1
|
Daniel R, Zelber-Sagi S, Barak M, Zuckerman E. The Epidemiology of Hepatitis E in Israel and Potential Risk Factors: A Cross-Sectional Population-Based Serological Survey of Hepatitis E Virus in Northern Israel. Viruses 2025; 17:536. [PMID: 40284979 PMCID: PMC12031424 DOI: 10.3390/v17040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatitis E Virus (HEV) has gained public health attention as one of the causative agents of viral hepatitis. Our study aimed to provide data about HEV seropositivity in the Israeli general population, including its seroprevalence geographical distribution, and to identify variables as possible risk factors for HEV exposure. A seroprevalence cross-sectional study was conducted: HEV serological status was determined in 716 blood samples collected from the routine check-up blood samples. Demographic information was available for all samples. The overall prevalence of HEV IgG in an apparently healthy population in the north of Israel was 10.5%, with no evidence of positive HEV IgM. There was a significant association between HEV seropositivity and elderly age and low socioeconomic status (SES). The age-adjusted seroprevalence was significantly lower among Jews compared to Arabs with a rate ratio of 2.02. We identified clusters (hot spots) of HEV infection in three regions under study. Our results confirmed a high prevalence of anti-HEV in the country where clinical hepatitis E is not endemic. For the first time, this study showed that a hot spot analysis was able to provide new knowledge about actual exposure zones. As HEV infection is not a notifiable disease, it is probably underdiagnosed. Thus, better awareness among physicians is warranted.
Collapse
Affiliation(s)
- Rasha Daniel
- Haifa and Western Galilee Central Laboratories, Clalit Health Services, Nesher 20300, Israel
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Mira Barak
- Head of Medical Laboratory Sciences, Zefat Academic College, Safed 13206, Israel;
| | - Eli Zuckerman
- Liver Unit, Carmel Medical Center, Faculty of Medicine, Technion Institute, Haifa 3498838, Israel
| |
Collapse
|
2
|
Mor O, Na’amnih W, Shirazi R, Wax M, Gozlan Y, Kassim M, Sayid H, Omari A, Jabbor A, Muhsen K, Mari A. Hepatitis E virus (HEV) infection among the Arab population in Northern Israel: an insight into the seroepidemiology and associated risk factors. Epidemiol Infect 2025; 153:e10. [PMID: 39801356 PMCID: PMC11729521 DOI: 10.1017/s0950268824001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/14/2024] [Accepted: 09/03/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatitis E virus (HEV) is one of the most common causes of viral hepatitis. We examined HEV seroprevalence and associations of sociodemographic and lifestyle characteristics with HEV immunoglobulin G (IgG) seropositivity in the Arab population. A cross-sectional single-centre study was conducted among adults in the Nazareth area during 2022. Blood samples were tested using the Altona Real-Star HEV-RNA and the Wantai IgG assays. Data on sociodemographics, health status, and lifestyle were collected using structured questionnaires.Overall, 490 individuals (55.9% males) aged 18 - 96 (mean = 53.2, SD = 28.0) were enrolled. HEV IgG seropositivity was estimated at 21.4% (95% CI 17.9-25.3). No samples were HEV-RNA positive. The correlates of HEV IgG seropositivity were older age (prevalence ratio (PR) 1.07, 95% CI 1.04-1.09, P < 0.001) and consuming beef frequently (PR 2.81, 95% CI 1.40-5.63, P = 0.003). No associations were found between Arab religious groups (Muslim, Christian or Druze, representing different socioeconomic status and dietary habits) or pork consumption and HEV IgG seropositivity. In conclusion, HEV seropositivity was high in the Arab population, and assessing HEV in Ruminants, particularly cows, is warranted.
Collapse
Affiliation(s)
- Orna Mor
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel HaShomer, Ramat-Gan, Israel
| | - Wasef Na’amnih
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Shirazi
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel HaShomer, Ramat-Gan, Israel
| | - Marina Wax
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel HaShomer, Ramat-Gan, Israel
| | - Yael Gozlan
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel HaShomer, Ramat-Gan, Israel
| | - Marah Kassim
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Helal Sayid
- Gastroenterology Department, Nazareth Hospital EMMS, Azrieli Faculty of Medicine, Bar Ilan University, Ramat-Gan, Israel
| | - Ali Omari
- Gastroenterology Department, Nazareth Hospital EMMS, Azrieli Faculty of Medicine, Bar Ilan University, Ramat-Gan, Israel
| | - Adel Jabbor
- Medical Laboratory, Nazareth Hospital EMMS, Nazareth, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Amir Mari
- Gastroenterology Department, Nazareth Hospital EMMS, Azrieli Faculty of Medicine, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
3
|
Fantilli AC, Masachessi G, Cola GD, Castro G, Sicilia P, Marinzalda MDLA, Cachi AM, Moreno C, Borda M, Ibarra G, Rojas RM, Parreño VG, Barbás MG, Nates SV, Pisano MB, Ré VE. Integrated hepatitis e virus monitoring in central Argentina: a six-year analysis of clinical surveillance and wastewater-based epidemiology. WATER RESEARCH 2024; 261:122004. [PMID: 38991242 DOI: 10.1016/j.watres.2024.122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Wastewater-based epidemiology (WBE) has gained prominence worldwide as a powerful tool in public health. This study aimed to monitor the circulation of Hepatitis E Virus (HEV) from wastewater samples collected during a six-year period and compare these results with clinical surveillance in the central region of Argentina. From 2017 to 2022, 1008 raw wastewater samples were analyzed, including four wastewater treatment plants from four cities (n=319), and 7 local neighborhood collector sewers in Córdoba city (n=689). Serum and/or stool samples from patients suspected of HEV infection were also analyzed (n=48). HEV molecular detection and viral load quantification were performed by real time RT-qPCR, and genetic characterization by two RT-Nested PCRs (targeting partial ORF-1 and ORF-2 genomic regions), sequencing and phylogenetic analysis. Fifty-three (5.3%) wastewater samples were RNA-HEV positive by real time RT-qPCR, with variations according to the location and year (0.0% - 21.6%). Out of these, ORF-2 genomic region was amplified in 20 samples (37.7%) and ORF-1 partial region in 12 (22.6%), and eighteen sequences were obtained. Throughout the study period, two (4.2%) HEV confirmed infections were reported, and one sequence was obtained. Phylogenetic analyses for both genomic regions showed that all the isolates were genotype HEV-3 clade abchijklm. Our study detected HEV in wastewater over a six-year period, despite a low number of clinical cases, emphasizing WBE as a valuable tool that complements clinical surveillance, by detecting pathogens' presence; identifying their transmission, circulation dynamics and excretion hotspots; and revealing changes in their genomic diversity.
Collapse
Affiliation(s)
- Anabella Clara Fantilli
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina.
| | - Gisela Masachessi
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Guadalupe Di Cola
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Gonzalo Castro
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - Paola Sicilia
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - María de Los Angeles Marinzalda
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina. Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aérea Argentina 5011, Córdoba X5000, Argentina; Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Ariana Mariela Cachi
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina. Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aérea Argentina 5011, Córdoba X5000, Argentina; Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Claudia Moreno
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - Mariel Borda
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - Gustavo Ibarra
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Ricardo Manuel Rojas
- Cooperativa Integral Regional de Provisión de Servicios Públicos, Vivienda y Consumo Limitada (COOPI), Moreno 78, Villa Carlos Paz, X5152 Córdoba, Argentina
| | - Viviana Gladys Parreño
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina; INCUINTA; Instituto de Virología e Innovaciones Tecnológicas (IVIT), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires 1686, Argentina
| | - María Gabriela Barbás
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - Silvia Viviana Nates
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| | - María Belén Pisano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Viviana Elizabeth Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| |
Collapse
|
4
|
Rivero MA, Arce LP, Gutiérrez SE, Tisnés A, Passucci JA, Silva JA, Barón Prato A, Sánchez F, Matias Brancher J, Estein SM, Vizoso-Pinto MG. Exploring hepatitis E virus seroprevalence and associated risk factors among the human population in Tandil, Buenos Aires, Argentina. Front Public Health 2023; 11:1257754. [PMID: 37869189 PMCID: PMC10585172 DOI: 10.3389/fpubh.2023.1257754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Background Hepatitis E virus (HEV) infection is a common cause of acute clinical hepatitis worldwide and is emerging as a disease in Argentina. It is primarily transmitted through contaminated water and food, following the fecal-oral route. Furthermore, is a zoonotic disease with swine as the primary reservoir. Prevalence of HEV infection in humans in several regions of Argentina remains unknown. Objectives (i) Determine the seroprevalence of HEV among the human population in Tandil, Buenos Aires, Argentina; (ii) Evaluate its association with demographic, socioeconomic and other risk exposures variables, and (iii) Describe and analyze spatial patterns related to HEV infection. Methods From August 2020 to July 2021, serum samples were collected from 969 individuals aged 1-80 years. Seroprevalence and 95% Confidence Interval was determined. To assess the factors associated with the presence of anti-HEV antibodies, associations between the variables and seropositivity were evaluated through bivariate and multivariate analysis. Spatial scanning for clusters of positivity was carried out. Factors associated with these clusters were also assessed. Results Anti-HEV antibodies were detected in 4.64% (IC 95% 3.27-6.02) of samples. Dark urine was associated with seropositivity (p = 0.02). Seropositivity was linked with the presence of natural water courses near their households (p = 0.02); the age (p = 0.04); and previous travel to Europe (p = 0.04). A spatial cluster of low rates of HEV seropositivity was detected, with greater distance of the households to water courses associated to the cluster, and male sex inversely associated to it. Discussion and conclusion This study is the first study to investigate the prevalence of HEV in the population from Tandil, Buenos Aires, Argentina. Considering HEV infection in the differential diagnosis in individuals presenting acute hepatitis is highlighted. The incorporation of HEV testing into blood screening policies should be mandatory. Factors related to the infection and spatial patterns of high and low risk were determined, and should be considered when implementing specific preventive measures.
Collapse
Affiliation(s)
- Mariana Alejandra Rivero
- Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Lorena Paola Arce
- Laboratorio de Biología de las Infecciones, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán, Argentina
- Laboratorio de Ciencias Básicas Or. Genética, Facultad de Medicina de la Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Silvina Elena Gutiérrez
- Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Adela Tisnés
- Facultad de Ciencias Humanas, CIG- IGEHCS- CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Juan Antonio Passucci
- Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Julia Analia Silva
- Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Ayelén Barón Prato
- Facultad de Ciencias Humanas, CIG- IGEHCS- CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Florencia Sánchez
- Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Julia Matias Brancher
- Laboratorio de Ciencias Básicas Or. Genética, Facultad de Medicina de la Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Silvia Marcela Estein
- Centro de Investigación Veterinaria de Tandil (UNCPBA-CICPBA-CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - María Guadalupe Vizoso-Pinto
- Laboratorio de Biología de las Infecciones, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucumán, Argentina
- Laboratorio de Ciencias Básicas Or. Genética, Facultad de Medicina de la Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
5
|
Hepatitis E Virus (HEV) in Makkah, Saudi Arabia: A Population-Based Seroprevalence Study. Viruses 2023; 15:v15020484. [PMID: 36851698 PMCID: PMC9964995 DOI: 10.3390/v15020484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The Hepatitis E virus (HEV) is a common cause of viral hepatitis worldwide. Little is known about the seroprevalence of HEV in the general population of Saudi Arabia. METHODS A community-based cross-sectional HEV seroprevalence study was conducted in Makkah, Saudi Arabia. Anti-HEV IgG antibodies were detected in sera using an in-house ELISA. The frequency of HEV sageerology and its correlation with demographic, and environmental factors were evaluated. RESULTS Enrollment consisted of 1329 individuals, ages ranged from 8 to 88 years, the mean age was 30.17 years, the median age was 28yrs, and the male: female ratio was 1.15. The overall seroprevalence was 23.8% (316/1329). Males had significantly higher seroprevalence than females (66.1 vs. 33.9%; p < 0.001). Seroprevalence had significant correlations with age, occupation, and lack of regular water supply and housing conditions. CONCLUSIONS This is the first HEV community-based seroprevalence study from Saudi Arabia. Results show that the HEV is endemic in Makkah and affects all age groups and occupations. HEV affects more males than females and those living in crowded accommodations without a regular supply of water. Further studies are required across all regions of Saudi Arabia to determine the country's seroprevalence of active or past infection using tests for HEV IgG, HEV IgM antibodies and/or HEV RNA and underlying determinants of transmission.
Collapse
|
6
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
7
|
Takuissu GR, Kenmoe S, Ndip L, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Oyono MG, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko'o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Nkie Esemu S, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Suffredini E, La Rosa G. Hepatitis E Virus in Water Environments: A Systematic Review and Meta-analysis. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:223-235. [PMID: 36036329 PMCID: PMC9458591 DOI: 10.1007/s12560-022-09530-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 06/01/2023]
Abstract
Hepatitis E virus (HEV) is responsible for acute hepatitis in humans, through foodborne, zoonotic, and waterborne transmission routes. This study aimed to assess the prevalence of HEV in water matrices. Six categories were defined: untreated and treated wastewater, surface water (river, lake, and seawater), drinking water, groundwater, and other water environments (irrigation water, grey water, reservoir water, flood water, and effluent of pig slaughterhouse). We searched PubMed, Web of Science, Global Index Medicus, and Excerpta Medica Database. Study selection and data extraction were performed by at least two independent investigators. Heterogeneity (I2) was assessed using the χ2 test on the Cochran Q statistic and H parameter. Sources of heterogeneity were explored by subgroup analysis. This study is registered with PROSPERO, number CRD42021289116. We included 87 prevalence studies from 58 papers, 66.4% of which performed in Europe. The overall prevalence of HEV in water was 9.8% (95% CI 6.4-13.7). The prevalence was higher in untreated wastewater (15.1%) and lower in treated wastewater (3.8%) and in drinking water (4.7%). In surface water, prevalence was 7.4%, and in groundwater, the percentage of positive samples, from only one study available, was 8.3%. Overall, only 36.8% of the studies reported the genotype of HEV, with genotype 3 (HEV-3) prevalent (168 samples), followed by HEV-1 (148 sample), and HEV-4 (2 samples). High-income countries were the most represented with 59/87 studies (67.8%), while only 3/87 (3.5%) of the studies were performed in low-income countries. The overall prevalence obtained of this study was generally higher in industrialized countries. Risk of bias was low in 14.9% of the studies and moderate in 85.1%. The results of this review showed the occurrence of HEV in different waters environments also in industrialized countries with sanitation and safe water supplies. While HEV transmission to humans through water has been widely demonstrated in developing countries, it is an issue still pending in industrialized countries. Better knowledge on the source of pollution, occurrence, survival in water, and removal by water treatment is needed to unravel this transmission path.
Collapse
Affiliation(s)
- G R Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - S Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - L Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - C Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - M G Oyono
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - R Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | - S Tchatchouang
- Scientific Direction, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - J Kenfack-Zanguim
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | - R Lontuo Fogang
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | - E Zeuko'o Menkem
- Department of Biomedical Sciences, University of Buea, Buea, Cameroon
| | - G I Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | | | - S Nkie Esemu
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - C Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
8
|
Qashqari FS. Seroprevalence of Hepatitis E Virus Infection in Middle Eastern Countries: A Systematic Review and Meta-Analysis. Medicina (B Aires) 2022; 58:medicina58070905. [PMID: 35888624 PMCID: PMC9318471 DOI: 10.3390/medicina58070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis E virus (HEV) is a hepatotropic virus that is a major public health concern worldwide. Autochthonous HEV is spread through oral feces in unsanitary environments, as well as vertical and, occasionally, blood transfusion. HEV is more common in developing countries, but it has recently become more widespread in developed countries as well. The Middle East (ME) has long been an endemic location for HEV infection. Therefore, the aim of this systematic review and meta-analysis was to assess the seroprevalence of anti-HEV antibodies in ME countries. The author systematically searched five databases, namely ScienceDirect, EMBASE, Scopus, PubMed, and Google Scholar, to identify English-language articles published on or before 25 April 2022. Comprehensive meta-analysis software was used for all statistical analyses (CMA, version 3, BioStat, Englewood, CO, USA). After quality control and exclusion of irrelevant studies, 80 studies were included in the qualitative synthesis and meta-analysis. A forest plot showed that the overall pooled seroprevalence of HEV infection in ME countries in the fixed-effect and random-effect models were 21.3% (95% CI: 0.209–0.216) and 11.8% (95% CI: 0.099–0.144), respectively. Furthermore, the findings showed a high level of heterogeneity (I2 = 98.733%) among the included studies. In both fixed-effect and random-effect models, the seroprevalence of HEV infection by country was high in Egypt as compared to other regions, at 35.0% (95% CI: 0.342–0.359), and 34.7% (95% CI: 0.153–0.611), respectively. The seroprevalence of HEV infection by country was high among pregnant women, at 47.9% (95% CI: 0.459–0.499) in the fixed-effect model, and in renal transplant recipients, at 30.8% (95% CI: 0.222–0.410) in the random-effect model. The seroprevalence of HEV infection varies by country and study population in the Middle East. More research is needed to determine the disease’s incidence, morbidity, and mortality in the region, where it is prevalent.
Collapse
Affiliation(s)
- Fadi S Qashqari
- Department of Microbiology, College of Medicine, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| |
Collapse
|
9
|
Shirazi R, Pozzi P, Gozlan Y, Wax M, Lustig Y, Linial M, Mendelson E, Bardenstein S, Mor O. Identification of Hepatitis E Virus Genotypes 3 and 7 in Israel: A Public Health Concern? Viruses 2021; 13:v13112326. [PMID: 34835132 PMCID: PMC8625709 DOI: 10.3390/v13112326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatitis E (HEV) is an emerging cause of viral hepatitis worldwide. Swine carrying hepatitis E genotype 3 (HEV-3) are responsible for the majority of chronic viral hepatitis cases in developed countries. Recently, genotype 7 (HEV-7), isolated from a dromedary camel in the United Arab Emirates, was also associated with chronic viral hepatitis in a transplant recipient. In Israel, chronic HEV infection has not yet been reported, although HEV seroprevalence in humans is ~10%. Camels and swine are >65% seropositive. Here we report on the isolation and characterization of HEV from local camels and swine. Methods: Sera from camels (n = 142), feces from swine (n = 18) and blood from patients suspected of hepatitis E (n = 101) were collected during 2017–2020 and used to detect and characterize HEV sequences. Results: HEV-3 isolated from local swine and the camel-derived HEV-7 sequence were highly similar to HEV-3f and HEV-7 sequences (88.2% and 86.4%, respectively) related to viral hepatitis. The deduced amino acid sequences of both isolates were also highly conserved (>98%). Two patients were HEV-RNA positive; acute HEV-1 infection could be confirmed in one of them. Discussion: The absence of any reported HEV-3 and HEV-7 infection in humans remains puzzling, especially considering the reported seroprevalence rates, the similarity between HEV sequences related to chronic hepatitis and the HEV genotypes identified in swine and camels in Israel.
Collapse
Affiliation(s)
- Rachel Shirazi
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan 52620, Israel; (R.S.); (Y.G.); (M.W.); (Y.L.); (E.M.)
| | - Paolo Pozzi
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy;
| | - Yael Gozlan
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan 52620, Israel; (R.S.); (Y.G.); (M.W.); (Y.L.); (E.M.)
| | - Marina Wax
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan 52620, Israel; (R.S.); (Y.G.); (M.W.); (Y.L.); (E.M.)
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan 52620, Israel; (R.S.); (Y.G.); (M.W.); (Y.L.); (E.M.)
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michal Linial
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan 52620, Israel; (R.S.); (Y.G.); (M.W.); (Y.L.); (E.M.)
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | - Orna Mor
- Central Virology Laboratory, Ministry of Health, Public Health Services, The Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan 52620, Israel; (R.S.); (Y.G.); (M.W.); (Y.L.); (E.M.)
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Correspondence: ; Tel.: +972-3-530-2458
| |
Collapse
|
10
|
Beyer S, Szewzyk R, Gnirss R, Johne R, Selinka HC. Detection and Characterization of Hepatitis E Virus Genotype 3 in Wastewater and Urban Surface Waters in Germany. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:137-147. [PMID: 32172512 PMCID: PMC7225198 DOI: 10.1007/s12560-020-09424-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 05/18/2023]
Abstract
In highly populated areas, environmental surveillance of wastewater and surface waters is a key factor to control the circulation of viruses and risks for public health. Hepatitis E virus (HEV) genotype 3 is considered as an emerging pathogen in industrialized countries. Therefore, this study was carried out to determine the prevalence of HEV in environmental waters in urban and suburban regions in Germany. HEV was monitored in water samples using quantitative RT-PCR (RT-qPCR) and nested RT-PCR without or with virus concentration via polyethylene glycol precipitation or ultracentrifugation. By RT-qPCR, 84-100% of influent samples of wastewater treatment plants were positive for HEV RNA. Genotypes HEV-3c and 3f were identified in wastewater, with HEV-3c being the most prevalent genotype. These data correlate with subtypes identified earlier in patients from the same area. Comparison of wastewater influent and effluent samples revealed a reduction of HEV RNA of about 1 log10 during passage through wastewater treatment plants. In addition, combined sewer overflows (CSOs) after heavy rainfalls were shown to release HEV RNA into surface waters. About 75% of urban river samples taken during these CSO events were positive for HEV RNA by RT-qPCR. In contrast, under normal weather conditions, only around 30% of river samples and 15% of samples from a bathing water located at an urban river were positive for HEV. Median concentrations of HEV RNA of all tested samples at this bathing water were below the limit of detection.
Collapse
Affiliation(s)
- Sophia Beyer
- Section II 1.4 Microbiological Risks, German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Regine Szewzyk
- Section II 1.4 Microbiological Risks, German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Regina Gnirss
- Berliner Wasserbetriebe (BWB), Cicerostr. 24, 10709, Berlin, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Hans-Christoph Selinka
- Section II 1.4 Microbiological Risks, German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
| |
Collapse
|
11
|
Seroprevalence of hepatitis E virus in dromedary camels, Bedouins, Muslim Arabs and Jews in Israel, 2009-2017. Epidemiol Infect 2020; 147:e92. [PMID: 30869027 PMCID: PMC6518832 DOI: 10.1017/s0950268819000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) is an emerging cause of viral hepatitis worldwide. Recently, HEV-7 has been shown to infect camels and humans. We studied HEV seroprevalence in dromedary camels and among Bedouins, Arabs (Muslims, none-Bedouins) and Jews and assessed factors associated with anti-HEV seropositivity. Serum samples from dromedary camels (n = 86) were used to determine camel anti-HEV IgG and HEV RNA positivity. Human samples collected between 2009 and 2016 from >20 years old Bedouins (n = 305), non-Bedouin Arabs (n = 320) and Jews (n = 195), were randomly selected using an age-stratified sampling design. Human HEV IgG levels were determined using Wantai IgG ELISA assay. Of the samples obtained from camels, 68.6% were anti-HEV positive. Among the human populations, Bedouins and non-Bedouin Arabs had a significantly higher prevalence of HEV antibodies (21.6% and 15.0%, respectively) compared with the Jewish population (3.1%). Seropositivity increased significantly with age in all human populations, reaching 47.6% and 34.8% among ⩾40 years old, in Bedouins and non-Bedouin Arabs, respectively. The high seropositivity in camels and in ⩾40 years old Bedouins and non-Bedouin Arabs suggests that HEV is endemic in Israel. The low HEV seroprevalence in Jews could be attributed to higher socio-economic status.
Collapse
|
12
|
Iaconelli M, Bonanno Ferraro G, Mancini P, Suffredini E, Veneri C, Ciccaglione AR, Bruni R, Della Libera S, Bignami F, Brambilla M, De Medici D, Brandtner D, Schembri P, D’Amato S, La Rosa G. Nine-Year Nationwide Environmental Surveillance of Hepatitis E Virus in Urban Wastewaters in Italy (2011-2019). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2059. [PMID: 32244915 PMCID: PMC7143501 DOI: 10.3390/ijerph17062059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is an emerging causative agent of acute hepatitis worldwide. To provide insights into the epidemiology of HEV in Italy, a large-scale investigation was conducted into urban sewage over nine years (2011-2019), collecting 1374 sewage samples from 48 wastewater treatment plants located in all the 20 regions of Italy. Broadly reactive primers targeting the ORF1 and ORF2 regions were used for the detection and typing of HEV, followed by Sanger and next generation sequencing (NGS). Real-time RT-qPCR was also used to attempt quantification of positive samples. HEV RNA detection occurred in 74 urban sewage samples (5.4%), with a statistically significant higher frequency (7.1%) in central Italy. Fifty-six samples were characterized as G3 strains and 18 as G1. While the detection of G3 strains occurred in all the surveillance period, G1 strains were mainly detected in 2011-2012, and never in 2017-2019. Typing was achieved in 2 samples (3f subtype). Viral concentrations in quantifiable samples ranged from 1.2 × 103 g.c./L to 2.8 × 104 g.c./L. Our results suggest the considerable circulation of the virus in the Italian population, despite a relatively small number of notified cases, a higher occurrence in central Italy, and a noteworthy predominance of G3 strains.
Collapse
Affiliation(s)
- Marcello Iaconelli
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Giusy Bonanno Ferraro
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Pamela Mancini
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (D.D.M.)
| | - Carolina Veneri
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Anna Rita Ciccaglione
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.R.C.); (R.B.)
| | - Roberto Bruni
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.R.C.); (R.B.)
| | - Simonetta Della Libera
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Francesco Bignami
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| | - Massimo Brambilla
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Research Centre for Engineering and Agri Food Processing, 24047 Treviglio, BG, Italy;
| | - Dario De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.S.); (D.D.M.)
| | | | - Pietro Schembri
- Regional Department for Health Activities and Epidemiological Observatory of the Sicilian Region, 90146 Palermo, Italy;
| | - Stefania D’Amato
- Ministry of Health, Directorate-General for Prevention, 00144 Rome, Italy;
| | - Giuseppina La Rosa
- Department of Environment and Health - Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.B.F.); (P.M.); (C.V.); (S.D.L.); (F.B.)
| |
Collapse
|
13
|
Shirazi R, Pozzi P, Wax M, Bar-Or I, Asulin E, Lustig Y, Mendelson E, Ben-Ari Z, Schwartz E, Mor O. Hepatitis E in pigs in Israel: seroprevalence, molecular characterisation and potential impact on humans. ACTA ACUST UNITED AC 2019; 23. [PMID: 30621824 PMCID: PMC6290533 DOI: 10.2807/1560-7917.es.2018.23.49.1800067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IntroductionThe zoonotic hepatitis E virus (HEV) genotype 3 (HEV-G3) has become a common cause of acute and chronic hepatitis among humans worldwide. In Israel, while HEV-3 sequences have previously been detected in sewage, only the non-zoonotic HEV-G1 genotype has been found in samples from human patients.AimIn this pilot study, we aimed to assess the status of HEV in a sample of the swine population and among swine farm workers in Israel.MethodsPig blood (n = 141) and faecal samples (n = 39), pig farm sewage samples (n = 8) and blood from farm workers (n = 24) were collected between February 2016 and October 2017. Anti-HEV IgG was detected using the Wantai assay. HEV RNA was analysed with the RealStar HEV kit. HEV open reading frame 1 fragments amplified from representative HEV RNA-positive samples were used for phylogenetic analysis.ResultsOverall prevalence of HEV antibodies in pigs was 75.9% (107/141). HEV RNA was detected in plasma (2.1%, 3/141), faecal (22.8%, 18/79) and pig sewage (4/8) samples. Pig and sewage-derived viral sequences clustered with previously identified human sewage HEV-G3 sequences. Most pig farms workers (23 of 24) were HEV-seropositive; none was viraemic or reported previous clinical signs.ConclusionsThis study showed that domestic pigs in Israel are infected with HEV-G3. The high HEV seropositivity of the farm workers together with the previous identification of this virus in human sewage suggests circulation to humans. The clinical impact of these findings on public health should be further explored.
Collapse
Affiliation(s)
- Rachel Shirazi
- These authors contributed equally to this article.,Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Paolo Pozzi
- Israel Ministry of Agriculture and Rural Development Plant Protection and Inspection Services, Veterinary Services Beit Dagan, Beit Dagan, Israel.,These authors contributed equally to this article
| | - Marina Wax
- Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Itay Bar-Or
- Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Efrat Asulin
- Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Ella Mendelson
- School of Public Health, Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel.,Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Ziv Ben-Ari
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Liver Diseases Center, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Eli Schwartz
- Center for Geographic Medicine and Tropical Diseases, Chaim Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Mor
- School of Public Health, Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel.,Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| |
Collapse
|
14
|
Hepatitis E: Current Status in India and Other Asian Countries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Fenaux H, Chassaing M, Berger S, Gantzer C, Bertrand I, Schvoerer E. Transmission of hepatitis E virus by water: An issue still pending in industrialized countries. WATER RESEARCH 2019; 151:144-157. [PMID: 30594083 DOI: 10.1016/j.watres.2018.12.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Hepatitis E virus (HEV) is an enteric virus divided into eight genotypes. Genotype 1 (G1) and G2 are specific to humans; G3, G4 and G7 are zoonotic genotypes infecting humans and animals. Transmission to humans through water has been demonstrated for G1 and G2, mainly in developing countries, but is only suspected for the zoonotic genotypes. Thus, the water-related HEV hazard may be due to human and animal faeces. The high HEV genetic variability allows considering the presence in wastewater of not only different genotypes, but also quasispecies adding even greater diversity. Moreover, recent studies have demonstrated that HEV particles may be either quasi-enveloped or non-enveloped, potentially implying differential viral behaviours in the environment. The presence of HEV has been demonstrated at the different stages of the water cycle all over the world, especially for HEV G3 in Europe and the USA. Concerning HEV survival in water, the virus does not have higher resistance to inactivating factors (heat, UV, chlorine, physical removal), compared to viral indicators (MS2 phage) or other highly resistant enteric viruses (Hepatitis A virus). But the studies did not take into account genetic (genogroups, quasispecies) or structural (quasi- or non-enveloped forms) HEV variability. Viral variability could indeed modify HEV persistence in water by influencing its interaction with the environment, its infectivity and its pathogenicity, and subsequently its transmission by water. The cell culture methods used to study HEV survival still have drawbacks (challenging virus cultivation, time consuming, lack of sensitivity). As explained in the present review, the issue of HEV transmission to humans through water is similar to that of other enteric viruses because of their similar or lower survival. HEV transmission to animals through water and how the virus variability affects its survival and transmission remain to be investigated.
Collapse
Affiliation(s)
- H Fenaux
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54511 Vandoeuvre lès Nancy, France; Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - M Chassaing
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - S Berger
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54511 Vandoeuvre lès Nancy, France
| | - C Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - I Bertrand
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France
| | - E Schvoerer
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54511 Vandoeuvre lès Nancy, France; Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement, LCPME UMR 7564 CNRS-UL, F-54600 Villers lès Nancy, France.
| |
Collapse
|
16
|
King NJ, Hewitt J, Perchec-Merien AM. Hiding in Plain Sight? It's Time to Investigate Other Possible Transmission Routes for Hepatitis E Virus (HEV) in Developed Countries. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:225-252. [PMID: 29623595 DOI: 10.1007/s12560-018-9342-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Historically in developed countries, reported hepatitis E cases were typically travellers returning from countries where hepatitis E virus (HEV) is endemic, but now there are increasing numbers of non-travel-related ("autochthonous") cases being reported. Data for HEV in New Zealand remain limited and the transmission routes unproven. We critically reviewed the scientific evidence supporting HEV transmission routes in other developed countries to inform how people in New Zealand may be exposed to this virus. A substantial body of indirect evidence shows domesticated pigs are a source of zoonotic human HEV infection, but there is an information bias towards this established reservoir. The increasing range of animals in which HEV has been detected makes it important to consider other possible animal reservoirs of HEV genotypes that can or could infect humans. Foodborne transmission of HEV from swine and deer products has been proven, and a large body of indirect evidence (e.g. food surveys, epidemiological studies and phylogenetic analyses) support pig products as vehicles of HEV infection. Scarce data from other foods suggest we are neglecting other potential sources of foodborne HEV infection. Moreover, other transmission routes are scarcely investigated in developed countries; the role of infected food handlers, person-to-person transmission via the faecal-oral route, and waterborne transmission from recreational contact or drinking untreated or inadequately treated water. People have become symptomatic after receiving transfusions of HEV-contaminated blood, but it is unclear how important this is in the overall hepatitis E disease burden. There is need for broader research efforts to support establishing risk-based controls.
Collapse
Affiliation(s)
- Nicola J King
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand.
| | - Anne-Marie Perchec-Merien
- New Zealand Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington, New Zealand
| |
Collapse
|
17
|
Karbalaie Niya MH, Rezaee-Zavareh MS, Ranaei A, Alavian SM. Hepatitis E virus seroprevalence rate among Eastern Mediterranean and middle eastern countries; A systematic review and pooled analysis. Microb Pathog 2017; 110:252-256. [PMID: 28688980 DOI: 10.1016/j.micpath.2017.06.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
CONTEXT Hepatitis E virus (HEV) as a hepatotropic virus is one of the major global health concerns. Autochthonous HEV transmitted by oral fecal-route in poor sanitation conditions as well as vertical and rarely blood transfusion. HEV occurrence is more common in developing countries and recently increased in developed countries too. Middle East (ME) and Eastern Mediterranean region (EMR) of WHO have been an endemic region for HEV infection. In this regard, we aimed to design a systematic review and pooled analysis to determine seroprevalence of anti-HEV antibody in ME and EMR countries. EVIDENCE ACQUISITION By using PRISMA guideline, data were collected from papers identified through PubMed, Web of Science, Science Direct, Scopus and also from some national and regional databases from January 1990 to June 2016. Serum anti-HEV antibody (IgG) used for HEV prevalence estimation. HEV prevalence in the ME, WHO EMR countries, and in total, calculated by each country population size based on 2015 UN report. RESULTS overall, 62 papers with a total sample size of 31,673 were fulfilled our eligibility criteria and included in our project. Considering anti-HEV antibody (IgG), prevalence of HEV infection in the countries of ME, WHO EMR and in total were 12.17% (95% CI: 11.79-12.57), 11.81% (95% CI: 11.43-12.21), and 11.87% (95% CI: 11.52-12.23) respectively. CONCLUSIONS HEV seroprevalence in WHO EMR and ME countries has high rate and more considerations are needed for the prevention and control of this infection especially in high-risk groups such as pregnant women.
Collapse
Affiliation(s)
- Mohammad Hadi Karbalaie Niya
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran; Middle East Liver Diseases (MELD) Center, Tehran, Islamic Republic of Iran; Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Saeid Rezaee-Zavareh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran; Middle East Liver Diseases (MELD) Center, Tehran, Islamic Republic of Iran; Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Ranaei
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran; Middle East Liver Diseases (MELD) Center, Tehran, Islamic Republic of Iran; Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran; Middle East Liver Diseases (MELD) Center, Tehran, Islamic Republic of Iran.
| |
Collapse
|
18
|
Hartl J, Wehmeyer MH, Pischke S. Acute Hepatitis E: Two Sides of the Same Coin. Viruses 2016; 8:E299. [PMID: 27827877 PMCID: PMC5127013 DOI: 10.3390/v8110299] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022] Open
Abstract
The relevance of acute hepatitis E virus (HEV) infections has been underestimated for a long time. In the past, HEV infection had been interpreted falsely as a disease limited to the tropics until the relevance of autochthonous HEV infections in the Western world became overt. Due to increased awareness, the incidence of diagnosed autochthonous HEV infections (predominantly genotype 3) in industrialized countries has risen within the last decade. The main source of infections in industrialized countries seems to be infected swine meat, while infections with the tropical HEV genotypes 1 and 2 usually are mainly transmitted fecal-orally by contaminated drinking water. In the vast majority of healthy individuals, acute HEV infection is either clinically silent or takes a benign self-limited course. In patients who develop a symptomatic HEV infection, a short prodromal phase with unspecific symptoms is followed by liver specific symptoms like jaundice, itching, uncoloured stool and darkened urine. Importantly, tropical HEV infections may lead to acute liver failure, especially in pregnant women, while autochthonous HEV infections may lead to acute-on-chronic liver failure in patients with underlying liver diseases. Immunosuppressed individuals, such as transplant recipients or human immunodeficiency virus (HIV)-infected patients, are at risk for developing chronic hepatitis E, which may lead to liver fibrosis and cirrhosis in the long term. Importantly, specific treatment options for hepatitis E are not approved by the regulation authorities, but off-label ribavirin treatment seems to be effective in the treatment of chronic HEV-infection and may reduce the disease severity in patients suffering from acute liver failure.
Collapse
Affiliation(s)
- Johannes Hartl
- First Medical Department, University Medical Center Hamburg-Eppendorf, University Hospital Hamburg Eppendorf (UKE), 20246 Hamburg, Germany.
| | - Malte H Wehmeyer
- First Medical Department, University Medical Center Hamburg-Eppendorf, University Hospital Hamburg Eppendorf (UKE), 20246 Hamburg, Germany.
| | - Sven Pischke
- First Medical Department, University Medical Center Hamburg-Eppendorf, University Hospital Hamburg Eppendorf (UKE), 20246 Hamburg, Germany.
| |
Collapse
|