1
|
Szentiványi T, Szabadi KL, Görföl T, Estók P, Kemenesi G. Bats and ectoparasites: exploring a hidden link in zoonotic disease transmission. Trends Parasitol 2024; 40:1115-1123. [PMID: 39516134 DOI: 10.1016/j.pt.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Bats are increasingly in the focus of disease surveillance studies as they harbor pathogens that can cause severe human disease. In other host groups, ectoparasitic arthropods play an important role in transmitting pathogens to humans. Nevertheless, we currently know little about the role of bat-associated ectoparasites in pathogen transmission, not only between bats but also to humans and other species, even though some of these parasites occasionally feed on humans and harbor potentially zoonotic organisms. In this work, we summarize current knowledge on the zoonotic risks linked to bat-associated ectoparasites and provide novel risk assessment guidelines to improve targeted surveillance efforts. Additionally, we suggest research directions to help adjust surveillance strategies and to better understand the eco-epidemiological role of these parasites.
Collapse
Affiliation(s)
| | - Kriszta Lilla Szabadi
- HUN-REN Centre for Ecological Research, Vácrátót, Hungary; Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Estók
- Eszterházy Károly Catholic University, Eger, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Guillot C, Aenishaenslin C, Acheson ES, Koffi J, Bouchard C, Leighton PA. Spatial multi-criteria decision analysis for the selection of sentinel regions in tick-borne disease surveillance. BMC Public Health 2024; 24:294. [PMID: 38267914 PMCID: PMC10809750 DOI: 10.1186/s12889-024-17684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The implementation of cost-effective surveillance systems is essential for tracking the emerging risk of tick-borne diseases. In Canada, where Lyme disease is a growing public health concern, a national sentinel surveillance network was designed to follow the epidemiological portrait of this tick-borne disease across the country. The surveillance network consists of sentinel regions, with active drag sampling carried out annually in all regions to assess the density of Ixodes spp. ticks and prevalence of various tick-borne pathogens in the tick population. The aim of the present study was to prioritize sentinel regions by integrating different spatial criteria relevant to the surveillance goals. METHODS We used spatially-explicit multi-criteria decision analyses (MCDA) to map priority areas for surveillance across Canada, and to evaluate different scenarios using sensitivity analyses. Results were shared with stakeholders to support their decision making for the selection of priority areas to survey during active surveillance activities. RESULTS Weights attributed to criteria by decision-makers were overall consistent. Sensitivity analyses showed that the population criterion had the most impact on rankings. Thirty-seven sentinel regions were identified across Canada using this systematic and transparent approach. CONCLUSION This novel application of spatial MCDA to surveillance network design favors inclusivity of nationwide partners. We propose that such an approach can support the standardized planning of spatial design of sentinel surveillance not only for vector-borne disease BDs, but more broadly for infectious disease surveillance where spatial design is an important component.
Collapse
Affiliation(s)
- C Guillot
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada.
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
- Centre de recherche en santé publique (CRESP) de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, University of Montreal, Montreal, Quebec, Canada.
| | - C Aenishaenslin
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche en santé publique (CRESP) de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, University of Montreal, Montreal, Quebec, Canada
| | - E S Acheson
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Public Health Risk Sciences Divisions, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - J Koffi
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Policy Integration and Zoonoses Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - C Bouchard
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Public Health Risk Sciences Divisions, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Quebec, Canada
| | - P A Leighton
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche en santé publique (CRESP) de l'Université de Montréal et du CIUSSS du Centre-Sud-de-l'Île-de-Montréal, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Silva EMC, Marques ICL, de Mello VVC, Amaral RBD, Gonçalves LR, Braga MDSCO, Ribeiro LSDS, Machado RZ, André MR, Neta AVDC. Molecular and serological detection of Anaplasma spp. in small ruminants in an area of Cerrado Biome in northeastern Brazil. Ticks Tick Borne Dis 2024; 15:102254. [PMID: 37989016 DOI: 10.1016/j.ttbdis.2023.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/15/2023] [Accepted: 09/10/2023] [Indexed: 11/23/2023]
Abstract
Anaplasmosis, caused by bacteria of the genus Anaplasma, is an important tick-borne disease that causes economic losses to livestock farms in many countries. Even though Anaplasma spp. have been detected in goats and sheep worldwide, few studies investigate the occurrence and genetic identity of these agents in small ruminants from Brazil. Thus, this work aimed to detect and determine the genetic identity of Anaplasma spp. in small ruminants from the Baixo Parnaíba region, state of Maranhão, northeastern Brazil. For this purpose, blood samples were collected from 161 animals (91 goats; 70 sheep) from 4 municipalities in the Baixo Parnaíba region. Sheep and goat serum samples were subjected to recombinant membrane surface protein (MSP5)-based iELISA. Whole blood samples were subject to DNA extraction and molecular diagnosis using PCR assays for Anaplasma spp. targeting msp1β, msp1α, 16S rRNA and msp4 genes. Positive samples were sequenced and then subjected to Anaplasma marginale msp1α genetic diversity analysis and phylogenetic inferences based on the 16S rRNA and msp4 genes. The serological survey detected the presence of anti-A. marginale IgG antibodies in 18 animals (11.1%): 2.9% (2/70) sheep and 17.4% (16/91) goats. Anaplasma marginale DNA was detected in 2 goats (1.2%) using qPCR based on the msp1β gene. Two distinct A. marginale msp1α strains, namely α β and α β ΓγΓγΓγΓγ were found in the infected goats, each one found in a different animal, both belonging to the H genotype. Phylogenetic analysis based on the 16S rRNA gene showed the sequences positioned in three different clades and grouped with sequences from 'Candidatus Anaplasma boleense', A. platys and A. marginale. Phylogenetic inferences based on the msp4 gene positioned the sequence variants in the A. marginale clade. The present work represents the first molecular detection of sequence variants phylogenetic associated to 'Candidatus Anaplasma boleense' and A. platys and α β and α β ΓγΓγΓγΓγ in goats from Brazil.
Collapse
Affiliation(s)
- Ellainy Maria Conceição Silva
- Graduate Program in Animal Science, Universidade Estadual do Maranhã (UEMA), Av. Oeste Externa, 2220, São Cristovão, São Luís, MA, Brazil
| | - Ingrid Carolinne Lopes Marques
- Graduate Program in Animal Science, Universidade Estadual do Maranhã (UEMA), Av. Oeste Externa, 2220, São Cristovão, São Luís, MA, Brazil
| | - Victória Valente Califre de Mello
- Graduate Program in Agricultural Microbiology, Universidade Estadual Paulista (Unesp), Faculty of Agrarian and Veterinary Sciences, Jaboticabal, SP, Brazil
| | - Renan Bressianini do Amaral
- Graduate Program in Agricultural Microbiology, Universidade Estadual Paulista (Unesp), Faculty of Agrarian and Veterinary Sciences, Jaboticabal, SP, Brazil
| | | | | | | | - Rosangela Zacarias Machado
- Laboratory of Immunoparasitology, Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, Universidade Estadual Paulista (FCAV/Unesp), Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- Laboratory of Immunoparasitology, Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, Universidade Estadual Paulista (FCAV/Unesp), Jaboticabal, SP, Brazil
| | - Alcina Vieira de Carvalho Neta
- Graduate Program in Animal Science, Universidade Estadual do Maranhã (UEMA), Av. Oeste Externa, 2220, São Cristovão, São Luís, MA, Brazil.
| |
Collapse
|
4
|
Sohani Z, Zhao N, Weiss K, Knecht H. Anaplasmosis encephalitis and infection of non-myeloid bone marrow precursors. BMJ Case Rep 2023; 16:e254603. [PMID: 38035680 PMCID: PMC10689420 DOI: 10.1136/bcr-2023-254603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Due to climate change, infections from tickborne pathogens are becoming more prevalent in the Northern Hemisphere. Human granulocytic anaplasmosis, caused by the obligate intracellular gram-negative bacteria Anaplasma phagocytophilum and carried by Ixodes ticks, can lead to morbidity and mortality in select populations. Anaplasmosis is commonly accompanied by significant cytopaenia, the pathophysiology of which remains unknown. Our case report describes an uncommon meningoencephalitic presentation of anaplasmosis with substantial anaemia and thrombocytopaenia. Additionally, we propose a mechanism of bone marrow infection and suppression by A. phagocytophilum which may be responsible for the cytopaenia in anaplasmosis and provide pictographic evidence of anaplasma in peripheral blood, cerebrospinal fluid and bone marrow.
Collapse
Affiliation(s)
- Zahra Sohani
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Nan Zhao
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada
| | - Karl Weiss
- Department of Medicine, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hans Knecht
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Siegel EL, Lavoie N, Xu G, Brown CM, Ledizet M, Rich SM. Human-Biting Ixodes scapularis Submissions to a Crowd-Funded Tick Testing Program Correlate with the Incidence of Rare Tick-Borne Disease: A Seven-Year Retrospective Study of Anaplasmosis and Babesiosis in Massachusetts. Microorganisms 2023; 11:1418. [PMID: 37374922 DOI: 10.3390/microorganisms11061418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne zoonoses pose a serious burden to global public health. To understand the distribution and determinants of these diseases, the many entangled environment-vector-host interactions which influence risk must be considered. Previous studies have evaluated how passive tick testing surveillance measures connect with the incidence of human Lyme disease. The present study sought to extend this to babesiosis and anaplasmosis, two rare tick-borne diseases. Human cases reported to the Massachusetts Department of Health and submissions to TickReport tick testing services between 2015 and 2021 were retrospectively analyzed. Moderate-to-strong town-level correlations using Spearman's Rho (ρ) were established between Ixodes scapularis submissions (total, infected, adult, and nymphal) and human disease. Aggregated ρ values ranged from 0.708 to 0.830 for anaplasmosis and 0.552 to 0.684 for babesiosis. Point observations maintained similar patterns but were slightly weaker, with mild year-to-year variation. The seasonality of tick submissions and demographics of bite victims also correlated well with reported disease. Future studies should assess how this information may best complement human disease reporting and entomological surveys as proxies for Lyme disease incidence in intervention studies, and how it may be used to better understand the dynamics of human-tick encounters.
Collapse
Affiliation(s)
- Eric L Siegel
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Nathalie Lavoie
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Guang Xu
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | - Stephen M Rich
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Schäfer I, Kohn B, Silaghi C, Fischer S, Marsboom C, Hendrickx G, Müller E. Molecular and Serological Detection of Anaplasma phagocytophilum in Dogs from Germany (2008-2020). Animals (Basel) 2023; 13:ani13040720. [PMID: 36830507 PMCID: PMC9952382 DOI: 10.3390/ani13040720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterium that causes granulocytic anaplasmosis in domestic animals, wildlife, and humans and is primarily transmitted by ticks of the Ixodes persulcatus complex. This retrospective study aims to determine the percentages of dogs that tested positive for A. phagocytophilum in Germany. It included the results of direct (polymerase chain reaction [PCR]) and indirect (immunofluorescence antibody test [IFAT], antibody-enzyme-linked immunosorbent assay [ELISA]) detection methods performed in the laboratory LABOKLIN on canine samples provided by German veterinarians from 2008 to 2020. Out of a total of 27,368 dogs tested by PCR, 1332 (4.9%) tested positive, while 24,720 (27.4%) of the 90,376 dogs tested by IFAT/ELISA had positive serology. High rates of positive PCR results were observed in months with known peaks in vector activity, showing that the dynamics of A. phagocytophilum infections in dogs in Germany are consistent with vector activity. In dogs with a positive PCR result, peaks in serology could be observed four weeks after initial testing. Male and senior dogs had higher rates of positive serology. A possible impact of environmental factors such as changes in climate should be investigated further. Overall, the upward trend in positive test results over the years indicates that canine granulocytic anaplasmosis will continue to become increasingly important for veterinary medicine.
Collapse
Affiliation(s)
- Ingo Schäfer
- LABOKLIN GmbH and Co. KG., 97688 Bad Kissingen, Germany
- Correspondence: ; Tel.: +49-971-72-0-20
| | - Barbara Kohn
- Small Animal Clinic, Faculty of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institute, 17493 Greifswald, Germany
| | - Susanne Fischer
- Institute of Infectology, Friedrich-Loeffler-Institute, 17493 Greifswald, Germany
| | | | | | | |
Collapse
|
7
|
Boodman C, Loomer C, Dibernardo A, Hatchette T, LeBlanc JJ, Waitt B, Lindsay LR. Using Serum Specimens for Real-Time PCR-Based Diagnosis of Human Granulocytic Anaplasmosis, Canada. Emerg Infect Dis 2023; 29:175-178. [PMID: 36573611 PMCID: PMC9796190 DOI: 10.3201/eid2901.220988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Whole blood is the optimal specimen for anaplasmosis diagnosis but might not be available in all cases. We PCR tested serum samples collected in Canada for Anaplasma serology and found 84.8%-95.8% sensitivity and 2.8 average cycle threshold elevation. Serum can be acceptable for detecting Anaplasma spp. when whole blood is unavailable.
Collapse
|
8
|
Abstract
Human granulocytic anaplasmosis (HGA) is a bacterial infection caused by Anaplasma phagocytophilum and transmitted by the bite of the black-legged (deer tick) in North America. Its incidence is increasing. HGA can be transmitted after 24 to 48 hours of tick attachment. The incubation period is 5 to 14 days after a tick bite. Symptoms include fever, chills, headache, and myalgia. Complications include shock, organ dysfunction, and death. Mortality is less than 1% with appropriate treatment. Doxycycline is first line treatment for all ages. Start it empirically if symptoms and risk factors suggest HGA. PCR is the confirmatory test of choice.
Collapse
Affiliation(s)
- Douglas MacQueen
- Cayuga Medical Center, 101 Dates Drive, Ithaca, NY 14850, USA; Weill Cornell Medicine.
| | | |
Collapse
|
9
|
Robinson EL, Jardine CM, Koffi JK, Russell C, Lindsay LR, Dibernardo A, Clow KM. Range Expansion of Ixodes scapularis and Borrelia burgdorferi in Ontario, Canada, from 2017 to 2019. Vector Borne Zoonotic Dis 2022; 22:361-369. [PMID: 35727121 DOI: 10.1089/vbz.2022.0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Range expansion of the vector tick species, Ixodes scapularis, has been detected in Ontario over the last two decades. This has led to elevated risk of exposure to Borrelia burgdorferi, the bacterium that causes Lyme disease. Previous research using passive surveillance data suggests that I. scapularis populations establish before the establishment of B. burgdorferi transmission cycles, with a delay of ∼5 years. The objectives of this research were to examine spatial and temporal patterns of I. scapularis and its pathogens from 2017 to 2019 in southwestern, eastern, and central Ontario, and to explore patterns of B. burgdorferi invasion. Over the 3-year study period, drag sampling was conducted at 48 sites across Ontario. I. scapularis ticks were tested for B. burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia species, including Babesia microti and Babesia odocoilei, and Powassan virus. I. scapularis was detected at 30 sites overall, 22 of which had no history of previous tick detection. B. burgdorferi was detected at nine sites, eight of which tested positive for the first time during this study and five of which had B. burgdorferi detected concurrently with initial tick detection. Tick and pathogen hotspots were identified in eastern Ontario in 2017 and 2018, respectively. These findings provide additional evidence on the range expansion and population establishment of I. scapularis in Ontario and help generate hypotheses on the invasion of B. burgdorferi in Ontario. Ongoing public health surveillance is critical to monitor changes in I. scapularis and its pathogens in Ontario.
Collapse
Affiliation(s)
- Emily L Robinson
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Claire M Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jules K Koffi
- Policy Integration and Zoonoses Division, Centre for Food-Borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, Canada
| | - Curtis Russell
- Enteric, Zoonotic and Vector-Borne Diseases, Public Health Ontario, Toronto, Canada
| | - L Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Antonia Dibernardo
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Katie M Clow
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
10
|
Matos AL, Curto P, Simões I. Moonlighting in Rickettsiales: Expanding Virulence Landscape. Trop Med Infect Dis 2022; 7:32. [PMID: 35202227 PMCID: PMC8877226 DOI: 10.3390/tropicalmed7020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
The order Rickettsiales includes species that cause a range of human diseases such as human granulocytic anaplasmosis (Anaplasma phagocytophilum), human monocytic ehrlichiosis (Ehrlichia chaffeensis), scrub typhus (Orientia tsutsugamushi), epidemic typhus (Rickettsia prowazekii), murine typhus (R. typhi), Mediterranean spotted fever (R. conorii), or Rocky Mountain spotted fever (R. rickettsii). These diseases are gaining a new momentum given their resurgence patterns and geographical expansion due to the overall rise in temperature and other human-induced pressure, thereby remaining a major public health concern. As obligate intracellular bacteria, Rickettsiales are characterized by their small genome sizes due to reductive evolution. Many pathogens employ moonlighting/multitasking proteins as virulence factors to interfere with multiple cellular processes, in different compartments, at different times during infection, augmenting their virulence. The utilization of this multitasking phenomenon by Rickettsiales as a strategy to maximize the use of their reduced protein repertoire is an emerging theme. Here, we provide an overview of the role of various moonlighting proteins in the pathogenicity of these species. Despite the challenges that lie ahead to determine the multiple potential faces of every single protein in Rickettsiales, the available examples anticipate this multifunctionality as an essential and intrinsic feature of these obligates and should be integrated into available moonlighting repositories.
Collapse
Affiliation(s)
- Ana Luísa Matos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Pedro Curto
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
| | - Isaura Simões
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.L.M.); (P.C.)
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
11
|
O’Connor C, Prusinski MA, Jiang S, Russell A, White J, Falco R, Kokas J, Vinci V, Gall W, Tober K, Haight J, Oliver J, Meehan L, Sporn LA, Brisson D, Backenson PB. A Comparative Spatial and Climate Analysis of Human Granulocytic Anaplasmosis and Human Babesiosis in New York State (2013-2018). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2453-2466. [PMID: 34289040 PMCID: PMC8824452 DOI: 10.1093/jme/tjab107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 05/25/2023]
Abstract
Human granulocytic anaplasmosis (HGA) and human babesiosis are tick-borne diseases spread by the blacklegged tick (Ixodes scapularis Say, Acari: Ixodidae) and are the result of infection with Anaplasma phagocytophilum and Babesia microti, respectively. In New York State (NYS), incidence rates of these diseases increased concordantly until around 2013, when rates of HGA began to increase more rapidly than human babesiosis, and the spatial extent of the diseases diverged. Surveillance data of tick-borne pathogens (2007 to 2018) and reported human cases of HGA (n = 4,297) and human babesiosis (n = 2,986) (2013-2018) from the New York State Department of Health (NYSDOH) showed a positive association between the presence/temporal emergence of each pathogen and rates of disease in surrounding areas. Incidence rates of HGA were higher than human babesiosis among White and non-Hispanic/non-Latino individuals, as well as all age and sex groups. Human babesiosis exhibited higher rates among non-White individuals. Climate, weather, and landscape data were used to build a spatially weighted zero-inflated negative binomial (ZINB) model to examine and compare associations between the environment and rates of HGA and human babesiosis. HGA and human babesiosis ZINB models indicated similar associations with forest cover, forest land cover change, and winter minimum temperature; and differing associations with elevation, urban land cover change, and winter precipitation. These results indicate that tick-borne disease ecology varies between pathogens spread by I. scapularis.
Collapse
Affiliation(s)
- Collin O’Connor
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - Melissa A Prusinski
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - Shiguo Jiang
- State University of New York, University at Albany, Department of Geography and Planning, Albany, NY, USA
| | - Alexis Russell
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
- Wadsworth Center, Division of Infectious Disease, Albany, NY, USA
| | - Jennifer White
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - Richard Falco
- New York State Department of Health, Bureau of Communicable Disease Control, Armonk, NY, USA
| | - John Kokas
- New York State Department of Health, Bureau of Communicable Disease Control, Armonk, NY, USA
- Retired
| | - Vanessa Vinci
- New York State Department of Health, Bureau of Communicable Disease Control, Armonk, NY, USA
| | - Wayne Gall
- New York State Deparment of Health, Bureau of Communicable Disease Control, Buffalo, NY, USA
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Buffalo, NY, USA
| | - Keith Tober
- New York State Deparment of Health, Bureau of Communicable Disease Control, Buffalo, NY, USA
- Retired
| | - Jamie Haight
- New York State Department of Health, Bureau of Communicable Disease Control, Falconer, NY, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY, USA
| | - Lisa Meehan
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
- Wadsworth Center, Division of Environmental Health Sciences, Albany, NY, USA
| | - Lee Ann Sporn
- Paul Smith’s College, Department of Natural Science, Paul Smiths, NY, USA
| | - Dustin Brisson
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| |
Collapse
|
12
|
Russell A, Shost N, Burch M, Salazara LL, Fikes K, Bechelli J, Suagee-Bedore J. Serological and Molecular Detection of Anaplasma spp. in Blood From Healthy Horses: A Preliminary Study of Horses in East Texas. J Equine Vet Sci 2021; 106:103757. [PMID: 34670700 DOI: 10.1016/j.jevs.2021.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/27/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022]
Abstract
Anaplasmosis is a disease caused by the bacterium Anaplasma phagocytophilum, which is spread by infected ticks. In horses, A. phagocytophilum generally causes transient infection characterized by fever, lethargy, inappetence, ventral edema, petechiae, icterus, ataxia, recumbency, muscle stiffness, and, in severe cases, death. Following natural infection, horses retain antibodies for approximately 2 years, which can be detected through an immunofluorescence antibody assay. Current infections are determined through PCR assay of white blood cell DNA. For this study, whole blood was collected from apparently healthy horses located in East Texas (n = 70), west Texas (n = 3), New York (n = 49), and New Jersey (n = 11) for the determination of serum antibodies and PCR testing of bacterial DNA. Of the 133 horses, 24 tested positive for DNA presence of A. phagocytophilum, and 107 tested positive for serum antibodies. Of the 24 horses testing positive for A. phagocytophilum, 16 were positive for serum antibody presence and 8 were negative. Twenty of the msp2 positive horses were located in East Texas and 4 resided in New York. For serum antibodies, 100% of New York and New Jersey horses tested positive, while only 66% of Texas horses tested positive. This study provides evidence that a large number of horses are exposed to A. phagocytophilum and that this bacterium is present in East Texas. No Texas horse owners reported treatment for anaplasmosis, and the currently infected horses were not demonstrating signs of illness at the time of sample collection. Further research to understand the differences in disease severity amongst equine populations is warranted.
Collapse
Affiliation(s)
- Alyssa Russell
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, TX
| | - Nichola Shost
- School of Agricultural Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, TX
| | - Megan Burch
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, TX
| | - Luis Lopez Salazara
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, TX
| | - Kalley Fikes
- School of Agricultural Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, TX
| | - Jeremy Bechelli
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, TX
| | - Jessica Suagee-Bedore
- School of Agricultural Sciences, College of Science and Engineering Technology, Sam Houston State University, Huntsville, TX.
| |
Collapse
|
13
|
Russell A, Prusinski M, Sommer J, O’Connor C, White J, Falco R, Kokas J, Vinci V, Gall W, Tober K, Haight J, Oliver J, Meehan L, Sporn LA, Brisson D, Backenson PB. Epidemiology and Spatial Emergence of Anaplasmosis, New York, USA, 2010‒2018. Emerg Infect Dis 2021. [DOI: 10.3201/eid208.210133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Russell A, Prusinski M, Sommer J, O'Connor C, White J, Falco R, Kokas J, Vinci V, Gall W, Tober K, Haight J, Oliver J, Meehan L, Sporn LA, Brisson D, Backenson PB. Epidemiology and Spatial Emergence of Anaplasmosis, New York, USA, 2010‒2018. Emerg Infect Dis 2021; 27:2154-2162. [PMID: 34287128 PMCID: PMC8314826 DOI: 10.3201/eid2708.210133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human granulocytic anaplasmosis, a tickborne disease caused by the bacterium Anaplasma phagocytophilum, was first identified during 1994 and is now an emerging public health threat in the United States. New York state (NYS) has experienced a recent increase in the incidence of anaplasmosis. We analyzed human case surveillance and tick surveillance data collected by the NYS Department of Health for spatiotemporal patterns of disease emergence. We describe the epidemiology and growing incidence of anaplasmosis cases reported during 2010–2018. Spatial analysis showed an expanding hot spot of anaplasmosis in the Capital Region, where incidence increased >8-fold. The prevalence of A. phagocytophilum increased greatly within tick populations in the Capital Region over the same period, and entomologic risk factors were correlated with disease incidence at a local level. These results indicate that anaplasmosis is rapidly emerging in a geographically focused area of NYS, likely driven by localized changes in exposure risk.
Collapse
|
15
|
Duplaix L, Wagner V, Gasmi S, Lindsay LR, Dibernardo A, Thivierge K, Fernandez-Prada C, Arsenault J. Exposure to Tick-Borne Pathogens in Cats and Dogs Infested With Ixodes scapularis in Quebec: An 8-Year Surveillance Study. Front Vet Sci 2021; 8:696815. [PMID: 34336980 PMCID: PMC8321249 DOI: 10.3389/fvets.2021.696815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022] Open
Abstract
Cats that spend time outdoors and dogs are particularly at risk of exposure to ticks and the pathogens they transmit. A retrospective study on data collected through passive tick surveillance was conducted to estimate the risk of exposure to tick-borne pathogens in cats and dogs bitten by blacklegged ticks (Ixodes scapularis) in the province of Quebec, Canada, from 2010 to 2017. Blacklegged ticks collected from these host animals were tested by PCR for Borrelia burgdorferi sensu stricto, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti. A total of 13,733 blacklegged ticks were collected from 12,547 animals. Most ticks were adult females and partially engorged. In total, 1,774 cats were infested with ticks and 22.6 and 2.7% of these animals were bitten by at least one tick infected with B. burgdorferi and A. phagocytophilum, respectively. For the 10,773 tick infested dogs, 18.4% were exposed to B. burgdorferi positive ticks while 1.9% of infested dogs were exposed to ticks infected with A. phagocytophilum. The risk of exposure of both cats and dogs to B. miyamotoi and B. microti was lower since only 1.2 and 0.1% of ticks removed were infected with these pathogens, respectively. Traveling outside of the province of Quebec prior to tick collection was significantly associated with exposure to at least one positive tick for B. burgdorferi, A. phagocytophilum and B. microti. Animals exposed to B. burgdorferi or B. miyamotoi positive tick(s) were at higher risk of being concurrently exposed to A. phagocytophilum; higher risk of exposure to B. microti was also observed in animals concurrently exposed to B. burgdorferi. The odds of dogs having B. burgdorferi antibodies were higher when multiple ticks were collected on an animal. The testing and treatment strategies used on dogs bitten by infected ticks were diverse, and misconceptions among veterinarians regarding the treatment of asymptomatic but B. burgdorferi-seropositive dogs were noted. In conclusion, our study demonstrates that cats and dogs throughout Quebec are exposed to blacklegged ticks infected with B. burgdorferi and A. phagocytophilum, and veterinarians across the province need to be aware of this potential threat to the health of pets and their owners.
Collapse
Affiliation(s)
- Lauriane Duplaix
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Victoria Wagner
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses des Animaux de Production, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Salima Gasmi
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Policy Integration and Zoonoses Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - L Robbin Lindsay
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Antonia Dibernardo
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Karine Thivierge
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada.,Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, QC, Canada
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche sur les Maladies Infectieuses des Animaux de Production, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
16
|
Nelder MP, Russell CB, Dibernardo A, Clow KM, Johnson S, Cronin K, Patel SN, Lindsay LR. Monitoring the patterns of submission and presence of tick-borne pathogens in Ixodes scapularis collected from humans and companion animals in Ontario, Canada (2011-2017). Parasit Vectors 2021; 14:260. [PMID: 34001256 PMCID: PMC8127263 DOI: 10.1186/s13071-021-04750-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The universal nature of the human-companion animal relationship and their shared ticks and tick-borne pathogens offers an opportunity for improving public and veterinary health surveillance. With this in mind, we describe the spatiotemporal trends for blacklegged tick (Ixodes scapularis) submissions from humans and companion animals in Ontario, along with pathogen prevalence. METHODS We tested tick samples submitted through passive surveillance (2011-2017) from humans and companion animals for Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti. We describe pathogen prevalence in ticks from humans and from companion animals and constructed univariable Poisson and negative binomial regression models to explore the spatiotemporal relationship between the rates of tick submissions by host type. RESULTS During the study, there were 17,230 blacklegged tick samples submitted from humans and 4375 from companion animals. Tick submission rates from companion animals were higher than expected in several public health units (PHUs) lacking established tick populations, potentially indicating newly emerging populations. Pathogen prevalence in ticks was higher in PHUs where established blacklegged tick populations exist. Borrelia burgdorferi prevalence was higher in ticks collected from humans (maximum likelihood estimate, MLE = 17.5%; 95% confidence interval, CI 16.97-18.09%) than from companion animals (9.9%, 95% CI 9.15-10.78%). There was no difference in pathogen prevalence in ticks by host type for the remaining pathogens, which were found in less than 1% of tested ticks. The most common co-infection B. burgdorferi + B. miyamotoi occurred in 0.11% of blacklegged ticks from humans and animals combined. Borrelia burgdorferi prevalence was higher in unengorged (21.9%, 95% CI 21.12-22.65%) than engorged ticks (10.0%, 95% CI 9.45-10.56%). There were no consistent and significant spatiotemporal relationships detected via regression models between the annual rates of submission of each host type. CONCLUSIONS While B. burgdorferi has been present in blacklegged ticks in Ontario for several decades, other tick-borne pathogens are also present at low prevalence. Blacklegged tick and pathogen surveillance data can be used to monitor risk in human and companion animal populations, and efforts are under consideration to unite surveillance efforts for the different target populations.
Collapse
Affiliation(s)
- Mark P Nelder
- Enteric, Zoonotic and Vector-Borne Diseases, Health Protection, Operations and Response, Public Health Ontario, Toronto, ON, Canada.
| | - Curtis B Russell
- Enteric, Zoonotic and Vector-Borne Diseases, Health Protection, Operations and Response, Public Health Ontario, Toronto, ON, Canada
| | - Antonia Dibernardo
- Field Studies, Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Katie M Clow
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Steven Johnson
- Informatics, Knowledge Services, Public Health Ontario, Toronto, ON, Canada
| | - Kirby Cronin
- Laboratory Surveillance and Data Management, Public Health Ontario, Toronto, ON, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Samir N Patel
- Bacteriology, Public Health Ontario, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - L Robbin Lindsay
- Field Studies, Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Sosa-Gutierrez CG, Cervantes-Castillo MA, Laguna-Gonzalez R, Lopez-Echeverria LY, Ojeda-Ramírez D, Oyervides M. Serological and Molecular Evidence of Patients Infected with Anaplasma phagocytophilum in Mexico. Diseases 2021; 9:diseases9020037. [PMID: 34069232 PMCID: PMC8161817 DOI: 10.3390/diseases9020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 11/18/2022] Open
Abstract
Human granulocytic Anaplasmosis (HGA), is a tick-borne infectious disease transmitted by ticks, resulting in acute feverish episodes. The etiological agent is the bacteria Anaplasma phagocytophilum; which is spread by ticks of the genus Ixodes spp. to complete its life cycle. In Mexico, there is only one case report. The primary challenge is understanding how other bacteria affect or overlap with the clinical manifestation of the disease. Sample collection occurred over the period September 2017 through October 2019. Blood samples from human subjects were obtained immediately after they signed consent forms. We analyzed for the presence for A. phagocytophilum by serological (IFA IgG two times) and PCR targeting 16SrRNA and groEL genes, followed by DNA sequencing. All patients with a history of travel abroad were dismissed for this project. In total, 1924 patients participated and of these, 1014 samples across the country were analyzed. Of these, 85 (8.38%) had IFA results that ranged from 1:384 to 1:896. Of the positive samples, 7.10% were used for PCR. Significant clinical manifestations included: dizziness, nausea, petechial, epistaxis, enlarged liver and/or spleen and thrombocytopenia. Hospitalization of at least 1.5 days was necessary for 3.2% of patients. None of the cases analyzed were lethal. This is the first clinical manifestations along with serological test results and molecular analysis confirmed the presence of A. phagocytophilum resulting in HGA in patients from Mexico. Health institutions and medical practitioners in general should include diagnostic testing for HGA among high risk populations and should recognize it as a vector-borne emerging infectious disease in Mexico.
Collapse
Affiliation(s)
- Carolina Guadalupe Sosa-Gutierrez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico; (R.L.-G.); (L.Y.L.-E.); (D.O.-R.)
- BioGeneticks and Other Vector Diseases Lab., Tulancingo, Hidalgo 43660, Mexico; (M.A.C.-C.); (M.O.)
- Correspondence: or ; Tel.: +52-1-5517-808-062 or +52-17-757-424-559
| | - Maria Almudena Cervantes-Castillo
- BioGeneticks and Other Vector Diseases Lab., Tulancingo, Hidalgo 43660, Mexico; (M.A.C.-C.); (M.O.)
- Medicina Basada en Evidencia, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico
| | - Ramon Laguna-Gonzalez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico; (R.L.-G.); (L.Y.L.-E.); (D.O.-R.)
- BioGeneticks and Other Vector Diseases Lab., Tulancingo, Hidalgo 43660, Mexico; (M.A.C.-C.); (M.O.)
| | - Laura Yareli Lopez-Echeverria
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico; (R.L.-G.); (L.Y.L.-E.); (D.O.-R.)
- BioGeneticks and Other Vector Diseases Lab., Tulancingo, Hidalgo 43660, Mexico; (M.A.C.-C.); (M.O.)
| | - Deyanira Ojeda-Ramírez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo 43600, Mexico; (R.L.-G.); (L.Y.L.-E.); (D.O.-R.)
| | - Mayra Oyervides
- BioGeneticks and Other Vector Diseases Lab., Tulancingo, Hidalgo 43660, Mexico; (M.A.C.-C.); (M.O.)
- Departament of Biology, Schreiner University, Kerrville, TX 78028, USA
| |
Collapse
|
18
|
Microbiome Composition and Borrelia Detection in Ixodes scapularis Ticks at the Northwestern Edge of Their Range. Trop Med Infect Dis 2020; 5:tropicalmed5040173. [PMID: 33218113 PMCID: PMC7709646 DOI: 10.3390/tropicalmed5040173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Lyme disease-causing Borrelia burgdorferi has been reported in 10–19% of Ixodes ticks from Alberta, Canada, where the tick vector Ixodes scapularis is at the northwestern edge of its range. However, the presence of Borrelia has not been verified independently, and the bacterial microbiome of these ticks has not been described. We performed 16S rRNA bacterial surveys on female I. scapularis from Alberta that were previously qPCR-tested in a Lyme disease surveillance program. Both 16S and qPCR methods were concordant for the presence of Borrelia. The 16S studies also provided a profile of associated bacteria that showed the microbiome of I. scapularis in Alberta was similar to other areas of North America. Ticks that were qPCR-positive for Borrelia had significantly greater bacterial diversity than Borrelia-negative ticks, on the basis of generalized linear model testing. This study adds value to ongoing tick surveillance and is a foundation for deeper understanding of tick microbial ecology and disease transmission in a region where I. scapularis range expansion, induced by climate and land use changes, is likely to have increasing public health implications.
Collapse
|
19
|
Stokes W, Lisboa LF, Lindsay LR, Fonseca K. Case Report: Anaplasmosis in Canada: Locally Acquired Anaplasma phagocytophilum Infection in Alberta. Am J Trop Med Hyg 2020; 103:2478-2480. [PMID: 32959772 DOI: 10.4269/ajtmh.20-0603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Human granulocytic anaplasmosis is an obligate intra-granulocytic parasite that is transmitted by Ixodes scapularis and Ixodes pacificus in North America. We report on the second laboratory-confirmed case of Anaplasma phagocytophilum acquired within the province of Alberta, Canada. A 67-year-old woman from the Edmonton health zone developed nonspecific systemic symptoms including fatigue, night sweats, myalgia, headaches, and fever 6 days after noticing a tick on her left upper arm in May of 2017 (day 0). On day 13, she was found to have thrombocytopenia. Her symptoms progressed until day 16 when she was treated empirically with doxycycline, at which time she slowly improved over the subsequent 2 months. The tick was later identified as a partially engorged female blacklegged tick, I. scapularis, and it was positive for A. phagocytophilum DNA by PCR. Anaplasma serology performed retrospectively on blood samples collected on days 13, 31, and 52 showed a greater than 4-fold increase in A. phagocytophilum (IgG titers from less than 1:64 on day 13 to 1:2048 on days 31 and 52), consistent with an acute infection. Although populations of blacklegged ticks are not yet established in Alberta, suspicion should remain for tick-borne diseases because infected ticks are introduced into the province by migrating birds. This case report highlights the need to remind physicians and other public health professionals that rare, non-endemic tick-borne diseases can occasionally occur in low-risk jurisdictions.
Collapse
Affiliation(s)
- William Stokes
- Department of Medicine, University of Calgary, Calgary, Canada
| | - Luiz F Lisboa
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada.,Clinical Section of Microbiology, Alberta Precision Laboratories, Calgary, Canada
| | - L Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Kevin Fonseca
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.,Provincial Laboratory for Public Health, Calgary, Canada
| |
Collapse
|
20
|
Rau A, Munoz-Zanzi C, Schotthoefer AM, Oliver JD, Berman JD. Spatio-Temporal Dynamics of Tick-Borne Diseases in North-Central Wisconsin from 2000-2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145105. [PMID: 32679849 PMCID: PMC7400118 DOI: 10.3390/ijerph17145105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
Lyme disease is a well-recognized public health problem in the USA, however, other tick-borne diseases also have major public health impacts. Yet, limited research has evaluated changes in the spatial and temporal patterns of non-Lyme tick-borne diseases within endemic regions. Using laboratory data from a large healthcare system in north-central Wisconsin from 2000-2016, we applied a Kulldorf's scan statistic to analyze spatial, temporal and seasonal clusters of laboratory-positive cases of human granulocytic anaplasmosis (HGA), babesiosis, and ehrlichiosis at the county level. Older males were identified as the subpopulation at greatest risk for non-Lyme tick-borne diseases and we observed a statistically significant spatial and temporal clustering of cases (p < 0.05). HGA risk shifted from west to east over time (2000-2016) with a relative risk (RR) ranging from 3.30 to 11.85, whereas babesiosis risk shifted from south to north and west over time (2004-2016) with an RR ranging from 4.33 to 4.81. Our study highlights the occurrence of non-Lyme tick-borne diseases, and identifies at-risk subpopulations and shifting spatial and temporal heterogeneities in disease risk. Our findings can be used by healthcare providers and public health practitioners to increase public awareness and improve case detection.
Collapse
Affiliation(s)
- Austin Rau
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (A.R.); (C.M.-Z.); (J.D.O.)
| | - Claudia Munoz-Zanzi
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (A.R.); (C.M.-Z.); (J.D.O.)
| | | | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (A.R.); (C.M.-Z.); (J.D.O.)
| | - Jesse D. Berman
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (A.R.); (C.M.-Z.); (J.D.O.)
- Correspondence: ; Tel.: +1-612-626-0923
| |
Collapse
|