatment caused an increase in the FSH, LH, and MDA levels. In the same manner, the protein expression of caspase-3, NF-kB, and TNF-α was upregulated in response to the CP treatment, while PPAR-γ was downregulated in comparison with the control. The rats treated with SPNPs exhibited a substantial reduction in the detrimental effects of oxidative stress and inflammation of the ovarian tissue. This study's conclusions showed that SPNPs counteracted the effects of CP, preventing the death of ovarian follicles and restoring the gonadotropin hormone balance and normal ovarian histological appearance.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Cairo 51511, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (M.A.); (A.S.)
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (T.A.E.-M.); (H.A.I.)
| |
Collapse
|
10
|
Rabie M, Aseel DG, Younes HA, Behiry SI, Abdelkhalek A. Transcriptional responses and secondary metabolites variation of tomato plant in response to tobacco mosaic virus infestation. Sci Rep 2024; 14:19565. [PMID: 39174617 PMCID: PMC11341961 DOI: 10.1038/s41598-024-69492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
The present study focused on the impact of infection with the tobacco mosaic virus (TMV). Specifically, changes in phytochemicals and gene activity related to pathogenesis-related and phenylpropanoid pathway genes in tomato plants (Solanum lycopersicum L.) during a period of 2-14 days post-inoculation (dpi). According to TEM investigation and coat protein sequence analysis, the purified TMV Egyptian AM isolate (PP133743) has a rod-shaped structure with a diameter of around 110 nm. The RT-qPCR analysis revealed that PR-1 showed an initial increase after TMV infection, as seen in the time-course analysis. In contrast, PR-2 was consistently elevated throughout the infection, suggesting a stronger reaction to the virus and suppressing PAL expression at 6 to 14 dpi. The expression levels of HQT and CHS transcripts exhibited alternating patterns of up-regulation and down-regulation at different time intervals. The HPLC and GC-MS analysis of control- and TMV-infected tomato extracts revealed that different phenolic, flavonoid, and fatty acid compounds were increased (such as naringenin, rutin, flavone, ferulic acid, and pyrogallol) or significantly decreased (such as salicylic acid and chlorogenic acid) after TMV infection. The ability of TMV to inhibit most polyphenolic compounds could potentially accelerate the viral life cycle. Consequently, focusing on enhancing the levels of such suppressed compounds may be critical for developing plant viral infection management strategies.
Collapse
Affiliation(s)
- Mona Rabie
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Hosny A Younes
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt.
| |
Collapse
|
11
|
Awad M, Alfuhaid NA, Amer A, Hassan NN, Moustafa MAM. Towards Sustainable Pest Management: Toxicity, Biochemical Effects, and Molecular Docking Analysis of Ocimum basilicum (Lamiaceae) Essential Oil on Agrotis ipsilon and Spodoptera littoralis (Lepidoptera: Noctuidae). NEOTROPICAL ENTOMOLOGY 2024; 53:669-681. [PMID: 38478300 PMCID: PMC11074029 DOI: 10.1007/s13744-024-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/07/2024] [Indexed: 05/07/2024]
Abstract
Over the last decade, essential oils (EOs) have become potential ingredients for insecticide formulations due to their widespread availability and perceived safety. Therefore, this study aimed to evaluate the toxicity and biochemical efficacy of basil (Ocimum basilicum) (Lamiaceae) against two destructive pests Noctuidae, Agrotis ipsilon (Hufnagel) and Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). In addition, a molecular docking study was performed to gain insight into the binding pattern between glutathione S-transferase (GST) and linalool, the main component of EO. GC-MS analysis of O. basilicum EO revealed that linalool is the most abundant compound (29.34%). However, the toxicity tests showed no significant difference between the values of LC50 of O. basilicum EO to A. ipsilon and S. littoralis. On the other hand, the sublethal experiments indicated that treating the second instar larvae with LC15 or LC50 values of O. basilicum EO significantly prolonged the larval duration in both insects, compared to the control. Regarding the biochemical effect of O. basilicum EO, the treatments significantly impacted the activity of detoxification enzymes. A notable elevation in glutathione S-transferase (GST) activity was recorded in A. ipsilon larvae compared with a reduction in S. littoralis larvae. The molecular docking analysis revealed that linalool bonded with the amino acid serine (SER 9) of GST, indicating its binding affinity with the enzyme. The obtained results could offer valuable insights into the mode of action of O. basilicum and can encourage the adoption of sustainable pest control practices that incorporate essential oils.
Collapse
Affiliation(s)
- Mona Awad
- Dept of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo Univ, Giza, Egypt
| | - Nawal Abdulaziz Alfuhaid
- Dept of Biology, College of Science and Humanities, Prince Sattam Bin Abdulziz Univ, Al-Kharj, Saudi Arabia
| | - Alia Amer
- Medicinal and Aromatic Plants Dept, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Nancy N Hassan
- Dept of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo Univ, Giza, Egypt
| | - Moataz A M Moustafa
- Dept of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo Univ, Giza, Egypt.
| |
Collapse
|
12
|
Alshammari FA. Exploring the Antibacterial Potential of Artemisia judaica Compounds Targeting the Hydrolase/Antibiotic Protein in Klebsiella pneumoniae: In Vitro and In Silico Investigations. Pharmaceuticals (Basel) 2024; 17:667. [PMID: 38931335 PMCID: PMC11207000 DOI: 10.3390/ph17060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Carbapenem antibiotic resistance is an emerging medical concern. Bacteria that possess the Klebsiella pneumoniae carbapenemase (KPC) protein, an enzyme that catalyzes the degradation of carbapenem antibiotics, have exhibited remarkable resistance to traditional and even modern therapeutic approaches. This study aimed to identify potential natural drug candidates sourced from the leaves of Artemisia judaica (A. judaica). The phytoconstituents present in A. judaica dried leaves were extracted using ethanol 80%. A reasonable amount of the extract was used to identify these phytochemicals via gas chromatography/mass spectrometry (GC/MS). One hundred twenty-two bioactive compounds from A. judaica were identified and subjected to docking analysis against the target bacterial protein. Four compounds (PubChem CID: 6917974, 159099, 628694, and 482788) were selected based on favorable docking scores (-9, -7.8, -7.7, and -7.5 kcal/mol). This computational investigation highlights the potential of these four compounds as promising antibacterial candidates against the specific KPC protein. Additionally, in vitro antibacterial assays using A. judaica extracts were conducted. The minimum inhibitory concentration (MIC) against the bacterium K. pneumonia was 125 μg/mL. Well-disk diffusion tests exhibited inhibition zones ranging from 10.3 ± 0.5 mm to 17 ± 0.5 mm at different concentrations, and time-kill kinetics at 12 h indicated effective inhibition of bacterial growth by A. judaica leaf extracts. Our findings have revealed the pharmaceutical potential of Artemisia judaica as a natural source for drug candidates against carbapenem-resistant pathogens.
Collapse
Affiliation(s)
- Fahdah Ayed Alshammari
- Department of Biology, College of Science, Northern Border University, Arar 76312, Saudi Arabia
| |
Collapse
|
13
|
Almukainzi M, El-Masry TA, Ibrahim HA, Saad HM, El Zahaby EI, Saleh A, El-Nagar MMF. New insights into the potential cardioprotective effects of telmisartan and nanoformulated extract of Spirulina platensis via regulation of oxidative stress, apoptosis, and autophagy in an experimental model. Front Pharmacol 2024; 15:1380057. [PMID: 38783939 PMCID: PMC11112102 DOI: 10.3389/fphar.2024.1380057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background Cardiotoxicity is one of the limiting side effects of the commonly used anticancer agent cyclophosphamide (Cyclo). Materials and methods The possible protective effects of telmisartan and nanoformulated Spirulina platensis (Sp) methanolic extract against Cyclo-induced cardiotoxicity were examined in this study. Experimental groups of rats were randomly divided into nine groups as control vehicle, control polymer, telmisartan (TEL, 10 mg/kg), free Sp extract (300 mg/kg), nano Sp extract (100 mg/kg), Cyclo (200 mg/kg), TEL + Cyclo, free Sp + Cyclo, and nano Sp + Cyclo. The groups with Cyclo combinations were treated in the same manner as their corresponding ones without Cyclo, with a single dose of Cyclo on day 18. Results The results indicate that Cyclo causes significant cardiotoxicity, manifesting in the form of notable increases of 155.49%, 105.74%, 451.76%, and 826.07% in the serum levels of glutamic oxaloacetic transaminase (SGOT), lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), and cardiac troponin I (cTnI) enzyme activities, respectively, as compared to the control. In addition, the cardiac glutathione (GSH) content and activity of glutathione peroxidase-1 (GPX-1) enzyme decreased by 65.94% and 73.85%, respectively. Treatment with nano Sp extract showed the most prominent restorations of the altered biochemical, histopathological, and immunohistochemical features as compared with those by TEL and free Sp; moreover, reductions of 30.64% and 43.02% in the p-AKT content as well as 60.43% and 75.30% of the endothelial nitric oxide synthase (eNOS) immunoreactivity were detected in the TEL and free Sp treatment groups, respectively. Interestingly, nano Sp boosted the autophagy signal via activation of beclin-1 (36.42% and 153.4%), activation of LC3II (69.13% and 195%), downregulation of p62 expressions (39.68% and 62.45%), and increased gene expressions of paraoxonase-1 (PON-1) (90.3% and 225.9%) compared to the TEL and free Sp treatment groups, respectively. Conclusion The findings suggest the protective efficiency of telmisartan and nano Sp extract against cardiotoxicity via activations of the antioxidant, antiapoptotic, and autophagy signaling pathways.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Almuhayawi MS, Alruhaili MH, Gattan HS, Alharbi MT, Nagshabandi MK, Hagagy N, Almuhayawi SM, Al Jaouni SK, Selim S, Mostafa EM, Elnosary ME. In vitro and in silico biopotentials of phytochemical compositions and antistaphylococcal and antipseudomonal activities of volatile compounds of Argania spinosa (L.) seed oil. Front Bioeng Biotechnol 2024; 12:1348344. [PMID: 38544980 PMCID: PMC10965789 DOI: 10.3389/fbioe.2024.1348344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/06/2024] [Indexed: 11/11/2024] Open
Abstract
Active components in medicinal plants provide unlimited useful and traditional medicines. Antimicrobial activities are found in secondary metabolites in plant extracts such as argan oil. This experimental investigation aims to determine argan oil's volatile compounds and examine their in vitro antimicrobial properties. In silico simulations, molecular docking, pharmacokinetics, and drug-likeness prediction revealed the processes underlying the in vitro biological possessions. Gas chromatography-mass spectrometry (GC/MS) was used to screen argan oil's primary components. In silico molecular docking studies were used to investigate the ability of the selected bioactive constituents of argan oil to act effectively against Pseudomonas aeruginosa and Staphylococcus aureus (S. aureus) isolated from infections. The goal was to study their ability to interact with both bacteria's essential therapeutic target protein. The 21 chemicals in argan oil were identified by GC/MS. Docking results for all compounds with S. aureus and P. aeruginosa protease proteins ranged from -5 to -9.4 kcal/mol and -5.7 to -9.7 kcal/mol, respectively, compared to reference ligands. Our docking result indicates that the 10-octadecenoic acid, methyl ester was the most significant compound with affinity scores of -9.4 and -9.7 kcal/mol for S. aureus and P. aeruginosa proteins, respectively. The minimal bactericidal concentration (MBC) and minimal inhibitory concentration (MIC) of argan oil were 0.7 ± 0.03 and 0.5 ± 0.01 for S. aureus and 0.4 ± 0.01 and 0.3 ± 0.02 for P. aeruginosa, respectively. We confirmed the antimicrobial properties of argan oil that showed significant growth inhibition for S. aureus and P. aeruginosa.
Collapse
Affiliation(s)
- Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H. Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Hattan S. Gattan
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohanned Talal Alharbi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed K. Nagshabandi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saad M. Almuhayawi
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed E. Elnosary
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
15
|
Abdelrahman SA, Barakat OS, Ahmed MN. Genetic characterization of a novel Salinicola salarius isolate applied for the bioconversion of agro-industrial wastes into polyhydroxybutyrate. Microb Cell Fact 2024; 23:56. [PMID: 38368375 PMCID: PMC10874550 DOI: 10.1186/s12934-024-02326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Polyhydroxybutyrate (PHB) has emerged as a promising eco-friendly alternative to traditional petrochemical-based plastics. In the present study, we isolated and characterized a new strain of Salinicola salarius, a halophilic bacterium, from the New Suez Canal in Egypt and characterized exclusively as a potential PHB producer. Further genome analysis of the isolated strain, ES021, was conducted to identify and elucidate the genes involved in PHB production. RESULTS Different PHB-producing marine bacteria were isolated from the New Suez Canal and characterized as PHB producers. Among the 17 bacterial isolates, Salinicola salarius ES021 strain showed the capability to accumulate the highest amount of PHB. Whole genome analysis was implemented to identify the PHB-related genes in Salinicola salarius ES021 strain. Putative genes were identified that can function as phaCAB genes to produce PHB in this strain. These genes include fadA, fabG, and P3W43_16340 (encoding acyl-CoA thioesterase II) for PHB production from glucose. Additionally, phaJ and fadB were identified as key genes involved in PHB production from fatty acids. Optimization of environmental factors such as shaking rate and incubation temperature, resulted in the highest PHB productivity when growing Salinicola salarius ES021 strain at 30°C on a shaker incubator (110 rpm) for 48 h. To maximize PHB production economically, different raw materials i.e., salted whey and sugarcane molasses were examined as cost-effective carbon sources. The PHB productivity increased two-fold (13.34 g/L) when using molasses (5% sucrose) as a fermentation media. This molasses medium was used to upscale PHB production in a 20 L stirred-tank bioreactor yielding a biomass of 25.12 g/L, and PHB of 12.88 g/L. Furthermore, the produced polymer was confirmed as PHB using Fourier-transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), and nuclear magnetic resonance spectroscopy (NMR) analyses. CONCLUSIONS Herein, Salinicola salarius ES021 strain was demonstrated as a robust natural producer of PHB from agro-industrial wastes. The detailed genome characterization of the ES021 strain presented in this study identifies potential PHB-related genes. However, further metabolic engineering is warranted to confirm the gene networks required for PHB production in this strain. Overall, this study contributes to the development of sustainable and cost-effective PHB production strategies.
Collapse
Affiliation(s)
- Shymaa A Abdelrahman
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt.
| | - Olfat S Barakat
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt
| | - Marwa N Ahmed
- Department of Microbiology, Faculty of Agriculture, Cairo University, El-Gamaa Street, Giza, 12613, Egypt
| |
Collapse
|
16
|
Farag SM, Moustafa MAM, Fónagy A, Kamel OMHM, Abdel-Haleem DR. Chemical composition of four essential oils and their adulticidal, repellence, and field oviposition deterrence activities against Culex pipiens L. (Diptera: Culicidae). Parasitol Res 2024; 123:110. [PMID: 38267697 PMCID: PMC10808171 DOI: 10.1007/s00436-024-08118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Effective mosquito repellents can limit the transmission of vector-borne diseases to humans. Consequently, there is an urgent need to develop mosquito control strategies that prioritize eco-friendly and cost-effective repellents. Essential oils (EOs) have enormous potential for mosquito repellency. Here, cinnamon, basil, eucalyptus, and peppermint EOs were investigated for adulticide and repellency properties against Culex pipiens as well on the oviposition behavior of gravid females from laboratory (lab test) and field (field test) populations. Cinnamon oil was an effective oviposition deterrent regardless of the population and had high adulticidal activity with toxicity index of 75.00% at 24 h of exposure, relative to deltamethrin. In addition, it exhibited effective repellency at 98.01% and 71.22% at 6.67 and 1.71 µl/cm2, respectively. Peppermint oil had the least adulticidal activity with toxicity index of 6.2% at 24 h, and it resulted in low repellency at 70.90% and 50.64% at 6.67 and 1.71 µl/cm2, respectively. On average, basil and eucalyptus oils showed some adulticidal efficiency, repellency, and oviposition deterrent activity. For all treatments, the oviposition deterrent index values of gravid females from natural populations (field test) were lower than those from lab-reared (lab test) females. Different ratios of monoterpenoids, phenylpropanoids, and fatty acids in the EOs tested likely account for the activity variations observed. Our results suggest cinnamon, basil, eucalyptus, and peppermint EOs, which are widely available, economical, and eco-friendly, with good potential for mosquito control strategies.
Collapse
Affiliation(s)
- Shaimaa M Farag
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Moataz A M Moustafa
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Adrien Fónagy
- Zoology Department, Plant Protection Institute, Centre for Agricultural Research, ELKH (Eötvös Lóránd Research Network), 1022, Budapest, Hungary.
| | - Omnia M H M Kamel
- Applied Organic Chemistry Department, Institute of Industrial Chemistry Research, National Research Center, Giza, 12622, Egypt
| | - Doaa R Abdel-Haleem
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
17
|
Elgendy SA, Soliman MM, Ghamry HI, Shukry M, Mohammed LA, Nasr HE, Alotaibi BS, Jafri I, Sayed S, Osman A, Elnoury HA. Exploration of Tilmicosin Cardiotoxicity in Rats and the Protecting Role of the Rhodiola rosea Extract: Potential Roles of Cytokines, Antioxidant, Apoptotic, and Anti-Fibrotic Pathways. TOXICS 2023; 11:857. [PMID: 37888707 PMCID: PMC10610616 DOI: 10.3390/toxics11100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Tilmicosin (TIL) is a common macrolide antibiotic in veterinary medicine. High doses of TIL can have adverse cardiovascular effects. This study examined the effects of Rhodiola rosea (RHO) that have anti-inflammatory, antioxidant, and anti-fibrotic effects on tilmicosin (TIL)-induced cardiac injury targeting anti-inflammatory, antioxidant, apoptotic, and anti-apoptotic signaling pathways with anti-fibrotic outcomes. Thirty-six male Wistar albino rats were randomly divided into groups of six rats each. Rats received saline as a negative control, CARV 1 mL orally (10 mg/kg BW), and RHO 1 mL orally at 400 mg/kg BW daily for 12 consecutive days. The TIL group once received a single subcutaneous injection (SC) dose of TIL (75 mg/kg BW) on the sixth day of the experiment to induce cardiac damage. The standard group (CARV + TIL) received CARV daily for 12 consecutive days with a single TIL SC injection 1 h after CARV administration only on the sixth day of study and continued for another six successive days on CARV. The protective group (RHO + TIL) received RHO daily for the same period as in CARV + TIL-treated rats and with the dosage mentioned before. Serum was extracted at the time of the rat's scarification at 13 days of study and examined for biochemical assessments in serum lactate dehydrogenase (LDH), cardiac troponin I (cTI), and creatine phosphokinase (CK-MB). Protein carbonyl (PC) contents, malondialdehyde (MDA), and total antioxidant capacity (TAC) in cardiac homogenate were used to measure these oxidative stress markers. Quantitative RT-PCR was used to express interferon-gamma (INF-γ), cyclooxygenase-2 (COX-2), OGG1, BAX, caspase-3, B-cell lymphoma-2 (Bcl-2), and superoxide dismutase (SOD) genes in cardiac tissues, which are correlated with inflammation, antioxidants, and apoptosis. Alpha-smooth muscle actin (α-SMA), calmodulin (CaMKII), and other genes associated with Ca2+ hemostasis and fibrosis were examined using IHC analysis in cardiac cells (myocardium). TIL administration significantly increased the examined cardiac markers, LDH, cTI, and CK-MB. TIL administration also increased ROS, PC, and MDA while decreasing antioxidant activities (TAC and SOD mRNA) in cardiac tissues. Serum inflammatory cytokines and genes of inflammatory markers, DNA damage (INF-γ, COX-2), and apoptotic genes (caspase-3 and BAX) were upregulated with downregulation of the anti-apoptotic gene Bcl-2 as well as the DNA repair OGG1 in cardiac tissues. Furthermore, CaMKII and α-SMA genes were upregulated at cellular levels using cardiac tissue IHC analysis. On the contrary, pretreatment with RHO and CARV alone significantly decreased the cardiac injury markers induced by TIL, inflammatory and anti-inflammatory cytokines, and tissue oxidative-antioxidant parameters. INF-γ, COX-2, OGG1, BAX, and caspase-3 mRNA were downregulated, as observed by real-time PCR, while SOD and Bcl-2 mRNA were upregulated. Furthermore, the CaMKII and α-SMA genes' immune reactivities were significantly decreased in the RHO-pretreated rats.
Collapse
Affiliation(s)
- Salwa A. Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Heba I. Ghamry
- Nutrition and Food Science, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Lina Abdelhady Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt (H.E.N.)
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt (H.E.N.)
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira Osman
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan;
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Heba A. Elnoury
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| |
Collapse
|
18
|
Huwaimel B, Abouzied AS, Anwar S, Elaasser MM, Almahmoud SA, Alshammari B, Alrdaian D, Alshammari RQ. Novel landmarks on the journey from natural products to pharmaceutical formulations: Phytochemical, biological, toxicological and computational activities of Satureja hortensis L. Food Chem Toxicol 2023; 179:113969. [PMID: 37517548 DOI: 10.1016/j.fct.2023.113969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
This study examined the ethanolic extract of the Satureja hortensis L. plant's aerial parts to describe its phytochemical makeup, biological functions, toxicity tests, and in-silico molecular docking tests. The GC-MS analysis was used to evaluate the phytochemical composition of the tested extract, and the ABTS and hydrogen peroxide antioxidant assays were used to measure antioxidant activity. Aspergillus fumigatus, Candida albicans, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Proteus vulgaris were tested for antimicrobial potential. On cell lines such as HepG-2, MCF-7, A-549, and Panc-1, the in-vitro toxicity was also examined. The A-549 cell line was also used for flow cytometry analysis of apoptosis and cell cycle. Additionally, the compounds discovered by the GC-MS analysis were used in silico tests against biological targets. Eight different phytocompounds were tentatively identified as a result of the GC-MS analysis. The compounds also demonstrated significant antioxidant potential for the ABTS and H2O2 assays (IC50: 2.44 and 28.04 μg/ml, respectively). The tested extract was found to have a range of inhibition zones and to be significantly active against the tested bacterial and fungal strains. Apoptosis and cell cycle analysis for the A-549 cell line showed that the cell cycle was arrested at S-phase, and the extract was also found to be most active against this cell line with an IC50 value of 113.05 μg/ml. The docking studies have emphasized the compounds' interactions and binding scores with the EGFR-TK target as determined by the GC-MS.
Collapse
Affiliation(s)
- Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Hail, 55473, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia; Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, 12311, Egypt.
| | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Mahmoud M Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Egypt
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Bahaa Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Dareen Alrdaian
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Reem Q Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| |
Collapse
|
19
|
Shams AHM, Helaly AA, Algeblawi AM, Awad-Allah EFA. Efficacy of Seed-Biopriming with Trichoderma spp. and Foliar Spraying of ZnO-Nanoparticles Induce Cherry Tomato Growth and Resistance to Fusarium Wilt Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:3117. [PMID: 37687362 PMCID: PMC10489679 DOI: 10.3390/plants12173117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Several microbes that cause plant diseases drastically lower the production of agriculture and jeopardize the safety of the world's food supply. As a result, sustainable agriculture requires disease management tactics based on modern, eco-friendly techniques as alternatives to various agrochemicals. The current study aimed to assess the antifungal activity of ZnO-nanoparticles against Fusarium solani in-vitro, and the ability of two antagonistic Trichoderma isolates, Trichoderma viride and Trichoderma harzianum, to produce antifungal secondary metabolites and identify them using gas chromatography-mass spectrometry, and to evaluate the combined effects of foliar spray of ZnO-nanoparticles and bioprimed seeds of cherry tomato (Solanum lycopersicum L.) with two antagonistic Trichoderma isolates against Fusarium wilt disease caused by Fusarium solani in greenhouse conditions. The results revealed that, in-vitro, the highest concentration of ZnO nanoparticles (3000 ppm) resulted in the greatest decrease in Fusarium solani mycelial growth (90.91% inhibition). The scanning electron microscopy demonstrated the evident distortion in Fusarium solani growing mycelia treated with ZnO-nanoparticles, which might be the source of growth suppression. Additionally, twenty-eight bioactive chemical compounds were isolated and identified from Trichoderma spp. ethyl acetate crude extracts using gas chromatography-mass spectrometry. In a greenhouse experiment, the combination of bioprimed cherry tomato plants with Trichoderma harzianum and foliar spraying of ZnO-nanoparticles at 3000 ppm was the most effective interaction treatment for reducing disease severity index (23.4%) and improving the vegetative growth parameters, micronutrient contents (Mn, Zn, and Fe in leaves), and chlorophyll content (SPAD unit), as well as stimulating phenylalanine ammonia-lyase activity of cherry tomato leaves at 75 days after sowing. In conclusion, the antifungal potential of seed-biopriming with antagonistic Trichoderma isolates and the foliar spraying of ZnO-nanoparticles can boost cherry tomato growth and confer resistance to Fusarium wilt caused by Fusarium solani.
Collapse
Affiliation(s)
- Amany H. M. Shams
- Plant Pathology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| | - Amira A. Helaly
- Vegetable Crops Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| | - Abeer M. Algeblawi
- Plant Protection Department, Faculty of Agriculture, University of Tripoli, Tripoli 13479, Libya;
| | - Eman F. A. Awad-Allah
- Soil and Water Sciences Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
20
|
Hamida R, Ali MA, Mugren N, Al-Zaban MI, Bin-Meferij MM, Redhwan A. Planophila laetevirens-Mediated Synthesis of Silver Nanoparticles: Optimization, Characterization, and Anticancer and Antibacterial Potentials. ACS OMEGA 2023; 8:29169-29188. [PMID: 37599946 PMCID: PMC10433340 DOI: 10.1021/acsomega.3c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Algal-mediated synthesis of nanoparticles (NPs) opens the horizon for green and sustainable synthesis of NPs that can be used in many fields, such as medicine and industry. We extracellularly synthesized silver NPs (Ag-NPs) using the novel microalgae Planophila laetevirens under optimized conditions. The isolate was collected from freshwater/soil, purified, morphologically identified, and genetically identified using light, inverted light, scanning electron microscopy, and 18S rRNA sequencing. The phytochemicals in the algal extract were detected by GC-MS. Aqueous biomass extracts and cell-free media were used to reduce silver nitrate to Ag-NPs. To get small, uniformly shaped, and stable Ag-NPs, various abiotic parameters, including precursor concentration, the ratio between the reductant and precursor, temperature, time of temperature exposure, pH, illumination, and incubation time, were controlled during the synthesis of Ag-NPs. B-P@Ag-NPs and S-P@Ag-NPs (Ag-NPs synthesized using biomass and cell-free medium, respectively) were characterized using UV-vis spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis (EDX) and mapping, Fourier transform infrared (FTIR) spectroscopy, and a zeta sizer. S-P@Ag-NPs had a smaller size (10.8 ± 0.3 nm) than B-P@Ag-NPs (19.0 ± 0.6 nm), while their shapes were uniform quasispherical (S-P@Ag-NPs) and spherical to oval (B-P@Ag-NPs). EDX and mapping analyses demonstrated that Ag was the dominant element in the B-P@Ag-NP and S-P@Ag-NP samples, while FTIR revealed the presence of O-H, C-H, N-H, and C-O groups, indicating that polysaccharides and proteins acted as reductants, while polysaccharides/fatty acids acted as stabilizers during the synthesis of NPs. The hydrodynamic diameters of B-P@Ag-NPs and S-P@Ag-NPs were 37.7 and 28.3 nm, respectively, with negative charges on their surfaces, suggesting their colloidal stability. Anticancer activities against colon cancer (Sw620 and HT-29 cells), breast cancer (MDA-MB231 and MCF-7 cells), and normal human fibroblasts (HFs) were screened using the MTT assay. B-P@Ag-NPs and S-P@Ag-NPs had a greater antiproliferative effect against colon cancer than against breast cancer, with biocompatibility against HFs. The biocidal effects of the B-P@Ag-NPs and S-P@Ag-NPs were evaluated against Escherichia coli, Bacillus cereus, and Bacillus subtilis using agar well diffusion and resazurin dye assays. B-P@Ag-NPs and S-P@Ag-NPs caused higher growth inhibition of Gram-negative bacteria than of Gram-positive bacteria. B-P@Ag-NPs and S-P@Ag-NPs synthesized by P. laetevirens are promising antitumor and biocidal agents.
Collapse
Affiliation(s)
| | - Mohamed Abdelaal Ali
- Plant
Production Department, Arid Lands Cultivation
Research Institute, City of Scientific Research and Technological
Applications (SRTA-CITY) New Borg El-Arab, Alexandria 21934, Egypt
| | - Njoud Mugren
- Graduated
Student, Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mayasar Ibrahim Al-Zaban
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mashael Mohammed Bin-Meferij
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Alya Redhwan
- Department
of Heath, College of Health, and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
21
|
Abd-Elhalim BT, Hemdan BA, El-Sayed SM, Ahmed MA, Maan SA, Abu-Hussien SH. Enhancing durability and sustainable preservation of Egyptian stone monuments using metabolites produced by Streptomyces exfoliatus. Sci Rep 2023; 13:9458. [PMID: 37301893 PMCID: PMC10257707 DOI: 10.1038/s41598-023-36542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Despite their threatens for Egyptian stone monuments, A few studies focused on using biocontrol agents against deteriorative fungi and bacteria instead of using chemical assays that leave residuals leading to human toxicity and environmental pollution. This work aims to isolate and identify fungal and bacterial isolates that showed deteriorative activities from stone monuments in Temple of Hathor, Luxor, Egypt, as well as determine the inhibitory activity of metabolites produced by Streptomyces exfoliatus SAMAH 2021 against the identified deteriorative fungal and bacterial strains. Moreover, studying the spectral analysis, toxicological assessment of metabolites produced by S. exfoliatus SAMAH 2021 against health human cell fibroblast, and colorimetric measurements on the selected stone monuments. Ten samples were collected from Temple of Hathor, Luxor, Egypt. Three fungal isolates and one bacterial isolate were obtained and identified as A. niger isolate Hathor 2, C. fioriniae strain Hathor 3, P. chrysogenum strain HATHOR 1, and L. sphaericus strain Hathor 4, respectively. Inhibitory potential of the metabolites in all concentrations used (100-25%) against the recommended antibiotics (Tetracycline 10 µg/ml and Doxycycline (30 µg/ml) showed an inhibitory effect toward all tested deteriorative pathogens with a minimum inhibition concentration (MIC) of 25%. Cytotoxicity test confirmed that microbial filtrate as the antimicrobial agent was safe for healthy human skin fibroblast with IC50 of < 100% and cell viability of 97%. Gas chromatography analysis recorded the existence of thirteen antimicrobial agents, Cis-vaccenic acid; 1,2-Benzenedicarboxylic acid; ç-Butyl-ç-butyrolactone and other compounds. Colorimetric measurements confirmed no color or surface change for the limestone-treated pieces. The use of the metabolite of microbial species antimicrobial as a biocontrol agent raises contemporary issues concerning the bio-protection of the Egyptian monuments to reduce chemical formulas that are toxic to humans and pollute the environment. Such serious problems need further investigation for all kinds of monuments.
Collapse
Affiliation(s)
- Basma T Abd-Elhalim
- Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
| | - Salwa M El-Sayed
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt
| | - Mahgoub A Ahmed
- Department of Conservation, Faculty of Archaeology, South Valley University, Qena, Egypt
| | - Sodaf A Maan
- Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt
| | - Samah H Abu-Hussien
- Department of Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
22
|
Elhaddad HM, Hammoda HM, Ghareeb DA, Mahmoud FA, Hussein A, Yousef MI, Darwish RS, Shawky E. Investigating the effect of extraction procedure on the anti-inflammatory metabolites of olibanum resin from different Boswellia species through LC–MS/MS-based metabolomics. FOOD BIOSCI 2023; 53:102668. [DOI: 10.1016/j.fbio.2023.102668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
23
|
Alsufyani T, Al-Otaibi N, Alotaibi NJ, M'sakni NH, Alghamdi EM. GC Analysis, Anticancer, and Antibacterial Activities of Secondary Bioactive Compounds from Endosymbiotic Bacteria of Pomegranate Aphid and Its Predator and Protector. Molecules 2023; 28:molecules28104255. [PMID: 37241995 DOI: 10.3390/molecules28104255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial secondary metabolites are a valuable source of various molecules that have antibacterial and anticancer activity. In this study, ten endosymbiotic bacteria of aphids, aphid predators and ants were isolated. Bacterial strains were identified according to the 16S rRNA gene. Ethyl acetate fractions of methanol extract (EA-ME) were prepared from each isolated bacterium and tested for their antibacterial activities using the disk diffusion method. The EA-ME of three bacterial species, Planococcus sp., Klebsiella aerogenes, Enterococcus avium, from the pomegranate aphids Aphis punicae, Chrysoperia carnea, and Tapinoma magnum, respectively, exhibited elevated antibacterial activity against one or several of the five pathogenic bacteria tested. The inhibition zones ranged from 10.00 ± 0.13 to 20.00 ± 1.11 mm, with minimum inhibitory concentration (MIC) values ranging from 0.156 mg/mL to 1.25 mg/mL. The most notable antibacterial activity was found in the EA-ME of K. aerogenes against Klebsiella pneumonia and Escherichia coli, with an MIC value of 0.156 mg/mL. The cytotoxic activity of EA-ME was dependent on the cell line tested. The most significant cytotoxicity effect was observed for extracts of K. aerogenes and E. avium, at 12.5 µg/mL, against the epithelial cells of lung carcinoma (A549), with a cell reduction of 79.4% and 67.2%, respectively. For the EA-ME of K. aerogenes and Pantoea agglomerans at 12.5 µg/mL, 69.4% and 67.8% cell reduction were observed against human colon cancer (Hct116), respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of three EA-ME revealed the presence of several bioactive secondary metabolites that have been reported previously to possess antibacterial and anticancer properties. To the best of our knowledge, this is the first study to examine the biological activities of endosymbiotic bacteria in aphids, aphid predators and ants. The promising data presented in this study may pave the way for alternative drugs to overcome the continued emergence of multidrug-resistant bacteria, and find alternative drugs to conventional cancer therapies.
Collapse
Affiliation(s)
- Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najwa Al-Otaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noura J Alotaibi
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nour Houda M'sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- High Altitude Research Centre, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Laboratory of the Interfaces and Advanced Materials (LIMA), Science Faculty, Monastir University, P.O. Box 05019, Monastir 5019, Tunisia
| | - Eman M Alghamdi
- Chemistry Department, Faculty of Science, King Abdul Aziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Abd-elhalim BT, Hemdan BA, El-sayed SM, Ahmed MA, Maan SA, Abu-hussien SH. Enhancing durability and Sustainable Preservation of Egyptian Stone Monuments Using metabolites produced by Streptomyces exfoliatus.. [DOI: 10.21203/rs.3.rs-2576715/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Despite their threatens for Egyptian stone monuments, A few studies focused on using biocontrol agents against deteriorative fungi and bacteria instead of using chemical assays that leave residuals leading to human toxicity and environmental pollution. This work aims to isolate and identify fungal and bacterial isolates that showed deteriorative activities from stone monuments in Temple of Hathor, Luxor, Egypt, as well as determine the inhibitory activity of metabolites produced by Streptomyces exfoliatus against the identified deteriorative fungal and bacterial strains. Moreover, studying the spectral analysis, toxicological assessment of metabolites produced by S. exfoliatus against health human cell fibroblast (HCF), and colorimetric measurements on the selected stone monuments. Ten samples were collected from Temple of Hathor, Loxor, Egypt. Four fungal isolates and one bacterial isolate were obtained and identified as A. niger isolate Hathor 2, C. fioriniae strain Hathor 3, P. chrysogenum strain Hathor 1, and L. sphaericus strain Hathor 4, respectively. Inhibitory potential of the metabolites in all concentrations used (100–25%) against the recommended antibiotics (Tetracycline 10 µg/ml and Doxycycline 30 µg/ml) showed an inhibitory effect toward all tested deteriorative pathogens with a minimum inhibition concentration (MIC) of 25%. Cytotoxicity test confirmed that S. exfoliatus filtrate as the antimicrobial agent was safe for healthy human skin fibroblast with IC50 of < 100% and cell viability of 97%. Gas chromatography (GC) analysis recorded the existence of thirteen antimicrobial agents, Cis-vaccenic acid; 1,2-Benzenedicarboxylic acid; ç-Butyl-ç-butyrolactone and other compounds. Colorimetric measurements confirmed no color or surface change for the limestone-treated pieces. The use of S. exfoliatus antimicrobial as a biocontrol agent raises contemporary issues concerning the bio-protection of the Egyptian monuments to reduce chemical formulas that are toxic to humans and pollute the environment. Such serious problems need further investigation for all kinds of monuments.
Collapse
|
25
|
Microbial Degradation, Spectral analysis and Toxicological Assessment of Malachite Green Dye by Streptomyces exfoliatus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196456. [PMID: 36234993 PMCID: PMC9572514 DOI: 10.3390/molecules27196456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022]
Abstract
Malachite green (MG) dye is a common environmental pollutant that threatens human health and the integrity of the Earth's ecosystem. The aim of this study was to investigate the potential biodegradation of MG dye by actinomycetes species isolated from planted soil near an industrial water effluent in Cairo, Egypt. The Streptomyces isolate St 45 was selected according to its high efficiency for laccase production. It was identified as S. exfoliatus based on phenotype and 16S rRNA molecular analysis and was deposited in the NCBI GenBank with the gene accession number OL720220. Its growth kinetics were studied during an incubation time of 144 h, during which the growth rate was 0.4232 (µ/h), the duplication time (td) was 1.64 d, and multiplication rate (MR) was 0.61 h, with an MG decolorization value of 96% after 120 h of incubation at 25 °C. Eleven physical and nutritional factors (mannitol, frying oil waste, MgSO4, NH4NO3, NH4Cl, dye concentration, pH, agitation, temperature, inoculum size, and incubation time) were screened for significance in the biodegradation of MG by S. exfoliatus using PBD. Out of the eleven factors screened in PBD, five (dye concentration, frying oil waste, MgSO4, inoculum size, and pH) were shown to be significant in the decolorization process. Central composite design (CCD) was applied to optimize the biodegradation of MG. Maximum decolorization was attained using the following optimal conditions: food oil waste, 7.5 mL/L; MgSO4, 0.35 g/L; dye concentration, 0.04 g/L; pH, 4.0; and inoculum size, 12.5%. The products from the degradation of MG by S. exfoliatus were characterized using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of several compounds, including leuco-malachite green, di(tert-butyl)(2-phenylethoxy) silane, 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,4-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,2-benzenedicarboxylic acid, di-n-octyl phthalate, and 1,2-benzenedicarboxylic acid, dioctyl ester. Moreover, the phytotoxicity, microbial toxicity, and cytotoxicity tests confirmed that the byproducts of MG degradation were not toxic to plants, microbes, or human cells. The results of this work implicate S. exfoliatus as a novel strain for MG biodegradation in different environments.
Collapse
|
26
|
Ghanem GAM, Gebily DAS, Ragab MM, Ali AM, Soliman NEDK, El-Moity THA. Efficacy of antifungal substances of three Streptomyces spp. against different plant pathogenic fungi. EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL 2022; 32:112. [DOI: 10.1186/s41938-022-00612-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/22/2022] [Indexed: 09/02/2023]
Abstract
Abstract
Background
Soil-borne plant pathogenic fungi with a wide host range of crops cause a significant limitation on the global production of agronomic crops. Applications of synthetic pesticides are an important tool for managing plant diseases, but have deleterious influences on the environment as well as its incompatibility with organic agriculture. Recently, Streptomyces spp. became one of the best bio-control agents as a promising environmentally eco-friendly method for effective management of plant diseases.
Results
In a previous research, three species of Streptomyces spp., i.e., S. griseus (MT210913 “DG5”), S. rochei (MN700192 “DG4”) and S. sampsonii (MN700191 “DG1” strains) were identified, as exhibiting potent antifungal activities against plant pathogenic fungus, Sclerotinia sclerotiorum in vitro and greenhouse. GC–Mass analysis revealed the presence of 44, 47 and 54 substances of S. sampsonii DG1, S. griseus DG5 and S. rochei DG4, respectively. GC–MS revealed substances, with bio-control activity, were categorized as volatile organic compounds (VOCs), fatty acids and plant growth regulators, etc. GC–MS analysis exhibited the presence of 7, 13 and 20 volatile compounds produced by S. sampsonii, S. rochei and S. griseus, respectively. These substances exhibited potent antifungal activity against various plant pathogenic fungi, i.e., Botrytis cinerea, Macrophomina phaseolina, Rhizoctonia solani and S. sclerotiorum in vitro, by dual-culture assay. The three strains inhibited all the pathogenic fungi in dual-culture assay in the range of 30–73.67%. Also, the produced substances were applied in vivo (in the field) and supported their potential biocontrol agent against S. sclerotiorum as well as possessed significant biological properties for plant health and growth. Applying Streptomyces spp. culture broth in the field enhanced physiological responses of phenols, sugar, chlorophyll, protein contents and parameters as well as the yield of bean plants.
Conclusion
In field experiments, foliar application of Streptomyces spp. and their metabolites proved to be a great potential, as promising biocontrol agents, for controlling S. sclerotiorum and enhanced plant growth and yield. S. rochei and S. griseus proved to be strong antifungal, plant growth promoters and environmentally eco-friendly fungicides.
Collapse
|
27
|
Hamida RS, Ali MA, Almohawes ZN, Alahdal H, Momenah MA, Bin-Meferij MM. Green Synthesis of Hexagonal Silver Nanoparticles Using a Novel Microalgae Coelastrella aeroterrestrica Strain BA_Chlo4 and Resulting Anticancer, Antibacterial, and Antioxidant Activities. Pharmaceutics 2022; 14:pharmaceutics14102002. [PMID: 36297438 PMCID: PMC9609168 DOI: 10.3390/pharmaceutics14102002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Microalgae-mediated synthesis of nanoparticles (NPs) is an emerging nanobiotechnology that utilizes the biomolecular corona of microalgae as reducing and capping agents for NP fabrication. This study screened a novel microalgal strain for its potential to synthesize silver (Ag)-NPs and then assayed the biological activities of the NPs. Coelastrella aeroterrestrica strain BA_Chlo4 was isolated, purified, and morphologically and molecularly identified. Chemical composition of the algal extract was determined by GC-MS analysis. Ag-NPs were biosynthesized by C. aeroterrestrica BA_Chlo4 (C@Ag-NPs) and characterized using various techniques. Antiproliferative activity and the biocidal effect of C@Ag-NPs, C. aeroterrestrica algal extract, and chemically synthesized Ag-NPs (Ch@Ag-NPs) were explored, and the scavenging activity of C@Ag-NPs against free radicals was investigated. C@Ag-NPs were hexagonal, with a nanosize diameter of 14.5 ± 0.5 nm and a maximum wavelength at 404.5 nm. FTIR and GC-MS analysis demonstrated that proteins and polysaccharide acted as capping and reducing agents for C@Ag-NPs. X-ray diffraction, energy diffraction X-ray, and mapping confirmed the crystallinity and natural structure of C@Ag-NPs. The hydrodynamic diameter and charge of C@Ag-NPs was 28.5 nm and −33 mV, respectively. C@Ag-NPs showed significant anticancer activity towards malignant cells, with low toxicity against non-cancerous cells. In addition, C@Ag-NPs exhibited greater antioxidant activity and inhibitory effects against Gram-positive and -negative bacteria compared with the other tested treatments. These findings demonstrate, for first time, the potential of a novel strain of C. aeroterrestrica to synthesize Ag-NPs and the potent antioxidant, anticancer, and biocidal activities of these NPs.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zakiah Nasser Almohawes
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hadil Alahdal
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Histopathology Unit, Research Department, Health Sciences Research Center (HSRC), Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence:
| |
Collapse
|
28
|
El-Bahr SM, Elzoghby RR, Alfattah MA, Kandeel M, Hamouda AF. Aqueous Ginger ( Zingiber officinale) Extract Ameliorates the Harmful Effects of High-Dose Lornoxicam in Albino Male Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1546734. [PMID: 35958816 PMCID: PMC9363220 DOI: 10.1155/2022/1546734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Lornoxicam is a potent oxicam-class nonsteroidal anti-inflammatory drug (NSAID) with analgesic, anti-inflammatory, and antipyretic effects. Its impacts on many biological functions are not fully understood. We measured various biomarkers in male albino rats provided an oral aqueous ginger extract before IM administration of therapeutic and 2× the therapeutic doses of lornoxicam. The aqueous ginger plant extract was characterized by mass spectroscopy, and its effects were determined by examining free radical scavenging activity, blood parameters, renal and hepatic function, semen quality, proinflammatory cytokines, antioxidant markers, and histopathology. Rats administered lornoxicam had significantly higher liver and kidney function biomarker values, TNF-α, interleukin-6, and sperm abnormalities than the control rats. The overall erythrocyte count, packed cell volume, prostaglandin, and sperm counts were all considerably lower in the experimental animals. Histological changes were found in the liver, spleen, and testes of rats administered lornoxicam alone. In rats, pretreatment with ginger extract reduced the majority of the negative effects of conventional and high dosages of lornoxicam.
Collapse
Affiliation(s)
- Sabry M. El-Bahr
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21523, Egypt
| | - Rabab R. Elzoghby
- Department of Pharmacology, Faculty of Veterinary Medicine, New Valley University, Egypt
| | | | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Egypt
| | - Ahlam F. Hamouda
- Department of Forensic Medicine and Toxicology, Teaching Hospital, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| |
Collapse
|
29
|
Galal-Khallaf A, Al-Awthan YS, Al-Duais MA, Mohammed-Geba K. Nile crab Potamonautes niloticus shell extract: Chromatographic and molecular elucidation of potent antioxidant and anti-inflammatory capabilities. Bioorg Chem 2022; 127:106023. [PMID: 35853295 DOI: 10.1016/j.bioorg.2022.106023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022]
Abstract
Diseases emerging from oxidative stress and inflammatory imbalance are deeply threatening the modern world. Fisheries by-products are rich in bioactive metabolites. However, they are usually discarded, posing a real environmental burden. Herein we aimed to explore the bioactive compounds, anti-oxidant, and anti-inflammatory capabilities of the shell of the freshwater Nile crab Potamonautes niloticus. Methanolic extract of crab shell was subjected to GC/MS and HPLC analyses of total lipids, flavonoids, and phenolic acids. Also, zebrafish Danio rerio was subjected to inflammatory status using CuSO4, then treated with different doses of shell extract. Total antioxidant capacity and QPCR analyses for gene expression of different antioxidant enzymes, i.e. superoxide dismutase(sod), catalase (cat), and glutathione peroxidase (gpx) and pro-inflammatory cytokines, i.e. tumor necrosis factor alpha (tnf-α), nuclear factor kappa B (nf-κb), interleukin 1-Beta (il-1b) were assessed. The results showed the richness of crab shell extract with ω - 9 (32.78 %), ω - 7 (6.37 %), and ω - 6 (4 %) unsaturated fatty acids. Diverse phenolic acids and flavonoids were found, dominaed by Benzoic acid (11.24 µg mL-1), Syringic acid (11.4 µg mL-1), Ferulic acid (10.55 µg mL-1), Kampferol (9.47 µg mL-1), Quercetin (6.33 µg mL-1), and Naringin (4.16 µg mL-1). Crab extract also increased the total antioxidant capacity and oxidative stress enzymeś mRNA levels by 1.3-2.15 folds. It down-regulated pro-inflammatory cytokineś mRNA levels by 1.3-2 folds in comparison to positive control (CuSO4-induced) zebrafishes. The net results indicated that Nile crab shell extract is a rich source of anti-oxidant and anti-inflammatory compounds. Therefore, we recommend to continuously explore the bioactive capabilities of exoskeletons of different shellfish species. This can provide additive values for these products and reduce the environmental burden of their irresponsible discarding.
Collapse
Affiliation(s)
- Asmaa Galal-Khallaf
- Molecular Biology and Biotechnology Laboratory, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Yahya S Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Biology, Faculty of Science, Ibb University, Ibb, Yemen
| | - Mohammed A Al-Duais
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Biochemistry Unit, Chemistry Department, Faculty of Science, Ibb University, Ibb, Yemen
| | - Khaled Mohammed-Geba
- Molecular Biology and Biotechnology Laboratory, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt; Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Cambridge, MD, United States.
| |
Collapse
|
30
|
El-Hefny A, Khalil OA, Hassan YE, Mounir AM. Biocontrol effect of Bacillus amyloliquefaciens combined with un-irradiated and irradiated beet root as a preservative coating for pomegranate arils. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Hassan AH, Korany AM, Zeinhom MM, Mohamed DS, Abdel-Atty NS. Effect of chitosan-gelatin coating fortified with papaya leaves and thyme extract on quality and shelf life of chicken breast fillet and soft cheese during chilled storage. Int J Food Microbiol 2022; 371:109667. [DOI: 10.1016/j.ijfoodmicro.2022.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
32
|
El-Morsy SMA, El-Tantawy SAM, El-Shabasy EA. Antischistosomal effects of Ficus carica leaves extract and/or PZQ on Schistosoma mansoni infected mice. J Parasit Dis 2022; 46:87-102. [PMID: 35299912 PMCID: PMC8901854 DOI: 10.1007/s12639-021-01417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022] Open
Abstract
Currently, praziquantel (PZQ) is the only drug of choice used for treatment of human schistosomes because of its safety and broad-spectrum activity. It is reported that the repeated chemotherapy is complicated by the occurrence of drug resistance to schistosomiasis. So there is an urgent need to develop new drug combinations therapy. The current study aimed to evaluate antischistosomal activity of F. carica leaves extract alone or in combination with PZQ on Schistosoma mansoni infected mice. Mice were experimentally infected with Schistosoma mansoni and orally administrated 6 weeks' post-infection with Fig leaves extract and/or PZQ. Schistosoma mansoni (S. mansoni)-infected mice were separated into four groups: untreated (I), treated with PZQ in dose of 200 mg/kg bw (II), treated with Fig leaves extract dose of 400 mg/kg bw (III). Group IV was treated with dose of Fig leaves extract-PZQ as in groups II and III, respectively. The effect was detected parasitologically using ova count technique and oogram pattern in intestine and liver. The greatest antischistosomal effect was achieved using orally administered Fig leaves extract-PZQ as indicated by total worm burden, tissue egg count and oogram pattern. Fig leaves extract + PZQ induced the therapeutic efficacy over the PZQ dose alone in intestine and liver as shown by a complete absence of immature worms, a very high reduction in the total numbers of tissue egg load (59.81% vs. 61.43% & 67.96% vs. 73.46%), mature eggs (37.86 ± 1.4 vs. 34.14 ± 1.9) and increasing in the total number of dead eggs (62.14 ± 1.4vs.67.29 ± 1.76). The results suggested the curcumin in combination with PZQ as a strong schistosomicidal regimen against S. mansoni. In addition, F. carica leaves extract is a promising for PZQ potentiating its antischistosomal action in animal model infected with S. mansoni. Therefore, the present work conclude that combined treatment has a synergetic effect and could be more promising in the management of schistosomiasis.
Collapse
Affiliation(s)
| | | | - Eman A. El-Shabasy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Almohaimeed HM, Hamed S, Seleem HS, Batawi AH, Mohammedsaleh ZM, Balgoon MJ, Ali SS, Al Jaouni S, Ayuob N. An Ethanolic Extract of Cucurbita pepo L. Seeds Modifies Neuroendocrine Disruption in Chronic Stressed Rats and Adrenal Expression of Inflammatory Markers and HSP70. Front Pharmacol 2021; 12:749766. [PMID: 34867356 PMCID: PMC8636010 DOI: 10.3389/fphar.2021.749766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pumpkins (Cucurbita pepo L.) were described to have antioxidant, anti-inflammatory, anti-fatigue, and antidepressant-like effect. The adrenal gland is an important stress-responsive organ that maintains homeostasis during stress. Objectives: This study aimed to assess the efficacy of the administration of Cucurbita pepo L. (CP) extract in relieving behavioral, biochemical, and structural changes in the adrenal gland induced by exposure to chronic unpredictable mild stress (CUMS) and to explore the mechanism behind this impact. Materials and Methods: Forty male albino rats were divided into 4 groups (n = 10): control, CUMS, fluoxetine-treated, and CP-treated groups. Behavioral changes, corticosterone level, pro-inflammatory cytokines TNF-α and IL-6, and oxidant/antioxidant profile were assessed in the serum at the end of the experiment. Adrenal glands were processed for histopathological and immunohistochemical assessment. Gene expression of caspase-3 and Ki67 and heat shock protein 70 (HSP70) were assessed in adrenal glands using RT-PCR. Results: The CP extract significantly reduced the corticosterone level (p < 0.001), immobility time (p < 0.001), and inflammatory and oxidative changes associated with CUMS-induced depression compared to the untreated group. The CP extract alleviated CUMS-induced adrenal histopathological changes and significantly reduced apoptosis (p < 0.001) and significantly upregulated antioxidant levels in the serum. Conclusion:Cucurbita pepo L. effectively ameliorated the chronic stress-induced behavioral, biochemical, and adrenal structural changes mostly through its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Saudi Arabia
| | - Shereen Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hanan S Seleem
- Histology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum, Egypt.,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ashwaq H Batawi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Maha Jameal Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad S Ali
- Department of Histology and Cell Biology, Faculty of Medicine, Assuit University, Asyut, Egypt.,Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Al Jaouni
- Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Hematology/Pediatric Oncology, King Abdulaziz University Hospital (KAUH), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasra Ayuob
- Department of Medical Histology, Faculty of Medicine, Damietta University, Damietta, Egypt
| |
Collapse
|
34
|
Chircov C, Matei MF, Neacșu IA, Vasile BS, Oprea OC, Croitoru AM, Trușcă RD, Andronescu E, Sorescu I, Bărbuceanu F. Iron Oxide-Silica Core-Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies. Antibiotics (Basel) 2021; 10:1138. [PMID: 34572720 PMCID: PMC8467872 DOI: 10.3390/antibiotics10091138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Recent years have witnessed a tremendous interest in the use of essential oils in biomedical applications due to their intrinsic antimicrobial, antioxidant, and anticancer properties. However, their low aqueous solubility and high volatility compromise their maximum potential, thus requiring the development of efficient supports for their delivery. Hence, this manuscript focuses on developing nanostructured systems based on Fe3O4@SiO2 core-shell nanoparticles and three different types of essential oils, i.e., thyme, rosemary, and basil, to overcome these limitations. Specifically, this work represents a comparative study between co-precipitation and microwave-assisted hydrothermal methods for the synthesis of Fe3O4@SiO2 core-shell nanoparticles. All magnetic samples were characterized by X-ray diffraction (XRD), gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetry and differential scanning calorimetry (TG-DSC), and vibrating sample magnetometry (VSM) to study the impact of the synthesis method on the nanoparticle formation and properties, in terms of crystallinity, purity, size, morphology, stability, and magnetization. Moreover, the antimicrobial properties of the synthesized nanocomposites were assessed through in vitro tests on Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. In this manner, this study demonstrated the efficiency of the core-shell nanostructured systems as potential applications in antimicrobial therapies.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Maria-Florentina Matei
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Alexa-Maria Croitoru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Roxana-Doina Trușcă
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (I.A.N.); (B.S.V.); (A.-M.C.)
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| | - Ionuț Sorescu
- Institute for Diagnosis and Animal Health, 050557 Bucharest, Romania; (I.S.); (F.B.)
| | - Florica Bărbuceanu
- Institute for Diagnosis and Animal Health, 050557 Bucharest, Romania; (I.S.); (F.B.)
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 105 Splaiul Independentei, 050097 Bucharest, Romania
| |
Collapse
|
35
|
Nazir S, El-Sherif AA, Abdel-Ghani NT, Ibrahim MAA, Hegazy MEF, Atia MAM. Lepidium sativum Secondary Metabolites (Essential Oils): In Vitro and In Silico Studies on Human Hepatocellular Carcinoma Cell Lines. PLANTS 2021; 10:plants10091863. [PMID: 34579396 PMCID: PMC8470406 DOI: 10.3390/plants10091863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the greatest cause of cancer-related death in the world. Garden cress (Lepidium sativum) seeds have been proven to possess extraordinary antioxidant, anti-inflammatory, hypothermic, and analgesic properties. In this study, in vitro cytotoxic efficiency evaluation of L. sativum fractions was performed against two hepatocellular carcinoma cell lines (HuH-7 and HEPG-2), and the expression of some apoptotic genes was explored. In addition, the chemical composition of a potent extract of L. sativum was analyzed using gas chromatography coupled with mass spectrometry. Then, molecular docking analysis was implemented to identify the potential targets of the L. sativum components’ most potent extract. Overall, the n-hexane extract was the most potent against the two HCC cell lines. Moreover, these cytotoxicity levels were supported by the significant downregulation of EGFR and BCL2 gene expression levels and the upregulation of SMAD3, BAX, and P53 expression levels in both HuH-7 and HEPG2 cell lines. Regarding L. sativum’s chemical composition, GC–MS analysis of the n-hexane extract led to the identification of thirty compounds, including, mainly, hydrocarbons and terpenoids, as well as other volatile compounds. Furthermore, the binding affinities and interactions of the n-hexane fraction’s major metabolites were predicted against EGFR and BCL2 molecular targets using the molecular docking technique. These findings reveal the potential use of L. Sativum in the management of HCC.
Collapse
Affiliation(s)
- Shaimaa Nazir
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.N.); (N.T.A.-G.)
| | - Ahmed A. El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.N.); (N.T.A.-G.)
- Correspondence: (A.A.E.-S.); (M.-E.F.H.); (M.A.M.A.); Tel.: +20-10-6016-0168 (A.A.E.-S.); +20-33-371-635 (M.-E.F.H.); +20-10-0016-4922 (M.A.M.A.)
| | - Nour T. Abdel-Ghani
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.N.); (N.T.A.-G.)
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, Giza 12622, Egypt
- Correspondence: (A.A.E.-S.); (M.-E.F.H.); (M.A.M.A.); Tel.: +20-10-6016-0168 (A.A.E.-S.); +20-33-371-635 (M.-E.F.H.); +20-10-0016-4922 (M.A.M.A.)
| | - Mohamed A. M. Atia
- Molecular Genetic and Genome Mapping Laboratory, Genome Mapping Department, Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre (ARC), Giza 12619, Egypt
- Correspondence: (A.A.E.-S.); (M.-E.F.H.); (M.A.M.A.); Tel.: +20-10-6016-0168 (A.A.E.-S.); +20-33-371-635 (M.-E.F.H.); +20-10-0016-4922 (M.A.M.A.)
| |
Collapse
|
36
|
Ayuob N, Al-Shathly MR, Bakhshwin A, Al-Abbas NS, Shaer NA, Al Jaouni S, Hamed WHE. p53 Rather Than β-Catenin Mediated the Combined Hypoglycemic Effect of Cinnamomum cassia ( L.) and Zingiber officinale Roscoe in the Streptozotocin-Induced Diabetic Model. Front Pharmacol 2021; 12:664248. [PMID: 34054538 PMCID: PMC8155675 DOI: 10.3389/fphar.2021.664248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Background: The antioxidant, hypoglycemic, and insulin-enhancing effects of ginger and cinnamon were previously confirmed in experimental and human studies, while the combined effect of ginger and cinnamon was not thoroughly investigated until now. Objectives: This study was designed to assess the antidiabetic effect of combined administration of ginger (Zingiber officinale Roscoe) and cinnamon (Cinnamomum cassia L.) in streptozotocin (STZ)-induced diabetic rats compared to metformin and to explain the mechanism behind this effect. Materials and methods: STZ was utilized to induce diabetes mellitus in male Sprague–Dawley rats. Assessments of fasting blood glucose level (BGL), the total antioxidant capacity (TAC), serum insulin, HOMA-IR, and HOMA–β cells were performed. Pancreatic gene expression of β-catenin and p53 was assessed using RT-PCR. Assessment of histopathological alterations of pancreatic islet cells was performed using routine and immunohistochemical techniques. Results: BGL significantly decreased (p = 0.01), while serum insulin and TAC significantly increased (p < 0.001) in both metformin- and ginger plus cinnamon–treated groups compared to the untreated diabetic group. HOMA–β cell index significantly increased (p = 0.001) in ginger plus cinnamon, indicating their enhancing effect on insulin secretion in diabetic conditions. p53 gene expression was significantly upregulated (p < 0.001), while β-catenin was insignificantly downregulated (p = 0.32) in ginger plus cinnamon–treated groups. Insulin immunoexpression in β cells significantly increased (p = 0.001, p = 0.004) in metformin- and ginger plus cinnamon–treated groups, respectively. Conclusions: The combined administration of ginger and cinnamon has a significant hypoglycemic and antioxidant effect in STZ-induced diabetes mostly through enhancing repair of islet cells mediated via upregulation of pancreatic p53 expression. Therefore, testing this effect in diabetic patients is recommended.
Collapse
Affiliation(s)
- Nasra Ayuob
- Medical Histology and Cell Biology Department, Faculty of Medicine, Damietta University, Damietta, Egypt
| | | | - Abdulaziz Bakhshwin
- Medical Intern, Faculty of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nouf Saeed Al-Abbas
- Biology Department, Jumum College University, Umm Alqura University, Makkah, Saudi Arabia
| | - Nehad A Shaer
- Department of Chemistry, Al Leith- College, Umm Alqura University, Makkah, Saudi Arabia
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Walaa H E Hamed
- Medical Histology and Cell Biology Department, Faculty of Medicine, MansouraUniversity, Mansoura, Egypt
| |
Collapse
|
37
|
Balgoon MJ, Al-Zahrani MH, Jaouni SA, Ayuob N. Combined Oral and Topical Application of Pumpkin ( Cucurbita pepo L.) Alleviates Contact Dermatitis Associated With Depression Through Downregulation Pro-Inflammatory Cytokines. Front Pharmacol 2021; 12:663417. [PMID: 34040528 PMCID: PMC8141732 DOI: 10.3389/fphar.2021.663417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Depression and contact dermatitis (CD) are considered relatively common health problems that are linked with psychological stress. The antioxidant, anti-inflammatory, and antidepressant activities of pumpkin were previously reported. Objectives: This study aimed to evaluate the efficacy of the combined topical and oral application of pumpkin fruit (Cucurbita pepo L.) extract (PE) in relieving CD associated with chronic stress-induced depression and compare it to the topical pumpkin extract alone and to the standard treatment. Materials and Methods: Forty male albino rats were exposed to chronic unpredictable mild stress (CUMS) for 4 weeks for induction of depression and then exposed to (1-fluoro-2, 4-dinitrofluorobenzene, DNFB) for 2 weeks for induction of CD. Those rats were assigned into 4 groups (n = 10 each); untreated, betamethasone-treated, PE-treated and pumpkin extract cream, and oral-treated groups. Treatments were continued for 2 weeks. All groups were compared to the negative control group (n = 10). Depression was behaviorally and biochemically confirmed. Serum and mRNA levels of pro-inflammatory cytokines, such as TNF-α, IL-6, COX-2, and iNOS, were assessed. Oxidant/antioxidant profile was assessed in the serum and skin. Histopathological and immunohistochemical assessments of affected skin samples were performed. Results: Pumpkin extract, used in this study, included a large amount of oleic acid (about 56%). The combined topical and oral administration of PE significantly reduced inflammatory and oxidative changes induced by CD and depression compared to the CD standard treatment and to the topical PE alone. PE significantly alleviated CD signs and the histopathological score (p < 0.001) mostly through the downregulation of pro-inflammatory cytokines and the upregulation of antioxidants. Conclusion: Pumpkin extract, applied topically and orally, could be an alternative and/or complementary approach for treating contact dermatitis associated with depression. Further studies on volunteer patients of contact dermatitis are recommended.
Collapse
Affiliation(s)
- Maha Jameal Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam H Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Al Jaouni
- Department of Hematology/Pediatric Oncology and Yousef Abdullatif Jameel Chair of Prophetic Medical Applications (YAJCPMA), Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasra Ayuob
- Department of Medical Histology, Faculty of Medicine, Damietta University, Damietta, Egypt
| |
Collapse
|
38
|
Mass Spectroscopic Analysis, MNDO Quantum Chemical Studies and Antifungal Activity of Essential and Recovered Oil Constituents of Lemon-Scented Gum against Three Common Molds. Processes (Basel) 2020. [DOI: 10.3390/pr8030275] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The present study described the possibility of using wood-treated oil-fungicide of lemon-scented gum (Corymbia citriodora) from newly emerged leaves and unripened fruits against the infestation of Fusarium culmorum, Rhizoctonia solani and Penicillium chrysogenum. Air-dried wood samples of Melia azedarach were treated with the extracted oils from leaves and unripened fruits from C. citriodora. The main chemical constituents identified in the essential oil (EO) from leaves were citronellal (55.31%), citronellol (21.03%) and isopulegol (10.79%), while in unripened fruits were α-pinene (17.86%), eudesmol (13.9%), limonene (9.19%), γ-terpinen (8.21%), and guaiol (7.88%). For recovered oils (ROs), the major components from leaves were D-limonene (70.23%), γ-terpinene (13.58%), β-pinene (2.40%) and isopregol (2.23%), while, 4-terpineol (21.35%), cis-β-terpineol, (19.33%), D-limonene (14.75%), and γ-terpinene (7.42%) represented the main components in fruits. EOs from leaves and fruits at the amounts of 100, 50 and 25 µL showed the highest inhibition percentage (IP) of 100% against F. culmorum and P. chrysogenum compared to control treatment, while at the amounts of 100, and 50 µL showed 100% IP of R. solani. Wood treated with ROs from leaves and fruits showed IPs of 96.66% and 93.33%, respectively, against the growth of R. solani. The mass spectra of the main components of C. citriodora leaves and fruits’ EOs have been recorded in electron ionization mode at 70 eV and fragmentation has been reported and discussed. On the other hand, different quantum parameters such as the heat of formation, ionization energy total energy, binding energy, electronic energy and dipole moment using the modified neglect of diatomic overlap (MNDO) semi-empirical method have been calculated.
Collapse
|