1
|
Sabir U, Gu HM, Zhang DW. Extracellular matrix turnover: phytochemicals target and modulate the dual role of matrix metalloproteinases (MMPs) in liver fibrosis. Phytother Res 2023; 37:4932-4962. [PMID: 37461256 DOI: 10.1002/ptr.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 07/02/2023] [Indexed: 11/10/2023]
Abstract
Extracellular matrix (ECM) resolution by matrix metalloproteinases (MMPs) is a well-documented mechanism. MMPs play a dual and complex role in modulating ECM degradation at different stages of liver fibrosis, depending on the timing and levels of their expression. Increased MMP-1 combats disease progression by cleaving the fibrillar ECM. Activated hepatic stellate cells (HSCs) increase expression of MMP-2, -9, and -13 in different chemicals-induced animal models, which may alleviate or worsen disease progression based on animal models and the stage of liver fibrosis. In the early stage, elevated expression of certain MMPs may damage surrounding tissue and activate HSCs, promoting fibrosis progression. At the later stage, downregulation of MMPs can facilitate ECM accumulation and disease progression. A number of phytochemicals modulate MMP activity and ECM turnover, alleviating disease progression. However, the effects of phytochemicals on the expression of different MMPs are variable and may depend on the disease models and stage, and the dosage, timing and duration of phytochemicals used in each study. Here, we review the most recent advances in the role of MMPs in the effects of phytochemicals on liver fibrogenesis, which indicates that further studies are warranted to confirm and define the potential clinical efficacy of these phytochemicals.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Sztolsztener K, Konstantynowicz-Nowicka K, Pędzińska-Betiuk A, Chabowski A. Concentration-Dependent Attenuation of Pro-Fibrotic Responses after Cannabigerol Exposure in Primary Rat Hepatocytes Cultured in Palmitate and Fructose Media. Cells 2023; 12:2243. [PMID: 37759466 PMCID: PMC10526512 DOI: 10.3390/cells12182243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatic fibrosis is a consequence of liver injuries, in which the overproduction and progressive accumulation of extracellular matrix (ECM) components with the simultaneous failure of matrix turnover mechanisms are observed. The aim of this study was to investigate the concentration-dependent influence of cannabigerol (CBG, Cannabis sativa L. component) on ECM composition with respect to transforming growth factor beta 1 (TGF-β1) changes in primary hepatocytes with fibrotic changes induced by palmitate and fructose media. Cells were isolated from male Wistar rats' livers in accordance with the two-step collagenase perfusion technique. This was followed by hepatocytes incubation with the presence or absence of palmitate with fructose and/or cannabigerol (at concentrations of 1, 5, 10, 15, 25, 30 µM) for 48 h. The expression of ECM mRNA genes and proteins was determined using PCR and Western blot, respectively, whereas media ECM level was evaluated using ELISA. Our results indicated that selected low concentrations of CBG caused a reduction in TGF-β1 mRNA expression and secretion into media. Hepatocyte exposure to cannabigerol at low concentrations attenuated collagen 1 and 3 deposition. The protein and/or mRNA expressions and MMP-2 and MMP-9 secretion were augmented using CBG. Considering the mentioned results, low concentrations of cannabigerol treatment might expedite fibrosis regression and promote regeneration.
Collapse
Affiliation(s)
- Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.K.-N.); (A.C.)
| | | | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.K.-N.); (A.C.)
| |
Collapse
|
3
|
Lominadze Z, Hill K, Shaik MR, Canakis JP, Bourmaf M, Adams-Mardi C, Abutaleb A, Mishra L, Shetty K. Immunotherapy for Hepatocellular Carcinoma in the Setting of Liver Transplantation: A Review. Int J Mol Sci 2023; 24:2358. [PMID: 36768686 PMCID: PMC9917203 DOI: 10.3390/ijms24032358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The emerging field of immuno-oncology has brought exciting developments in the treatment of hepatocellular carcinoma (HCC). It has also raised urgent questions about the role of immunotherapy in the setting of liver transplantation, both before and after transplant. A growing body of evidence points to the safety and efficacy of immunotherapeutic agents as potential adjuncts for successful down-staging of advanced HCCs to allow successful transplant in carefully selected patients. For patients with recurrent HCC post-transplant, immunotherapy has a limited, yet growing role. In this review, we describe optimal regimens in the setting of liver transplantation.
Collapse
Affiliation(s)
- Zurabi Lominadze
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kareen Hill
- Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Justin P. Canakis
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Mohammad Bourmaf
- Department of Medicine, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Cyrus Adams-Mardi
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Ameer Abutaleb
- Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Lopa Mishra
- Cold Spring Harbor Laboratory, Feinstein Institutes for Medical Research, Division of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY 11030, USA
| | - Kirti Shetty
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Dios-Barbeito S, González R, Cadenas M, García LF, Victor VM, Padillo FJ, Muntané J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide 2022; 128:1-11. [DOI: 10.1016/j.niox.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
|
5
|
Cucarull B, Tutusaus A, Rider P, Hernáez-Alsina T, Cuño C, García de Frutos P, Colell A, Marí M, Morales A. Hepatocellular Carcinoma: Molecular Pathogenesis and Therapeutic Advances. Cancers (Basel) 2022; 14:cancers14030621. [PMID: 35158892 PMCID: PMC8833604 DOI: 10.3390/cancers14030621] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, continues to be a serious medical problem with poor prognosis, without major therapeutic improvement for years and increasing incidence. Fortunately, advances in systemic treatment options are finally arriving for HCC patients. After a decade of sorafenib as a standard therapy for advanced HCC, several tyrosine kinase inhibitors (TKIs), antiangiogenic antibodies, and immune checkpoint inhibitors have reached the clinic. Although infections by hepatitis B virus and hepatitis C virus remain principal factors for HCC development, the rise of non- alcoholic steatohepatitis from diabetes mellitus or metabolic syndrome is impeding HCC decline. Knowledge of specific molecular mechanisms, based on the etiology and the HCC microenvironment that influence tumor growth and immune control, will be crucial for physician decision-making among a variety of drugs to prescribe. In addition, markers of treatment efficacy are needed to speed the movement of patients towards other potentially effective treatments. Consequently, research to provide scientific data for the evidence-based management of liver cancer is guaranteed in the coming years and discussed here.
Collapse
Affiliation(s)
- Blanca Cucarull
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | | | - Carlos Cuño
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Unidad Asociada (IMIM), IIBB-CSIC, CIBERCV, IDIBAPS, 08036 Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (B.C.); (A.T.); (P.R.); (C.C.); (P.G.d.F.); (A.C.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, CIBEREHD, IDIBAPS, 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); Tel.: +34-932558314 (M.M. & A.M.)
| |
Collapse
|
6
|
Farshidpour M, Ahmed M, Junna S, Merchant JL. Myeloid-derived suppressor cells in gastrointestinal cancers: A systemic review. World J Gastrointest Oncol 2021; 13:1-11. [PMID: 33510845 PMCID: PMC7805271 DOI: 10.4251/wjgo.v13.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are one of the most common malignancies worldwide, with high rates of morbidity and mortality. Myeloid-derived suppressor cells (MDSCs) are major components of the tumor microenvironment (TME). MDSCs facilitate the transformation of premalignant cells and play roles in tumor growth and metastasis. Moreover, in patients with GI malignancies, MDSCs can lead to the suppression of T cells and natural killer cells. Accordingly, a better understanding of the role and mechanism of action of MDSCs in the TME will aid in the development of novel immune-targeted therapies.
Collapse
Affiliation(s)
- Maham Farshidpour
- Inpatient Medicine, Banner University of Medical Center, Tucson, AZ 85724, United States
| | - Monjur Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Shilpa Junna
- Division of Gastroenterology and Hepatology, Banner University of Medical Center, Tucson, AZ 85724, United States
| | - Juanita L Merchant
- Division of Gastroenterology and Hepatology, Banner University of Medical Center, Tucson, AZ 85724, United States
| |
Collapse
|
7
|
Irungbam K, Roderfeld M, Glimm H, Hempel F, Schneider F, Hehr L, Glebe D, Churin Y, Morlock G, Yüce I, Roeb E. Cholestasis impairs hepatic lipid storage via AMPK and CREB signaling in hepatitis B virus surface protein transgenic mice. J Transl Med 2020; 100:1411-1424. [PMID: 32612285 PMCID: PMC7572243 DOI: 10.1038/s41374-020-0457-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical studies demonstrated that nonalcoholic steatohepatitis is associated with liver-related outcomes in chronic hepatitis B. Furthermore, primary biliary fibrosis and biliary atresia occurred in patients with HBV infection. Interestingly, hepatitis B virus surface protein (HBs) transgenic mice spontaneously develop hepatic steatosis. Our aim is to investigate the effect of Abcb4 knockout-induced cholestasis on liver steatosis in HBs transgenic mice. Hybrids of HBs transgenic and Abcb4-/- mice were bred on the BALB/c genetic background. Lipid synthesis, storage, and catabolism as well as proteins and genes that control lipid metabolism were analyzed using HPTLC, qPCR, western blot, electrophoretic mobility shift assay (EMSA), lipid staining, and immunohistochemistry. Hepatic neutral lipid depots were increased in HBs transgenic mice and remarkably reduced in Abcb4-/- and HBs/Abcb4-/- mice. Similarly, HPTLC-based quantification analyses of total hepatic lipid extracts revealed a significant reduction in the amount of triacylglycerols (TAG), while the amount of free fatty acids (FFA) was increased in Abcb4-/- and HBs/Abcb4-/- in comparison to wild-type and HBs mice. PLIN2, a lipid droplet-associated protein, was less expressed in Abcb4-/- and HBs/Abcb4-/-. The expression of genes-encoding proteins involved in TAG synthesis and de novo lipogenesis (Agpat1, Gpat1, Mgat1, Dgat1, Dgat2, Fasn, Hmgcs1, Acc1, Srebp1-c, and Pparγ) was suppressed, and AMPK and CREB were activated in Abcb4-/- and HBs/Abcb4-/- compared to wild-type and HBs mice. Simulating cholestatic conditions in cell culture resulted in AMPK and CREB activation while FASN and PLIN2 were reduced. A concurrent inhibition of AMPK signaling revealed normal expression level of FASN and PLIN2, suggesting that activation of AMPK-CREB signaling regulates hepatic lipid metabolism, i.e. synthesis and storage, under cholestatic condition. In conclusions, in vivo and mechanistic in vitro data suggest that cholestasis reduces hepatic lipid storage via AMPK and CREB signaling. The results of the current study could be the basis for novel therapeutic strategies as NASH is a crucial factor that can aggravate chronic liver diseases.
Collapse
Affiliation(s)
- Karuna Irungbam
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Hannah Glimm
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Felix Hempel
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Franziska Schneider
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Hehr
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Yuri Churin
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Imanuel Yüce
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
8
|
Abstract
Hepatic fibrosis is a complex mechanism defined by the net deposition of the extracellular matrix (ECM) owing to liver injury caused by multiple etiologies such as viral hepatitis and nonalcoholic fatty liver disease. Many cell types are implicated in liver fibrosis development and progression. In general, liver fibrosis starts with the recruitment of inflammatory immune cells to generate cytokines, growth factors, and other activator molecules. Such chemical mediators drive the hepatic stellate cells (HSCs) to activate the production of the ECM component. The activation of HSC is thus a crucial event in the fibrosis initiation, and a significant contributor to collagen deposition (specifically type I). This review explores the causes and mechanisms of hepatic fibrosis and focuses on the roles of key molecules involved in liver fibro genesis, some of which are potential targets for therapeutics to hamper liver fibro genesis.
Collapse
Affiliation(s)
- Reham M Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
9
|
Masuzaki R, Kanda T, Sasaki R, Matsumoto N, Ogawa M, Matsuoka S, Karp SJ, Moriyama M. Noninvasive Assessment of Liver Fibrosis: Current and Future Clinical and Molecular Perspectives. Int J Mol Sci 2020; 21:4906. [PMID: 32664553 PMCID: PMC7402287 DOI: 10.3390/ijms21144906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis is one of the risk factors for hepatocellular carcinoma (HCC) development. The staging of liver fibrosis can be evaluated only via a liver biopsy, which is an invasive procedure. Noninvasive methods for the diagnosis of liver fibrosis can be divided into morphological tests such as elastography and serum biochemical tests. Transient elastography is reported to have excellent performance in the diagnosis of liver fibrosis and has been accepted as a useful tool for the prediction of HCC development and other clinical outcomes. Two-dimensional shear wave elastography is a new technique and provides a real-time stiffness image. Serum fibrosis markers have been studied based on the mechanism of fibrogenesis and fibrolysis. In the healthy liver, homeostasis of the extracellular matrix is maintained directly by enzymes called matrix metalloproteinases (MMPs) and their specific inhibitors, tissue inhibitors of metalloproteinases (TIMPs). MMPs and TIMPs could be useful serum biomarkers for liver fibrosis and promising candidates for the treatment of liver fibrosis. Further studies are required to establish liver fibrosis-specific markers based on further clinical and molecular research. In this review, we summarize noninvasive fibrosis tests and molecular mechanism of liver fibrosis in current daily clinical practice.
Collapse
Affiliation(s)
- Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Reina Sasaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Naoki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| | - Seth J. Karp
- Division of Liver Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Itabashi-Ku, Tokyo 173-8610, Japan; (T.K.); (R.S.); (N.M.); (M.O.); (S.M.); (M.M.)
| |
Collapse
|
10
|
Timperi E, Barnaba V. Viral Hepatitides, Inflammation and Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:25-43. [PMID: 32588321 DOI: 10.1007/978-3-030-44518-8_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this chapter, we discuss the role of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the establishment of hepatocellular carcinoma (HCC), highlighting the key role of the multiple, non-mutually exclusive, pathways involved in the modulation of immune responses and in the orchestration of a chronic low-level inflammation state favouring HCC development. In particular, we discuss (i) HCC as a classical paradigm of inflammation-linked cancer; (ii) the role of the most relevant inflammatory cytokines involved (i.e. IL-6, TNF-α, IL-18, IL-1β, TGF-β IL-10); (iii) the role of T cell exhaustion by immune checkpoints; (iv) the role of the Wnt3a/β-catenin signalling pathway and (v) the role of different subsets of suppressor cells.
Collapse
Affiliation(s)
- Eleonora Timperi
- INSERM U932, Institut Curie, PSL Research University, Paris, France.,Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Barnaba
- INSERM U932, Institut Curie, PSL Research University, Paris, France. .,Istituto Pasteur, Fondazione Cenci Bolognetti, Rome, Italy. .,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
11
|
Devaraj E, Roy A, Royapuram Veeraragavan G, Magesh A, Varikalam Sleeba A, Arivarasu L, Marimuthu Parasuraman B. β-Sitosterol attenuates carbon tetrachloride-induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1067-1075. [PMID: 31930431 DOI: 10.1007/s00210-020-01810-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023]
Abstract
Chronic liver diseases are clinically silent and responsible for significant morbidity and mortality worldwide. β-Sitosterol (BSS), major phytosterol in plants, has a wide spectrum of protective effect against various chronic ailments. We investigated the hepatoprotective effect of BSS against carbon tetrachloride (CCl4)-induced chronic liver injury in rats. Thirty rats were divided into five groups, with six animals in each group. Group I rats served as control while groups II, III, IV, and V rats were injected intraperitoneally with CCl4 (0.2 mL/100 g b.w. in olive oil (1:1)) for 7 consecutive weeks. After 7 weeks, group II rats were left without any treatments and served as CCl4 alone group, while groups III, IV, and V rats were treated with BSS 25 and 50 mg/kg b.w. and silymarin 100 mg/kg b.w. as oral post-treatments respectively, for the next 4 weeks. At the end of the experiment, hepatotoxicity marker enzymes in serum, oxidative stress, and fibrosis marker were analyzed. CCl4 administration caused significant elevation of marker enzymes of hepatotoxicity in serum and increased lipid peroxidation and fibrosis markers such as hydroxyproline, collagen, α-smooth muscle actin, vimentin, desmin, and matrix metalloproteinases 9 in liver tissue of rats. This treatment also caused a significant diminution of intracellular enyzmic antioxidants such as SOD and CAT in the liver tissue of rats. All the above adversities were significantly mitigated by the BSS post-treatments. The results suggest that BSS could have a hepatoprotective effect against oxidative stress-mediated CLD induced by CCl4.
Collapse
Affiliation(s)
- Ezhilarasan Devaraj
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India.
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Geetha Royapuram Veeraragavan
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Anitha Magesh
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, India
| | | | - Lakshminarayanan Arivarasu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| | - Brundha Marimuthu Parasuraman
- Department of Pathology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600 077, India
| |
Collapse
|
12
|
Karatayli E, Hall RA, Weber SN, Dooley S, Lammert F. Effect of alcohol on the interleukin 6-mediated inflammatory response in a new mouse model of acute-on-chronic liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:298-307. [PMID: 30447270 DOI: 10.1016/j.bbadis.2018.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS ACLF is usually associated with a precipitant in the setting of a chronically damaged liver. We aim to combine a mouse model with a pre-injured liver (Abcb4/Mdr2-/-) with a recently standardized ethanol feeding model to dissect alcohol-related inflammatory responses in this model. METHOD Ten (n = 64) and 15 (n = 64) week old wild-type (WT) C57BL/6 J and Abcb4-/- knock-out (KO) mice were either fed control (WT/Cont and KO/Cont groups) or liquid ethanol diet (5% v/v) followed by an ethanol binge (4 mg/kg) (WT/EtOH and KO/EtOH groups). Hepatic mRNA levels of IL6, IFN-G, IL-1B, TGFB1, TNF-A, CCL2, HGF, CRP, RANTES, PNPLA3 and COL3A1 were evaluated using the 2-ΔΔCt method. IL6 and HGF plasma levels were quantified by ELISA. RESULTS Older mice in KO/EtOH group displayed higher IL6 expressions compared to KO/Cont, WT/EtOH and WT/Cont groups of the same age, whereas HGF did not differ. Significant over-expression of CCL2 also corresponded to the same group. Males in KO/EtOH group exhibited higher IL6 expression than females. Lipid droplets were observed in about 80% of mice challenged with ethanol. There was a profound downregulation in PNPLA3 and RANTES levels after ethanol exposure. Mean size of the LDs was inversely correlated with hepatic PNPLA3 levels. CONCLUSION We propose a novel promising approach to model alcohol-related ACLI. Acute inflammatory IL6-driven response might help transition from a stable chronic state to a progressive liver damage in Abcb4-/- mice. Repression of PNPLA3 resulted in a notable expansion in size of lipid droplets, indicating lipid remodeling in this model.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Rabea A Hall
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
13
|
Fayyad A, Lapp S, Risha E, Pfankuche VM, Rohn K, Barthel Y, Schaudien D, Baumgärtner W, Puff C. Matrix metalloproteinases expression in spontaneous canine histiocytic sarcomas and its xenograft model. Vet Immunol Immunopathol 2018; 198:54-64. [PMID: 29571518 DOI: 10.1016/j.vetimm.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022]
Abstract
Canine histiocytic sarcoma (HS) represents a malignant neoplastic disorder often with a rapid and progressive clinical course. A better understanding of the interaction between tumor cells and the local microenvironment may provide new insights into mechanisms of tumor growth and metastasis. The influence of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) on tumor angiogenesis, invasion and metastasis has been detailed in previous studies. In addition, inflammatory cells infiltrating neoplasms especially tumor associated macrophages (TAM) may contribute significantly to tumor progression. Due to the high variability of spontaneously occurring canine HS, standardized models are highly required to investigate tumor progression and interaction with its microenvironment. Therefore, the present study comparatively characterized the intratumoral macrophage infiltration as well as the expression of MMP-2, MMP-9, MMP-14 and TIMP-1 in spontaneous canine HS and its murine model. In spontaneous canine HS, scattered MAC 387-positive macrophages were randomly found in tumor center and periphery, whereas tumor cells were negative for this marker. Interestingly, quantitative analysis revealed that MMPs and TIMP-1 were mainly expressed at the invasive front while tumor centers exhibited significantly reduced immunoreactivity. Similar findings were obtained in xenotransplanted HS. Interestingly, murine tumor associated macrophages (TAM), characterized by Mac3 expression (CD107b/LAMP2), which was not present in xenotransplanted histiocytic sarcoma cells, strongly express MMPs and TIMP-1. In addition, MMPs are known to regulate angiogenesis and a positive correlation between MMP-14 expression and microvessel density was demonstrated in xenotransplanted histiocytic sarcomas. Summarized similar findings with respect to MMP and TIMP distribution and the role of macrophages in spontaneously-occurring and xenotransplanted HS indicate the high suitability of this murine model to further investigate HS under standardized conditions. Moreover results indicate that MMP expression contributes to tumor progression and invasion and TAMs seem to be major players in the interaction between neoplastic cells, the microenvironment and vessel formation indicating that therapeutic approaches modulating TAM associated molecules might represent promising future treatment options.
Collapse
Affiliation(s)
- Adnan Fayyad
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Stefanie Lapp
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Engy Risha
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Vanessa M Pfankuche
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Bünteweg 2, 30559, Hannover, Germany
| | - Yvonne Barthel
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
14
|
Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018; 2:6. [PMID: 29872724 PMCID: PMC5871907 DOI: 10.1038/s41698-018-0048-z] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/23/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become a leading cause of cancer-related death, making the elucidation of its underlying mechanisms an urgent priority. Inflammation is an adaptive response to infection and tissue injury under strict regulations. When the host regulatory machine runs out of control, nonresolving inflammation occurs. Nonresolving inflammation is a recognized hallmark of cancer that substantially contributes to the development and progression of HCC. The HCC-associated inflammation can be initiated and propagated by extrinsic pathways through activation of pattern-recognition receptors (PRRs) by pathogen-associated molecule patterns (PAMPs) derived from gut microflora or damage-associated molecule patterns (DAMPs) released from dying liver cells. The inflammation can also be orchestrated by the tumor itself through secreting factors that recruit inflammatory cells to the tumor favoring the buildup of a microenvironment. Accumulating datas from human and mouse models showed that inflammation promotes HCC development by promoting proliferative and survival signaling, inducing angiogenesis, evading immune surveillance, supporting cancer stem cells, activating invasion and metastasis as well as inducing genomic instability. Targeting inflammation may represent a promising avenue for the HCC treatment. Some inhibitors targeting inflammatory pathways have been developed and under different stages of clinical trials, and one (sorafenib) have been approved by FDA. However, as most of the data were obtained from animal models, and there is a big difference between human HCC and mouse HCC models, it is challenging on successful translation from bench to bedside.
Collapse
|
15
|
Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol 2017; 68-69:463-473. [PMID: 29289644 DOI: 10.1016/j.matbio.2017.12.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Liver fibrosis, a reversible wound-healing response to chronic cellular injury, reflects a balance between liver repair and progressive substitution of the liver parenchyma by scar tissue. Complex mechanisms that underlie liver fibrogenesis are summarized to provide the basis for generating targeted therapies to reverse fibrogenesis and improve the outcomes of patients with chronic liver disease. This minireview presents some pathophysiological aspects of liver fibrosis as a dynamic process and elucidates matrix metalloproteinases (MMPs) and their role within as well as beyond matrix degradation. Open questions remain, whether inhibition of fibrogenesis or induction of fibrolysis is the key mechanism to resolve fibrosis. And a point of principle might be whether regeneration of liver cirrhosis is possible. Will we ever cure fibrosis?
Collapse
|
16
|
Hepatitis B virus surface proteins accelerate cholestatic injury and tumor progression in Abcb4-knockout mice. Oncotarget 2017; 8:52560-52570. [PMID: 28881751 PMCID: PMC5581050 DOI: 10.18632/oncotarget.15003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding of the pathophysiology of cholestasis associated carcinogenesis could challenge the development of new personalized therapeutic approaches and thus improve prognosis. Simultaneous damage might aggravate hepatic injury, induce chronic liver disease and even promote carcinogenesis. We aimed to study the effect of Hepatitis B virus surface protein (HBsAg) on cholestatic liver disease and associated carcinogenesis in a mouse model combining both impairments. Hybrids of Abcb4−/− and HBsAg transgenic mice were bred on fibrosis susceptible background BALB/c. Liver injury, serum bile acid concentration, hepatic fibrosis, and carcinogenesis were enhanced by the combination of simultaneous damage in line with activation of c-Jun N-terminal kinase (JNK), proto-oncogene c-Jun, and Signal transducer and activator of transcription 3 (STAT3). Activation of Protein Kinase RNA-like Endoplasmic Reticulum Kinase (PERK) and Eukaryotic translation initiation factor 2A (eIF2α) indicated unfolded protein response (UPR) in HBsAg-expressing mice and even in Abcb4−/− without HBsAg-expression. CONCLUSION: Cholestasis-induced STAT3- and JNK-pathways may predispose HBsAg-associated tumorigenesis. Since STAT3- and JNK-activation are well characterized critical regulators for tumor promotion, the potentiation of their activation in hybrids suggests an additive mechanism enhancing tumor incidence.
Collapse
|
17
|
Zhang QB, Jia QA, Wang H, Hu CX, Sun D, Jiang RD, Zhang ZL. High-mobility group protein box1 expression correlates with peritumoral macrophage infiltration and unfavorable prognosis in patients with hepatocellular carcinoma and cirrhosis. BMC Cancer 2016; 16:880. [PMID: 27836008 PMCID: PMC5106788 DOI: 10.1186/s12885-016-2883-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
Background High-mobility group protein box1 (HMGB1) is a pivotal factor in the development and progression of many types of tumor. Its role in hepatocellular carcinoma (HCC), and especially its correlation with intratumoral and peritumoral macrophage infiltration, remains obscure. We analyzed the potential roles and prognostic value of HMGB1 and explored the correlation between HMGB1 and macrophage infiltration in HCC using clinical samples. Methods We reviewed clinicopathological and follow-up data on a cohort of 149 patients with HCC complicated with Hepatitis B-related cirrhosis. We measured the expression of HMGB1 and CD68 in tumoral and peritumoral liver tissues after curative resection and assessed the impacts of the tumor-associated macrophage (TAM) count and HMGB1 expression on clinicopathologic characteristics, overall survival (OS), and recurrence-free survival (RFS). Results Ninety-four of the patients had elevated tumoral HMGB1 expression and 59 of the patients had elevated peritumoral HMGB1 expression, compared to only 4 patients with elevated peritumoral HMGB1 expression in 36 pateints with Hepatitis B virus (HBV)-negative HCC without liver cirrhosis (p < 0.001). The peritumoral HMGB1 expression levels were correlated with tumor invasiveness, BCLC stage, and recurrence. The degree of TAM infiltration was higher in peritumoral tissues with high HMGB1 expression than in peritumoral tissues with low HMGB1 expression (p < 0.001). There was no significant difference in TAM infiltration between tumoral tissues with high and low HMGB1 expression. Kaplan-Meier analysis showed that intratumoral HMGB1 overexpression was associated with poor OS, but not with RFS. High peritumoral HMGB1expression and TAM count, which correlated positively with tumor size and BCLC stage, were independent prognostic factors for OS (p < 0.001 and p = 0.017, respectively) and RFS (p = 0.002 and p = 0.024, respectively). Multivariate analyses indicated peritumoral HMGB1 expression (p = 0.014) and TAM count (p = 0.037), as well as tumor differentiation (p = 0.026), to be independent significant prognostic factors for RFS. Conclusions High HMGB1 expression in peritumoral liver tissues correlated with peritumoral macrophage infiltration and had prognostic value in HCC, suggesting that peritumoral HMGB1 might show promise as a new biomarker to predict HCC progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2883-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang-Bo Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, 250012, China
| | - Qing-An Jia
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hong Wang
- Department of Anesthesiology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, China
| | - Chun-Xiao Hu
- Department of General Surgery, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, 250012, China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, 250012, China
| | - Run-De Jiang
- Department of General Surgery, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, 250012, China.
| | - Zong-Li Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan, 250012, China.
| |
Collapse
|
18
|
Cho JM, Kim KY, Ji SD, Kim EH. Protective Effect of Boiled and Freeze-dried Mature Silkworm Larval Powder Against Diethylnitrosamine-induced Hepatotoxicity in Mice. J Cancer Prev 2016; 21:173-181. [PMID: 27722143 PMCID: PMC5051591 DOI: 10.15430/jcp.2016.21.3.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 01/11/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a representative inflammation-associated cancer and known to be the most frequent tumors. HCC may also induce important pro- and anti-tumor immune reactions. However, the underlying mechanisms are unsatisfactorily identified. We investigated the protective effect of boiled and freeze-dried mature silkworm larval powder (BMSP) on diethylnitrosamine (DEN)-induced hepatotoxicity in mice. Methods Mice were fed with diet containing BMSP (0.1, 1, and 10 g/kg) for two weeks and DEN (100 mg/kg, intraperitoneally) was injected 18 hours before the end of this experiment. Liver toxicity was determined in serum and histopathological examination was assessed in the liver tissues. Infiltration of immune cells and expressions of inflammatory cytokines and chemokines were also examined. Results Pretreatment with BMSP reduced necrotic and histopathological changes induced by DEN in the liver. Measurement of serum biochemical indicators, the levels of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase, showed that pretreatment with BMSP also decreased DEN-induced hepatotoxicity. In addition, BMSP inhibited the macrophage and CD31 infiltration in a dose-dependent manner. The expressions of interleukin-1β, IFN-γ and chemokines for T cell activation were decreased in BMSP pretreatment groups. Conclusions BMSP may have a protective effect against acute liver injury by inhibiting necrosis and inflammatory response in DEN-treated mice.
Collapse
Affiliation(s)
- Jae-Min Cho
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA Bio Complex, CHA University, Seongnam, Korea
| | - Kee-Young Kim
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Sang-Deok Ji
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA Bio Complex, CHA University, Seongnam, Korea
| |
Collapse
|
19
|
Hepatic B cell leukemia-3 suppresses chemically-induced hepatocarcinogenesis in mice through altered MAPK and NF-κB activation. Oncotarget 2016; 8:56095-56109. [PMID: 28915576 PMCID: PMC5593547 DOI: 10.18632/oncotarget.10893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
The transcriptional nuclear factor kappa B (NF-κB)-coactivator B cell leukemia-3 (Bcl-3) is a molecular regulator of cell death and proliferation. Bcl-3 has been shown to be widely expressed in different cancer types including hepatocellular carcinoma (HCC). Its influence on hepatocarcinogenesis is still undetermined. To examine the role of Bcl-3 in hepatocarcinogenesis mice with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) were exposed to diethylnitrosamine (DEN) and phenobarbital (PB). Hepatic Bcl-3 overexpression attenuated DEN/PB-induced hepatocarcinogenesis. Bcl-3Hep mice exhibited a lower number and smaller tumor nodules in response to DEN/PB at 40 weeks of age. Reduced HCC formation was accompanied by a lower rate of cell proliferation and a distinct expression pattern of growth and differentiation-related genes. Activation of c-Jun N-terminal kinase (JNK) and especially extracellular-signal regulated kinase (ERK) was reduced in tumor and tumor-surrounding liver tissue of Bcl-3Hep mice, while p38 and NF-κB p65 were phosphorylated to a higher extent compared to the wild type. In parallel, the absolute number of intrahepatic macrophages, CD8+ T cells and activated B cells was reduced in DEN/PB-treated Bcl-3Hep mice mirroring a reduction of tumor-associated inflammation. Interestingly, at the early time point of 7 weeks following tumor initiation, a higher rate of apoptotic cell death was observed in Bcl-3Hep mice. In summary, hepatocyte-restricted Bcl-3 overexpression reduced hepatocarcinogenesis related to prolonged liver injury early after tumor initiation likely due to decreased survival of DEN/PB-damaged, premalignant cells. Therefore, Bcl-3 could become a novel player in the development of therapeutic and diagnostic tools for HCC.
Collapse
|
20
|
Weber SN, Bohner A, Dapito DH, Schwabe RF, Lammert F. TLR4 Deficiency Protects against Hepatic Fibrosis and Diethylnitrosamine-Induced Pre-Carcinogenic Liver Injury in Fibrotic Liver. PLoS One 2016; 11:e0158819. [PMID: 27391331 PMCID: PMC4938399 DOI: 10.1371/journal.pone.0158819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/22/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The development of hepatocellular carcinoma (HCC) is a common consequence of advanced liver fibrosis but the interactions between fibrogenesis and carcinogenesis are still poorly understood. Recently it has been shown that HCC promotion depends on Toll-like receptor (TLR) 4. Pre-cancerogenous events can be modelled in mice by the administration of a single dose of diethylnitrosamine (DEN), with HCC formation depending amongst others on interleukin (IL) 6 production. Mice lacking the hepatocanalicular phosphatidylcholine transporter ABCB4 develop liver fibrosis spontaneously, resemble patients with sclerosing cholangitis due to mutations of the orthologous human gene, and represent a valid model to study tumour formation in pre-injured cholestatic liver. The aim of this study was to investigate DEN-induced liver injury in TLR4-deficient mice with biliary fibrosis. METHODS ABCB4-deficient mice on the FVB/NJ genetic background were crossed to two distinct genetic backgrounds (TLR4-sufficient C3H/HeN and TLR4-deficient C3H/HeJ) for more than 10 generations. The two congenic knockout and the two corresponding wild-type mouse lines were treated with a single dose of DEN for 48 hours. Phenotypic differences were assessed by measuring hepatic collagen contents, inflammatory markers (ALT, CRP, IL6) as well as hepatic apoptosis (TUNEL) and proliferation (Ki67) rates. RESULTS Hepatic collagen accumulation is significantly reduced in ABCB4-/-:TLR4-/-double-deficient mice. After DEN challenge, apoptosis, proliferation and inflammatory markers are decreased in TLR4-deficient in comparison to TLR4-sufficient mice. When combining ABCB4 and TLR4 deficiency with DEN treatment, hepatic IL6 expression and proliferation rates are lowest in fibrotic livers from the double-deficient line. Consistent with these effects, selective digestive tract decontamination in ABCB4-/- mice also led to reduced tumor size and number after DEN. CONCLUSION This study demonstrates that liver injury upon DEN challenge depends on pre-existing fibrosis and genetic background. The generation of ABCB4-/: TLR4-/- double-deficient mice illustrates that TLR4-deficiency protects against hepatic injury in a preclinical mouse model of chronic liver disease.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Diethylnitrosamine/toxicity
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Liver Cirrhosis/chemically induced
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mice, Knockout
- Neoplasm Proteins/deficiency
- Neoplasm Proteins/metabolism
- Precancerous Conditions/chemically induced
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/pathology
- Toll-Like Receptor 4/deficiency
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
| | - Annika Bohner
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Dianne H. Dapito
- Department of Medicine, Columbia University, New York, NY, United States of America
| | - Robert F. Schwabe
- Department of Medicine, Columbia University, New York, NY, United States of America
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
21
|
Li H, You H, Fan X, Jia J. Hepatic macrophages in liver fibrosis: pathogenesis and potential therapeutic targets. BMJ Open Gastroenterol 2016; 3:e000079. [PMID: 27252881 PMCID: PMC4885270 DOI: 10.1136/bmjgast-2016-000079] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Hepatic macrophages account for the largest non-parenchymal cell population in the liver. Recent studies have found that hepatic macrophages have different functions in different stages of experimental liver fibrosis. Some studies found that there are different types of hepatic macrophages in the liver, although others have suggested that hepatic macrophages could switch to different phenotypes in different environments. Many studies demonstrated that while hepatic macrophages promoted fibrosis through the recruitment of proinflammatory immune cells, and the secretion of proinflammatory cytokines and chemokines in the early stages, these also promoted the resolution of hepatic fibrosis through the secretion of matrix metalloproteinases in the late stages. This article will review the current role played by hepatic macrophages in liver fibrosis and the potential therapeutic targets that modulate hepatic macrophages.
Collapse
Affiliation(s)
- Hai Li
- Department of Hepatopancreatobiliary and Splenic Medicine , Affiliated Hospital, Logistics University of People's Armed Police Force , Tianjin , People's Republic of China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University , Beijing , People's Republic of China
| | - Xu Fan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing , People's Republic of China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University , Beijing , People's Republic of China
| |
Collapse
|
22
|
Wan S, Kuo N, Kryczek I, Zou W, Welling TH. Myeloid cells in hepatocellular carcinoma. Hepatology 2015; 62:1304-12. [PMID: 25914264 PMCID: PMC4589430 DOI: 10.1002/hep.27867] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/17/2015] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is highly associated with inflammation. Myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells, are abundant in the HCC microenvironment and are often associated with poor prognosis. Myeloid cells in HCC play a vital role in supporting tumor initiation, progression, angiogenesis, metastasis, and therapeutic resistance. Here, we summarize our current knowledge about myeloid cells in HCC and focus on their immune-suppressive activities and tumor-promoting functions, as well as the relevance to potential new therapies in HCC.
Collapse
Affiliation(s)
- Shanshan Wan
- Section of Transplantation, University of Michigan, Ann Arbor, MI, USA,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ning Kuo
- Section of Transplantation, University of Michigan, Ann Arbor, MI, USA,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Theodore H. Welling
- Section of Transplantation, University of Michigan, Ann Arbor, MI, USA,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Gnoni A, Santini D, Scartozzi M, Russo A, Licchetta A, Palmieri V, Lupo L, Faloppi L, Palasciano G, Memeo V, Angarano G, Brunetti O, Guarini A, Pisconti S, Lorusso V, Silvestris N. Hepatocellular carcinoma treatment over sorafenib: epigenetics, microRNAs and microenvironment. Is there a light at the end of the tunnel? Expert Opin Ther Targets 2015. [PMID: 26212068 DOI: 10.1517/14728222.2015.1071354] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sorafenib is currently the only approved therapy in hepatocellular carcinoma (HCC). Alternative first- and second-line treatments are a significant unmet medical need, and several biologic agents have been tested in recent years, with poor results. Therefore, angiogenic pathways and the cytokine cascade remain possible targets in HCC. Recent studies suggest a role of epigenetic processes, associated with the initiation and development of HCC. In this field, DNA methylation, micro-RNAs (miRNAs) and tumor microenvironment cells became a possible new target for HCC treatment. AREAS COVERED This review explains the possible role of DNA methylation and histone deacetylase inhibitors as predictive biomarkers and target therapy, the extensive world of the promising miRNA blockade strategy, and the recent strong evidence of correlation between HCC tumors and peritumoral stroma cells. The literature and preclinic/clinic data were obtained through an electronic search. EXPERT OPINION Future research should aim to understand how best to identify patient groups that would benefit most from the prescribed therapy. To overcome the 'therapeutic stranding' of HCC, a possible way out from the current therapeutic tunnel might be to evaluate the major epigenetic and genetic processes involved in HCC carcinogenesis, not underestimating the tumor microenvironment and its 'actors' (angiogenesis, immune system, platelets). We are only at the start of a long journey towards the elucidation of HCC molecular pathways as therapeutic targets. Yet, currently this path appears to be the only one to cast some light at the end of the tunnel.
Collapse
Affiliation(s)
- Antonio Gnoni
- a 1 Hospital of Taranto, Medical Oncology Unit , Taranto, Italy
| | - Daniele Santini
- b 2 University Campus Biomedico, Medical Oncology Unit , Rome, Italy
| | - Mario Scartozzi
- c 3 University of Cagliari, Medical Oncology Unit , Cagliari, Italy
| | - Antonio Russo
- d 4 University of Palermo, Medical Oncology Unit , Palermo, Italy
| | | | - Vincenzo Palmieri
- e 5 University of Bari, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , Bari, Italy
| | - Luigi Lupo
- f 6 University of Bari, Institute of General Surgery and Liver Transplantation, Department of Emergency and Organ Transplantation , Bari, Italy
| | - Luca Faloppi
- g 7 Polytechnic University of the Marche, Medical Oncology Unit , Ancona, Italy
| | - Giuseppe Palasciano
- e 5 University of Bari, Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri" , Bari, Italy
| | - Vincenzo Memeo
- f 6 University of Bari, Institute of General Surgery and Liver Transplantation, Department of Emergency and Organ Transplantation , Bari, Italy
| | | | - Oronzo Brunetti
- i 9 National Cancer Research Centre "Giovanni Paolo II", Medical Oncology Unit , Viale Orazio Flacco, 65, 70124 Bari, Italy +39 080 555 5419 ; +39 080 555 5419 ;
| | - Attilio Guarini
- j 10 National Cancer Research Centre "Giovanni Paolo II", Medical Ematology Unit , Bari, Italy
| | | | - Vito Lorusso
- i 9 National Cancer Research Centre "Giovanni Paolo II", Medical Oncology Unit , Viale Orazio Flacco, 65, 70124 Bari, Italy +39 080 555 5419 ; +39 080 555 5419 ;
| | - Nicola Silvestris
- i 9 National Cancer Research Centre "Giovanni Paolo II", Medical Oncology Unit , Viale Orazio Flacco, 65, 70124 Bari, Italy +39 080 555 5419 ; +39 080 555 5419 ;
| |
Collapse
|
24
|
Heindryckx F, Gerwins P. Targeting the tumor stroma in hepatocellular carcinoma. World J Hepatol 2015; 7:165-176. [PMID: 25729472 PMCID: PMC4342599 DOI: 10.4254/wjh.v7.i2.165] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. In ninety percent of the cases it develops as a result of chronic liver damage and it is thus a typical inflammation-related cancer characterized by the close relation between the tumor microenvironment and tumor cells. The stromal environment consists out of several cell types, including hepatic stellate cells, macrophages and endothelial cells. They are not just active bystanders in the pathogenesis of HCC, but play an important and active role in tumor initiation, progression and metastasis. Furthermore, the tumor itself influences these cells to create a background that is beneficial for sustaining tumor growth. One of the key players is the hepatic stellate cell, which is activated during liver damage and differentiates towards a myofibroblast-like cell. Activated stellate cells are responsible for the deposition of extracellular matrix, increase the production of angiogenic factors and stimulate the recruitment of macrophages. The increase of angiogenic factors (which are secreted by macrophages, tumor cells and activated stellate cells) will induce the formation of new blood vessels, thereby supplying the tumor with more oxygen and nutrients, thus supporting tumor growth and offering a passageway in the circulatory system. In addition, the secretion of chemokines by the tumor cells leads to the recruitment of tumor associated macrophages. These tumor associated macrophages are key actors of cancer-related inflammation, being the main type of inflammatory cells infiltrating the tumor environment and exerting a tumor promoting effect by secreting growth factors, stimulating angiogenesis and influencing the activation of stellate cells. This complex interplay between the several cell types involved in liver cancer emphasizes the need for targeting the tumor stroma in HCC patients.
Collapse
|
25
|
Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 2014; 25:198-213. [PMID: 25540894 DOI: 10.1016/j.tcb.2014.11.006] [Citation(s) in RCA: 552] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/08/2023]
Abstract
The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis but also has profound effects on therapeutic efficacy. In the case of microenvironment-mediated resistance this can involve an intrinsic response, including the co-option of pre-existing structural elements and signaling networks, or an acquired response of the tumor stroma following the therapeutic insult. Alternatively, in other contexts, the TME has a multifaceted ability to enhance therapeutic efficacy. This review examines recent advances in our understanding of the contribution of the TME during cancer therapy and discusses key concepts that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Florian Klemm
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
26
|
Okazaki I, Noro T, Tsutsui N, Yamanouchi E, Kuroda H, Nakano M, Yokomori H, Inagaki Y. Fibrogenesis and Carcinogenesis in Nonalcoholic Steatohepatitis (NASH): Involvement of Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinase (TIMPs). Cancers (Basel) 2014; 6:1220-55. [PMID: 24978432 PMCID: PMC4190539 DOI: 10.3390/cancers6031220] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging worldwide because life-styles have changed to include much over-eating and less physical activity. The clinical and pathophysiological features of NASH are very different from those of HBV- and HCV-chronic liver diseases. The prognosis of NASH is worse among those with nonalcoholic fatty liver diseases (NAFLD), and some NASH patients show HCC with or without cirrhosis. In the present review we discuss fibrogenesis and the relationship between fibrosis and HCC occurrence in NASH to clarify the role of MMPs and TIMPs in both mechanisms. Previously we proposed MMP and TIMP expression in the multi-step occurrence of HCC from the literature based on viral-derived HCC. We introduce again these expressions during hepatocarcinogenesis and compare them to those in NASH-derived HCC, although the relationship with hepatic stem/progenitor cells (HPCs) invasion remains unknown. Signal transduction of MMPs and TIMPs is also discussed because it is valuable for the prevention and treatment of NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Isao Okazaki
- Department of Internal Medicine, Sanno Hospital, International University of Health and Welfare, Tokyo 107-0052, Japan.
| | - Takuji Noro
- Department of Surgery, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan.
| | - Nobuhiro Tsutsui
- Department of Surgery, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan.
| | - Eigoro Yamanouchi
- Department of Radiology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan.
| | - Hajime Kuroda
- Department of Pathology, International University of Health and Welfare Hospital, Tochigi 329-2763, Japan.
| | - Masayuki Nakano
- Department of Pathology, Ofuna Chuo Hospital, Kanagawa 247-0056, Japan.
| | - Hiroaki Yokomori
- Department of Internal Medicine, Kitasato University Medical Center, Saitama 364-8501, Japan.
| | - Yutaka Inagaki
- Department of Regenerative Medicine, Tokai University School of Medicine and Institute of Medical Sciences, Isehara 259-1193, Japan.
| |
Collapse
|
27
|
Li M, Wang Z, Xing Y, Yu J, Tian L, Zhang D, Xin Z. A multicenter study on expressions of vascular endothelial growth factor, matrix metallopeptidase-9 and tissue inhibitor of metalloproteinase-2 in oral and maxillofacial squamous cell carcinoma. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e13185. [PMID: 24829764 PMCID: PMC4005426 DOI: 10.5812/ircmj.13185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/11/2013] [Accepted: 01/29/2014] [Indexed: 12/15/2022]
Abstract
Background: Vascular endothelial growth factor (VEGF), matrix metallopeptidase-9 (MMP-9) and tissue inhibitor of metalloproteinase-2 (TIMP-2) are potential markers of oral and maxillofacial squamous cell carcinoma (SCC). Objectives: To explore the association between expression of VEGF, MMP-9 and TIMP-2 in oral and maxillofacial SCC and clinicopathological factors. Patients and Methods: Immunohistochemical Envision method was used to analyze the expression of VEGF, MMP-9 and TIMP-2 in 54 cases of oral and maxillofacial SCC and the association with clinicopathological factors such as clinical staging and lymphatic metastasis. Results: Brownish-yellow staining is correlated with positive expression of VEGF, MMP-9 and TIMP-2. Positive expression of VEGF and MMP-9 was correlated with lymphatic metastasis, and their positive expression rates were significantly higher in patients with lymphatic metastasis than those without it (VEGF: χ2 = 30.00; P = 0.001; MMP-9: χ2 = 18.27, P = 0.001). The positive expression rate of MMP-9 decreased at earlier clinical stages (P < 0.05). Positive expression of TIMP-2 was correlated with lymphatic metastasis, clinical staging and T classification. The positive rate of TIMP-2 expression in patients with lymphatic metastasis was significantly lower than those without it (χ2 = 26.74, P = 0.002), which significantly reduced with increasing clinical stage and T classification (P < 0.05). Conclusions: Lymphatic metastasis in patients with oral and maxillofacial SCC is closely related to the positive expression of VEGF, MMP-9 and TIMP-2. MMP-9 and TIMP-2 can affect the progression of cancer, which is valuable for studies on oral and maxillofacial SCC genes.
Collapse
Affiliation(s)
- Min Li
- Department of Oral Implantology, Second Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Zhiying Wang
- Department of Oral Implantology, Second Affiliated Hospital of Liaoning Medical University, Jinzhou, China
- Corresponding Author: Zhiying Wang, Department of Oral Implantology, Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, P. R. China. Tel: +86-4162332215, Fax: +86-4162332215, E-mail:
| | - Yang Xing
- Jinzhou City Oral Cavity Hospital, Jinzhou, China
| | - Jin Yu
- Department of Prosthodontics, Second Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Luming Tian
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Dianming Zhang
- Department of Stomatology, Hospital of Liaoning University of Technology, Jinzhou, China
| | - Zengxi Xin
- Department of Prosthodontics, Second Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| |
Collapse
|
28
|
Sun C, Wang Q, Zhou H, Yu S, Simard AR, Kang C, Li Y, Kong Y, An T, Wen Y, Shi F, Hao J. Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo. Neurosci Bull 2013; 29:83-93. [PMID: 23307113 DOI: 10.1007/s12264-012-1296-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/07/2012] [Indexed: 11/25/2022] Open
Abstract
The matrix-degrading metalloproteinases (MMPs), particularly MMP-9, play important roles in the pathogenesis and development of malignant gliomas. In the present study, the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo. TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9), which significantly decreased MMP-9 expression, and cell proliferation was assessed. For in vivo studies, U251 cells, a human malignant glioma cell line, were implanted subcutaneously into 4- to 6-week-old BALB/c nude mice. The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group), subcutaneous injection of endostatin (endostatin-treated group), or both (combined therapy group). Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group. Four or eight weeks later, the volume and weight of tumor, MMP-9 expression, microvessel density and proliferative activity were assayed. We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation. Volume and weight of tumor, MMP-9 expression, microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group. The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness, but also affects tumor cell proliferation. Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells, and thus can be used as an effective therapeutic strategy for malignant gliomas.
Collapse
Affiliation(s)
- Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. BIOMED RESEARCH INTERNATIONAL 2012; 2013:187204. [PMID: 23533994 PMCID: PMC3591180 DOI: 10.1155/2013/187204] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/13/2012] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human cancers worldwide. HCC is an example of inflammation-related cancer and represents a paradigm of the relation occurring between tumor microenvironment and tumor development. Tumor-associated macrophages (TAMs) are a major component of leukocyte infiltrate of tumors and play a pivotal role in tumor progression of inflammation-related cancer, including HCC. Several studies indicate that, in the tumor microenvironment, TAMs acquire an M2-polarized phenotype and promote angiogenesis, metastasis, and suppression of adaptive immunity through the expression of cytokines, chemokines, growth factors, and matrix metalloproteases. Indeed, an established M2 macrophage population has been associated with poor prognosis in HCC. The molecular links that connect cancer cells and TAMs are not completely known, but recent studies have demonstrated that NF-κB, STAT-3, and HIF-1 signaling pathways play key roles in this crosstalk. In this paper, we discuss the current knowledge about the role of TAMs in HCC development, highlighting the role of TAM-derived cytokines, chemokines, and growth factors in the initiation and progression of liver cancer and outlining the signaling pathways involved in the interplay between cancer cells and TAMs.
Collapse
|
30
|
Schneider C, Teufel A, Yevsa T, Staib F, Hohmeyer A, Walenda G, Zimmermann HW, Vucur M, Huss S, Gassler N, Wasmuth HE, Lira SA, Zender L, Luedde T, Trautwein C, Tacke F. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut 2012; 61:1733-1743. [PMID: 22267597 PMCID: PMC4533880 DOI: 10.1136/gutjnl-2011-301116] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a typical inflammation-associated cancer, but may also provoke antitumour immune responses whose significance and underlying mechanisms are incompletely understood. OBJECTIVE To characterise immune responses in the diethylnitrosamine (DEN)-liver cancer mouse model. DESIGN Tumour development and immune cell functions upon DEN treatment were compared between C57BL/6 wild-type (WT), chemokine scavenging receptor D6-deficient, B cell- (Igh6), CD4 T cell- (MHC-II) and T-/B cell-deficient (Rag1) mice. Relevance for human HCC was tested by comparing gene array results from 139 HCC tissues. RESULTS The induction of premalignant lesions after 24 weeks and of HCC-like tumours after 42 weeks by DEN in mice was accompanied by significant leucocyte infiltration in the liver and upregulation of distinct intrahepatic chemokines (CCL2, CCL5, CXCL9). Macrophages and CD8 (cytotoxic) T cells were most prominently enriched in tumour-bearing livers, similar to samples from human HCC. Myeloid-derived suppressor cells (MDSC) increased in extrahepatic compartments of DEN-treated mice (bone marrow, spleen). The contribution of immune cell subsets for DEN-induced hepatocarcinogenesis was functionally dissected. In D6(-/-) mice, which lack the chemokine scavenging receptor D6, hepatic macrophage infiltration was significantly increased, but tumour formation and progression did not differ from that of WT mice. In contrast, progression of hepatic tumours (numbers, diameters, tumour load) was strikingly enhanced in T-/B cell-deficient Rag1(-/-) mice upon DEN treatment. When mice deficient for B cells (Igh6(-/-), μMT) or major histocompatibility complex II were used, the data indicated that T cells prevent initial tumour formation, while B cells critically limit growth of established tumours. Accordingly, in tumour-bearing mice antibody production against liver-related model antigen was enhanced, indicating tumour-associated B cell activation. In agreement, T and B cell pathways were differentially regulated in gene array analyses from 139 human HCC tissues and significantly associated with patients' survival. CONCLUSIONS Distinct axes of the adaptive immune system, which are also prognostic in human HCC, actively suppress DEN-induced hepatocarcinogenesis by controlling tumour formation and progression.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- B-Lymphocytes/metabolism
- Biomarkers/metabolism
- Carcinogens
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Chemokine CCL2/metabolism
- Chemokine CCL5/metabolism
- Chemokine CXCL9/metabolism
- Diethylnitrosamine
- Disease Progression
- Humans
- Leukocytes/metabolism
- Liver Neoplasms/chemically induced
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/pathology
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Precancerous Conditions/chemically induced
- Precancerous Conditions/immunology
- Precancerous Conditions/pathology
- Survival Analysis
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Carlo Schneider
- Department of Medicine III, University Hospital, RWTH-Aachen, Aachen, Germany
| | - Andreas Teufel
- Department of Medicine I, University of Mainz, Mainz, Germany
| | - Tetyana Yevsa
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Gastroenterology, Hepatology & Endocrinology, Medical School Hannover, Hannover, Germany
| | - Frank Staib
- Department of Medicine I, University of Mainz, Mainz, Germany
| | - Anja Hohmeyer
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Gastroenterology, Hepatology & Endocrinology, Medical School Hannover, Hannover, Germany
| | - Gudrun Walenda
- Department of Medicine III, University Hospital, RWTH-Aachen, Aachen, Germany
| | | | - Mihael Vucur
- Department of Medicine III, University Hospital, RWTH-Aachen, Aachen, Germany
| | - Sebastian Huss
- Institute of Pathology, University of Bonn, Bonn, Germany
| | - Nikolaus Gassler
- Institute of Pathology, University Hospital, RWTH-Aachen, Aachen, Germany
| | - Hermann E Wasmuth
- Department of Medicine III, University Hospital, RWTH-Aachen, Aachen, Germany
| | - Sergio A Lira
- Immunology Institute, Mount Sinai Medical Centre, New York, New York, USA
| | - Lars Zender
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Gastroenterology, Hepatology & Endocrinology, Medical School Hannover, Hannover, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital, RWTH-Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital, RWTH-Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital, RWTH-Aachen, Aachen, Germany
| |
Collapse
|
31
|
Weber SN, Wasmuth HE. Liver fibrosis: from animal models to mapping of human risk variants. Best Pract Res Clin Gastroenterol 2010; 24:635-46. [PMID: 20955966 DOI: 10.1016/j.bpg.2010.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/25/2010] [Accepted: 07/28/2010] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is the sequel of chronic liver diseases and the main reason for increased mortality in affected patients. The extent of liver fibrosis displays great interindividual variation, even after controlling for exogenous factors. Thus, host genetic factors are considered to play an important role in the process of liver scarring. From a genetic perspective, liver fibrosis is a complex trait with many genes contributing to the expression of the phenotype. In genetically manipulated and inbred animals several risk loci for liver fibrosis have been identified. Some of these loci have been replicated in case-control studies of patients with hepatitis C infection. In humans, genetic risk loci were identified by single marker studies, haplotype studies or the combination of single markers. Recently, the first genome-wide association studies have also been performed in patients with liver diseases. Some of the identified gene variants have been functionally characterized in vitro, thereby opening the potential for novel therapeutic approaches and risk stratification.
Collapse
Affiliation(s)
- Susanne N Weber
- Department of Medicine II, Saarland University Hospital, Homburg, Germany
| | | |
Collapse
|