1
|
Tsuchida K, Urabe M, Nishikawa K. Seasonal change and phylogenetic position of Kamegainema cingula (Nematoda: Dracunculidae) parasitic in Japanese giant salamanders. Int J Parasitol Parasites Wildl 2025; 26:101052. [PMID: 40123641 PMCID: PMC11928992 DOI: 10.1016/j.ijppaw.2025.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Kamegainema cingula (Linstow, 1902) (Nematoda: Dracunculidae) parasitizes subcutis of cryptobranchid salamanders in Japan and the U.S.A. Kamegainema is a monotypic genus including only K. cingula. Here, we analyzed the phylogenetic relationship of K. cingula in other dracunculid and micropleurid species. We also reported the seasonal change of the present species in the infection rate in the skin of Andrias species in Kyoto and Hyogo prefectures, Japan. We collected this species from the skin of Andrias japonicus and hybrids (A. japonicus × Andrias davidianus) from spring to early summer. Female K. cingula likely mature and release larvae during this season in Japan. In addition, K. cingula formed a sister clade to Micropleura as well as Dracunculus in our phylogenetic analysis.
Collapse
Affiliation(s)
- Karin Tsuchida
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahon-cho, Sakyo Ward, Kyoto City, Kyoto, 606-8501, Japan
- Faculty of Environmental Sciences, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone City, Shiga, 522-8533, Japan
| | - Misako Urabe
- Faculty of Environmental Sciences, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone City, Shiga, 522-8533, Japan
| | - Kanto Nishikawa
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahon-cho, Sakyo Ward, Kyoto City, Kyoto, 606-8501, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshidahon-cho, Sakyo Ward, Kyoto City, Kyoto, 606-8501, Japan
| |
Collapse
|
2
|
Hall LM, Ellis JT, Stark DJ. Diagnostic dilemma: application of real-time PCR assays for the detection of Dientamoeba fragilis in medical and veterinary specimens. Parasit Vectors 2025; 18:94. [PMID: 40055708 PMCID: PMC11889766 DOI: 10.1186/s13071-025-06730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Real-time PCR (qPCR) diagnostics developed for use in human clinical settings have been implemented to identify new animal hosts of the gastrointestinal protozoan Dientamoeba fragilis. The gut microbiome varies between species; unrecognised cross-reactivity could occur when applying these assays to new animal hosts. The use of qPCR diagnostics was assessed for the identification of new animal hosts of the gastrointestinal protozoan Dientamoeba fragilis. METHODS Forty-nine cattle, 84 dogs, 39 cats and 254 humans were screened for D. fragilis using two qPCR assays: EasyScreen (Genetic Signatures) and a laboratory-based assay commonly used in Europe. The reliability of the identifications made by these assays were assessed using melt curve analysis of qPCR products, conventional PCR targeting the SSU rDNA sequencing and NGS amplicon sequencing of qPCR product. RESULTS PCR products from the D. fragilis identified in cattle had a 9 °C cooler melt curve than when detected in humans. This melt curve discrepancy, indicative of cross-reactivity with an unknown organism, was investigated further. DNA sequencing determined that Simplicimonas sp. was the genera responsible for this cross-reactivity in cattle specimens. Dientamoeba fragilis was not detected in either dogs or cats. There was a discrepancy in the number of positive samples detected using the two qPCR assays when applied to human samples. The EasyScreen assay detected 24 positive samples; the laboratory-based assay detected an additional 34 positive samples. Of the discrepant samples, 5 returned sequence data for D. fragilis, and 29 were unsupported (false) positive samples. CONCLUSIONS Analysis of the melt curve after the qPCR reaction is a valuable technique to help differentiate samples containing D. fragilis compared to cross-reactions with non-target organisms. The identification of new animal hosts requires further evidence from either microscopy or DNA sequencing to confirm the presence of D. fragilis. Additionally, to reduce the risk of false-positive results due to non-specific amplification, we recommend reducing the number of PCR cycles to less than 40. Based on these results, we consider the ramifications of this identified cross-reactivity to the known host species distribution of D. fragilis.
Collapse
Affiliation(s)
- Luke M Hall
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, 2007, Australia.
| | - John T Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Damien J Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| |
Collapse
|
3
|
McKnight CJ, Aboushady AT, Lane CR. Beyond early warning: towards greater granularity in the use of event-based surveillance for public health emergencies. BMC Public Health 2024; 24:3488. [PMID: 39696107 PMCID: PMC11656584 DOI: 10.1186/s12889-024-20963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The international health emergency caused by the emergence of the SARS-CoV-2 virus demonstrated the expanding usefulness of multi-country disease outbreak information gathered through event-based surveillance (EBS) as an extension beyond the main purposes of early warning, alert, and response (EWAR). In this article, previous events of multi-country outbreaks from 2010-2019 were reviewed for how EBS, within an expanded sphere of Epidemic Intelligence (EI), may help to enhance the understanding of outbreaks for a more timely and nuanced, multiple-point trigger approach to health emergencies. METHODS The public, open-source database of ProMed reports were reviewed for the date of first notification on major outbreaks of infectious diseases and then compared for subsequent dates of any new, exceptional epidemiological findings (novel host, settings, transmission characteristics) as a determining factor for prolonged, multi-country events later acknowledged on the WHO disease outbreak news (DON) website, or by peer-reviewed journal publication if no related DON information became available. RESULTS During the preceding decade, there was an ongoing occurrence of unexpected outbreaks requiring new information about previously unknown pathogens, such as MERS-CoV, and longstanding threats from multiple neglected tropical diseases. During these international outbreaks, key scientific insights about new host species, viral persistence, occurrence of human-to-human spread, and transmission setting, became known over the course of the response. CONCLUSION The timeliness between initial alerts of early outbreak detection and key epidemiological evidence about the emerging threat reached far beyond the first warning for the global community. To improve on the best knowledge available for an immediate response, it is recommended that further gathering and documentation from event-based surveillance is engaged to create a more complete assessment for uncontrollable infectious disease outbreaks and epidemics. Enhanced EBS (through modern tools, e.g., Epidemic Intelligence from Open Sources (EIOS) are critical for timely detection and response to such events.
Collapse
Affiliation(s)
- C J McKnight
- WHO Health Emergencies Programme, WHO Regional Office for Europe, Copenhagen, Denmark.
| | - A T Aboushady
- WHO Health Emergencies Programme, WHO Regional Office for Europe, Copenhagen, Denmark
| | - C R Lane
- WHO Health Emergencies Programme, WHO Country Office in Yemen, Sana'a, Yemen
| |
Collapse
|
4
|
Hopkins DR, Weiss AJ, Yerian S, Zhao Y, Sapp SG, Cama VA. Progress Toward Global Dracunculiasis (Guinea Worm Disease) Eradication, January 2023-June 2024. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2024; 73:991-998. [PMID: 39509342 PMCID: PMC11542772 DOI: 10.15585/mmwr.mm7344a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The effort to eradicate Dracunculus medinensis, the etiologic agent of dracunculiasis, or Guinea worm disease, began at CDC in 1980. In 1986, with an estimated 3.5 million global cases in 20 African and Asian countries, the World Health Assembly called for dracunculiasis elimination. The Guinea Worm Eradication Program (GWEP) was established to help countries with endemic dracunculiasis reach this goal. GWEP is led by The Carter Center and supported by partners, including the countries with endemic disease, CDC, UNICEF, and the World Health Organization. Since 2012, infections in dogs, cats, and baboons have posed a new challenge for GWEP, as have ongoing civil unrest and insecurity in some areas. As of June 2024, dracunculiasis remained endemic in five countries (Angola, Chad, Ethiopia, Mali, and South Sudan). Fourteen human cases and 886 animal infections occurred, including 407 dogs in Chad and 248 dogs in Cameroon, reported in 2023, and three human cases and 297 animal infections reported during January-June 2024. Animal infections, primarily in dogs in Cameroon and Chad, and impeded access due to civil unrest and insecurity in Mali, threaten the near-term possibility of global eradication. Nevertheless, countries appear poised to reach zero cases.
Collapse
|
5
|
DeWeerdt S. Even with no drug or vaccine, eradication of Guinea worm is in sight. Nature 2024:10.1038/d41586-024-02306-8. [PMID: 39026068 DOI: 10.1038/d41586-024-02306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
|
6
|
Smalley H, Keskinocak P, Swann J, Hanna C, Weiss A. Potential Impact of a Diagnostic Test for Detecting Prepatent Guinea Worm Infections in Dogs. Am J Trop Med Hyg 2024; 110:953-960. [PMID: 38579703 PMCID: PMC11066357 DOI: 10.4269/ajtmh.23-0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/01/2023] [Indexed: 04/07/2024] Open
Abstract
Chad has seen a considerable reduction in cases of Guinea worm disease (or dracunculiasis) in domestic dogs in recent years. Tethering of dogs and application of Abate® larvicide to water sources appear to have contributed to this progress, but with 767 reported dog cases in 2021, accelerating elimination of the disease in Chad may require additional tools. We investigate the potential benefits of a hypothetical diagnostic test that could be capable of detecting prepatent infections in dogs. We adapt an agent-based simulation model for forecasting the impact of interventions on guinea worm disease in dogs to examine the interaction of multiple test factors including test accuracy, when the test can detect infection, dog selection, and dog-owner compliance with tethering recommendations. We find that a diagnostic test could be successful if used in conjunction with existing interventions, and elimination can be achieved within 2 years with 80% or higher test sensitivity, 90% or higher specificity, systematic testing of each dog twice per year, and more than 90% long-term tethering compliance when a dog tests positive or a worm is emerging. Because of the long incubation period of Guinea worm disease (10-14 months) and the fact that no treatment exists, the benefits of the test rely on the testing rollout and response of dog owners. If the test could estimate the timing of worm emergence, long-term tethering could be eliminated and infected dogs could be tethered only when the worms are expected, minimizing the related resources (human and financial) to support the intervention.
Collapse
Affiliation(s)
- Hannah Smalley
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Pinar Keskinocak
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Julie Swann
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina
| | | | - Adam Weiss
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| |
Collapse
|
7
|
Yabsley MJ, Garrett KB, Thompson AT, Box EK, Giner MR, Haynes E, Barron H, Schneider RM, Coker SM, Beasley JC, Borchert EJ, Tumlison R, Surf A, Dukes CG, Olfenbuttel C, Brown JD, Swanepoel L, Cleveland CA. Otterly diverse - A high diversity of Dracunculus species (Spirurida: Dracunculoidea) in North American river otters ( Lontra canadensis). Int J Parasitol Parasites Wildl 2024; 23:100922. [PMID: 38516639 PMCID: PMC10955650 DOI: 10.1016/j.ijppaw.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024]
Abstract
The genus Dracunculus contains numerous species of subcutaneous parasites of mammals and reptiles. In North America, there are at least three mammal-infecting species of Dracunculus. Reports of Dracunculus infections have been reported from river otters (Lontra canadensis) since the early 1900s; however, little is known about the species infecting otters or their ecology. Most reports of Dracunculus do not have a definitive species identified because females, the most common sex found due to their larger size and location in the extremities of the host, lack distinguishing morphological characteristics, and few studies have used molecular methods to confirm identifications. Thus, outside of Ontario, Canada, where both D. insignis and D. lutrae have been confirmed in otters, the species of Dracunculus in river otters is unknown. In the current study, molecular characterization of nematodes from river otters revealed a high diversity of Dracunculus species. In addition to confirming D. insignis infections, two new clades were detected. One clade was a novel species in any host and the other was a clade previously detected in Virginia opossums (Didelphis virginiana) from the USA and a domestic dog from Spain. No infections with D. lutrae were detected and neither new lineage was genetically similar to D. jaguape, which was recently described from a neotropical otter (Lontra longicaudis) from Argentina. These data also indicate that Dracunculus spp. infections in otters are widespread throughout Eastern North America. Currently the life cycles for most of the Dracunculus spp. infecting otters are unknown. Studies on the diversity, life cycle, and natural history of Dracunculidae parasites in wildlife are important because the related parasite, D. medinensis (human Guinea worm) is the subject of an international eradication campaign and there are increasing reports of these parasites in new geographic locations and new hosts, including new species in humans and domestic dogs.
Collapse
Affiliation(s)
- Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Center for Ecology of Infectious Diseases, Athens, GA, 30602, USA
| | - Kayla B. Garrett
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Alec T. Thompson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Center for Ecology of Infectious Diseases, Athens, GA, 30602, USA
| | - Erin K. Box
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Madeline R. Giner
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ellen Haynes
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Heather Barron
- Clinic for the Rehabilitation of Wildlife, Sanibel, FL, 33957, USA
| | | | - Sarah M. Coker
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - James C. Beasley
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Ernest J. Borchert
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Renn Tumlison
- Applied Science and Technology, Henderson State University, Arkadelphia, AR, 71999, USA
| | - Allison Surf
- Applied Science and Technology, Henderson State University, Arkadelphia, AR, 71999, USA
| | - Casey G. Dukes
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- North Carolina Wildlife Resources Commission, NCSU Centennial Campus, 1751 Varsity Drive, Raleigh, NC, 27606, USA
| | - Colleen Olfenbuttel
- North Carolina Wildlife Resources Commission, NCSU Centennial Campus, 1751 Varsity Drive, Raleigh, NC, 27606, USA
| | - Justin D. Brown
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Liandrie Swanepoel
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Center for Ecology of Infectious Diseases, Athens, GA, 30602, USA
| |
Collapse
|
8
|
Hopkins DR, Weiss AJ, Yerian S, Sapp SG, Cama VA. Progress Toward Eradication of Dracunculiasis - Worldwide, January 2022-June 2023. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2023; 72:1230-1236. [PMID: 37943706 PMCID: PMC10651320 DOI: 10.15585/mmwr.mm7245a4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The effort to eradicate Dracunculus medinensis, the etiologic agent of dracunculiasis, or Guinea worm disease, commenced at CDC in 1980. In 1986, with an estimated 3.5 million cases worldwide in 20 African and Asian countries, the World Health Assembly called for dracunculiasis elimination. The Guinea Worm Eradication Program (GWEP) was established to help countries with endemic dracunculiasis reach this goal. GWEP is led by The Carter Center and supported by partners that include the World Health Organization, UNICEF, and CDC. In 2012, D. medinensis infections were unexpectedly confirmed in Chadian dogs, and since then, infections in dogs, cats, and baboons have posed a new challenge for GWEP, as have ongoing civil unrest and insecurity in some areas. By 2022, dracunculiasis was endemic in five countries (Angola, Chad, Ethiopia, Mali, and South Sudan), with only 13 human cases identified, the lowest yearly total ever reported. Animal infections, however, were not declining at the same rate: 686 animal infections were reported in 2022, including 606 (88%) in dogs in Chad. Despite these unanticipated challenges as well as the COVID-19 pandemic, countries appear close to reaching the eradication goal. GWEP will continue working with country programs to address animal infections, civil unrest, and insecurity, that challenge the eradication of Guinea worm.
Collapse
|
9
|
Gamble A, Olarte-Castillo XA, Whittaker GR. Backyard zoonoses: The roles of companion animals and peri-domestic wildlife. Sci Transl Med 2023; 15:eadj0037. [PMID: 37851821 DOI: 10.1126/scitranslmed.adj0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
The spillover of human infectious diseases from animal reservoirs is now well appreciated. However, societal and climate-related changes are affecting the dynamics of such interfaces. In addition to the disruption of traditional wildlife habitats, in part because of climate change and human demographics and behavior, there is an increasing zoonotic disease risk from companion animals. This includes such factors as the awareness of animals kept as domestic pets and increasing populations of free-ranging animals in peri-domestic environments. This review presents background and commentary focusing on companion and peri-domestic animals as disease risk for humans, taking into account the human-animal interface and population dynamics between the animals themselves.
Collapse
Affiliation(s)
- Amandine Gamble
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ximena A Olarte-Castillo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gary R Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Atkinson Center for Sustainability, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Franceschini R, Valiani A, Ranucci D, Roila R, Palma G, Agnetti F, Di Giacinto G, Branciari R. Eustrongylides spp. parasite risk management in Atherina boyeri from Lake Trasimeno. Ital J Food Saf 2023; 12:11338. [PMID: 37753206 PMCID: PMC10518831 DOI: 10.4081/ijfs.2023.11338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023] Open
Abstract
Atherina boyeri is the primary source of fishing profit in Lake Trasimeno and a common host for Eustrongylides spp. larvae. The presence of Eustrongylides in fish is a public health concern, and effective risk management procedures are necessary to guarantee that infected products do not reach the market. Currently, in the European Union, there is no official sampling plan for fresh fish that defines sample size, inspection methods, and criteria for accepting or rejecting the product. An approach to Eustrongylides risk management is proposed in this study. A total of 270 batches of A. boyeri, each consisting of 29 specimens, were collected and examined visually in 3 years (2020-2023). The prevalence of the parasite was 20% in 2020, and in the first months of 2021, it grew up to ⁓40%, then dropped to 12.50% in December 2021 and settled at 16% in February 2022. In January and February 2023, the prevalence fell below 1%. The mean abundance was calculated and used to establish a threshold value to determine fish marketability. In 2020 and 2021, several batches were judged not marketable, and in some batches, a freezing treatment was implemented to ensure the inactivation of the parasite. In the last months of 2022 and in January and February of 2023, the presence of parasites in captured fish was negligible, and this allowed the marketability of fish as fresh. The proposed sampling plan was effective in preventing the commercialization of potentially hazardous products.
Collapse
Affiliation(s)
| | - Andrea Valiani
- Experimental Zooprophylactic Institute of Umbria and Marche Togo Rosati, Perugia
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia
| | | | - Francesco Agnetti
- Experimental Zooprophylactic Institute of Umbria and Marche Togo Rosati, Perugia
| | | | | |
Collapse
|
11
|
Hopkins DR, Weiss AJ, Yerian S, Sapp SG, Cama VA. Progress Toward Global Eradication of Dracunculiasis - Worldwide, January 2021-June 2022. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2022; 71:1496-1502. [PMID: 36417302 PMCID: PMC9707360 DOI: 10.15585/mmwr.mm7147a2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Dracunculiasis (Guinea worm disease), caused by the parasite Dracunculus medinensis, is acquired by drinking water containing small crustacean copepods (water fleas) infected with D. medinensis larvae. Recent evidence suggests that the parasite also appears to be transmitted by eating fish or other aquatic animals. About 1 year after infection, the worm typically emerges through the skin on a lower limb of the host, causing pain and disability (1). No vaccine or medicine is available to prevent or treat dracunculiasis. Eradication relies on case containment* to prevent water contamination and other interventions to prevent infection, including health education, water filtration, treatment of unsafe water with temephos (an organophosphate larvicide), and provision of safe drinking water (1,2). CDC began worldwide eradication efforts in October 1980, and in 1984 was designated by the World Health Organization (WHO) as the technical monitor of the Dracunculiasis Eradication Program (1). In 1986, with an estimated 3.5 million cases† occurring annually in 20 African and Asian countries§ (3), the World Health Assembly called for dracunculiasis elimination. The Guinea Worm Eradication Program (GWEP),¶ led by The Carter Center and supported by partners that include WHO, UNICEF, and CDC, began assisting ministries of health in countries with endemic disease. In 2021, a total of 15 human cases were identified and three were identified during January-June 2022. As of November 2022, dracunculiasis remained endemic in five countries (Angola, Chad, Ethiopia, Mali, and South Sudan); cases reported in Cameroon were likely imported from Chad. Eradication efforts in these countries are challenged by infection in animals, the COVID-19 pandemic, civil unrest, and insecurity. Animal infections, mostly in domestic dogs, some domestic cats, and in Ethiopia, a few baboons, have now surpassed human cases, with 863 reported animal infections in 2021 and 296 during January-June 2022. During the COVID-19 pandemic all national GWEPs remained fully operational, implementing precautions to ensure safety of program staff members and community members. In addition, the progress toward eradication and effectiveness of interventions were reviewed at the 2021 and 2022 annual meetings of GWEP program managers, and the 2021 meeting of WHO's International Commission for the Certification of Dracunculiasis Eradication. With only 15 human cases identified in 2021 and three during January-June 2022, program efforts appear to be closer to reaching the goal of eradication. However, dog infections and impeded access because of civil unrest and insecurity in Mali and South Sudan continue to be the greatest challenges for the program. This report describes progress during January 2021-June 2022 and updates previous reports (2,4).
Collapse
|
12
|
Guinea Worm Disease: A Neglected Diseases on the Verge of Eradication. Trop Med Infect Dis 2022; 7:tropicalmed7110366. [PMID: 36355908 PMCID: PMC9699583 DOI: 10.3390/tropicalmed7110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Dracunculiasis, also known as Guinea worm disease (GWD), is a neglected tropical disease (NTD) caused by a parasite (Dracunculus medinensis). In the past, dracunculiasis was known as “the disease of the empty granary” because of the difficulties patients had in going to work in fields or to school when affected by this disease. In tropical areas, the condition has been widespread in economically disadvantaged communities, and has been associated with reduced economic status and low levels of education. Methods: we searched PubMed, Scopus, Google Scholar, EMBASE, Cochrane Library, and WHO websites for literature addressing dracunculiasis published in the last 50 years. Results: by development and optimization of multi-layered control measures, transmission by the vector has been interrupted, but there are foci in several African countries with a high risk of compromising the results obtained in the control of this neglected disease. Conclusion: this review features state-of-the-art data on the infection prevalence, geographical distribution, diagnostics, parasite–host interactions, and the pathology of dracunculiasis. Also described are the current state and future perspectives for vector control and elimination strategies.
Collapse
|
13
|
Using point-of-view cameras (Crittercams) to document potential risk behaviors for Guinea worm (Dracunculus medinensis) transmission in domestic cats in Chad, Africa. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Coker SM, Box EK, Stilwell N, Thiele EA, Cotton JA, Haynes E, Yabsley MJ, Cleveland CA. Development and validation of a quantitative PCR for the detection of Guinea worm (Dracunculus medinensis). PLoS Negl Trop Dis 2022; 16:e0010830. [PMID: 36206300 PMCID: PMC9581357 DOI: 10.1371/journal.pntd.0010830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/19/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022] Open
Abstract
Dracunculus medinensis (Guinea worm) is a parasitic nematode that can cause the debilitating disease dracunculiasis (Guinea worm disease) in humans. The global Guinea Worm Eradication Program has led intervention and eradication efforts since the 1980s, and Guinea worm infections in people have decreased >99.99%. With the final goal of eradication drawing nearer, reports of animal infections from some remaining endemic countries pose unique challenges. Currently, confirmation of suspected Guinea worm infection relies on conventional molecular techniques such as polymerase chain reaction (PCR), which is not specific to Guinea worm and, therefore, requires sequencing of the PCR products to confirm the identity of suspect samples, a process that often takes a few weeks. To decrease the time required for species confirmation, we developed a quantitative PCR assay targeting the mitochondrial cytochrome b (cytb) gene of Guinea worm. Our assay has a limit of detection of 10 copies per reaction. The mean analytical parameters (± SE) were as follows: efficiency = 93.4 ± 7.7%, y-intercept = 40.93 ± 1.11, slope = -3.4896 ± 0.12, and the R2 = 0.999 ± 0.004. The assay did not amplify other nematodes found in Guinea worm-endemic regions and demonstrated 100% diagnostic sensitivity and specificity. Implementation of this quantitative PCR assay for Guinea worm identification could eliminate the need for DNA sequencing to confirm species. Thus, this approach can be implemented to provide more rapid confirmation of Guinea worm infections, leading to faster execution of Guinea worm interventions while increasing our understanding of infection patterns. Guinea worm (Dracunculus medinensis) is a parasitic nematode that causes debilitating disease in humans. The Guinea Worm Eradication Program would benefit from having a rapid molecular test that can confirm species identification without time-consuming DNA sequencing. We developed a qPCR protocol targeting the mitochondrial cytochrome b (cytb) gene of Guinea worm. The assay was validated analytically over 12 experiments using a standard serial dilution as well as diagnostically on DNA samples from non-target host species and other parasites (n = 180) and Guinea worm samples (n = 200) from a diversity of hosts and geographic regions. This assay could reliably detect 10 copies of the target DNA sequence and had a mean efficiency of 93.4% with 100% diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- Sarah M. Coker
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Erin K. Box
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Natalie Stilwell
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Elizabeth A. Thiele
- Department of Biology, Vassar College, Poughkeepsie, New York, United States of America
| | - James A. Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Ellen Haynes
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MJY); (CAC)
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MJY); (CAC)
| |
Collapse
|
15
|
Haynes E, Cleveland CA, Garrett KB, Grunert RKA, Bryan JA, Sidouin M, Oaukou PT, Ngandolo BNR, Yabsley MJ. Characterization of the genetics and epidemiology of Brugia sp. in domestic dogs in Chad, Africa. Vet Parasitol Reg Stud Reports 2022; 35:100784. [PMID: 36184112 DOI: 10.1016/j.vprsr.2022.100784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Neglected tropical diseases pose a threat to domestic animal health, as domestic animals can serve as reservoirs for certain zoonotic parasitic infections, including Guinea worm (Dracunculus medinensis) and lymphatic filariasis. Surveillance for these parasites in domestic animals is needed to understand infection prevalence and transmission cycles, with the goal of instituting appropriate interventions. The goal of this research was to report our finding of Brugia sp. infection in dogs from Chad, Africa, and to characterize the genetics and epidemiology of the parasite. During a recent Chadian canine pathogen surveillance project, we identified Brugia sp. infections in a total of 46 out of 428 dogs (10.7%) sampled at three time points in 2019-2020. We found high levels of sequence similarity to B. malayi and B. pahangi based on amplification of 18S rRNA, 5.8S rRNA, and ITS-2 regions. Phylogenetic analysis of 18S rRNA gene sequences placed the Chadian Brugia sp. in a clade with other Brugia spp. but grouped it separately from both B. malayi and B. pahangi. Analysis of Hha I sequences showed the greatest similarity with B. patei, a parasite previously reported from dogs, cats, and wildlife hosts in Kenya. Epidemiologic analysis using generalized linear regression modeling found significantly higher odds of Brugia sp. detection among dogs in villages in southern Chad compared to those in the northern region. Further, within the northern region, there were higher odds of detection in the dry season, compared to the wet season, which is consistent with the ecology of a presumably mosquito-borne parasite. The same 428 dogs were tested for Dirofilaria immitis antigen using a commercial assay (IDEXX SNAP 4Dx) at the earliest time point of the study, with 119 dogs testing positive. However, no association was noted between Brugia infection and a dog being positive for Di. immitis antigen, with only seven of the 119 Di. immitis antigen-positive dogs being Brugia-positive. This is the first report of Brugia sp. in domestic dogs in Chad and additional research is needed to definitively identify the species present, elucidate transmission, and understand potential risks to canine and human health.
Collapse
Affiliation(s)
- Ellen Haynes
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W, Brooks Dr, Athens, GA 30602, USA.
| | - Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W, Brooks Dr, Athens, GA 30602, USA
| | - Kayla B Garrett
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W, Brooks Dr, Athens, GA 30602, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Ryan K A Grunert
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W, Brooks Dr, Athens, GA 30602, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - John A Bryan
- Zachery Consulting LLC, 2595 Rogers Mill Road, Danielsville, GA 30633, USA
| | - Metinou Sidouin
- The Carter Center, 453 Freedom Pkwy NE, Atlanta, GA 30307, USA
| | | | | | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, Wildlife Health Building, 589 D.W, Brooks Dr, Athens, GA 30602, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
16
|
Hopkins DR, Weiss AJ, Torres-Velez FJ, Sapp SGH, Ijaz K. Dracunculiasis Eradication: End-Stage Challenges. Am J Trop Med Hyg 2022; 107:373-382. [PMID: 35895421 PMCID: PMC9393450 DOI: 10.4269/ajtmh.22-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 11/07/2022] Open
Abstract
This report summarizes the status of the global Dracunculiasis Eradication Program as of the end of 2021. Dracunculiasis (Guinea worm disease) has been eliminated from 17 of 21 countries where it was endemic in 1986, when an estimated 3.5 million cases occurred worldwide. Only Chad, Ethiopia, Mali, and South Sudan reported cases in humans in 2021. Chad, Ethiopia, and Mali also reported indigenous infections of animals, mostly domestic dogs, with Dracunculus medinensis. Insecurity and infections in animals are the main obstacles remaining to interrupting dracunculiasis transmission completely.
Collapse
|
17
|
Hopkins SR, Jones IJ, Buck JC, LeBoa C, Kwong LH, Jacobsen K, Rickards C, Lund AJ, Nova N, MacDonald AJ, Lambert-Peck M, De Leo GA, Sokolow SH. Environmental Persistence of the World's Most Burdensome Infectious and Parasitic Diseases. Front Public Health 2022; 10:892366. [PMID: 35875032 PMCID: PMC9305703 DOI: 10.3389/fpubh.2022.892366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts). Through a synthesis of published literature, we reviewed the life cycles and environmental persistence of 150 parasites and pathogens tracked by the World Health Organization's Global Burden of Disease study. We used those data to derive the time spent in each component of a pathogen's life cycle, including total time spent in humans versus all environmental stages. We found that nearly all infectious organisms were “environmentally mediated” to some degree, meaning that they spend time in reservoirs and can be transmitted from those reservoirs to human hosts. Correspondingly, many infectious diseases were primarily controlled through environmental interventions (e.g., vector control, water sanitation), whereas few (14%) were primarily controlled by integrated methods (i.e., combining medical and environmental interventions). Data on critical life history attributes for most of the 150 parasites and pathogens were difficult to find and often uncertain, potentially hampering efforts to predict disease dynamics and model interactions between life cycle time scales and infection control strategies. We hope that this synthetic review and associated database serve as a resource for understanding both common patterns among parasites and pathogens and important variability and uncertainty regarding particular infectious diseases. These insights can be used to improve systems-based approaches for controlling environmentally mediated diseases of humans in an era where the environment is rapidly changing.
Collapse
Affiliation(s)
- Skylar R. Hopkins
- National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Skylar R. Hopkins
| | - Isabel J. Jones
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States
| | - Julia C. Buck
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Christopher LeBoa
- Department of Epidemiology, Stanford University, Stanford, CA, United States
| | - Laura H. Kwong
- Stanford Woods Institute for the Environment, Stanford University, Stanford, CA, United States
| | - Kim Jacobsen
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Chloe Rickards
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andrea J. Lund
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA, United States
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Andrew J. MacDonald
- Department of Biology, Stanford University, Stanford, CA, United States
- Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Miles Lambert-Peck
- United Nations University for the Advanced Study of Sustainability, Tokyo, Japan
| | - Giulio A. De Leo
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States
| | - Susanne H. Sokolow
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
18
|
Fagre AC, Cohen LE, Eskew EA, Farrell M, Glennon E, Joseph MB, Frank HK, Ryan SJ, Carlson CJ, Albery GF. Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health. Ecol Lett 2022; 25:1534-1549. [PMID: 35318793 PMCID: PMC9313783 DOI: 10.1111/ele.14003] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
The SARS-CoV-2 pandemic has led to increased concern over transmission of pathogens from humans to animals, and its potential to threaten conservation and public health. To assess this threat, we reviewed published evidence of human-to-wildlife transmission events, with a focus on how such events could threaten animal and human health. We identified 97 verified examples, involving a wide range of pathogens; however, reported hosts were mostly non-human primates or large, long-lived captive animals. Relatively few documented examples resulted in morbidity and mortality, and very few led to maintenance of a human pathogen in a new reservoir or subsequent "secondary spillover" back into humans. We discuss limitations in the literature surrounding these phenomena, including strong evidence of sampling bias towards non-human primates and human-proximate mammals and the possibility of systematic bias against reporting human parasites in wildlife, both of which limit our ability to assess the risk of human-to-wildlife pathogen transmission. We outline how researchers can collect experimental and observational evidence that will expand our capacity for risk assessment for human-to-wildlife pathogen transmission.
Collapse
Affiliation(s)
- Anna C. Fagre
- Department of Microbiology, Immunology, and PathologyCollege of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
- Bat Health FoundationFort CollinsColoradoUSA
| | - Lily E. Cohen
- Icahn School of Medicine at Mount SinaiNew YorkNew York CityUSA
| | - Evan A. Eskew
- Department of BiologyPacific Lutheran UniversityTacomaWashingtonUSA
| | - Max Farrell
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Emma Glennon
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | | - Hannah K. Frank
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisinaUSA
| | - Sadie J. Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab GroupDepartment of GeographyUniversity of FloridaGainesvilleFloridaUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Colin J Carlson
- Center for Global Health Science and SecurityGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Gregory F. Albery
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
19
|
Kushwaha AK, Scorza BM, Singh OP, Rowton E, Lawyer P, Sundar S, Petersen CA. Domestic mammals as reservoirs for Leishmania donovani on the Indian subcontinent: Possibility and consequences on elimination. Transbound Emerg Dis 2022; 69:268-277. [PMID: 33686764 PMCID: PMC8455064 DOI: 10.1111/tbed.14061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/19/2023]
Abstract
Leishmania donovani is the causative agent of historically anthroponotic visceral leishmaniasis (VL) on the Indian subcontinent (ISC). L. donovani is transmitted by the sand fly species Phlebotomus argentipes. Our collaborative group and others have shown that sand flies trapped outside in endemic villages have fed on cattle and dogs in addition to people. Domestic animals are reservoirs for L. donovani complex spp., particularly L. infantum, in other endemic areas. Multiple studies using quantitative PCR or serological detection methods have demonstrated that goats, cattle, rats and dogs were diagnostically positive for L. donovani infection or exposure in eastern Africa, Bangladesh, Nepal and India. There is a limited understanding of the extent to which L. donovani infection of domestic animals drives transmission to other animals or humans on the ISC. Evidence from other vector-borne disease elimination strategies indicated that emerging infections in domestic species hindered eradication. The predominant lesson learned from these other situations is that non-human reservoirs must be identified, controlled and/or prevented. Massive efforts are underway for VL elimination on the Indian subcontinent. Despite these herculean efforts, residual VL incidence persists. The spectre of an animal reservoir complicating elimination efforts haunts the final push towards full VL control. Better understanding of L. donovani transmission on the Indian subcontinent and rigorous consideration of how non-human reservoirs alter VL ecology are critical to sustain elimination goals.
Collapse
Affiliation(s)
- Anurag Kumar Kushwaha
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Breanna M. Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Edgar Rowton
- Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Phillip Lawyer
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
- Center for Emerging Infectious Diseases, University of Iowa, Coralville, Iowa, USA
| |
Collapse
|
20
|
Richards RL, Holian LA. Infectious disease: Dog diets may drive transmission cycles in human Guinea worm disease. Curr Biol 2022; 32:R170-R173. [PMID: 35231412 DOI: 10.1016/j.cub.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Domestic dogs have an important role in the ecology of transmission of the Guinea worm, a debilitating human parasite. A new study documents how fish content in dogs' diets can predict Guinea worm infection status, suggesting additional avenues for control.
Collapse
Affiliation(s)
- Robert L Richards
- Department of Biology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Lauren A Holian
- Department of Biology, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
21
|
Guagliardo SAJ, Thiele E, Unterwegner K, Narcisse Nanguita N, Dossou L, Tchindebet Ouakou P, Zirimwabagabo H, Ruiz-Tiben E, Hopkins DR, Roy SL, Cama V, Bishop H, Sapp S, Yerian S, Weiss AJ. Epidemiological and molecular investigations of a point-source outbreak of Dracunculus medinensis infecting humans and dogs in Chad: a cross-sectional study. THE LANCET MICROBE 2022; 3:e105-e112. [DOI: 10.1016/s2666-5247(21)00209-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
|
22
|
Chaudhury A. Dracunculiasis. TEXTBOOK OF PARASITIC ZOONOSES 2022:427-436. [DOI: 10.1007/978-981-16-7204-0_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
23
|
Lund AJ, Wade KJ, Nikolakis ZL, Ivey KN, Perry BW, Pike HNC, Paull SH, Liu Y, Castoe TA, Pollock DD, Carlton EJ. Integrating genomic and epidemiologic data to accelerate progress toward schistosomiasis elimination. eLife 2022; 11:79320. [PMID: 36040013 PMCID: PMC9427098 DOI: 10.7554/elife.79320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes. Here, we focus on leveraging genomic data to tailor interventions to distinct social and ecological circumstances. We consider two priority questions that can be addressed by integrating epidemiological, ecological, and genomic information: (1) how often do non-human host species contribute to human schistosome infection? and (2) what is the importance of locally acquired versus imported infections in driving transmission at different stages of elimination? These questions address processes that can undermine control programs, especially those that rely heavily on treatment with praziquantel. Until recently, these questions were difficult to answer with sufficient precision to inform public health decision-making. We review the literature related to these questions and discuss how whole-genome approaches can identify the geographic and taxonomic sources of infection, and how such information can inform context-specific efforts that advance schistosomiasis control efforts and minimize the risk of reemergence.
Collapse
Affiliation(s)
- Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Kristen J Wade
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Zachary L Nikolakis
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Kathleen N Ivey
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Blair W Perry
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Hamish NC Pike
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Sara H Paull
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Yang Liu
- Sichuan Centers for Disease Control and PreventionChengduChina
| | - Todd A Castoe
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - David D Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| |
Collapse
|
24
|
Rogers MJ, McManus DP, Muhi S, Gordon CA. Membrane Technology for Rapid Point-of-Care Diagnostics for Parasitic Neglected Tropical Diseases. Clin Microbiol Rev 2021; 34:e0032920. [PMID: 34378956 PMCID: PMC8404699 DOI: 10.1128/cmr.00329-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Parasitic neglected tropical diseases (NTDs) affect over one billion people worldwide, with individuals from communities in low-socioeconomic areas being most at risk and suffering the most. Disease management programs are hindered by the lack of infrastructure and resources for clinical sample collection, storage, and transport and a dearth of sensitive diagnostic methods that are inexpensive as well as accurate. Many diagnostic tests and tools have been developed for the parasitic NTDs, but the collection and storage of clinical samples for molecular and immunological diagnosis can be expensive due to storage, transport, and reagent costs, making these procedures untenable in most areas of endemicity. The application of membrane technology, which involves the use of specific membranes for either sample collection and storage or diagnostic procedures, can streamline this process, allowing for long-term sample storage at room temperature. Membrane technology can be used in serology-based diagnostic assays and for nucleic acid purification prior to molecular analysis. This facilitates the development of relatively simple and rapid procedures, although some of these methods, mainly due to costs, lack accessibility in low-socioeconomic regions of endemicity. New immunological procedures and nucleic acid storage, purification, and diagnostics protocols that are simple, rapid, accurate, and cost-effective must be developed as countries progress control efforts toward the elimination of the parasitic NTDs.
Collapse
Affiliation(s)
- Madeleine J. Rogers
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen Muhi
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Catherine A. Gordon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Seasonal fishery facilitates a novel transmission pathway in an emerging animal reservoir of Guinea worm. Curr Biol 2021; 32:775-782.e4. [PMID: 34910949 DOI: 10.1016/j.cub.2021.11.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022]
Abstract
Exploitation of natural resources is a driver of human infectious disease emergence. The emergence of animal reservoirs of Guinea worm Dracunculus medinensis, particularly in domestic dogs Canis familiaris, has become the major impediment to global eradication of this human disease. 93% of all Guinea worms detected worldwide in 2020 were in dogs in Chad. Novel, non-classical pathways for transmission of Guinea worm in dogs, involving consumption of fish, have been hypothesized to support the maintenance of this animal reservoir. We quantified and analyzed variation in Guinea worm emergence in dogs in Chad, across three climatic seasons, in multiple villages and districts. We applied forensic stable isotope analyses to quantify dietary variation within and among dogs and GPS tracking to characterize their spatial ecology. At the end of the hot-dry season and beginning of the wet season, when fishing by people is most intensive, Guinea worm emergence rates in dogs were highest, dogs ate most fish, and fish consumption was most closely associated with disease. Consumption of fish by dogs enables a non-classical transmission pathway for Guinea worm in Chad. Seasonal fisheries and the facilitation of dogs eating fish are likely contributing to disease persistence and to this key impediment to human disease eradication. Interrelated natural resource use, climatic variation, companion animal ecology, and human health highlight the indispensability of One Health approaches to the challenges of eradicating Guinea worm and other zoonotic diseases.
Collapse
|
26
|
Mathison BA, Sapp SGH. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. Zookeys 2021; 1069:1-313. [PMID: 34819766 PMCID: PMC8595220 DOI: 10.3897/zookeys.1069.67403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
The classification of "parasites" in the medical field is a challenging notion, a group which historically has included all eukaryotes exclusive of fungi that invade and derive resources from the human host. Since antiquity, humans have been identifying and documenting parasitic infections, and this collective catalog of parasitic agents has expanded considerably with technology. As our understanding of species boundaries and the use of molecular tools has evolved, so has our concept of the taxonomy of human parasites. Consequently, new species have been recognized while others have been relegated to synonyms. On the other hand, the decline of expertise in classical parasitology and limited curricula have led to a loss of awareness of many rarely encountered species. Here, we provide a comprehensive checklist of all reported eukaryotic organisms (excluding fungi and allied taxa) parasitizing humans resulting in 274 genus-group taxa and 848 species-group taxa. For each species, or genus where indicated, a concise summary of geographic distribution, natural hosts, route of transmission and site within human host, and vectored pathogens are presented. Ubiquitous, human-adapted species as well as very rare, incidental zoonotic organisms are discussed in this annotated checklist. We also provide a list of 79 excluded genera and species that have been previously reported as human parasites but are not believed to be true human parasites or represent misidentifications or taxonomic changes.
Collapse
Affiliation(s)
- Blaine A. Mathison
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USAInstitute for Clinical and Experimental PathologySalt Lake CityUnited States of America
| | - Sarah G. H. Sapp
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USACenters for Disease Control and PreventionAtlantaUnited States of America
| |
Collapse
|
27
|
Hopkins DR, Weiss AJ, Roy SL, Yerian S, Cama VA. Progress Toward Global Eradication of Dracunculiasis, January 2020-June 2021. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2021; 70:1527-1533. [PMID: 34735420 PMCID: PMC8568094 DOI: 10.15585/mmwr.mm7044a1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dracunculiasis (Guinea worm disease), caused by the parasite Dracunculus medinensis, is traditionally acquired by drinking water containing copepods (water fleas) infected with D. medinensis larvae, but in recent years also appears increasingly to be transmitted by eating fish or other aquatic animals. The worm typically emerges through the skin on a lower limb of the host 1 year after infection, causing pain and disability (1). There is no vaccine or medicine to prevent or medicine to treat dracunculiasis; eradication relies on case containment* to prevent water contamination and other interventions to prevent infection: health education, water filtration, treatment of unsafe water with temephos (an organophosphate larvicide), and provision of safe drinking water (1,2). The eradication campaign began in 1980 at CDC (1). In 1986, with an estimated 3.5 million cases† occurring annually in 20 African and Asian countries§ (3), the World Health Assembly called for dracunculiasis elimination (4). The Guinea Worm Eradication Program (GWEP), led by The Carter Center and supported by the World Health Organization (WHO), UNICEF, CDC, and other partners, began assisting ministries of health in countries with endemic disease. With 27 cases in humans reported in 2020, five during January-June 2021, and only six countries currently affected by dracunculiasis (Angola, Chad, Ethiopia, Mali, South Sudan, and importations into Cameroon), achievement of eradication appears to be close. However, dracunculiasis eradication is challenged by civil unrest, insecurity, and epidemiologic and zoologic concerns. Guinea worm infections in dogs were first reported in Chad in 2012. Animal infections have now overtaken human cases, with 1,601 reported animal infections in 2020 and 443 during January-June 2021. Currently, all national GWEPs remain fully operational, with precautions taken to ensure safety of program staff and community members in response to the COVID-19 pandemic. Because of COVID-19, The Carter Center convened the 2020 and 2021 annual GWEP Program Managers meetings virtually, and WHO's International Commission for the Certification of Dracunculiasis Eradication met virtually in October 2020. Since 1986, WHO has certified 199 countries, areas, and territories dracunculiasis-free. Six countries are still affected: five with endemic disease and importations into Cameroon. Seven countries (five with endemic dracunculiasis, Democratic Republic of the Congo, and Sudan) still lack certification (4). The existence of infected dogs, especially in Chad, and impeded access because of civil unrest and insecurity in Mali and South Sudan are now the greatest challenges to interrupting transmission. This report describes progress during January 2020-June 2021 and updates previous reports (2,4,5).
Collapse
|
28
|
Karki S, Weiss A, Dcruz J, Hunt D, Haigood B, Ouakou PT, Chop E, Zirimwabagabo H, Rubenstein BL, Yerian S, Roy SL, Kamb ML, Guagliardo SAJ. Assessment of the Chad guinea worm surveillance information system: A pivotal foundation for eradication. PLoS Negl Trop Dis 2021; 15:e0009675. [PMID: 34370746 PMCID: PMC8376011 DOI: 10.1371/journal.pntd.0009675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/19/2021] [Accepted: 07/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background In the absence of a vaccine or pharmacological treatment, prevention and control of Guinea worm disease is dependent on timely identification and containment of cases to interrupt transmission. The Chad Guinea Worm Eradication Program (CGWEP) surveillance system detects and monitors Guinea worm disease in both humans and animals. Although Guinea worm cases in humans has declined, the discovery of canine infections in dogs in Chad has posed a significant challenge to eradication efforts. A foundational information system that supports the surveillance activities with modern data management practices is needed to support continued program efficacy. Methods We sought to assess the current CGWEP surveillance and information system to identify gaps and redundancies and propose system improvements. We reviewed documentation, consulted with subject matter experts and stakeholders, inventoried datasets to map data elements and information flow, and mapped data management processes. We used the Information Value Cycle (IVC) and Data-Information System-Context (DISC) frameworks to help understand the information generated and identify gaps. Results Findings from this study identified areas for improvement, including the need for consolidation of forms that capture the same demographic variables, which could be accomplished with an electronic data capture system. Further, the mental models (conceptual frameworks) IVC and DISC highlighted the need for more detailed, standardized workflows specifically related to information management. Conclusions Based on these findings, we proposed a four-phased roadmap for centralizing data systems and transitioning to an electronic data capture system. These included: development of a data governance plan, transition to electronic data entry and centralized data storage, transition to a relational database, and cloud-based integration. The method and outcome of this assessment could be used by other neglected tropical disease programs looking to transition to modern electronic data capture systems. Guinea worm disease has no pharmacological treatment or vaccines, and therefore existing prevention and control strategies (e.g., case containment, health education, chemical treatment of water bodies) are critically dependent on timely, accurate, and actionable data. We conducted informant interviews, used conceptual frameworks, and mapped data flow to evaluate the Chad Guinea Worm Eradication Program’s current information system. We identified areas for improvement including the need to consolidate variables across data collection forms and the need to develop streamlined workflows. We proposed a four-phased roadmap for transitioning to an electronic data capture system and centralizing data storage. Our approach and proposed roadmap could be adopted by other neglected tropical disease control programs looking to modernize data collection and storage procedures.
Collapse
Affiliation(s)
- Saugat Karki
- Surveillance and Data Management Branch, Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Adam Weiss
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Jina Dcruz
- Population Health Workforce Branch, Division of Scientific Education and Professional Development, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Dorothy Hunt
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Brandon Haigood
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Philip Tchindebet Ouakou
- Guinea Worm Eradication Program, Ministry of Public Health and National Solidarity, N’Djamena, Chad
| | - Elisabeth Chop
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Hubert Zirimwabagabo
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Beth L. Rubenstein
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sarah Yerian
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Sharon L. Roy
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mary L. Kamb
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sarah Anne J. Guagliardo
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
29
|
Kelly-Hope LA, Molyneux DH. Quantifying conflict zones as a challenge to certification of Guinea worm eradication in Africa: a new analytical approach. BMJ Open 2021; 11:e049732. [PMID: 34353803 PMCID: PMC8344294 DOI: 10.1136/bmjopen-2021-049732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES To quantify conflict events and access across countries that remain to be certified free of transmission of Dracunculus medinensis (Guinea worm disease) or require postcertification surveillance as part of the Guinea Worm Eradication Programme (GWEP). SETTING AND PARTICIPANTS Populations living in Guinea worm affected areas across seven precertification countries and 13 postcertification sub-Saharan African countries. OUTCOME MEASURES The number of conflict events and rates per 100 000 population, the main types of conflict and actors reported to be responsible for events were summarised and mapped across all countries. Chad and Mali were presented as case studies. Guinea worm information was based on GWEP reports. Conflict data were obtained from the Armed Conflict Location and Event Data Project. Maps were created using ArcGIS V.10.7 and access was measured as regional distance and time to cities. RESULTS More than 980 000 conflict events were reported between 2000 and 2020, with a significant increase since 2018. The highest number and rates were reported in precertification Mali (n=2556; 13.0 per 100 000), South Sudan (n=2143; 19.4), Democratic Republic of Congo (n=7016; 8.1) and postcertification Nigeria (n=6903; 3.4), Central Africa Republic (n=1251; 26.4), Burkina Faso (n=2004; 9.7). Violence against civilians, protests and battles were most frequently reported with several different actors involved including Unidentified Armed Groups and Boko Haram. Chad and Mali had contracting epidemiological and conflict situations with affected regions up to 700 km from the capital or 10 hours to the nearest city. CONCLUSIONS Understanding the spatial-temporal patterns of conflict events, identifying hotspots, the actors responsible and their sphere of influence is critical for the GWEP and other public health programmes to develop practical risk assessments, deliver essential health interventions, implement innovative surveillance, determine certification and meet the goals of eradication.
Collapse
Affiliation(s)
- Louise A Kelly-Hope
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, Merseyside, UK
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | - David H Molyneux
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| |
Collapse
|
30
|
Ribado JV, Li NJ, Thiele E, Lyons H, Cotton JA, Weiss A, Tchindebet Ouakou P, Moundai T, Zirimwabagabo H, Guagliardo SAJ, Chabot-Couture G, Proctor JL. Linked surveillance and genetic data uncovers programmatically relevant geographic scale of Guinea worm transmission in Chad. PLoS Negl Trop Dis 2021; 15:e0009609. [PMID: 34310598 PMCID: PMC8341693 DOI: 10.1371/journal.pntd.0009609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/05/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022] Open
Abstract
Background Guinea worm (Dracunculus medinensis) was detected in Chad in 2010 after a supposed ten-year absence, posing a challenge to the global eradication effort. Initiation of a village-based surveillance system in 2012 revealed a substantial number of dogs infected with Guinea worm, raising questions about paratenic hosts and cross-species transmission. Methodology/principal findings We coupled genomic and surveillance case data from 2012-2018 to investigate the modes of transmission between dog and human hosts and the geographic connectivity of worms. Eighty-six variants across four genes in the mitochondrial genome identified 41 genetically distinct worm genotypes. Spatiotemporal modeling revealed worms with the same genotype (‘genetically identical’) were within a median range of 18.6 kilometers of each other, but largely within approximately 50 kilometers. Genetically identical worms varied in their degree of spatial clustering, suggesting there may be different factors that favor or constrain transmission. Each worm was surrounded by five to ten genetically distinct worms within a 50 kilometer radius. As expected, we observed a change in the genetic similarity distribution between pairs of worms using variants across the complete mitochondrial genome in an independent population. Conclusions/significance In the largest study linking genetic and surveillance data to date of Guinea worm cases in Chad, we show genetic identity and modeling can facilitate the understanding of local transmission. The co-occurrence of genetically non-identical worms in quantitatively identified transmission ranges highlights the necessity for genomic tools to link cases. The improved discrimination between pairs of worms from variants identified across the complete mitochondrial genome suggests that expanding the number of genomic markers could link cases at a finer scale. These results suggest that scaling up genomic surveillance for Guinea worm may provide additional value for programmatic decision-making critical for monitoring cases and intervention efficacy to achieve elimination. The global eradication effort for Guinea worm disease has dramatically decreased the global burden of the disease and enabled 187 countries to be certified by the World Health Organization to be free of endemic transmission. Despite this progress, several countries continue to have endemic transmission. In Chad, a long absence of reported cases was interrupted with the identification of new Guinea worm cases, prompting a substantial scale up of surveillance and intervention efforts. Here, we study the value of increasing genomic surveillance as a tool for programmatic evaluation of surveillance and intervention efforts in Chad. Linking surveillance and genomic samples, parsimonious spatial models help reveal a consistent geographic clustering of similar genetic sequences across Chad. We also demonstrate that expanding the sequencing can offer better resolution for distinguishing Guinea worm samples. In this retrospective study, we found evidence that scaling up genomic surveillance can be an important monitoring and evaluation tool for the eradication program in Chad.
Collapse
Affiliation(s)
- Jessica V. Ribado
- Institute for Disease Modeling, Global Health Division of the Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Nancy J. Li
- Institute for Disease Modeling, Global Health Division of the Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Elizabeth Thiele
- Vassar College, Poughkeepsie, New York, United States of America
| | - Hil Lyons
- Institute for Disease Modeling, Global Health Division of the Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Adam Weiss
- The Carter Center, Atlanta, Georgia, United States of America
| | | | - Tchonfienet Moundai
- National Guinea Worm Eradication Program, Ministry of Public Health, N’Djamena, Chad
| | | | - Sarah Anne J. Guagliardo
- The Carter Center, Atlanta, Georgia, United States of America
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Guillaume Chabot-Couture
- Institute for Disease Modeling, Global Health Division of the Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Joshua L. Proctor
- Institute for Disease Modeling, Global Health Division of the Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Alternative transmission pathways for guinea worm in dogs: implications for outbreak risk and control. Int J Parasitol 2021; 51:1027-1034. [PMID: 34246634 DOI: 10.1016/j.ijpara.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022]
Abstract
Guinea worm (Dracunculus medinensis) has exerted a high human health burden in parts of Africa. Complete eradication of Guinea worm disease (dracunculiasis) may be delayed by the circulation of the parasite in domestic dogs. As with humans, dogs acquire the parasite by directly ingesting infected copepods, and recent evidence suggests that consuming frogs that ingested infected copepods as tadpoles may be a viable transmission route (paratenic route). To understand the relative contributions of direct and paratenic transmission routes, we developed a mathematical model that describes transmission of Guinea worm between dogs, copepods and frogs. We explored how the parasite basic reproductive number (R0) depends on parameters amenable to actionable interventions under three scenarios: frogs/tadpoles do not consume copepods; tadpoles consume copepods but frogs do not contribute to transmission; and frogs are paratenic hosts. We found a non-monotonic relationship between the number of dogs and R0. Generally, frogs can contribute to disease control by removing infected copepods from the waterbody even when paratenic transmission can occur. However, paratenic transmission could play an important role in maintaining the parasite when direct transmission is reduced by interventions focused on reducing copepod ingestion by dogs. Together, these suggest that the most effective intervention strategies may be those which focus on the reduction of copepods, as this reduces outbreak potential irrespective of the importance of the paratenic route.
Collapse
|
32
|
Box EK, Cleveland CA, Garrett KB, Grunert RK, Hutchins K, Majewska AA, Thompson AT, Wyckoff ST, Ehlers C, Yabsley MJ. Copepod consumption by amphibians and fish with implications for transmission of Dracunculus species. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:231-237. [PMID: 34189031 PMCID: PMC8217678 DOI: 10.1016/j.ijppaw.2021.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/04/2022]
Abstract
Parasitic nematodes in the genus Dracunculus have a complex life cycle that requires more than one host species in both aquatic and terrestrial habitats. The most well-studied species, Dracunculus medinensis, is the causative agent of human Guinea worm disease (dracunculiasis). There are several other Dracunculus species that infect non-human animals, primarily wildlife (reptiles and mammals). The classic route of D. medinensis transmission to humans is through the ingestion of water containing the intermediate host, a cyclopoid copepod, infected with third-stage larvae (L3s). However, many animal hosts (e.g., terrestrial snakes, dogs) of other Dracunculus sp. appear unlikely to ingest a large number of copepods while drinking. Therefore, alternative routes of infection (e.g., paratenic or transport hosts) may facilitate Dracunculus transmission to these species. To better understand the role of paratenic and transport hosts in Dracunculus transmission to animal definitive hosts, we compared copepod ingestion rates for aquatic species (fish, frogs [tadpoles and adults], and newts) which may serve as paratenic or transport hosts. We hypothesized that fish would consume more copepods than amphibians. Our findings confirm that African clawed frogs (Xenopus laevis) and fish consume copepods, but that fish ingest, on average, significantly higher numbers (68% [34/50]) than adult African clawed frogs (36% [18/50]) during a 24-h time period. Our results suggest that amphibians and fish may play a role in the transmission of Dracunculus to definitive hosts. Still, additional research is required to determine whether, in the wild, fish or frogs are serving as paratenic or transport hosts. If so, they may facilitate Dracunculus transmission. However, if these animals simply act as dead-end hosts or as means of copepod population control, they may decrease Dracunculus transmission. Copepod ingestion during 24 h was assessed for fish and amphibians. Significant numbers of copepods were consumed by fish and adult Xenopus. Tadpoles and newts did not consume large numbers of copepods during this time. Fish and amphibians may facilitate Dracunculus transmission. Further studies may elucidate how copepod ingestion impact parasite transmission.
Collapse
Affiliation(s)
- Erin K Box
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA
| | - Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA
| | - Kayla B Garrett
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA.,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, 30602, GA, USA
| | - Ryan K Grunert
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA.,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, 30602, GA, USA
| | - Katherine Hutchins
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA
| | - Ania A Majewska
- Department of Biology, Emory University, Atlanta, 30322, GA, USA
| | - Alec T Thompson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA
| | - Seth T Wyckoff
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA.,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, 30602, GA, USA
| | - Coles Ehlers
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA.,Young Scholars Program at the University of Georgia, Athens, 30602, GA, USA
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, 30602, GA, USA.,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, 30602, GA, USA
| |
Collapse
|
33
|
Susceptibility of anurans, lizards, and fish to infection with Dracunculus species larvae and implications for their roles as paratenic hosts. Sci Rep 2021; 11:11802. [PMID: 34083638 PMCID: PMC8175391 DOI: 10.1038/s41598-021-91122-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Dracunculus spp. are parasitic nematodes that infect numerous species of mammals and reptiles. The life cycles of Dracunculus species are complex, and unknowns remain regarding the role of paratenic and transport hosts in transmission to definitive hosts. We had two primary objectives: to assess the susceptibility of several species of anurans, lizards, and fish as paratenic hosts for Dracunculus species, and to determine the long-term persistence of Dracunculus infections in African clawed frogs (Xenopus laevis). Animals were orally exposed to copepods infected with infectious third-stage larvae (L3s) of either Dracunculus insignis or D. medinensis. Dracunculus L3s were recovered from four anuran species, two lizard species, and one fish species, demonstrating that Dracunculus can infect tissues of a diversity of species. In long-term persistence trials, D. medinensis L3s were recovered from African clawed frogs tissues up to 58 days post-infection, and D. insignis L3s were recovered up to 244 days post-infection. Our findings regarding the susceptibility of novel species of frogs, lizards, and fish to infection with Dracunculus nematodes, and long-term persistence of L3s in paratenic hosts, address pressing knowledge gaps regarding Dracunculus infection in paratenic hosts and may guide future research regarding the transmission of Dracunculus to definitive mammalian hosts.
Collapse
|
34
|
Guagliardo SAJ, Ruiz-Tiben E, Hopkins DR, Weiss AJ, Ouakou PT, Zirimwabagabo H, Unterwegner K, Tindall D, Cama VA, Bishop H, Sapp SGH, Roy SL. Surveillance of Human Guinea Worm in Chad, 2010-2018. Am J Trop Med Hyg 2021; 105:188-195. [PMID: 34029207 PMCID: PMC8274751 DOI: 10.4269/ajtmh.20-1525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
The total number of Guinea worm cases has been reduced by 99.9% since the mid-1980s when the eradication campaign began. Today, the greatest number of cases is reported from Chad. In this report, we use surveillance data collected by the Chad Guinea Worm Eradication Program to describe trends in human epidemiology. In total, 114 human cases were reported during the years 2010–2018, with highest rates of containment (i.e., water contamination prevented) in the years 2013, 2014, 2016, and 2017 (P < 0.0001). Approximately half of case-patients were female, and 65.8% of case-patients were aged 30 years or younger (mean: 26.4 years). About 34.2% of case-patients were farmers. Cases were distributed across many ethnicities, with a plurality of individuals being of the Sara Kaba ethnicity (21.3%). Most cases occurred between the end of June and the end of August and were clustered in the Chari Baguirmi (35.9%) and Moyen Chari regions (30.1%). Cases in the northern Chari River area peaked in April and in August, with no clear temporal pattern in the southern Chari River area. History of travel within Chad was reported in 7.0% of cases, and male case-patients (12.5%) were more likely than female case-patients (1.7%) to have reported a history of travel (P = 0.03). Our findings confirm that human Guinea worm is geographically disperse and rare. Although the proportion of case-patients with travel history is relatively small, this finding highlights the challenge of surveillance in mobile populations in the final stages of the global eradication campaign.
Collapse
Affiliation(s)
- Sarah Anne J Guagliardo
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia.,2Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | | | - Donald R Hopkins
- 2Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | - Adam J Weiss
- 2Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | | | | | | | - Dillon Tindall
- 2Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | - Vitaliano A Cama
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry Bishop
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sarah G H Sapp
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sharon L Roy
- 1Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
35
|
Standley CJ, Schermerhorn J. Reaching the "Last Mile": Fresh Approaches Needed for Guinea Worm Eradication. Am J Trop Med Hyg 2021; 105:1-2. [PMID: 33909595 PMCID: PMC8274775 DOI: 10.4269/ajtmh.21-0433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/23/2023] Open
Affiliation(s)
- Claire J. Standley
- Address correspondence to Claire J. Standley, Center for Global Health Science and Security, Georgetown University, 3900 Reservoir Road NW, Washington, DC 20057. E-mail:
| | | |
Collapse
|
36
|
A mathematical model of Guinea worm disease in Chad with fish as intermediate transport hosts. J Theor Biol 2021; 521:110683. [PMID: 33744311 DOI: 10.1016/j.jtbi.2021.110683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 11/23/2022]
Abstract
Guinea-worm disease (GWD) was thought to be almost eliminated in Chad when it reemerged in 2010. The disease now shows a peculiar pattern of spreading along Chari River and its tributaries, rather than clustering around a particular drinking water source. We create a mathematical model of GWD that includes the population dynamics of the parasite as well as the dynamics of its hosts (copepods, fish, humans, and domestic dogs). We calibrate our model based on data from the literature and validate it on the recent GWD annual incidence data from Chad. The effective reproduction number predicted by our model agrees well with the empirical value of roughly 1.25 derived directly from the data. Our model thus supports the hypothesis that the parasite now uses fish as intermediate transport hosts. We predict that GWD transmission can be most easily interrupted by avoiding eating uncooked fish and by burying the fish entrails to prevent transmission through dogs. Increasing the mortality of copepods and even partially containing infected dogs to limit their access to water sources is another important factor for GWD eradication.
Collapse
|
37
|
Rubenstein BL, Roy SL, Unterwegner K, Yerian S, Weiss A, Zirimwabagabo H, Chop E, Romero M, Ouakou PT, Moundai T, Guagliardo SAJ. Community-based Guinea worm surveillance in Chad: Evaluating a system at the intersection of human and animal disease. PLoS Negl Trop Dis 2021; 15:e0009285. [PMID: 33735242 PMCID: PMC8023463 DOI: 10.1371/journal.pntd.0009285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 04/06/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Guinea worm is a debilitating parasitic infection targeted for eradication. Annual human cases have dropped from approximately 3,500,000 in 1986 to 54 in 2019. Recent identification of canine cases in Chad threatens progress, and therefore detection, prevention, and containment of canine cases is a priority. We investigated associations between disease knowledge, community engagement, and canine cases in Chad to identify opportunities to improve active surveillance. Methods We surveyed 627 respondents (villagers, local leaders, community volunteers, and supervisors) across 45 villages under active surveillance. Descriptive statistics were analyzed by respondent category. Logistic regression models were fitted to assess the effects of volunteer visit frequency on villager knowledge. Results Knowledge increased with respondents’ associations with the Guinea worm program. Household visit frequency by community volunteers was uneven: 53.0% of villagers reported visits at least twice weekly and 21.4% of villagers reported never being visited. Villagers visited by a volunteer at least twice weekly had better knowledge of Guinea worm symptoms (OR: 1.71; 95% CI: 1.04–2.79) and could name more prevention strategies (OR: 2.04; 95% CI: 1.32–3.15) than villagers visited less frequently. The primary motivation to report was to facilitate care-seeking for people with Guinea worm. Knowledge of animal “containment” to prevent contamination of water, knowledge of rewards for reporting animal cases, and ability to name any reasons to report Guinea worm were each positively correlated with village canine case counts. Conclusions Community volunteers play crucial roles in educating their neighbors about Guinea worm and facilitating surveillance. Additional training and more attentive management of volunteers and supervisors could increase visit frequency and further amplify their impact. Emphasizing links between animal and human cases, the importance of animal containment, and animal rewards might improve surveillance and canine case detection. The surveillance system should be evaluated routinely to expand generalizability of data and monitor changes over time. Guinea worm eradication depends on detecting people and animals with the disease in order to prevent transmission. The situation in Chad is especially urgent because the number of domestic dogs with Guinea worm has been rapidly increasing in the past five years, and now represents the vast majority of Guinea worm cases globally. The global Guinea Worm Eradication Program, the Chad Guinea Worm Eradication Program, and the Chad Ministry of Public Health requested an investigation to evaluate the associations between Guinea worm knowledge, community engagement, and case detection and to investigate how the active surveillance system could be improved to more effectively detect and contain every Guinea worm case. We surveyed 627 people across 45 villages in Chad. We found that Chad’s system for monitoring Guinea worm operates unevenly, with some villagers receiving frequent visits by community volunteers and other villagers reporting never being visited. Villagers visited by a community volunteer at least twice per week had much better knowledge of Guinea worm symptoms and prevention, compared with villagers visited less frequently. Community volunteers are instrumental to Guinea worm eradication efforts in Chad because they transmit key educational messages that facilitate disease detection. More efforts should be made to increase volunteer accountability and to provide volunteers and their supervisors with targeted, high quality training.
Collapse
Affiliation(s)
- Beth L Rubenstein
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sharon L Roy
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Karmen Unterwegner
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Sarah Yerian
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Adam Weiss
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | | | - Elisabeth Chop
- Guinea Worm Eradication Program, The Carter Center, N'Djamena, Chad
| | - Mario Romero
- Guinea Worm Eradication Program, The Carter Center, N'Djamena, Chad
| | | | | | - Sarah Anne J Guagliardo
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.,Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| |
Collapse
|
38
|
Gebre T. Rethinking disease eradication: putting countries first. Int Health 2021; 13:ihab011. [PMID: 33693720 PMCID: PMC8079318 DOI: 10.1093/inthealth/ihab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/29/2020] [Accepted: 02/13/2021] [Indexed: 11/23/2022] Open
Abstract
There have been various infectious disease eradication programs implemented in various parts of the world with varying degrees of success since the early 1900s. Of all those programs, the one that achieved monumental success was the Smallpox Eradication Program (SEP). Most of the global health leaders and authorities that came up with the new idea of disease eradication in the 1980s tried to design and shape the new programs based on their experience in the SEP. The SEP had a very effective tool, vaccine, that did not require a cold chain system, and a relatively simple way of administration. The total cost of the eradication program was about US$300 million and the entire campaign took about 10 y. However, the Guinea worm and polio eradication programs that followed in the footsteps of SEP attained varying levels of success, consuming a huge amount of resources and taking a much longer time (>30 y each). This paper reviews the factors that played major roles in hindering the attainment of eradication goals and outlines possible recommendations for the way forward. Among other things, this paper strongly emphasizes that endemic countries should take the lead in all matters pertaining to making decisions for disease elimination and/or eradication initiatives and that 'elimination as a public health problem' is the preferred option rather than going for complete eradication at the expense of other health programs and thereby contributing to weakening of already fragile health systems, mainly in Africa.
Collapse
Affiliation(s)
- Teshome Gebre
- International Trachoma Initiative, The Task Force for Global Health, PO Box 10001, Addis Ababa, Ethiopia
| |
Collapse
|
39
|
Guagliardo SAJ, Wiegand R, Roy SL, Cleveland CA, Zirimwabagabo H, Chop E, Tchindebet Ouakou P, Ruiz-Tiben E, R. Hopkins D, J. Weiss A. Correlates of Variation in Guinea Worm Burden among Infected Domestic Dogs. Am J Trop Med Hyg 2021; 104:1418-1424. [PMID: 33617473 PMCID: PMC8045642 DOI: 10.4269/ajtmh.19-0924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/24/2020] [Indexed: 11/28/2022] Open
Abstract
The Guinea Worm Eradication Program has been extraordinarily successful-in 2019, there were 53 human cases reported, down from the estimated 3.5 million in 1986. Yet the occurrence of Guinea worm in dogs is a challenge to eradication efforts, and underlying questions about transmission dynamics remain. We used routine surveillance data to run negative binomial regressions predicting worm burden among infected dogs in Chad. Of 3,371 infected dogs reported during 2015-2018, 38.5% had multiple worms. A multivariable model showed that the number of dogs in the household was negatively associated with worm burden (adjusted incidence rate ratio [AIRR] = 0.95, 95% CI: 0.93-0.97, P < 0.0001) after adjusting for dog age (AIRR = 0.99, 95% CI: 0.96-1.01, P > 0.1). This could relate to the amount of infective inocula (e.g., contaminated food or water) shared by multiple dogs in a household. Other significant univariable associations with worm burden included dog history of Guinea worm infection (IRR = 1.30, 95% CI: 1.18-1.45) and dog owners who were hunters (IRR = 0.78, 95% CI: 0.62-0.99, P < 0.05) or farmers (IRR = 0.83, 95% CI: 0.77-0.90, P < 0.0001). Further analysis showed that the number of dogs in the household was significantly and positively correlated with nearly all other independent variables (e.g., owner occupation: farmer, fisherman, or hunter; dog age, sex, and history of Guinea worm). The associations we identified between worm burden and dogs per household, and dogs per household and owner characteristics should be further investigated with more targeted studies.
Collapse
Affiliation(s)
- Sarah Anne J. Guagliardo
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | - Ryan Wiegand
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sharon L. Roy
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Elisabeth Chop
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | | | | | - Donald R. Hopkins
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| | - Adam J. Weiss
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia
| |
Collapse
|
40
|
Cleveland CA, Eberhard ML, Garrett KB, Thompson AT, Swanepoel L, Miller EA, Stephens OL, Yabsley MJ. Dracunculus Species in Meso-mammals from Georgia, United States, and Implications for the Guinea Worm Eradication Program in Chad, Africa. J Parasitol 2021; 106:616-622. [PMID: 33009554 DOI: 10.1645/18-178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The prevalence and diversity of parasitic nematodes in wildlife have been well studied for certain species, yet for others considerable gaps in knowledge exist. The parasitic nematode Dracunculus insignis infects North American wildlife, and past research on this species has led to an increased understanding of the potential host diversity and transmission of the closely related human Guinea worm, Dracunculus medinensis (which is currently the focus of a global eradication program). Many definitive hosts have been documented for D. insignis; however, the life cycle has been studied only in laboratories, and only a single phylogenetic study has been conducted on D. insignis (from Canada). The goals of the present study were to investigate the prevalence of infections with Dracunculus species among wildlife at a single site (Di-Lane plantation) in the southeastern United States, evaluate the genetic diversity of parasites at this site, and investigate potential paratenic hosts that may be involved in transmission. Over 3 yr, we sampled 228 meso-mammals, reporting an overall prevalence of infection with Dracunculus insignis of 20% (46/228). Amphibians and fish were sampled in the same geographic area as infected meso-mammals. Dracunculus insignis third-stage larvae were recovered from 2 different species of amphibians, but all fish sampled were negative. Phylogenetic analysis of the partial cytochrome c oxidase I (COI) gene showed very little diversity of Dracunculus at Di-Lane; however, we did recover a single nematode from a Virginia opossum (Didelphis virginiana) that falls outside of the D. insignis clade, more closely aligns with Dracunculus lutrae, and may represent an undescribed species. This work documents the occurrence of D. insignis in frogs, a potential transmission pathway for D. insignis at a single geographic site in nature. When applied to the global Guinea Worm Eradication Program, and Chad, Africa, in particular, this work increases our knowledge of the potential role of aquatic animals in the transmission of Dracunculus species and informs on potential intervention strategies that may be applied to the eradication of Guinea worm in Africa.
Collapse
Affiliation(s)
- Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study, University of Georgia 589 D. W. Brooks Dr., Athens, Georgia 30602.,Warnell School of Forestry and Natural Resources, University of Georgia, 180 E. Green St., Athens, Georgia 30602
| | - Mark L Eberhard
- (Retired) Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333
| | - Kayla B Garrett
- Southeastern Cooperative Wildlife Disease Study, University of Georgia 589 D. W. Brooks Dr., Athens, Georgia 30602
| | - Alec T Thompson
- Southeastern Cooperative Wildlife Disease Study, University of Georgia 589 D. W. Brooks Dr., Athens, Georgia 30602
| | - Liandrie Swanepoel
- Southeastern Cooperative Wildlife Disease Study, University of Georgia 589 D. W. Brooks Dr., Athens, Georgia 30602
| | - Elizabeth A Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, Colorado 80526
| | - Odin L Stephens
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Athens, Georgia 30602
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, University of Georgia 589 D. W. Brooks Dr., Athens, Georgia 30602.,Warnell School of Forestry and Natural Resources, University of Georgia, 180 E. Green St., Athens, Georgia 30602
| |
Collapse
|
41
|
Priest JW, Ngandolo BNR, Lechenne M, Cleveland CA, Yabsley MJ, Weiss AJ, Roy SL, Cama V. Development of a Multiplex Bead Assay for the Detection of Canine IgG 4 Antibody Responses to Guinea Worm. Am J Trop Med Hyg 2021; 104:303-312. [PMID: 33124546 DOI: 10.4269/ajtmh.20-0914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increased levels of guinea worm (GW) disease transmission among dogs in villages along the Chari River in Chad threaten the gains made by the GW Eradication Program. Infected dogs with preemergent worm blisters are difficult to proactively identify. If these dogs are not contained, blisters can burst upon submersion in water, leading to the contamination of the water supply with L1 larvae. Guinea worm antigens previously identified using sera from human dracunculiasis patients were coupled to polystyrene beads for multiplex bead assay analysis of 41 non-endemic (presumed negative) dog sera and 39 sera from GW-positive dogs from Chad. Because commercially available anti-dog IgG secondary antibodies did not perform well in the multiplex assay, dog IgGs were partially purified, and a new anti-dog IgG monoclonal antibody was developed. Using the new 4E3D9 monoclonal secondary antibody, the thioredoxin-like protein 1-glutathione-S-transferase (GST), heat shock protein (HSP1)-GST, and HSP2-GST antigen multiplex assays had sensitivities of 69-74% and specificities of 73-83%. The domain of unknown function protein 148 (DUF148)-GST antigen multiplex assay had a sensitivity of 89.7% and a specificity of 85.4%. When testing samples collected within 1 year of GW emergence (n = 20), the DUF148-GST assay had a sensitivity of 90.0% and a specificity of 97.6% with a receiver-operating characteristic area under the curve of 0.94. Using sera from two experimentally infected dogs, antibodies to GW antigens were detected within 6 months of exposure. Our results suggest that, when used to analyze paired, longitudinal samples collected 1-2 months apart, the DUF148/GST multiplex assay could identify infected dogs 4-8 months before GW emergence.
Collapse
Affiliation(s)
- Jeffrey W Priest
- 1Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Christopher A Cleveland
- 4Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Michael J Yabsley
- 4Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia.,5Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia
| | | | - Sharon L Roy
- 7Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia.,8World Health Organization Collaborating Center for Dracunculiasis Eradication, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Vitaliano Cama
- 7Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia.,8World Health Organization Collaborating Center for Dracunculiasis Eradication, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
42
|
Lessons learned for surveillance strategies for trachoma elimination as a public health problem, from the evaluation of approaches utilised by Guinea worm and onchocerciasis programmes: A literature review. PLoS Negl Trop Dis 2021; 15:e0009082. [PMID: 33507903 PMCID: PMC7872237 DOI: 10.1371/journal.pntd.0009082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/09/2021] [Accepted: 12/17/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction A number of neglected tropical diseases are targeted for elimination or eradication. An effective surveillance system is critical to determine if these goals have been achieved and maintained. Trachoma has two related but morphologically different presentations that are monitored for elimination, the active infectious form of trachoma and trachomatous trichiasis (TT), the progression of the disease. There are a number of lessons learnt from the Guinea worm surveillance system that are particularly compatible for TT surveillance and the onchocerciasis surveillance system which can provide insights for surveillance of the infectious form of trachoma. Methods/Principal findings A literature search of peer-reviewed published papers and grey literature was conducted using PUBMED and Google Scholar for articles relating to dracunculiasis or Guinea worm, onchocerciasis and trachoma, along with surveillance or elimination or eradication. The abstracts of relevant papers were read and inclusion was determined based on specified inclusion and exclusion criteria. The credibility and bias of relevant papers were also critically assessed using published criteria. A total of 41 papers were identified that were eligible for inclusion into the review. The Guinea worm programme is designed around a surveillance-containment strategy and combines both active and passive surveillance approaches, with a focus on village-based surveillance and reporting. Although rumour reporting and a monetary incentive for the identification of confirmed Guinea worm cases have been reported as successful for identifying previously unknown transmission there is little unbiased evidence to support this conclusion. More rigorous evidence through a randomised controlled trial, influenced by motivational factors identified through formative research, would be necessary in order to consider applicability for TT case finding in an elimination setting. The onchocerciasis surveillance strategy focuses on active surveillance through sentinel surveillance of villages and breeding sites. It relies on an entomological component, monitoring infectivity rates of black flies and an epidemiological component, tracking exposure to infection in humans. Challenges have included the introduction of relatively complex diagnostics that are not readily available in onchocerciasis endemic countries and target thresholds, which are practically unattainable with current diagnostic tests. Although there is utility in monitoring for infection and serological markers in trachoma surveillance, it is important that adequate considerations are made to ensure evidence-based and achievable guidelines for their utility are put in place. Conclusions/Significance The experiences of both the Guinea worm and onchocerciasis surveillance strategies have very useful lessons for trachoma surveillance, pre- and post-validation. The use of a monetary reward for identification of TT cases and further exploration into the use of infection and serological indicators particularly in a post-validation setting to assist in identifying recrudescence would be of particular relevance. The next step would be a real-world evaluation of their relative applicability for trachoma surveillance. The design of a surveillance system needs to be carefully thought out to ensure it provides sufficient evidence to determine if a disease or infection is eliminated or eradicated. If inappropriate it can lead to on-going transmission and resurgence of infection or disease or the unnecessary continuation of interventions, wasting valuable resources. Guinea worm is a disease that is painful and debilitating, for which there is no drug or vaccine. The aim is to eradicate the disease and as such the Guinea worm programme is designed around a strategy of identification of cases and their containment to prevent onward transmission. Onchocerciasis if left untreated can lead to blindness. The aim is to eliminate the disease through the interruption of transmission. A literature review was conducted to determine available evidence and identify lessons that can be learnt from the surveillance of both diseases for the design of trachoma surveillance strategies in the endgame. The potential utility of rumour reporting and a monetary incentive for the identification of a confirmed case of Guinea worm could be explored for trichiasis case finding. Trichiasis is the progression of trachoma and leads to significant ocular morbidity. The introduction of tests for infection and antibodies and the utility of sentinel surveillance as utilised for onchocerciasis are interesting considerations for active trachoma surveillance post-validation and has potential to identify recrudescence cost-effectively. The experiences of both the Guinea worm and onchocerciasis surveillance strategies have very useful lessons that can be trialled for trachoma surveillance. However, their real-world applicability and implications for trachoma need to be evaluated before any changes in guidelines are proposed.
Collapse
|
43
|
Liu EW, Sircar AD, Matchanga K, Mahamat AM, Ngarhor N, Ouakou PT, Zirimwabagabo H, Ruiz-Tiben E, Sankara D, Wiegand R, Roy SL. Investigation of Dracunculiasis Transmission among Humans, Chad, 2013-2017. Am J Trop Med Hyg 2020; 104:724-730. [PMID: 33289475 PMCID: PMC7866328 DOI: 10.4269/ajtmh.20-0584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/13/2020] [Indexed: 11/07/2022] Open
Abstract
Dracunculiasis, slated for global eradication, typically is acquired by drinking stagnant water containing microscopic crustaceans (copepods) infected with Dracunculus medinensis larvae, causing clusters of case persons with worms emerging from the skin. Following a 10-year absence of reported cases, 9–26 sporadic human cases with few epidemiologic links have been reported annually in Chad since 2010; dog infections have also been reported since 2012. We conducted an investigation of human cases in Chad to identify risk factors. We conducted a case–control study using a standardized questionnaire to assess water and aquatic animal consumption, and links to dog infections. Case persons had laboratory-confirmed D. medinensis during 2013–2017. Each case person was matched to one to three controls without history of disease by age, gender, and residency in the village where the case person was likely infected. We estimated odds ratios (ORs) using simple conditional logistic regression. We enrolled 25 case persons with 63 matched controls. Dracunculiasis was associated with consumption of untreated water from hand-dug wells (OR: 13.4; 95% CI: 1.7–108.6), but neither with consumption of aquatic animals nor presence of infected dogs in villages. Unsafe water consumption remains associated with dracunculiasis. Education of populations about consuming safe water and using copepod filters to strain unsafe water should continue and expand, as should efforts to develop and maintain safe drinking water sources. Nevertheless, the peculiar epidemiology in Chad remains incompletely explained. Future studies of dogs might identify other risk factors.
Collapse
Affiliation(s)
- Eugene W Liu
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anita D Sircar
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | | | | | | - Dieudonné Sankara
- Department of Neglected Tropical Diseases, World Health Organization (WHO)
| | - Ryan Wiegand
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sharon L Roy
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
44
|
Molyneux DH, Eberhard ML, Cleaveland S, Addey R, Guiguemdé RT, Kumar A, Magnussen P, Breman JG. Certifying Guinea worm eradication: current challenges. Lancet 2020; 396:1857-1860. [PMID: 33278938 DOI: 10.1016/s0140-6736(20)32553-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Affiliation(s)
- David H Molyneux
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Mark L Eberhard
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Social Circle, GA, USA
| | - Sarah Cleaveland
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | | | - Ashok Kumar
- Central Health Services, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Pascal Magnussen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Joel G Breman
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Priest JW, Stuchlik O, Reed M, Soboslay P, Cama V, Roy SL. Development of a Multiplex Bead Assay for the Detection of IgG Antibody Responses to Guinea Worm. Am J Trop Med Hyg 2020; 103:2294-2304. [PMID: 32901602 PMCID: PMC7695067 DOI: 10.4269/ajtmh.20-0511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
The success of the Guinea Worm (GW) Eradication Program over the past three decades has been tempered by the persistence of GW disease in a few African nations and the potential for a future resurgence in cases. Domestic dogs are now a major concern as a disease reservoir as large numbers of cases of canine GW disease are now reported each year, mainly along the Chari River in Chad. As a first step toward the development of a serologic assay for dogs, archived human plasma samples from dracunculiasis-positive donors from Togo were used to select adult female GW antigens for peptide sequencing and cloning. Eight protein sequences of interest were expressed as recombinant glutathione-S-transferase (GST) fusion proteins, and the most promising proteins were coupled to carboxylated microspheres for use in multiplex assays. A thioredoxin-like protein (TRXL1) and a domain of unknown function (DUF148) were assessed for total IgG and IgG4 reactivities using a panel of specimens from GW cases, uninfected donors, and individuals infected with various nematode worms, including Onchocerca volvulus. Both the DUF148-GST and the TRXL1-GST assays cross-reacted with O. volvulus sera, but the latter assay was always the more specific. The IgG4 and total IgG TRXL1-GST assays both had sensitivities > 87% and specificities > 90%. Maximum specificity (> 96%) was obtained with the total IgG assay when reactivity to both antigens was used to define a positive case. Given the good performance of the human assay, we are now working to modify the assay for dog assessments.
Collapse
Affiliation(s)
- Jeffrey W. Priest
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Olga Stuchlik
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Matthew Reed
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Peter Soboslay
- Institute of Tropical Medicine, University of Tubingen, Tubingen, Germany
| | - Vitaliano Cama
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
- World Health Organization Collaborating Center for Dracunculiasis Eradication, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sharon L. Roy
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
- World Health Organization Collaborating Center for Dracunculiasis Eradication, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
46
|
Perini T, Keskinocak P, Li Z, Ruiz-Tiben E, Swann J, Weiss A. Agent-Based Simulation for Seasonal Guinea Worm Disease in Chad Dogs. Am J Trop Med Hyg 2020; 103:1942-1950. [PMID: 32901603 PMCID: PMC7646815 DOI: 10.4269/ajtmh.19-0466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The campaign to eradicate dracunculiasis (Guinea worm [GW] disease) and its causative pathogen Dracunculus medinensis (GW) in Chad is challenged by infections in domestic dogs, which far outnumber the dwindling number of human infections. We present an agent-based simulation that models transmission of GW between a shared water source and a large population of dogs. The simulation incorporates various potential factors driving the infections including external factors and two currently used interventions, namely, tethering and larvicide water treatments. By defining and estimating infectivity parameters and seasonality factors, we test the simulation model on scenarios where seasonal patterns of dog infections could be driven by the parasite’s life cycle alone or with environmental factors (e.g., temperature and rainfall) that could also affect human or dog behaviors (e.g., fishing versus farming seasons). We show that the best-fitting model includes external factors in addition to the pathogen’s life cycle. From the simulation, we estimate that the basic reproductive number, R0, is approximately 2.0; our results also show that an infected dog can transmit the infection to 3.6 other dogs, on average, during the month of peak infectivity (April). The simulation results shed light on the transmission dynamics of GWs to dogs and lay the groundwork for reducing the number of infections and eventually interrupting transmission of GW.
Collapse
Affiliation(s)
- Tyler Perini
- Georgia Institute of Technology, Atlanta, Georgia
| | | | - Zihao Li
- Georgia Institute of Technology, Atlanta, Georgia
| | | | - Julie Swann
- North Carolina State University, Raleigh, North Carolina.,Georgia Institute of Technology, Atlanta, Georgia
| | | |
Collapse
|
47
|
Durrant C, Thiele EA, Holroyd N, Doyle SR, Sallé G, Tracey A, Sankaranarayanan G, Lotkowska ME, Bennett HM, Huckvale T, Abdellah Z, Tchindebet O, Wossen M, Logora MSY, Coulibaly CO, Weiss A, Schulte-Hostedde AI, Foster JM, Cleveland CA, Yabsley MJ, Ruiz-Tiben E, Berriman M, Eberhard ML, Cotton JA. Population genomic evidence that human and animal infections in Africa come from the same populations of Dracunculus medinensis. PLoS Negl Trop Dis 2020; 14:e0008623. [PMID: 33253172 PMCID: PMC7728184 DOI: 10.1371/journal.pntd.0008623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/10/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Guinea worm-Dracunculus medinensis-was historically one of the major parasites of humans and has been known since antiquity. Now, Guinea worm is on the brink of eradication, as efforts to interrupt transmission have reduced the annual burden of disease from millions of infections per year in the 1980s to only 54 human cases reported globally in 2019. Despite the enormous success of eradication efforts to date, one complication has arisen. Over the last few years, hundreds of dogs have been found infected with this previously apparently anthroponotic parasite, almost all in Chad. Moreover, the relative numbers of infections in humans and dogs suggests that dogs are currently the principal reservoir on infection and key to maintaining transmission in that country. PRINCIPAL FINDINGS In an effort to shed light on this peculiar epidemiology of Guinea worm in Chad, we have sequenced and compared the genomes of worms from dog, human and other animal infections. Confirming previous work with other molecular markers, we show that all of these worms are D. medinensis, and that the same population of worms are causing both infections, can confirm the suspected transmission between host species and detect signs of a population bottleneck due to the eradication efforts. The diversity of worms in Chad appears to exclude the possibility that there were no, or very few, worms present in the country during a 10-year absence of reported cases. CONCLUSIONS This work reinforces the importance of adequate surveillance of both human and dog populations in the Guinea worm eradication campaign and suggests that control programs aiming to interrupt disease transmission should stay aware of the possible emergence of unusual epidemiology as pathogens approach elimination.
Collapse
Affiliation(s)
- Caroline Durrant
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Elizabeth A. Thiele
- Department of Biology, Vassar College, Poughkeepsie, New York, United States of America
| | - Nancy Holroyd
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Stephen R. Doyle
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Guillaume Sallé
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- INRA—U. Tours, UMR 1282 ISP Infectiologie et Santé Publique, Nouzilly, France
| | - Alan Tracey
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Geetha Sankaranarayanan
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Magda E. Lotkowska
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Hayley M. Bennett
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Present Address: Berkeley Lights Inc., Emeryville, California, United States of America
| | - Thomas Huckvale
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Zahra Abdellah
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Ouakou Tchindebet
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Mesfin Wossen
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | | | - Cheick Oumar Coulibaly
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Adam Weiss
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | | | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Ernesto Ruiz-Tiben
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Matthew Berriman
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- * E-mail: (JAC); (MB)
| | - Mark L. Eberhard
- Retired, Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James A. Cotton
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- * E-mail: (JAC); (MB)
| |
Collapse
|
48
|
Hopkins DR, Weiss AJ, Roy SL, Yerian S, Sapp SG. Progress Toward Global Eradication of Dracunculiasis, January 2019-June 2020. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2020; 69:1563-1568. [PMID: 33119555 PMCID: PMC7641000 DOI: 10.15585/mmwr.mm6943a2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Boyce MR, Carlin EP, Schermerhorn J, Standley CJ. A One Health Approach for Guinea Worm Disease Control: Scope and Opportunities. Trop Med Infect Dis 2020; 5:E159. [PMID: 33066254 PMCID: PMC7709623 DOI: 10.3390/tropicalmed5040159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/31/2022] Open
Abstract
Guinea worm disease (GWD) is a neglected tropical disease that was targeted for eradication several decades ago because of its limited geographical distribution, predictable seasonality, straightforward diagnosis, and exclusive infection of humans. However, a growing body of evidence challenges this last attribute and suggests that GWD can affect both humans and animal populations. The One Health approach emphasizes the relatedness of human, animal, and environmental health. We reviewed epidemiological evidence that could support the utility of a One Health approach for GWD control in the six countries that have reported human GWD cases since 2015-Angola, Cameroon, Chad, Ethiopia, Mali, and South Sudan. Human GWD cases have dramatically declined, but recent years have seen a gradual increase in human case counts, cases in new geographies, and a rapidly growing number of animal infections. Taken together, these suggest a need for an adjusted approach for eradicating GWD using a framework rooted in One Health, dedicated to improving disease surveillance and in animals; pinpointing the dominant routes of infection in animals; elucidating the disease burden in animals; determining transmission risk factors among animals and from animals to humans; and identifying practical ways to foster horizontal and multidisciplinary approaches.
Collapse
Affiliation(s)
- Matthew R. Boyce
- Center for Global Health Science & Security, Georgetown University, Washington, DC 20057, USA; (E.P.C.); (J.S.); (C.J.S.)
| | | | | | | |
Collapse
|
50
|
Lemma GW, Müller O, Reñosa MD, Lu G. Challenges in the last mile of the global guinea worm eradication program. Trop Med Int Health 2020; 25:1432-1440. [PMID: 32946140 DOI: 10.1111/tmi.13492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objective of this study was to identify the existing challenges in the last mile of the global Guinea Worm Eradication Program. METHODS Systematic Review of articles published from 1 January 2000 until 31 December 2019. Papers listed in Cochrane Library, Google Scholar, ProQuest PubMed and Web of Science databases were searched and reviewed. RESULTS Twenty-five articles met inclusion criteria of the study and were selected for analysis. Hence, relevant data were extracted, grouped and descriptively analysed. Results revealed 10 main challenges complicating the last mile of global guinea worm eradication: unusual mode of transmission; rising animal guinea worm infection; suboptimal surveillance; insecurity; inaccessibility; inadequate safe water points; migration; poor case containment measures, ecological changes; and new geographic foci of the disease. CONCLUSION This systematic review shows that most of the current challenges in guinea worm eradication have been present since the start of the campaign. However, the recent change in epidemiological patterns and nature of dracunculiasis in the last remaining endemic countries illustrates a new twist. Considering the complex nature of the current challenges, there seems to be a need for a more coordinated and multidisciplinary approach of dracunculiasis prevention and control measures. These new strategies would help to make history by eradicating dracunculiasis as the first ever parasitic disease.
Collapse
Affiliation(s)
- Getahun Weldu Lemma
- Heidelberg Institute of Global Health, Ruprecht-Karls Universität Heidelberg, Heidelberg, Germany.,Doctors Without Borders/MSF, DR-TB Comprehensive Care and Clinical Trial Project in Uzbekistan
| | - Olaf Müller
- Department of Epidemiology and Biostatistics, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Mark Donald Reñosa
- Heidelberg Institute of Global Health, Ruprecht-Karls Universität Heidelberg, Heidelberg, Germany.,Department of Epidemiology and Biostatistics, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - GuangYu Lu
- Department of Preventative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|