1
|
Ma W, Liu X, Yu R, Song J, Hou L, Guo Y, Wu H, Feng D, Zhou Q, Li H. Exploring the relationship between sepsis and Golgi apparatus dysfunction: bioinformatics insights and diagnostic marker discovery. Front Genet 2025; 16:1483493. [PMID: 39981259 PMCID: PMC11839613 DOI: 10.3389/fgene.2025.1483493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Background Sepsis, a critical infectious disease, is intricately linked to the dysfunction of the intracellular Golgi apparatus. This study aims to explore the relationship between sepsis and the Golgi apparatus using bioinformatics, offering fresh insights into its diagnosis and treatment. Methods To explore the role of Golgi-related genes in sepsis, we analyzed mRNA expression profiles from the NCBI GEO database. We identified differentially expressed genes (DEGs). These DEGs, Golgi-associated genes obtained from the MSigDB database, and key modules identified through WGCNA were intersected to determine Golgi-associated differentially expressed genes (GARGs) linked to sepsis. Subsequently, functional enrichment analyses, including GO, KEGG, and GSEA, were performed to explore the biological significance of the GARGs.A PPI network was constructed to identify core genes, and immune infiltration analysis was performed using the ssGSEA algorithm. To further evaluate immune microenvironmental features, unsupervised clustering was applied to identify immunological subgroups. A diagnostic model was developed using logistic regression, and its performance was validated using ROC curve analysis. Finally, key diagnostic biomarkers were identified and validated across multiple datasets to confirm their diagnostic accuracy. Results By intersecting DEGs, WGCNA modules, and Golgi-related gene sets, 53 overlapping GARGs were identified. Functional enrichment analysis indicated that these GARGs were predominantly involved in protein glycosylation and Golgi membrane-related processes. PPI analysis further identified eight hub genes: B3GNT5, FUT11, MFNG, ST3GAL5, MAN1C1, ST6GAL1, C1GALT1C1, and GALNT14. Immune infiltration analysis revealed significant differences in immune cell populations, mainly activated dendritic cells, and effector memory CD8+ T cells, between sepsis patients and healthy controls. A diagnostic model constructed using five pivotal genes (B3GNT5, FUT11, MAN1C1, ST6GAL1, and C1GALT1C1) exhibited predictive accuracy, with AUC values exceeding 0.96 for all genes. Validation with an independent dataset confirmed the differential expression patterns of B3GNT5, C1GALT1C1, and GALNT14, reinforcing their potential as robust diagnostic biomarkers for sepsis. Conclusion This study elucidates the link between sepsis and the Golgi apparatus, introduces novel biomarkers for sepsis diagnosis, and offers valuable insights for future research on its pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Wanli Ma
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Xinyi Liu
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Ran Yu
- Department of Anesthesiology, Chifeng Clinical College of Inner Mongolia Medical University, Chifeng, Inner Mongolia, China
| | - Jiannan Song
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Lina Hou
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Ying Guo
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Hongwei Wu
- Department of Anesthesiology, Chifeng Clinical College of Inner Mongolia Medical University, Chifeng, Inner Mongolia, China
| | - Dandan Feng
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Qi Zhou
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Haibo Li
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| |
Collapse
|
2
|
Mentino D, Nicchia GP, Frigeri A, Desantis S, Guglielmi MV, Semeraro D, Scillitani G, Mastrodonato M. Altered glycosylation in secreting cells of the gastric glands of aquaporin-4-deficient mice. Microsc Res Tech 2024; 87:1836-1848. [PMID: 38533927 DOI: 10.1002/jemt.24563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Aquaporins (AQPs) are important for water transport in the gastrointestinal tract. Changes in their expression and/or localization could cause in disorders and be used as therapeutic targets. Aquaporin-4 (AQP4) is expressed predominantly on the basolateral membrane of the parietal cells in the corpus of the murine gastric glands. Although the secretion of gastric juice is not affected in AQP4-deficient knockout, we evaluated by light microscopy whether the lack of AQP4 affects the glycopatterns of secreting gastric cells. Wild type (WT) and AQP4-deficient knockout mice (KO) were fed a standard diet ad libitum before sacrifice. Segments of stomach corpus were collected, fixed in buffered formalin, and embedded in paraffin wax. Sections, 5-μm thick, were analyzed by histochemical methods (Periodic acid-Schiff, Alcian Blue pH 2.5), and binding of lectins specific to GalNAc (SBA, DBA), Gal (PNA) GlcNAc (WGA, GSAII) mannose and/or glucose (ConA), and fucose (UEA-I, AAA, LTA). Immunohistochemical methods such as anti-Muc6 for neck cells and anti- β- H+/K+-ATPase for parietal cells were also performed. Compared to WT mice, in the mucous cells of KO lower amounts of glycans with galactosyl/galactosaminylated, glycosyl/glycosaminylated, and fucosylated residues were observed; lower fucosylation resulted also in the parietal cells. The observed differences of KO in respect to WT could lead to severer pathological conditions. RESEARCH HIGHLIGHTS: Glycopatterns in gastric glands were compared between wild type (WT) and AQP4-deficient knockout (KO) mice by histochemical and lectin-binding methods. In the mucous cells of KO lower amounts of glycans with galactosyl/galactosaminylated, glycosyl/glycosaminylated and fucosylated residues were observed. In the parietal cells lower fucosylation also resulted. AQP4-deficiency affects glycosylation and could result in altered functionality and pathological conditions.
Collapse
Affiliation(s)
- Donatella Mentino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Veterinary Clinics and Animal Productions, University of Bari Aldo Moro, Bari, Italy
| | - Marco Vito Guglielmi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Daniela Semeraro
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Scillitani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Mastrodonato
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Wang X, Chen D, Guo M, Ning Y, Geng M, Guo J, Gao J, Zhao D, Zhang Y, Li Q, Li L, Li S, Li Y, Xie X, Zuo X, Li J. Oxytocin Alleviates Colitis and Colitis-Associated Colorectal Tumorigenesis via Noncanonical Fucosylation. RESEARCH (WASHINGTON, D.C.) 2024; 7:0407. [PMID: 38979515 PMCID: PMC11228076 DOI: 10.34133/research.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Colon cancer is increasing worldwide and is commonly regarded as hormone independent, yet recent reports have implicated sex hormones in its development. Nevertheless, the role of hormones from the hypothalamus-hypophysis axis in colitis-associated colorectal cancer (CAC) remains uncertain. In this study, we observed a significant reduction in the expression of the oxytocin receptor (OXTR) in colon samples from both patient with colitis and patient with CAC. To investigate further, we generated mice with an intestinal-epithelium-cell-specific knockout of OXTR. These mice exhibited markedly increased susceptibility to dextran-sulfate-sodium-induced colitis and dextran sulfate sodium/azoxymethane-induced CAC compared to wild-type mice. Our findings indicate that OXTR depletion impaired the inner mucus of the colon epithelium. Mechanistically, oxytocin was found to regulate Mucin 2 maturation through β1-3-N-acetylglucosaminyltransferase 7 (B3GNT7)-mediated fucosylation. Interestingly, we observed a positive correlation between B3GNT7 expression and OXTR expression in human colitis and CAC colon samples. Moreover, the simultaneous activations of OXTR and fucosylation by l-fucose significantly alleviated tumor burden. Hence, our study unveils oxytocin's promising potential as an affordable and effective therapeutic intervention for individuals affected by colitis and CAC.
Collapse
Affiliation(s)
- Xia Wang
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Dawei Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Mengnan Guo
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Yao Ning
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Mingze Geng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| | - Jing Guo
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Jiahui Gao
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Dong Zhao
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Yupeng Zhang
- Department of Molecular Plant Biology,
Norwegian Institute of Bioeconomy Research, Ås 1430, Norway
| | - Qianpeng Li
- Department of Hematology,
Weifang People’s Hospital, Weifang, Shandong 261000, China
| | - Lixiang Li
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Shiyang Li
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
- Advanced Medical Research Institute,
Shandong University, Jinan, Shandong 250012, China
| | - Yanqing Li
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Xiaoran Xie
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Laboratory of Translational Gastroenterology,
Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong 250012, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine,
Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Faragó A, Zvara Á, Tiszlavicz L, Hunyadi-Gulyás É, Darula Z, Hegedűs Z, Szabó E, Surguta SE, Tóvári J, Puskás LG, Szebeni GJ. Lectin-Based Immunophenotyping and Whole Proteomic Profiling of CT-26 Colon Carcinoma Murine Model. Int J Mol Sci 2024; 25:4022. [PMID: 38612832 PMCID: PMC11012250 DOI: 10.3390/ijms25074022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
A murine colorectal carcinoma (CRC) model was established. CT26 colon carcinoma cells were injected into BALB/c mice's spleen to study the primary tumor and the mechanisms of cell spread of colon cancer to the liver. The CRC was verified by the immunohistochemistry of Pan Cytokeratin and Vimentin expression. Immunophenotyping of leukocytes isolated from CRC-bearing BALB/c mice or healthy controls, such as CD19+ B cells, CD11+ myeloid cells, and CD3+ T cells, was carried out using fluorochrome-labeled lectins. The binding of six lectins to white blood cells, such as galectin-1 (Gal1), siglec-1 (Sig1), Sambucus nigra lectin (SNA), Aleuria aurantia lectin (AAL), Phytolacca americana lectin (PWM), and galectin-3 (Gal3), was assayed. Flow cytometric analysis of the splenocytes revealed the increased binding of SNA, and AAL to CD3 + T cells and CD11b myeloid cells; and increased siglec-1 and AAL binding to CD19 B cells of the tumor-bearing mice. The whole proteomic analysis of the established CRC-bearing liver and spleen versus healthy tissues identified differentially expressed proteins, characteristic of the primary or secondary CRC tissues. KEGG Gene Ontology bioinformatic analysis delineated the established murine CRC characteristic protein interaction networks, biological pathways, and cellular processes involved in CRC. Galectin-1 and S100A4 were identified as upregulated proteins in the primary and secondary CT26 tumor tissues, and these were previously reported to contribute to the poor prognosis of CRC patients. Modelling the development of liver colonization of CRC by the injection of CT26 cells into the spleen may facilitate the understanding of carcinogenesis in human CRC and contribute to the development of novel therapeutic strategies.
Collapse
Grants
- 2020-1.1.6-JÖVŐ-2021-00003 National Research, Development, and Innovation Office
- 2019-1.1.1-PIACI-KFI-2019-00444 National Research, Development, and Innovation Office (NKFI), Hungary
- 142877 FK22 National Research, Development, and Innovation Office (NKFI), Hungary
- 2019-1.1.1-PIACI-KFI-2019-00444 National Research, Development, and Innovation Office (NKFI), Hungary
- National Research, Development, and Innovation Office (NKFI), Hungary KFI_16-1-2017-0105
- 2022-1.2.6-TÉT-IPARI-TR-2022-00023 National Research, Development, and Innovation Office, Hungary
- BO/00582/22/8 János Bolyai Research Scholarship of the Hungarian Academy of Sciences
- 2022-2.1.1-NL-2022-00010 National Laboratories Excellence program
- TKP2021-EGA-44 Hungarian Thematic Excellence Programme
- grant K147410. Project no. 1018567 Hungarian Scientific Research Fund
Collapse
Affiliation(s)
- Anna Faragó
- Astridbio Technologies Ltd., Wimmer Fülöp utca 1, H6728 Szeged, Hungary;
- University of Szeged, Albert Szent-Györgyi Medical School, Doctoral School of Multidisciplinary Medical Sciences, Dóm tér 9, H6720 Szeged, Hungary
| | - Ágnes Zvara
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (Á.Z.); (E.S.)
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, Állomás u. 2, H6725 Szeged, Hungary;
| | - Éva Hunyadi-Gulyás
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Laboratory of Proteomics Research, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - Zsuzsanna Darula
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Laboratory of Proteomics Research, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
- The Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Single Cell Omics Advanced Core Facility, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - Zoltán Hegedűs
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Laboratory of Bioinformatics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H7624 Pécs, Hungary
| | - Enikő Szabó
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (Á.Z.); (E.S.)
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
| | - Sára Eszter Surguta
- Department of Experimental Pharmacology, The National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, H1122 Budapest, Hungary; (S.E.S.); (J.T.)
| | - József Tóvári
- Department of Experimental Pharmacology, The National Tumor Biology Laboratory, National Institute of Oncology, Ráth György u. 7-9, H1122 Budapest, Hungary; (S.E.S.); (J.T.)
| | - László G. Puskás
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (Á.Z.); (E.S.)
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Avidin Ltd., Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
- Avicor Ltd., Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
| | - Gábor J. Szebeni
- Astridbio Technologies Ltd., Wimmer Fülöp utca 1, H6728 Szeged, Hungary;
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (Á.Z.); (E.S.)
- Core Facility HUN-REN Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary; (É.H.-G.); (Z.D.)
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine University of Szeged, H6725 Szeged, Hungary
| |
Collapse
|
5
|
Nivetha R, Meenakumari M, Peroor Mahi Dev A, Janarthanan S. Fucose-binding lectins: purification, characterization and potential biomedical applications. Mol Biol Rep 2023; 50:10589-10603. [PMID: 37934371 DOI: 10.1007/s11033-023-08896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
The property of lectins to specifically recognize and bind carbohydrates makes them an excellent candidate in biomedical research. Among them are fucose-binding lectins possessing the capacity to bind fucose are taxonomically, evolutionarily and ecologically significant class of lectins that are identified in a wide range of taxa. Purification of fucose-binding lectins dates back to 1967 when L-fucose binding protein from Lotus tetragonolobus was isolated using a dye that contained three α-L-fucopyranosyl residues. Beginning with that, several FBLs were purified from various animals as well as plant sources that were structurally and functionally characterised. This review focuses on fucose-binding lectins, their occurrence and purification with special emphasis on various strategies adopted to purify them followed by molecular and functional characterization. The exclusive ability to recognize and bind to fucose-containing glycans endows these lectins with the potential to act as anti-cancer agents, diagnostic markers and mitogens for immune cells. Though they have been in research focus for more than half a century with their occurrence reported in various taxa, they still need to be explored for their prospective functions to develop them as a biological tool in biomedical research.
Collapse
Affiliation(s)
- Ramanathan Nivetha
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Mani Meenakumari
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India.
| |
Collapse
|
6
|
Preliminary Analysis of the Glycolipid Profile in Secondary Brain Tumors. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4293172. [DOI: 10.1155/2022/4293172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Glycosphingolipids (GSLs) play numerous roles in cellular processes, including cell proliferation, apoptosis, inflammation, and cell signaling. Alteration of the GSLs metabolism leads to the accumulation of particular species of GSLs, which can lead to various pathologies, including carcinogenesis and metastasis; in essence, all neoplasms are characterized by the synthesis and aberrant organization of GSLs expressed on the cell surface. Secondary brain tumors make up the majority of intracranial cancers and generally present an unfavorable prognosis. In the present work, a native GSL mixture extracted and purified from a secondary brain tumor with primary pulmonary origin was obtained through extraction and purification and analyzed by MALDI TOF mass spectrometry. Research in the field of lipidomics could offer new data for the understanding of brain tropism and metastatic pathways, by studying the glycolipid molecules involved in the process of metastasis in general and in the production of brain metastases in particular. This could shed new light on the pattern of lipid glycosylation in secondary brain tumors, with a great impact on the effectiveness of cancer therapies, which could be adapted to the specific molecular pattern of the tumor.
Collapse
|
7
|
Tian R, Li X, Zhang H, Ma L, Zhang H, Wang Z. Ulex Europaeus Agglutinin-I-Based Magnetic Isolation for the Efficient and Specific Capture of SW480 Circulating Colorectal Tumor Cells. ACS OMEGA 2022; 7:30405-30411. [PMID: 36061664 PMCID: PMC9435041 DOI: 10.1021/acsomega.2c03702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The efficient and specific capture of circulating tumor cells (CTCs) from patients' peripheral blood is of significant value in precise cancer diagnosis and cancer therapy. As fine targeting molecules, lectins can recognize cancer cells specifically due to the abnormal glycosylation of molecules on the cancer cell membrane and the specific binding of lectin with glycoconjugates. Herein, a Ulex europaeus agglutinin-I (UEA-I)-based magnetic isolation strategy was developed to efficiently and specifically capture α-1,2-fucose overexpression CTCs from colorectal cancer (CRC) patients' peripheral blood. Using UEA-I-modified Fe3O4 magnetic beads (termed MB-UEA-I), up to 94 and 89% of target cells (i.e., SW480 CRC cells) were captured from the cell spiking complete cell culture medium and whole blood, respectively. More than 90% of captured cells show good viability and proliferation ability without detaching from MB-UEA-I. In combination with three-color immunocytochemistry (ICC) identification, MB-UEA-I has been successfully used to capture CTCs from CRC patients' peripheral blood. The experimental results indicate a correlation between CTC characterization and tumor metastasis. Specifically, MB-UEA-I can be applied to screen early CRC by capturing CTCs when served as a liquid biopsy. The presented work offers a new insight into developing cost-effective lectin-functionalized methods for biomedical applications.
Collapse
Affiliation(s)
- Rongrong Tian
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xiaodong Li
- Department
of Radiology, The First Hospital of Jilin
University, Changchun, Jilin 130021, P. R. China
| | - Hua Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lina Ma
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Huimao Zhang
- Department
of Radiology, The First Hospital of Jilin
University, Changchun, Jilin 130021, P. R. China
| | - Zhenxin Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Delivery of Nucleotide Sugars to the Mammalian Golgi: A Very Well (un)Explained Story. Int J Mol Sci 2022; 23:ijms23158648. [PMID: 35955785 PMCID: PMC9368800 DOI: 10.3390/ijms23158648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Nucleotide sugars (NSs) serve as substrates for glycosylation reactions. The majority of these compounds are synthesized in the cytoplasm, whereas glycosylation occurs in the endoplasmic reticulum (ER) and Golgi lumens, where catalytic domains of glycosyltransferases (GTs) are located. Therefore, translocation of NS across the organelle membranes is a prerequisite. This process is thought to be mediated by a group of multi-transmembrane proteins from the SLC35 family, i.e., nucleotide sugar transporters (NSTs). Despite many years of research, some uncertainties/inconsistencies related with the mechanisms of NS transport and the substrate specificities of NSTs remain. Here we present a comprehensive review of the NS import into the mammalian Golgi, which consists of three major parts. In the first part, we provide a historical view of the experimental approaches used to study NS transport and evaluate the most important achievements. The second part summarizes various aspects of knowledge concerning NSTs, ranging from subcellular localization up to the pathologies related with their defective function. In the third part, we present the outcomes of our research performed using mammalian cell-based models and discuss its relevance in relation to the general context.
Collapse
|
9
|
Skurska E, Szulc B, Maszczak-Seneczko D, Wiktor M, Wiertelak W, Makowiecka A, Olczak M. Incorporation of fucose into glycans independent of the GDP-fucose transporter SLC35C1 preferentially utilizes salvaged over de novo GDP-fucose. J Biol Chem 2022; 298:102206. [PMID: 35772493 PMCID: PMC9304781 DOI: 10.1016/j.jbc.2022.102206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Mutations in the SLC35C1 gene encoding the Golgi GDP-fucose transporter are known to cause leukocyte adhesion deficiency II. However, improvement of fucosylation in leukocyte adhesion deficiency II patients treated with exogenous fucose suggests the existence of an SLC35C1-independent route of GDP-fucose transport, which remains a mystery. To investigate this phenomenon, we developed and characterized a human cell–based model deficient in SLC35C1 activity. The resulting cells were cultured in the presence/absence of exogenous fucose and mannose, followed by examination of fucosylation potential and nucleotide sugar levels. We found that cells displayed low but detectable levels of fucosylation in the absence of SLC35C1. Strikingly, we show that defects in fucosylation were almost completely reversed upon treatment with millimolar concentrations of fucose. Furthermore, we show that even if fucose was supplemented at nanomolar concentrations, it was still incorporated into glycans by these knockout cells. We also found that the SLC35C1-independent transport preferentially utilized GDP-fucose from the salvage pathway over the de novo biogenesis pathway as a source of this substrate. Taken together, our results imply that the Golgi systems of GDP-fucose transport discriminate between substrate pools obtained from different metabolic pathways, which suggests a functional connection between nucleotide sugar transporters and nucleotide sugar synthases.
Collapse
Affiliation(s)
- Edyta Skurska
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Bożena Szulc
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Maciej Wiktor
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Wojciech Wiertelak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Mariusz Olczak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland.
| |
Collapse
|
10
|
Aziz F, Khan I, Shukla S, Dey DK, Yan Q, Chakraborty A, Yoshitomi H, Hwang SK, Sonwal S, Lee H, Haldorai Y, Xiao J, Huh YS, Bajpai VK, Han YK. Partners in crime: The Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer. Pharmacol Ther 2022; 232:107994. [PMID: 34571111 DOI: 10.1016/j.pharmthera.2021.107994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a major causative agent of chronic gastritis, gastric ulcer and gastric carcinoma. H. pylori cytotoxin associated antigen A (CagA) plays a crucial role in the development of gastric cancer. Gastric cancer is associated with glycosylation alterations in glycoproteins and glycolipids on the cell surface. H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer through post-translation modification of fucosylation to develop gastric cancer. The involvement of a variety of sugar antigens in the progression and development of gastric cancer has been investigated, including type II blood group antigens. Lewis Y (LeY) is overexpressed on the tumor cell surface either as a glycoprotein or glycolipid. LeY is a difucosylated oligosaccharide, which is catalyzed by fucosyltransferases such as FUT4 (α1,3). FUT4/LeY overexpression may serve as potential correlative biomarkers for the prognosis of gastric cancer. We discuss the various aspects of H. pylori in relation to fucosyltransferases (FUT1-FUT9) and its fucosylated Lewis antigens (LeY, LeX, LeA, and LeB) and gastric cancer. In this review, we summarize the carcinogenic effect of H. pylori CagA in association with LeY and its synthesis enzyme FUT4 in the development of gastric cancer as well as discuss its importance in the prognosis and its inhibition by combination therapy of anti-LeY antibody and celecoxib through MAPK signaling pathway preventing gastric carcinogenesis.
Collapse
Affiliation(s)
- Faisal Aziz
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA; Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China.
| | - Imran Khan
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Debasish Kumar Dey
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China
| | | | - Hisae Yoshitomi
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Seung-Kyu Hwang
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| |
Collapse
|
11
|
Liu Z, Liang Y, Zhou Y, Ge F, Yan X, Yang L, Wang Q. Single-cell fucosylation breakdown: Switching fucose to europium. iScience 2021; 24:102397. [PMID: 33997682 PMCID: PMC8091926 DOI: 10.1016/j.isci.2021.102397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/05/2021] [Accepted: 04/02/2021] [Indexed: 11/23/2022] Open
Abstract
Fucosylation and its fucosidic linkage-specific motifs are believed to be essential to understand their distinct roles in cellular behavior, but their quantitative information has not yet been fully disclosed due to the requirements of ultra-sensitivity and selectivity. Herein, we report an approach that converts fucose (Fuc) to stable europium (Eu) isotopic mass signal on hard ionization inductively coupled plasma mass spectrometry (ICP-MS). Metabolically assembled azido-fucose on the cell surface allows us to tag them with an alkyne-customized Eu-crafted bacteriophage MS2 capsid nanoparticle for Eu signal multiplication, resulting in an ever lowest detection limit of 4.2 zmol Fuc. Quantitative breakdown of the linkage-specific fucosylation motifs in situ preserved on single cancerous HepG2 and paracancerous HL7702 cells can thus be realized on a single-cell ICP-MS platform, specifying their roles during the cancering process. This approach was further applied to the discrimination of normal hepatocellular cells and highly, moderately, and poorly differentiated hepatoma cells collected from real hepatocellular carcinoma tissues. Switching facile fucose to stable Eu mass signal on a single-cell ICP-MS platform Ever lowest LOD of 4.2 zmol FucAz was achieved using a Eu-decorated MS2 nanoparticle Single-cell breakdown of fucosidic linkage-specific motifs Discrimination of highly, moderately, and poorly differentiated HCC from normal ones
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Liang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Zhou
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fuchun Ge
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaowen Yan
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Yang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Corresponding author
| |
Collapse
|
12
|
Fan R, Han X, Gong Y, He L, Xue Z, Yang Y, Sun L, Fan D, You Y, Meng F, Yan X, Zhang M, Zhang J. Alterations of Fucosyltransferase Genes and Fucosylated Glycans in Gastric Epithelial Cells Infected with Helicobacter pylori. Pathogens 2021; 10:pathogens10020168. [PMID: 33557187 PMCID: PMC7913934 DOI: 10.3390/pathogens10020168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori (H. pylori) adhesion to human gastric epithelial cells is closely linked with fucosylated glycans. Therefore, investigation of fucosylation in the interaction of gastric epithelial cells with H. pylori is critical. In this study we used lectin microarrays to detect the expression of fucosylated glycans in gastric epithelial cells (GES-1) infected with H. pylori strains isolated from patients with different diseases including chronic gastritis, duodenal ulcers, and gastric cancer (each containing two strains) at 4 h. In addition, we investigated the time-course expression of fucosyltransferase (FUT) 1–6 genes in GES-1 cells stimulated with H. pylori strains at 0.5–8 h. At 4 h post-infection, Lotus, AAA, BC2LCN, PA-IIL, CNL and ACG lectins had increased signals in H. pylori-infected GES-1 cells compared to uninfected cells. Higher expression of FUT1 and FUT2 was detected in all H. pylori-infected GES-1 cells within 2 h, regardless of the H. pylori strain. In particular, the expression of FUT2 was higher in H. pylori-infected GES-1 cells with a higher fold change in levels of BC2LCN lectin specific to α1-2 linked fucose (Fuc) at 4 h. The results suggest that the high levels of α1, 2-linked Fuc synthesized by FUT1/2, might play a role in the preliminary stage of H. pylori infection. This provides us with pivotal information to understand the adhesion of H. pylori to human gastric epithelial cells.
Collapse
|
13
|
Jagadeesh N, Belur S, Campbell BJ, Inamdar SR. The fucose-specific lectin ANL from Aspergillus niger possesses anti-cancer activity by inducing the intrinsic apoptosis pathway in hepatocellular and colon cancer cells. Cell Biochem Funct 2021; 39:401-412. [PMID: 33527486 DOI: 10.1002/cbf.3605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022]
Abstract
The L-fucose-specific lectin from Aspergillus niger (ANL), isolated from the corneal smears of a keratitis patient was reported earlier. Here, we examined the interaction of ANL with human hepatocellular and colon cancer cells, evaluated its anti-cancer activity and diagnostic potential to detect aberrantly glycosylated tumour-associated serum glycoproteins such as alpha-fetoprotein (AFP). We observed that ANL strongly bound to both HepG2 and HT-29 cell-lines and this interaction was effectively blocked with L-fucose and mucin in a dose and time-dependent manner with an IC50 of 1.25 and 5 μg/mL for HepG2 and HT-29 cells respectively at 48 hours. ANL treatment increased hypodiploidy and decreased the number of HepG2 cell in G0 -G1 phase at both 24 and 48 hours. Furthermore, ANL increased the level of apoptosis in both HepG2 and HT-29 cells in a time-dependent manner via enhanced production of reactive oxygen species and altered mitochondrial membrane potential, indicative of intrinsic apoptotis pathway activation. Immunoblot analysis confirmed the time-dependent elevation of levels of cytochrome c, initiator caspase-9 and activation of caspase-3. ANL immunohistochemistry on colon cancer tissue and quantification of AFP in HCC patient serum samples by developing an ANL-anti-AFP antibody sandwich enzyme-linked immunosorbent assay confirmed the diagnostic potential of ANL. Here, interaction of ANL with AFP could be effectively blocked in the presence of competing fucose-bearing glycans. We found ANL to be more sensitive than Lens culinaris lectin, a well-known fucose-specific lectin and currently used diagnostic agent. ANL can be further explored as a diagnostic and anti-cancer agent.
Collapse
Affiliation(s)
| | - Shivakumar Belur
- Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka, India
| | - Barry J Campbell
- Department of Infection & Microbiomes, University of Liverpool, Liverpool, UK
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
14
|
Sharma M, Sharma E, Prabhu V, Pai VR, D'souza JM, Harish S, Jose M. Salivary L-fucose as a biomarker for oral potentially malignant disorders and oral cancer. J Cancer Res Ther 2020; 16:546-550. [PMID: 32719265 DOI: 10.4103/jcrt.jcrt_552_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background The objective of this study was to evaluate the serum and salivary L-fucose in oral potentially malignant disorders (OPMDs) and oral cancer (OC) in order to investigate the possibility of using this as biomarker for early diagnosis. Materials and Methods The study included 85 participants, who were grouped as control (30), OPMDs patients (25), and OC patients (30). Serum and unstimulated whole saliva were collected from participants of all groups and fucose estimation was done using spectrophotometry. The results were tabulated and analyzed statistically. Results The mean serum L-fucose levels in normal, OPMDs, and OC group were 3.49, 19.18, and 35.75 mg/dl, respectively, while the levels of salivary L-fucose were 3.18, 7.02, and 11.66 mg/dl, respectively. A highly significant rise (P < 0.001) in serum and salivary L-fucose was observed in the study participants compared to control. Conclusions The present study showed a significant and gradual increase in serum and salivary L-fucose from control to OPMDs to OC. From this study, we suggest that L-fucose can be used as a reliable biomarker and saliva can be used as a diagnostic fluid for screening and early detection of OC.
Collapse
Affiliation(s)
- Mudita Sharma
- Department of Oral Pathology and Microbiology, Geetanjali Dental and Research Institute, Geetanjali University, Udaipur, Rajasthan, India
| | - Eklavya Sharma
- Department of Oral and Maxillofacial Surgery, Geetanjali Dental and Research Institute, Geetanjali University, Udaipur, Rajasthan, India
| | - Vishnudas Prabhu
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya University, Mangalore, Karnataka, India
| | - Vinitha Ramanath Pai
- Department of Biochemistry, Yenepoya Medical College, Yenepoya University, Mangalore, Karnataka, India
| | - Jyothi Mp D'souza
- Department of Biochemistry, Andaman and Nicobar Islands Institute of Medical Sciences, Port Blair, Andaman and Nicobar Islands, India
| | - Sindhu Harish
- Department of Biochemistry, Kasturba Medical College, Mangalore, Karnataka, India
| | - Maji Jose
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya University, Mangalore, Karnataka, India
| |
Collapse
|
15
|
Martínez-Alarcón D, Varrot A, Fitches E, Gatehouse JA, Cao M, Pyati P, Blanco-Labra A, Garcia-Gasca T. Recombinant Lectin from Tepary Bean ( Phaseolus acutifolius) with Specific Recognition for Cancer-Associated Glycans: Production, Structural Characterization, and Target Identification. Biomolecules 2020; 10:E654. [PMID: 32340396 PMCID: PMC7226325 DOI: 10.3390/biom10040654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Herein, we report the production of a recombinant Tepary bean lectin (rTBL-1), its three-dimensional (3D) structure, and its differential recognition for cancer-type glycoconjugates. rTBL-1 was expressed in Pichia pastoris, yielding 316 mg per liter of culture, and was purified by nickel affinity chromatography. Characterization of the protein showed that rTBL-1 is a stable 120 kDa homo-tetramer folded as a canonical leguminous lectin with two divalent cations (Ca2+ and Mn2+) attached to each subunit, confirmed in its 3D structure solved by X-ray diffraction at 1.9 Å resolution. Monomers also presented a ~2.5 kDa N-linked glycan located on the opposite face of the binding pocket. It does not participate in carbohydrate recognition but contributes to the stabilization of the interfaces between protomers. Screening for potential rTBL-1 targets by glycan array identified 14 positive binders, all of which correspond to β1-6 branched N-glycans' characteristics of cancer cells. The presence of α1-6 core fucose, also tumor-associated, improved carbohydrate recognition. rTBL-1 affinity for a broad spectrum of mono- and disaccharides was evaluated by isothermal titration calorimetry (ITC); however, no interaction was detected, corroborating that carbohydrate recognition is highly specific and requires larger ligands for binding. This would explain the differential recognition between healthy and cancer cells by Tepary bean lectins.
Collapse
Affiliation(s)
- Dania Martínez-Alarcón
- Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato 36821, Guanaj uato, Mexico;
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France;
| | - Annabelle Varrot
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France;
| | - Elaine Fitches
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (J.A.G.); (M.C.); (P.P.)
| | - John A. Gatehouse
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (J.A.G.); (M.C.); (P.P.)
| | - Min Cao
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (J.A.G.); (M.C.); (P.P.)
| | - Prashant Pyati
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.F.); (J.A.G.); (M.C.); (P.P.)
| | - Alejandro Blanco-Labra
- Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Departamento de Biotecnología y Bioquímica, Irapuato 36821, Guanaj uato, Mexico;
| | - Teresa Garcia-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76230, Querétaro, Mexico
| |
Collapse
|
16
|
Mastrodonato M, Calamita G, Mentino D, Scillitani G. High-fat Diet Alters the Glycosylation Patterns of Duodenal Mucins in a Murine Model. J Histochem Cytochem 2020; 68:279-294. [PMID: 32141795 DOI: 10.1369/0022155420911930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-fat diet (HFD) alters the glycosylation patterns of intestinal mucins leading to several health problems. We studied by histochemical and lectin-binding methods mucin alterations in the duodenum of mice fed a HFD for 25 weeks. Histochemical methods included periodic acid-Schiff, alcian blue pH 2.5, and high-iron diamine. Lectin-binding experiments were performed with SBA, PNA, WGA, MAA-II, SNA, ConA, UEA-I, LTA, and AAA. SBA, PNA, WGA, MAA-II, and SNA were tested also after desulfation and ConA after periodate-sodium borohydrate treatments (paradoxical ConA). Duodenal mucins are secreted by Brunner's glands and goblet cells in the villi. Brunner's glands of HFD mice showed increased secreting activity and a general reduction of glycosylated residuals, such as fucose and terminal α1,4-linked GlcNAc. Moreover, a general reduction of glycosylated residuals in the goblet cells of villi such as the fucosylated and sulfated ones was observed. Since the cited residuals are involved in cytoprotective and cytostatic functions, as well as in interactions with the intestinal microbiota and protection against parasites and inflammatory disorders, we conclude that HFD can predispose duodenum to several possible health disorders.
Collapse
Affiliation(s)
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy
| | | | | |
Collapse
|
17
|
Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC. The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 2019; 143:81-94. [PMID: 31561055 DOI: 10.1016/j.critrevonc.2019.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. Resistance to apoptosis is a hallmark of virtually all malignancies. Despite being a cause of pathological conditions, apoptosis could be a promising target in cancer treatment. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of TNF cytokine superfamily. It is a potent anti-cancer agent owing to its specific targeting towards cancerous cells, while sparing normal cells, to induce apoptosis. However, resistance occurs either intrinsically or after multiple treatments which may explain why cancer therapy fails. This review summarizes the apoptotic mechanisms via extrinsic and intrinsic apoptotic pathways, as well as the apoptotic resistance mechanisms. It also reviews the current clinically tested recombinant human TRAIL (rhTRAIL) and TRAIL receptor agonists (TRAs) against TRAIL-Receptors, TRAIL-R1 and TRAIL-R2, in which the outcomes of the clinical trials have not been satisfactory. Finally, this review discusses the current strategies in overcoming resistance to TRAIL-induced apoptosis in pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Sonia How Ming Wong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 UPM, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
18
|
Holst S, Wilding JL, Koprowska K, Rombouts Y, Wuhrer M. N-Glycomic and Transcriptomic Changes Associated with CDX1 mRNA Expression in Colorectal Cancer Cell Lines. Cells 2019; 8:cells8030273. [PMID: 30909444 PMCID: PMC6468459 DOI: 10.3390/cells8030273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Jennifer L Wilding
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Kamila Koprowska
- Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
19
|
Saarinen L, Nummela P, Leinonen H, Heiskanen A, Thiel A, Haglund C, Lepistö A, Satomaa T, Hautaniemi S, Ristimäki A. Glycomic Profiling Highlights Increased Fucosylation in Pseudomyxoma Peritonei. Mol Cell Proteomics 2018; 17:2107-2118. [PMID: 30072579 DOI: 10.1074/mcp.ra118.000615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudomyxoma peritonei (PMP) is a subtype of mucinous adenocarcinoma that most often originates from the appendix, and grows in the peritoneal cavity filling it with mucinous ascites. KRAS and GNAS mutations are frequently found in PMP, but other common driver mutations are infrequent. As altered glycosylation can promote carcinogenesis, we compared N-linked glycan profiles of PMP tissues to those of normal appendix. Glycan profiles of eight normal appendix samples and eight low-grade and eight high-grade PMP specimens were analyzed by mass spectrometry. Our results show differences in glycan profiles between PMP and the controls, especially in those of neutral glycans, and the most prominent alteration was increased fucosylation. We further demonstrate up-regulated mRNA expression of four fucosylation-related enzymes, the core fucosylation performing fucosyltransferase 8 and three GDP-fucose biosynthetic enzymes in PMP tissues when compared with the controls. Up-regulated protein expression of the latter three enzymes was further observed in PMP cells by immunohistochemistry. We also demonstrate that restoration of fucosylation either by salvage pathway or by introduction of an expression of intact GDP-mannose 4,6-dehydratase enhance expression of MUC2, which is the predominant mucin molecule secreted by the PMP cells, in an intestinal-derived adenocarcinoma cell line with defective fucosylation because of deletion in the GDP-mannose 4,6-dehydratase gene. Thus, altered glycosylation especially in the form of fucosylation is linked to the characteristic mucin production of PMP. Glycomic data are available via ProteomeXchange with identifier PXD010086.
Collapse
Affiliation(s)
- Lilli Saarinen
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Pirjo Nummela
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Hannele Leinonen
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | | | - Alexandra Thiel
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Caj Haglund
- ¶Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FI-00029 HUS, Finland.,‖Translational Cancer Biology, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Anna Lepistö
- ¶Department of Surgery, University of Helsinki and Helsinki University Hospital, P.O. Box 440, FI-00029 HUS, Finland
| | - Tero Satomaa
- §Glykos Finland Ltd, Viikinkaari 6, FI-00790 Helsinki, Finland
| | - Sampsa Hautaniemi
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Ari Ristimäki
- From the ‡Genome-Scale Biology Research Program, Research Programs Unit, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland; .,**Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, P.O. Box 400, FI-00029 HUS, Finland
| |
Collapse
|
20
|
Song Y, Zhao N, Jiang K, Zheng Z, Wang B, Kong D, Li S. Occurrence of metachronous multiple primary cancers occurred in different parts of the stomach with 2 pathologic features: A case report. Medicine (Baltimore) 2018; 97:e10803. [PMID: 29768377 PMCID: PMC5976309 DOI: 10.1097/md.0000000000010803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
RATIONALE With the increasing survival rate of gastric cancer, more multiple primary cancers (MPC) have been reported. However, few cases involve metachronous multiple primary cancers which both occurred in the stomach. PATIENT CONCERNS An 83-year-old Chinese male had been diagnosed with gastric cardia cancer and underwent proximal gastrectomy. The pathological result was gastric adenocarcinoma. 13 years later the patient's gastroscope result deteriorated. The biopsy of the antrum revealed dysplasia with doubtful focal cancerization. DIAGNOSES Metachronous multiple primary cancers in the stomach. INTERVENTIONS Endoscopic submucosal dissection (ESD) was performed. The pathological result showed an intra-mucosal signet-ring carcinoma. OUTCOMES After treatment, the patient is alive with good condition until now. LESSONS This is an unusual case of MPC with different pathological features in different parts of the same organ in an interval of more than ten years and undergoing different operations.
Collapse
Affiliation(s)
- Yan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin
| | - Ningning Zhao
- Department of Gastroenterology and Hepatology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, Hebei Province
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin
| | - Zhongqing Zheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin
| | - Dalu Kong
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shu Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin
| |
Collapse
|
21
|
Carrascal MA, Silva M, Ramalho JS, Pen C, Martins M, Pascoal C, Amaral C, Serrano I, Oliveira MJ, Sackstein R, Videira PA. Inhibition of fucosylation in human invasive ductal carcinoma reduces E-selectin ligand expression, cell proliferation, and ERK1/2 and p38 MAPK activation. Mol Oncol 2018; 12:579-593. [PMID: 29215790 PMCID: PMC5928367 DOI: 10.1002/1878-0261.12163] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Breast cancer tissue overexpresses fucosylated glycans, such as sialyl-Lewis X/A (sLeX/A ), and α-1,3/4-fucosyltransferases (FUTs) in relation to increased disease progression and metastasis. These glycans in tumor circulating cells mediate binding to vascular E-selectin, initiating tumor extravasation. However, their role in breast carcinogenesis is still unknown. Here, we aimed to define the contribution of the fucosylated structures, including sLeX/A , to cell adhesion, cell signaling, and cell proliferation in invasive ductal carcinomas (IDC), the most frequent type of breast cancer. We first analyzed expression of E-selectin ligands in IDC tissue and established primary cell cultures from the tissue. We observed strong reactivity with E-selectin and anti-sLeX/A antibodies in both IDC tissue and cell lines, and expression of α-1,3/4 FUTs FUT4, FUT5, FUT6, FUT10, and FUT11. To further assess the role of fucosylation in IDC biology, we immortalized a primary IDC cell line with human telomerase reverse transcriptase to create the 'CF1_T cell line'. Treatment with 2-fluorofucose (2-FF), a fucosylation inhibitor, completely abrogated its sLeX/A expression and dramatically reduced adherence of CF1_T cells to E-selectin under hemodynamic flow conditions. In addition, 2-FF-treated CF1_T cells showed a reduced migratory ability, as well as decreased cell proliferation rate. Notably, 2-FF treatment lowered the growth factor expression of CF1_T cells, prominently for FGF2, vascular endothelial growth factor, and transforming growth factor beta, and negatively affected activation of signal-regulating protein kinases 1 and 2 and p38 mitogen-activated protein kinase signaling pathways. These data indicate that fucosylation licenses several malignant features of IDC, such as cell adhesion, migration, proliferation, and growth factor expression, contributing to tumor progression.
Collapse
Affiliation(s)
- Mylène A. Carrascal
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
| | - Mariana Silva
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
- Departments of Dermatology and MedicineBrigham & Women's HospitalBostonMAUSA
- Harvard Medical SchoolProgram of Excellence in GlycosciencesBostonMAUSA
| | - José S. Ramalho
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa CentralEPE – Serviço de Anatomia PatológicaLisbonPortugal
| | - Manuela Martins
- Centro Hospitalar de Lisboa CentralEPE – Serviço de Anatomia PatológicaLisbonPortugal
| | - Carlota Pascoal
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
| | - Constança Amaral
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
| | | | - Maria José Oliveira
- New Therapies GroupINEB‐Institute for Biomedical EngineeringPortoPortugal
- Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
| | - Robert Sackstein
- Departments of Dermatology and MedicineBrigham & Women's HospitalBostonMAUSA
- Harvard Medical SchoolProgram of Excellence in GlycosciencesBostonMAUSA
| | - Paula A. Videira
- UCIBIODepartamento Ciências da VidaFaculdade de Ciências e TecnologiaUniversidade Nova de LisboaPortugal
- CEDOCChronic Diseases Research CenterNOVA Medical School/Faculdade de Ciências MédicasUniversidade Nova de LisboaPortugal
- CDG & Allies – PPAIN Congenital Disorders of Glycosylation Professionals and Patient Associations International NetworkCaparicaPortugal
| |
Collapse
|
22
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 2. Expert Rev Proteomics 2018. [PMID: 29521143 DOI: 10.1080/14789450.2018.1448710] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The changes in glycan structures have been attributed to disease states for several decades. The surface glycosylation pattern is a signature of physiological state of a cell. In this review we provide a link between observed substructural glycan changes and a range of diseases. Areas covered: We highlight biologically relevant glycan substructure expression in cancer, inflammation, neuronal diseases and diabetes. Furthermore, the alterations in antibody glycosylation in a disease context are described. Expert commentary: Advances in technologies, as described in Part 1 of this review have now enabled the characterization of specific glycan structural markers of a range of disease states. The requirement of including glycomics in cross-disciplinary omics studies, such as genomics, proteomics, epigenomics, transcriptomics and metabolomics towards a systems glycobiology approach to understanding disease mechanisms and management are highlighted.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| | - Edward S X Moh
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| |
Collapse
|
23
|
Wu CY, Huo JP, Zhang XK, Zhang YJ, Hu WM, Yang P, Lu JB, Zhang ZL, Cao Y. Loss of CD15 expression in clear cell renal cell carcinoma is correlated with worse prognosis in Chinese patients. Jpn J Clin Oncol 2018; 47:1182-1188. [PMID: 29036563 DOI: 10.1093/jjco/hyx139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/12/2017] [Indexed: 01/01/2023] Open
Abstract
Purpose To explore the role of CD15 expression in the prognosis of clear cell renal cell carcinoma (ccRCC) in Chinese patients. Methods The study included 301 patients who had undergone surgery for localized ccRCC. All paraffin-embedded tumor sections were collected to make a set of tissue microarrays. CD15 expression was assessed by immunohistochemistry. The relationship between CD15 expression and survival parameters, clinicopathology features was assessed. Kaplan-Meier and Cox proportional hazards model were utilized to determine the correlation between CD15 expression and overall survival (OS). Results The median follow-up time was 54.6 months (range, 3-121 months). The positive rate of CD15 expression was 81.7% (246/301). The cut-off value of CD15 expression was defined as the maximum for Youden index by plotting the receiver operating characteristic curve for survival status. As the threshold was 0.5, all cases were divided into two groups: positive expression group and negative expression group. In correlation analysis, loss of CD15 expression was correlated with female gender, higher Fuhrman nuclear grade, with sarcomatoid differentiation, with necrosis, and with vascular invasion. Kaplan-Meier analysis indicated that the OS time of patients with loss of CD15 expression was shorter than that of patients with positive CD15 expression (P = 0.013). Conclusion CD15 is a significant prognostic factor in clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Chen-Yan Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Pathology, Sun Yat-sen University Cancer Center
| | - Jian-Ping Huo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Pathology, Sun Yat-sen University Cancer Center
| | - Xin-Ke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Pathology, Sun Yat-sen University Cancer Center
| | - Yi-Jun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Pathology, Sun Yat-sen University Cancer Center
| | - Wan-Ming Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Pathology, Sun Yat-sen University Cancer Center
| | - Ping Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Pathology, Sun Yat-sen University Cancer Center
| | - Jia-Bin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Pathology, Sun Yat-sen University Cancer Center
| | - Zhi-Ling Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Pathology, Sun Yat-sen University Cancer Center
| |
Collapse
|
24
|
Thakur K, Kaur T, Singh J, Rabbani G, Khan RH, Hora R, Kaur M. Sauromatum guttatum lectin: Spectral studies, lectin-carbohydrate interaction, molecular cloning and in silico analysis. Int J Biol Macromol 2017; 104:1267-1279. [DOI: 10.1016/j.ijbiomac.2017.06.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
|
25
|
Lee SH, Jeong S, Lee J, Yeo IS, Oh MJ, Kim U, Kim S, Kim SH, Park SY, Kim JH, Park SH, Kim JH, An HJ. Glycomic profiling of targeted serum haptoglobin for gastric cancer using nano LC/MS and LC/MS/MS. MOLECULAR BIOSYSTEMS 2017; 12:3611-3621. [PMID: 27722599 DOI: 10.1039/c6mb00559d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gastric cancer has one of the highest cancer mortality rates worldwide, largely because of difficulties in early-stage detection. Aberrant glycosylation in serum proteins is associated with many human diseases including inflammation and various types of cancer. Serum-based global glycan profiling using mass spectrometry has been explored and has already led to several potential glycan markers for several disease states. However, localization of the aberrant glycosylation is desirable in order to improve the specificity and sensitivity for clinical use. Here, we combined protein-specific immunoaffinity purification, glycan release, and MS analysis to examine haptoglobin glycosylation of gastric cancer patients for glyco-markers. Age- and sex-matched 60 serum samples (30 cancer patients and 30 healthy controls) were used to profile and quantify haptoglobin N-glycans. A T-test based statistical analysis was performed to identify potential glyco-markers for gastric cancer. Interestingly, abundances of several tri- and tetra-antennary fucosylated N-glycans were increased in gastric cancer patients. Additionally, structural analysis via LC/MS/MS indicated that the fucosylated complex type N-glycans were primarily decorated with antenna fucose, which can be categorized as sialyl-Lea or sialyl-Lex type structures. This platform demonstrates quantitative, structure-specific profiling of haptoglobin glycosylation for the purposes of biomarker discovery for gastric cancer.
Collapse
Affiliation(s)
- Sung Hyeon Lee
- GLYCAN Co., Ltd., Healthcare Innovation Park, 172 Dolma-ro, Bundang-gu, Seongnam 13605, Korea
| | - Seunghyup Jeong
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - Jua Lee
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - In Seok Yeo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Myung Jin Oh
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - Unyong Kim
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - Sumin Kim
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | - Su Hee Kim
- GLYCAN Co., Ltd., Healthcare Innovation Park, 172 Dolma-ro, Bundang-gu, Seongnam 13605, Korea
| | - Seung-Yeol Park
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University Samsung Medical Center, Seoul, Korea
| | - Jung Hoe Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Hyun Joo An
- Asia-pacific Glycomics Reference Site, Daejeon, Korea and Graduate School of Analytical Science and Technology, College of Engineering II, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
26
|
Maiuri AR, Peng M, Podicheti R, Sriramkumar S, Kamplain CM, Rusch DB, DeStefano Shields CE, Sears CL, O'Hagan HM. Mismatch Repair Proteins Initiate Epigenetic Alterations during Inflammation-Driven Tumorigenesis. Cancer Res 2017; 77:3467-3478. [PMID: 28522752 DOI: 10.1158/0008-5472.can-17-0056] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/30/2017] [Accepted: 05/04/2017] [Indexed: 01/05/2023]
Abstract
Aberrant silencing of genes by DNA methylation contributes to cancer, yet how this process is initiated remains unclear. Using a murine model of inflammation-induced tumorigenesis, we tested the hypothesis that inflammation promotes recruitment of epigenetic proteins to chromatin, initiating methylation and gene silencing in tumors. Compared with normal epithelium and noninflammation-induced tumors, inflammation-induced tumors gained DNA methylation at CpG islands, some of which are associated with putative tumor suppressor genes. Hypermethylated genes exhibited enrichment of repressive chromatin marks and reduced expression prior to tumorigenesis, at a time point coinciding with peak levels of inflammation-associated DNA damage. Loss of MutS homolog 2 (MSH2), a mismatch repair (MMR) protein, abrogated early inflammation-induced epigenetic alterations and DNA hypermethylation alterations observed in inflammation-induced tumors. These results indicate that early epigenetic alterations initiated by inflammation and MMR proteins lead to gene silencing during tumorigenesis, revealing a novel mechanism of epigenetic alterations in inflammation-driven cancer. Understanding such mechanisms will inform development of pharmacotherapies to reduce carcinogenesis. Cancer Res; 77(13); 3467-78. ©2017 AACR.
Collapse
Affiliation(s)
- Ashley R Maiuri
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Michael Peng
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | | | - Shruthi Sriramkumar
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Caitlin M Kamplain
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | | | | | - Cynthia L Sears
- Departments of Medicine and Oncology, Johns Hopkins University, Baltimore, Maryland.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Heather M O'Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| |
Collapse
|
27
|
Chen NT, Souris JS, Cheng SH, Chu CH, Wang YC, Konda V, Dougherty U, Bissonnette M, Mou CY, Chen CT, Lo LW. Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1941-1952. [PMID: 28363770 DOI: 10.1016/j.nano.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-deaths worldwide. Methods for the early in situ detection of colorectal adenomatous polyps and their precursors - prior to their malignancy transformation into CRC - are urgently needed. Unfortunately at present, the primary diagnostic method, colonoscopy, can only detect polyps and carcinomas by shape/morphology; with sessile polyps more likely to go unnoticed than polypoid lesions. Here we describe our development of polyp-targeting, fluorescently-labeled mesoporous silica nanoparticles (MSNs) that serve as targeted endoscopic contrast agents for the early detection of colorectal polyps and cancer. In vitro cell studies, ex vivo histopathological analysis, and in vivo colonoscopy and endoscopy of murine colorectal cancer models, demonstrate significant binding specificity of our nanoconstructs to pathological lesions via targeting aberrant α-L-fucose expression. Our findings strongly suggest that lectin-functionalized fluorescent MSNs could serve as a promising endoscopic contrast agent for in situ diagnostic imaging of premalignant colonic lesions.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Chemistry, National Taiwan University Taipei, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA; Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Jeffrey S Souris
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Shih-Hsun Cheng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Vani Konda
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University Taipei, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan.
| |
Collapse
|
28
|
Hyperglycemia exacerbates colon cancer malignancy through hexosamine biosynthetic pathway. Oncogenesis 2017; 6:e306. [PMID: 28319096 PMCID: PMC5533945 DOI: 10.1038/oncsis.2017.2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/07/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
Hyperglycemia is a common feature of diabetes mellitus, considered as a risk factor for cancer. However, its direct effects in cancer cell behavior are relatively unexplored. Herein we show that high glucose concentration induces aberrant glycosylation, increased cell proliferation, invasion and tumor progression of colon cancer. By modulating the activity of the rate-limiting enzyme, glutamine-fructose-6-phosphate amidotransferase (GFAT), we demonstrate that hexosamine biosynthetic pathway (HBP) is involved in those processes. Biopsies from patients with colon carcinoma show increased levels of GFAT and consequently aberrant glycans’ expression suggesting an increase of HBP flow in human colon cancer. All together, our results open the possibility that HBP links hyperglycemia, aberrant glycosylation and tumor malignancy, and suggest this pathway as a potential therapeutic target for colorectal cancer.
Collapse
|
29
|
Zhao YP, Zhou PT, Ji WP, Wang H, Fang M, Wang MM, Yin YP, Jin G, Gao CF. Validation of N-glycan markers that improve the performance of CA19-9 in pancreatic cancer. Clin Exp Med 2017; 17:9-18. [PMID: 26714469 DOI: 10.1007/s10238-015-0401-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 11/02/2015] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer (PC) has a high mortality rate because it is usually diagnosed late. Glycosylation of proteins is known to change in tumor cells during the development of PC. The objectives of this study were to identify and validate the diagnostic value of novel biomarkers based on N-glycomic profiling for PC. In total, 217 individuals including subjects with PC, pancreatitis, and healthy controls were divided randomly into a training group (n = 164) and validation groups (n = 53). Serum N-glycomic profiling was analyzed by DSA-FACE. The diagnostic model was constructed based on N-glycan markers with logistic stepwise regression. The diagnostic performance of the model was assessed further in validation cohort. The level of total core fucose residues was increased significantly in PC. Two diagnostic models designated GlycoPCtest and PCmodel (combining GlycoPCtest and CA19-9) were constructed to differentiate PC from normal. The area under the receiver operating characteristic curve (AUC) of PCmodel was higher than that of CA19-9 (0.925 vs. 0.878). The diagnostic models based on N-glycans are new, valuable, noninvasive alternatives for identifying PC. The diagnostic efficacy is improved by combined GlycoPCtest and CA19-9 for the discrimination of patients with PC from healthy controls.
Collapse
Affiliation(s)
- Yun-Peng Zhao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Ping-Ting Zhou
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Wei-Ping Ji
- Department of Surgery, Changhai Hospital, Second Military Medical University, 116 Changhai Rd, Shanghai, 200438, China
| | - Hao Wang
- Department of Laboratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Meng-Meng Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Yue-Peng Yin
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China
| | - Gang Jin
- Department of Surgery, Changhai Hospital, Second Military Medical University, 116 Changhai Rd, Shanghai, 200438, China.
| | - Chun-Fang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Rd, Shanghai, 200438, China.
| |
Collapse
|
30
|
Wang Y, Huang D, Chen KY, Cui M, Wang W, Huang X, Awadellah A, Li Q, Friedman A, Xin WW, Di Martino L, Cominelli F, Miron A, Chan R, Fox J, Xu Y, Shen X, Kalady MF, Markowitz S, Maillard I, Lowe JB, Xin W, Zhou L. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma. Gastroenterology 2017; 152:193-205.e10. [PMID: 27639802 PMCID: PMC5164974 DOI: 10.1053/j.gastro.2016.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/29/2016] [Accepted: 09/07/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS De novo synthesis of guanosine diphosphate (GDP)-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or tissue specific transplantation antigen P35B [TSTA3]). GMDS deletions and mutations are found in 6%-13% of colorectal cancers; these mostly affect the ascending and transverse colon. We investigated whether a lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. METHODS FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx-/- mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by enzyme-linked immunosorbent assays to measure cytokine levels; T cells also were collected and analyzed. Fecal samples were analyzed by 16s ribosomal RNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx-/- or control mice (Ly5.2) into irradiated 8-week-old Fx-/- or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). RESULTS Fx-/- mice developed colitis and serrated-like lesions. The intestinal pathology of Fx-/- mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx-/- mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency altered the composition of the fecal microbiota, reduced mucosal barrier function, and altered epithelial proliferation marked by Ki67. Fx-/- mice receiving control bone marrow cells had intestinal inflammation and dysplasia, and reduced expression of cytokines produced by cytotoxic T cells. Human sessile serrated adenomas and right-sided colorectal tumors with epigenetic loss of MutL homolog 1 (MLH1) had lost or had lower levels of HES1 than other colorectal tumor types or nontumor tissues. CONCLUSIONS In mice, fucosylation deficiency leads to colitis and adenocarcinoma, loss of Notch activation, and down-regulation of Hes1. HES1 loss correlates with the development of human right-sided colorectal tumors with epigenetic loss of MLH1. These findings indicate that carcinogenesis in a subset of colon cancer is consequent to a molecular mechanism driven by fucosylation deficiency and/or HES1-loss.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kai-Yuan Chen
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Min Cui
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaoran Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amad Awadellah
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Qing Li
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ann Friedman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - William W. Xin
- School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104-6304, USA
| | - Luca Di Martino
- Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Fabio Cominelli
- Department of Internal Medicine, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Alex Miron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, OH 44106, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mathew F. Kalady
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Sanford Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John B. Lowe
- Department of Pathology, Genentech Inc., San Francisco, CA, 94080 USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA,Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
31
|
Nagasaki M, Manabe Y, Minamoto N, Tanaka K, Silipo A, Molinaro A, Fukase K. Chemical Synthesis of a Complex-Type N-Glycan Containing a Core Fucose. J Org Chem 2016; 81:10600-10616. [PMID: 27775350 DOI: 10.1021/acs.joc.6b02106] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A chemical synthesis of a core fucose containing N-glycan was achieved. Asparagine was introduced at an early stage of the synthesis, and the sugar chain was convergently elongated. As for the fragment synthesis, we reinvestigated α-sialylation, β-mannosylation, and N-glycosylation to reveal that precise temperature control was essential for these glycosylations. Intermolecular hydrogen bonds involving acetamide groups were found to reduce the reactivity in glycosylations: the protection of NHAc as NAc2 dramatically improved the reactivity. The dodecasaccharide-asparagine framework was constructed via the (4 + 4) glycosylation and the (4 + 8) glycosylation using the tetrasaccharide donor and the tetrasaccharide-asparagine acceptor. An ether-type solvent enhanced the yields of these key glycosylations between large substrates. After the whole deprotection of the dodecasaccharide, the target N-glycan was obtained.
Collapse
Affiliation(s)
- Masahiro Nagasaki
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Naoya Minamoto
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Biofunctional Synthetic Chemistry Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Alba Silipo
- Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.,Department of Chemical Science, University of Naples Federico II , Via Cinthia 4, 80126 Napoli, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University , Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
32
|
Fucosyltransferase-4 and Oligosaccharide Lewis Y Antigen as potentially Correlative Biomarkers of Helicobacter pylori CagA Associated Gastric Cancer. Pathol Oncol Res 2016; 23:173-179. [PMID: 27757838 DOI: 10.1007/s12253-016-0122-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer but their effect on fucosylation to develop gastric cancer is unknown. Fucosyltransferase IV (FUT4) is the key enzyme for synthesis of LewisY (LeY) carried by glycoproteins and glycolipids on the cell membrane. Herein, we compare the expression of CagA, p-EGFR, FUT4 and LeY in gastritis (n = 128, 176), gastric ulcer (n = 174, 213), and gastric cancer (n = 323, 261) tissue and serum samples, respectively by IHC and ELISA. Moreover, we investigated the potential correlation of CagA with FUT4 and LeY overexpression through EGFR activation. IHC and ELISA results showed higher positive cases of H. pylori CagA (83, 86 %), p-EGFR (81, 72 %), FUT4 (91, 97 %) and LeY (93, 92 %) in gastric cancer, compared to gastritis and gastric ulcer, H. pylori CagA (58, 67 & 59, 73 %), p-EGFR (52, 63 & 35, 47 %), FUT4 (68, 78 & 67, 82 %) and LeY (62,76 & 65, 85 %), respectively. We found a significant high expression (H-Value) of CagA (1.79, 1.66), p-EGFR (1.53, 1.58), FUT4 (2.14, 1.66) and LeY (1.69, 1.61) in gastric cancer tissues and serum, respectively as compared to chronic gastritis and gastric ulcers, CagA (0.64,1.14), p-EGFR (0.856, 0.678), FUT4 (0.949,1.197) and LeY (0.68,1.008) (P < 0.0001), respectively. Furthermore, H. pylori CagA showed significant correlation with p-EGFR (R-0.62, -0.74), FUT4 (R-0.81, -0.76) and LeY (R-0.82, -0.70) in gastric tissues and serum (P < 0.0001). H. pylori CagA plays key role in the development of gastric cancer with overexpression of FUT4/LeY, serve as potentially correlative biomarkers of H. pylori CagA associated gastric cancer.
Collapse
|
33
|
A Chemiluminescent Protein Microarray Method for Determining the Seroglycoid Fucosylation Index. Sci Rep 2016; 6:31132. [PMID: 27528397 PMCID: PMC4985809 DOI: 10.1038/srep31132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 07/13/2016] [Indexed: 12/21/2022] Open
Abstract
The Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3) is widely used to screen for hepatocellular carcinoma (HCC) in Japan and China. We developed a chemiluminescent protein microarray for determining the AFP-L3/AFP index (the ratio of AFP-L3 to total AFP, AFP-L3%) by fixing AFP-specific antibodies and Lens culinaris lectin on aldehyde-coated glass slides. Serum samples were tested for AFP using an enzyme-linked immunosorbent assay (ELISA) to validate the microarray. AFP-L3 was detected using Hotgen Biotech glycosyl capture spin column pretreatment technology and ELISA. When the AFP cut-off value was set to 20 ng/ml, the protein microarray displayed 89.74% sensitivity and 100% specificity for HCC diagnosis, and the ELISA displayed 87.17% sensitivity and 100% specificity. When the AFP-L3% cut-off value was set to 0.1, the protein microarray displayed 56.41% sensitivity and 100% specificity for HCC diagnosis, and the ELISA displayed 53.84% sensitivity and 100% specificity. The ROC curve for the HCC diagnosis showed that the AFP area under the ROC curve (AUC = 0.996; 95% CI: 0.986-1.005) was much higher than that of AFP-L3 (AUC = 0.857; 95% CI: 0.769-0.94) and AFP-L3% (AUC = 0.827; CI: 0.730-0.924). The microarray assay used in this study is a highly sensitive, accurate, and efficient assay for the determination of the AFP-L3%.
Collapse
|
34
|
Ma C, Qu J, Li X, Zhao X, Li L, Xiao C, Edmunds G, Gashash E, Song J, Wang PG. Improvement of core-fucosylated glycoproteome coverage via alternating HCD and ETD fragmentation. J Proteomics 2016; 146:90-8. [PMID: 27282921 DOI: 10.1016/j.jprot.2016.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED Core-fucosylation (CF) plays important roles in regulating biological processes in eukaryotes. Alterations of CF-glycosites or CF-glycans in bodily fluids correlate with cancer development. Therefore, global research of protein core-fucosylation with an emphasis on proteomics can explain pathogenic and metastasis mechanisms and aid in the discovery of new potential biomarkers for early clinical diagnosis. In this study, a precise and high throughput method was established to identify CF-glycosites from human plasma. We found that alternating HCD and ETD fragmentation (AHEF) can provide a complementary method to discover CF-glycosites. A total of 407 CF-glycosites among 267 CF-glycoproteins were identified in a mixed sample made from six normal human plasma samples. Among the 407 CF-glycosites, 10 are without the N-X-S/T/C consensus motif, representing 2.5% of the total number identified. All identified CF-glycopeptide results from HCD and ETD fragmentation were filtered with neutral loss peaks and characteristic ions of GlcNAc from HCD spectra, which assured the credibility of the results. This study provides an effective method for CF-glycosites identification and a valuable biomarker reference for clinical research. BIOLOGICAL SIGNIFICANCE CF-glycosytion plays an important role in regulating biological processes in eukaryotes. Alterations of the glycosites and attached CF-glycans are frequently observed in various types of cancers. Thus, it is crucial to develop a strategy for mapping human CF-glycosylation. Here, we developed a complementary method via alternating HCD and ETD fragmentation (AHEF) to analyze CF-glycoproteins. This strategy reveals an excellent complementarity of HCD and ETD in the analysis of CF-glycoproteins, and provides a valuable biomarker reference for clinical research.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States.
| | - Jingyao Qu
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Xu Li
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Xinyuan Zhao
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Lei Li
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Cong Xiao
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Ebtesam Gashash
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Jing Song
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States
| | - Peng George Wang
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
35
|
Aziz F, Wang X, Liu J, Yan Q. Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions. Toxicol In Vitro 2016; 31:158-66. [PMID: 26427350 DOI: 10.1016/j.tiv.2015.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/17/2015] [Accepted: 09/25/2015] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori) cytotoxin associated antigen A (CagA) plays a significant role in the development of gastric cancer. Ginsenoside Rg3 is a herbal medicine which inhibits cell proliferation and induces apoptosis in various cancer cells. Fucosylation plays important roles in cancer biology as increased fucosylation levels of glycoproteins and glycolipids have been reported in many cancers. Fucosyltransferase IV (FUT4) is an essential enzyme, catalyzes the synthesis of LewisY oligosaccharides and is regulated by specificity protein 1 (SP1) and heat shock factor protein 1 (HSF1) transcription factors. Herein, we studied the mechanism action of Rg3 apoptosis induction in gastric cancer cells. We treated the gastric cancer cells with CagA followed by Rg3, and analyzed their ability to induce apoptosis by evaluating the role of FUT4 as well as SP1 and HSF1 expressions by Western blot, flow cytometry and ELISA. We found that Rg3 significantly induced apoptosis in CagA treated gastric cancer cells, as evidenced by nuclear staining of 4-6-diamidino-2-phenylindole (DAPI) and Annexin-V/PI double-labeling. In addition, Rg3 significantly increased the expression of pro-apoptotic proteins and triggered the activation of caspase-3, -8, and -9 and PARP. Moreover, Rg3-induced apoptotic mechanisms indicated that Rg3 inhibited FUT4 expression through SP1 upregulation and HSF1 downregulation. Hence, Rg3 therapy is an effective strategy for gastric cancer treatment. Furthermore SP1 and HSF1 may serve as potential diagnostic and therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Faisal Aziz
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Xiaoqi Wang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China.
| |
Collapse
|
36
|
Uthamalingam M, Periyasamy K. Unusual Presentation of Hepatocellular Carcinoma into Right iliac fossa: A Rare Entity. J Clin Diagn Res 2015; 9:PD11-2. [PMID: 26672490 DOI: 10.7860/jcdr/2015/14627.6805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant hepatic tumour. Hepatocellular carcinoma presenting itself or extending into the right iliac fossa (RIF) is a very rare entity. We report on a rare case of hepatocellular carcinoma in a 60-year-old lady, presented with a mobile mass in the lower abdomen without cirrhosis, with normal α-feto protein levels (AFP) or any known risk factors for liver disease. HCC in this case was unusual in its presentation both in the patient as well as a disease.
Collapse
Affiliation(s)
- Murali Uthamalingam
- Associate Professor, Department of Surgery, International Medical School , MSU, Malaysia
| | | |
Collapse
|
37
|
Holst S, Deuss AJM, van Pelt GW, van Vliet SJ, Garcia-Vallejo JJ, Koeleman CAM, Deelder AM, Mesker WE, Tollenaar RA, Rombouts Y, Wuhrer M. N-glycosylation Profiling of Colorectal Cancer Cell Lines Reveals Association of Fucosylation with Differentiation and Caudal Type Homebox 1 (CDX1)/Villin mRNA Expression. Mol Cell Proteomics 2015; 15:124-40. [PMID: 26537799 PMCID: PMC4762531 DOI: 10.1074/mcp.m115.051235] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 01/05/2023] Open
Abstract
Various cancers such as colorectal cancer (CRC) are associated with alterations in protein glycosylation. CRC cell lines are frequently used to study these (glyco)biological changes and their mechanisms. However, differences between CRC cell lines with regard to their glycosylation have hitherto been largely neglected. Here, we comprehensively characterized the N-glycan profiles of 25 different CRC cell lines, derived from primary tumors and metastatic sites, in order to investigate their potential as glycobiological tumor model systems and to reveal glycans associated with cell line phenotypes. We applied an optimized, high-throughput membrane-based enzymatic glycan release for small sample amounts. Released glycans were derivatized to stabilize and differentiate between α2,3- and α2,6-linked N-acetylneuraminic acids, followed by N-glycosylation analysis by MALDI-TOF(/TOF)-MS. Our results showed pronounced differences between the N-glycosylation patterns of CRC cell lines. CRC cell line profiles differed from tissue-derived N-glycan profiles with regard to their high-mannose N-glycan content but showed a large overlap for complex type N-glycans, supporting their use as a glycobiological cancer model system. Importantly, we could show that the high-mannose N-glycans did not only occur as intracellular precursors but were also present at the cell surface. The obtained CRC cell line N-glycan features were not clearly correlated with mRNA expression levels of glycosyltransferases, demonstrating the usefulness of performing the structural analysis of glycans. Finally, correlation of CRC cell line glycosylation features with cancer cell markers and phenotypes revealed an association between highly fucosylated glycans and CDX1 and/or villin mRNA expression that both correlate with cell differentiation. Together, our findings provide new insights into CRC-associated glycan changes and setting the basis for more in-depth experiments on glycan function and regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yoann Rombouts
- From the ‡Center for Proteomics and Metabolomics, ¶Department of RheumatologyLeiden University Medical Center, Leiden, The Netherlands; ‡‡Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Manfred Wuhrer
- From the ‡Center for Proteomics and Metabolomics, ‖Department of Molecular Cell Biology and Immunology and **Division of BioAnalytical Chemistry, VU University Medical Center, Amsterdam, The Netherlands;
| |
Collapse
|
38
|
Exquisite specificity of mitogenic lectin from Cephalosporium curvulum to core fucosylated N-glycans. Glycoconj J 2015; 33:19-28. [PMID: 26514868 DOI: 10.1007/s10719-015-9628-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/26/2022]
|
39
|
Fernández-Briera A, Cuevas E, Gil-Martín E. Screening of enzymatic synthesis and expression of Lewis determinants in human colorectal carcinoma. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2015; 107:598-607. [PMID: 26437978 DOI: 10.17235/reed.2015.3789/2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although colorectal carcinogenesis has been intensively studied, the published investigations do not provide a consistent description of how different carbohydrate determinants of colorectal epithelium are modified in colorectal cancer (CRC). OBJECTIVE This study is an attempt to characterize the terminal fucosylation steps responsible for the synthesis of mono- Le(a)/Le(x)- and difucosylated -Le(b)/Le(y)- Lewis antigens in healthy and tumour CRC tissue. METHODS An immunohistochemical study of Lewis antigens' expression was undertaken, along with screening of the fucosyltransferase (FT) activities involved in their synthesis, on healthy and tumour samples from 18 patients undergoing CRC. RESULTS Analysis of alpha(1,2/3/4)FT activities involved in the sequential fucosylation of cores 1 and 2 showed significant increases in tumour tissue. Expressed as microU/mg and control vs. tumour activity (pfrom Wilcoxon's test), the FT activities for Le(a)/Le(b) synthesis were: lacto-N-biose alpha(1,2)/alpha(1,4)FT, 65.4 ± 19.0 vs. 186 ± 35.1 (p< 0.005); lacto-N-fucopentaose 1 alpha(1,4)FT, 64.9 ± 11.9 vs. 125.4 ± 20.7 (p< 0.005); Le(a) alpha(1,2)FT, 56.2 ± 7.2 vs. 130.5 ± 15.6 (p< 0.001). Similarly, for Le(x)/Le(y) synthesis were: N-acetyllactosamine alpha(1,2)-/alpha(1,3)FT, 53.4 ± 12.2 vs. 108.1 ± 18.9 (p< 0.001); 2'-Fucosyl-N-acetyllactosamine alpha(1,3)FT, 61.3 ± 10.7 vs. 126.4 ± 22.9 (p< 0.001); 2'-Fucosyllactose alpha(1,3)FT, 38.9 ± 10.9 vs. 143.6 ± 28.9 (p< 0.001); 2'-Methyllactose alpha(1,3)FT, 30.9 ± 4.8 vs. 66.1 ± 8.1 (p< 0.005); and Le(x) alpha(1,2)FT, 54.3 ± 11.9 vs. 88.2 ± 14.4 (p< 0.001). Immunohistochemical Le(y) expression was increased (p< 0.01 according to Wilcoxon's test) in tumour tissue, with 84.6% of specimens being positive: 7.7% weak, 15.4% moderate and 61.5% high intensity. CONCLUSIONS Results suggest the activation of the biosynthesis pathways of mono- and difucosylated Lewis histo-blood antigens in tumour tissue from CRC patients, leading to the overexpression of Le(y), probably at the expense of Le(x).
Collapse
|
40
|
Kühn K, Cott C, Bohler S, Aigal S, Zheng S, Villringer S, Imberty A, Claudinon J, Römer W. The interplay of autophagy and β-Catenin signaling regulates differentiation in acute myeloid leukemia. Cell Death Discov 2015; 1:15031. [PMID: 27551462 PMCID: PMC4979480 DOI: 10.1038/cddiscovery.2015.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/03/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
The major feature of leukemic cells is an arrest of differentiation accompanied by highly active proliferation. In many subtypes of acute myeloid leukemia, these features are mediated by the aberrant Wnt/β-Catenin pathway. In our study, we established the lectin LecB as inducer of the differentiation of the acute myeloid leukemia cell line THP-1 and used it for the investigation of the involved processes. During differentiation, functional autophagy and low β-Catenin levels were essential. Corresponding to this, a high β-Catenin level stabilized proliferation and inhibited autophagy, resulting in low differentiation ability. Initiated by LecB, β-Catenin was degraded, autophagy became active and differentiation took place within hours. Remarkably, the reduction of β-Catenin sensitized THP-1 cells to the autophagy-stimulating mTOR inhibitors. As downmodulation of E-Cadherin was sufficient to significantly reduce LecB-mediated differentiation, we propose E-Cadherin as a crucial interaction partner in this signaling pathway. Upon LecB treatment, E-Cadherin colocalized with β-Catenin and thereby prevented the induction of β-Catenin target protein expression and proliferation. That way, our study provides for the first time a link between E-Cadherin, the aberrant Wnt/β-Catenin signaling, autophagy and differentiation in acute myeloid leukemia. Importantly, LecB was a valuable tool to elucidate the underlying molecular mechanisms of acute myeloid leukemia pathogenesis and may help to identify novel therapy approaches.
Collapse
Affiliation(s)
- K Kühn
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraβe 1, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - C Cott
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraβe 1, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - S Bohler
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraβe 1, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - S Aigal
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraβe 1, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - S Zheng
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraβe 1, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - S Villringer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraβe 1, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - A Imberty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), CNRS and Université Grenoble Alpes , 601 rue de la chimie, 38000 Grenoble, France
| | - J Claudinon
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraβe 1, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - W Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraβe 1, 79104 Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| |
Collapse
|
41
|
Belo AI, van Vliet SJ, Maus A, Laan LC, Nauta TD, Koolwijk P, Tefsen B, van Die I. Hypoxia inducible factor 1α down regulates cell surface expression of α1,2-fucosylated glycans in human pancreatic adenocarcinoma cells. FEBS Lett 2015; 589:2359-66. [PMID: 26232512 DOI: 10.1016/j.febslet.2015.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 01/16/2023]
Abstract
The α1,2-fucosyltransferase activity in pancreatic tumors is much lower compared to normal pancreatic tissue. Here we show that hypoxia inducible factor (HIF) 1α is constitutively expressed in the pancreatic cancer cell lines Pa-Tu-8988S and Pa-Tu-8988T and suppresses the expression of the α1,2-fucosyltransferase genes FUT1 and FUT2. Down regulation of HIF-1α expression resulted in elevated FUT1 and FUT2 transcript levels and an increased expression of α1,2-fucosylated glycan structures on the surface of these cells. In conclusion, our data are the first to identify HIF-1α as a suppressor of FUT1/2 expression, thereby regulating α1,2-fucosylation of cell-surface glycans.
Collapse
Affiliation(s)
- Ana I Belo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Andreas Maus
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Tessa D Nauta
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Pieter Koolwijk
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Aziz F, Yang X, Wang X, Yan Q. Anti-LeY antibody enhances therapeutic efficacy of celecoxib against gastric cancer by downregulation of MAPKs/COX-2 signaling pathway: correlation with clinical study. J Cancer Res Clin Oncol 2015; 141:1221-35. [PMID: 25527419 DOI: 10.1007/s00432-014-1892-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/25/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) is a major causative agent for the induction of chronic gastritis, gastric ulcer and gastric cancer. Celecoxib (COX-2 inhibitor) inhibits gastric cancer cell proliferation, but with low treatment efficacy, limiting its applications. It is important to develop a better strategy to improve the efficacy of celecoxib. Lewis Y (LeY) is a difucosylated oligosaccharide, highly expressed in 60-90% of human epithelial cancers, including gastric cancer. We previously found that H. pylori infection was associated with high level of LeY in gastric cancer. MATERIAL AND METHODS Herein, we analyzed the correlation between H. pylori and cyclo-oxygenase-2 (COX-2), LeY, gastric markers (CA724 and GRN) in gastric patient's tissue and serum samples by IHC and ELISA. Furthermore, we treated the primary gastric cancer cells with celecoxib, anti-LeY antibody or the combination, and analyzed their therapeutic efficacy on CA724, GRN and COX-2 expression by Western blot, flow cytometry and ELISA. RESULTS We found that gastric cancer had significantly high expression of H. pylori, COX-2, CA724, and GRN compared to gastric ulcers and chronic gastritis (P < 0.0001). H. pylori level showed significant correlation with COX-2 (R--0.552), LeY (R--0.861), CA724 (R--0.714) and GRN (R--0.664) (P < 0.0001). Additionally, the combination therapy led to impressive inhibition of gastric cancer cell proliferation, with decreased expression of COX-2, CA724 and GRN through downregulation of MAPKs/COX-2 pathway (P < 0.01). CONCLUSIONS Our findings suggest that anti-LeY antibody enhances the cancer cell proliferation inhibitory effects of celecoxib, which might be a new feasible way for gastric cancer therapy.
Collapse
Affiliation(s)
- Faisal Aziz
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044, People's Republic of China
| | | | | | | |
Collapse
|
43
|
Zhu LC, Gao J, Hu ZH, Schwab CL, Zhuang HY, Tan MZ, Yan LM, Liu JJ, Zhang DY, Lin B. Membranous expressions of Lewis y and CAM-DR-related markers are independent factors of chemotherapy resistance and poor prognosis in epithelial ovarian cancer. Am J Cancer Res 2015; 5:830-843. [PMID: 25973320 PMCID: PMC4396026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Chemotherapy resistance is a common problem faced by patients diagnosed with epithelial ovarian cancer (EOC). Currently there are no specific or sensitive clinical biomarkers that maybe implemented to identify chemotherapy resistance and give insight to prognosis. The aim of this study is to investigate the roles of Lewis y antigen and the markers associated with cell-adhesion-mediated drug resistance (CAM-DR) in patients with EOC. METHODS 92 EOC patients who were treated with systemic chemotherapy after cytoreductive surgery were included in this analysis. Patients were divided into two groups, chemotherapy sensitive (n = 56) and resistant (n = 36). Immunohistochemical (IHC) staining for Lewis y and CAM-DR-related cell surface proteins including CD44, CD147, HE4 (Human epididymis protein 4), integrin α5, β1, αv and β3 were conducted on tissues collected during primary debulking surgery. Using multivariate logistic regressions, IHC results were compared to clinical variables and chemotherapy resistance to determine possible correlations. The relationships between IHC expression and progression-free survival (PFS) and overall survival (OS) were analyzed using Kaplan-Meier method and Cox regression analysis. RESULTS Membranous expression of Lewis y and all these CAM-DR-related markers were significantly higher in the resistant group than that of the sensitive group (all P < 0.01). Multivariate regression analysis revealed that high expression of Lewis y, CD44, HE4, integrin α5 and β1 as well as advanced FIGO stage were independent risk factors for chemotherapy resistance (all P < 0.05). Advanced FIGO stage, lymph node metastasis and high expression of Lewis y, CD44, CD147, HE4, integrin α5, β1 were associated with a shorter PFS and OS (all P < 0.05). Moreover, multivariate COX analysis demonstrated that the following variates were independent predictors of worse PFS and OS survival: late FIGO stage (P = 0.013, 0.049), high expressions of Lewis y (P = 0.010, 0.036), HE4 (P = 0.006, 0.013) and integrin β1 (PFS, P = 0.003), integrin α5 (OS, P = 0.019). CONCLUSION Membranous expression of Lewis y and CAM-DR-related markers including CD44, CD147, HE4, integrin α5, β1, αv and β3 are associated with the development of chemotherapy resistance. High expression of Lewis y antigen and CAM-DR-related markers including CD44, CD147, HE4, integrin α5 and β1 are independent markers for PFS and OS, in which Lewis y and HE4 are the most significant.
Collapse
Affiliation(s)
- Lian-Cheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zhen-Hua Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Carlton L Schwab
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine333 Cedar Street, PO Box 208063, New Haven, Connecticut 06520-8063, USA
| | - Hui-Yu Zhuang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Ming-Zi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Li-Mei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Juan-Juan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Dan-Ye Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University36 Sanhao Street, Shenyang, Liaoning, 110004, China
| |
Collapse
|
44
|
Yan X, Lin Y, Liu S, Aziz F, Yan Q. Fucosyltransferase IV (FUT4) as an effective biomarker for the diagnosis of breast cancer. Biomed Pharmacother 2015; 70:299-304. [PMID: 25776515 DOI: 10.1016/j.biopha.2014.12.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/30/2014] [Indexed: 12/17/2022] Open
Abstract
Specific enzymes are involved in altered glycosylation of cancer. Fucosyltransferase IV (FUT4) is associated with the proliferation and metastasis of breast cancer. The application of FUT4 assay in the serum has not been reported yet. Here, the expression level of FUT4 in the breast cancer patient's tissues (n=60) was analyzed by immunohistochemistry (IHC) and the secreted FUT4 in blood serum samples (n=225) was detected by enzyme-linked immunosorbent assay (ELISA). Using low metastatic MCF-7 and high metastatic MDA-MB-231 breast cancer cell lines, FUT4 expression was also detected by reverse transcription-polymerase chain reaction (RT-PCR), Western blot and immunofluorescent staining. The conventional cancer biomarkers cancer antigen (CA15.3) and carcinoembryonic antigen (CEA) was analyzed by Elecsys-electrochemical immune assay (ECLIA) to compare specificity and sensitivity with that of FUT4. We have observed a significant high expression of FUT4 in breast cancer tissues and serums as compared to the normal tissues (P<0.01) and control serums (P<0.05). FUT4 expression was increased in MDA-MB-231 cells vs. that in MCF-7 cells. Furthermore, the results of receiver operating characteristic (ROC) analysis was shown, area under curve of FUT4 (AUC=0.784) was higher than that of CA15.3 (AUC=0.468) and CEA (AUC=0.563). The relation analysis is indicated FUT4 is significantly correlated with CA15.3 (r=0.234, P<0.05) and there is no significant correlation with CEA. In conclusion, this study suggests that FUT4 can serve as novel biomarker in the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Xiaomei Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044 Liaoning, China; College of Laboratory Medicine, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Yingwei Lin
- The 2nd Affiliated Hospital of Dalian Medical University, Dalian, 116023 Liaoning, China
| | - Shuai Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Faisal Aziz
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044 Liaoning, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, 116044 Liaoning, China.
| |
Collapse
|
45
|
Abstract
Glycans on proteins and lipids are known to alter with malignant transformation. The study of these may contribute to the discovery of biomarkers and treatment targets as well as understanding of cancer biology. We here describe the change of glycosylation specifically defining colorectal cancer with view on N-glycans, O-glycans, and glycosphingolipid glycans in colorectal cancer cells and tissues as well as patient sera. Glycan alterations observed in colon cancer include increased β1,6-branching and correlating higher abundance of (poly-)N-acetyllactosamine extensions of N-glycans as well as an increase in (truncated) high-mannose type glycans, while bisected structures decrease. Colorectal cancer-associated O-glycan changes are predominated by reduced expression of core 3 and 4 glycans, whereas higher levels of core 1 glycans, (sialyl) T-antigen, (sialyl) Tn-antigen, and a generally higher density of O-glycans are observed. Specific changes for glycosphingolipid glycans are lower abundances of disialylated structures as well as globo-type glycosphingolipid glycans with exception of Gb3. In general, alterations affecting all discussed glycan types are increased sialylation, fucosylation as well as (sialyl) Lewis-type antigens and type-2 chain glycans. As a consequence, interactions with glycan-binding proteins can be affected and the biological function and cellular consequences of the altered glycosylation with regard to tumorigenesis, metastasis, modulation of immunity, and resistance to antitumor therapy will be discussed. Finally, analytical approaches aiding in the field of glycomics will be reviewed with focus on binding assays and mass spectrometry.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Division of BioAnalytical Chemistry, VU University, Amsterdam, The Netherlands
| | - Yoann Rombouts
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
The expression of annexin II and Lewis y antigen in ovarian epithelial tumors and the correlation between them. Tumour Biol 2014; 36:2343-9. [PMID: 25416440 DOI: 10.1007/s13277-014-2841-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022] Open
Abstract
The main aim of this study was to explore the molecular structural relationship between annexin II (ANXA2) and Lewis y antigen by determining their expression patterns and clinical significance in ovarian epithelial carcinoma. The structural relationship between ANXA2 and Lewis y antigen was examined using immunoprecipitation and confocal laser scanning microscopy in two ovarian caner cell lines ES-2 and CaoV-3. We also constracted the stably transfected cell lines with low ANXA2 gene expression in order to detect the expression level between ANXA2 and Lewis y. ANXA2 and Lewis y were detected in tissues from malignant, borderline, benign, and normal ovarian tissues using immunohistochemical analysis. ANXA2 and Lewis y were present in both two ovarian cancer cells and ANXA2 contained Lewis y antigen. Moreover, expression of Lewis y antigen in ANXA2 from cell after transfection was higher than that before. Our immunohistochemistry data revealed significantly higher positive expression rates of ANXA2 in malignant ovarian tissues, compared to benign tumor and normal tissue, similar to Lewis y antigen levels in ovarian cancer. Notably, tissues displaying marked expression of ANXA2 simultaneously expressed high levels of Lewis y antigen. A linear correlation between the expression patterns of ANXA2 and Lewis y antigen was evident. Consistently, double-labeling immunofluorescence experiments illustrated co-localization of ANXA2 and Lewis y antigen within the same area. In conclusions, ANXA2 contains Lewis y antigen. Our results further demonstrate a close correlation between the expression levels of the two antigens, which are significantly high in ovarian cancer.
Collapse
|
47
|
Lin YH, Lin JH, Chou SC, Chang SJ, Chung CC, Chen YS, Chang CH. Berberine-loaded targeted nanoparticles as specific Helicobacter pylori eradication therapy: in vitro and in vivo study. Nanomedicine (Lond) 2014; 10:57-71. [PMID: 25177920 DOI: 10.2217/nnm.14.76] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM The aim of this work was to develop fucose-conjugated nanoparticles and control the release of berberine, and demonstrate that these particles come into contact with Helicobacter pylori and enhance the suppressive effect of berberine on H. pylori growth. MATERIALS & METHODS Fucose-chitosan/heparin nanoparticle-encapsulated berberine was prepared and delivery efficiency was monitored by confocal laser scanning microscopy. Anti-H. pylori activities were investigated by determining the calculated bacterial colonies and immunohistochemistry staining analysis. RESULTS Analysis of a simulated gastrointestinal medium indicated that the proposed drug carrier effectively controls the release of berberine, which interacts specifically at the site of H. pylori infection, and significantly increases berberine's suppressive effect on H. pylori growth. In an in vivo study, the berberine-loaded fucose-conjugated nanoparticles exhibited an H. pylori clearance effect. CONCLUSION These findings indicate that berberine-loaded fucose-conjugated nanoparticles exert an H. pylori clearance effect and effectively reduce gastric inflammation in an H. pylori-infected animal study.
Collapse
Affiliation(s)
- Yu-Hsin Lin
- Department of Biological Science & Technology, China Medical University, Taichung, Taiwan, 40402
| | | | | | | | | | | | | |
Collapse
|
48
|
Ahn YH, Shin PM, Kim YS, Oh NR, Ji ES, Kim KH, Lee YJ, Kim SH, Yoo JS. Quantitative analysis of aberrant protein glycosylation in liver cancer plasma by AAL-enrichment and MRM mass spectrometry. Analyst 2014; 138:6454-62. [PMID: 24027776 DOI: 10.1039/c3an01126g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A lectin-coupled mass spectrometry (MS) approach was employed to quantitatively monitor aberrant protein glycosylation in liver cancer plasma. To do this, we compared the difference in the total protein abundance of a target glycoprotein between hepatocellular carcinoma (HCC) plasmas and hepatitis B virus (HBV) plasmas, as well as the difference in lectin-specific protein glycoform abundance of the target glycoprotein. Capturing the lectin-specific protein glycoforms from a plasma sample was accomplished by using a fucose-specific aleuria aurantia lectin (AAL) immobilized onto magnetic beads via a biotin-streptavidin conjugate. Following tryptic digestion of both the total plasma and its AAL-captured fraction of each HCC and HBV sample, targeted proteomic mass spectrometry was conducted quantitatively by a multiple reaction monitoring (MRM) technique. From the MRM-based analysis of the total plasmas and AAL-captured fractions, differences between HCC and HBV plasma groups in fucosylated glycoform levels of target glycoproteins were confirmed to arise from both the change in the total protein abundance of the target proteins and the change incurred by aberrant fucosylation on target glycoproteins in HCC plasma, even when no significant change occurs in the total protein abundance level. Combining the MRM-based analysis method with the lectin-capturing technique proved to be a successful means of quantitatively investigating aberrant protein glycosylation in cancer plasma samples. Additionally, it was elucidated that the differences between HCC and control groups in fucosylated biomarker candidates A1AT and FETUA mainly originated from an increase in fucosylation levels on these target glycoproteins, rather than an increase in the total protein abundance of the target glycoproteins.
Collapse
Affiliation(s)
- Yeong Hee Ahn
- Division of Mass Spectrometry, Korea Basic Science Institute, 804-1 Yangcheong-Ri, Ochang-Eup, Cheongwon-Gun 363-883, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhuang H, Hu Z, Tan M, Zhu L, Liu J, Liu D, Yan L, Lin B. Overexpression of Lewis y antigen promotes human epididymis protein 4-mediated invasion and metastasis of ovarian cancer cells. Biochimie 2014; 105:91-8. [PMID: 24998328 DOI: 10.1016/j.biochi.2014.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/25/2014] [Indexed: 11/30/2022]
Abstract
To study Human epididymis protein 4 (HE4) surface fucosylation and to determine the effects and significance of Lewis y antigen on HE4-mediated invasion and metastasis of ovarian cancer cells, we investigated four types of ovarian cancer cells and found that six fucosylated antigens (Lewis y, Lewis x, Lewis a, Lewis b, sLewis a, and sLewis x) were identified on HE4 in ovarian cancer cells. Moreover, modification of the type II sugar chain (Lewis y, Lewis x, and sLewis x) was significantly higher than the type I sugar chain (Lewis a, Lewis b, sLewis a) of the lactose series. To confirm the effects of Lewis y antigen on HE4-mediated invasion and metastasis of ovarian cancer cells, the CaoV-3 cells with high Lewis y antigen on the HE4 surface and ES-2 cells, with high Lewis x antigen but low Lewis y antigen, were investigated. We found that the expression levels of HE4 and Lewis y increased in both cell lines while the level of Lewis x didn't have any change after transfection. Furthermore, the high expression of Lewis y antigen significantly enhanced the HE4-mediated invasion and metastasis of ovarian cancer cells. The invasion and metastasis capacities were significantly decreased after Lewis y antibody blocking. This study demonstrates that overexpression of the Lewis y antigen on HE4 promotes ovarian cancer cell invasion and metastasis, which is likely to be used as a target for the clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Huiyu Zhuang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Zhenhua Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Mingzi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Dawo Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Limei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004 Liaoning Province, China.
| |
Collapse
|
50
|
Ahn YH, Ji ES, Oh NR, Kim YS, Ko JH, Yoo JS. Differential proteomic approach for identification and verification of aberrantly glycosylated proteins in adenocarcinoma lung cancer (ADLC) plasmas by lectin-capturing and targeted mass spectrometry. J Proteomics 2014; 106:221-9. [PMID: 24780727 DOI: 10.1016/j.jprot.2014.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED To investigate quantitative differences in aberrant glycosylation of target glycoproteins between noncancerous group and patient group with adenocarcinoma lung cancer (ADLC), differential proteomic approach was developed by cooperatively using comparative lectin-capturing, targeted mass spectrometry (MRM MS), and antibody/lectin sandwich ELISA. Plasma samples comparatively prepared from 3 ADLC patients and 3 controls, with and without lectin-fractionation using fucose-specific Aleuria aurantia lectin (AAL), were trypsin-digested and analyzed for target glycoproteins, alpha-1-acid glycoprotein (AGP) and ceruloplasmin (CP), by MRM MS. From the MRM MS data the abundance levels of AAL-captured glycoforms of both targets were significantly higher in ADLC cases compared to controls, although the levels in total protein abundance were comparable between ADLC and control groups. This difference between ADLC and control groups in the fucosylated glycoform levels was originated mainly from aberrant fucosylation on the targets in ADLC plasmas rather than change in total protein abundance of the targets, and also confirmed by sandwich ELISA. AGP and CP were further verified to be biomarker candidates by MRM-based analysis of AAL-captured plasmas (30 ADLC cases, 30 controls), with AUROC 0.758 and 0.847 respectively. This differential proteomic approach can be useful for identifying and verifying biomarker candidate involved in aberrant protein glycosylation. BIOLOGICAL SIGNIFICANCE The present paper introduces an efficient differential proteomic method to investigate quantitative differences in aberrant protein glycosylation of serological glycoproteins between noncancerous group and lung cancer patient group. This differential proteomic approach consisting of the targeted MRM MS of comparatively lectin-captured plasma fractions and the antibody/lectin sandwich ELISA-based assay was evaluated to be useful for identification of aberrantly fucosylated glycoproteins AGP and CP in lung cancer plasmas. In addition, we have demonstrated that the MRM MS-based differential proteomic approach is also useful for high-throughput verification of the aberrantly fucosylated glycoproteins AGP and CP using the large number of individual plasmas. Therefore, the present MRM MS-based differential proteomic strategy with lectin-capturing can be a powerful tool for high-throughput verification of aberrantly glycosylated biomarker candidates, identified preliminary by mass profiling experiments in proteomic fields but requiring further validation using a large number of cohorts.
Collapse
Affiliation(s)
- Yeong Hee Ahn
- Division of Mass Spectrometry, Korea Basic Science Institute, Ochang-Myun, Cheongwon-Gun 363-883, Republic of Korea
| | - Eun Sun Ji
- Division of Mass Spectrometry, Korea Basic Science Institute, Ochang-Myun, Cheongwon-Gun 363-883, Republic of Korea; Department of Chemistry, Hannam University, Daejeon 306-791, Republic of Korea
| | - Na Ree Oh
- Division of Mass Spectrometry, Korea Basic Science Institute, Ochang-Myun, Cheongwon-Gun 363-883, Republic of Korea
| | - Yong-Sam Kim
- Targeted Gene Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jeong Heon Ko
- Biomedical Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jong Shin Yoo
- Division of Mass Spectrometry, Korea Basic Science Institute, Ochang-Myun, Cheongwon-Gun 363-883, Republic of Korea; GRAST, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|