1
|
Divya M, Rajakumar S, Ayyasamy PM. In vitro antimicrobial resistant pattern, plasmid profile and the survival of Campylobacter jejuni isolated from poultry sources. Br Poult Sci 2025:1-11. [PMID: 40397406 DOI: 10.1080/00071668.2025.2494601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/17/2025] [Indexed: 05/22/2025]
Abstract
1. Infections due to Campylobacter spp. significantly contribute to bacterial gastroenteritis worldwide. This study aimed to investigate whether Campylobacter spp. can persist in poultry environments and how they survive in various sources from poultry farms and slaughterhouses.2. A total of 192 samples were collected from three different poultry farms and slaughterhouses and C. jejuni was detected in 47.4% of them. The prevalence of C. jejuni was higher in poultry slaughterhouses than in farms. A total of 69 C. jejuni were tested for their susceptibility to different antibiotics. From these 15 isolates from poultry farms and slaughterhouses, 50-70% exhibited antibiotic resistance. These isolates were analysed for plasmid profiling, identification of virulence genes and lipo-oligosaccharide characterisation.3. Nearly all C. jejuni isolates harboured plasmid sizes ranging from 2.3 to 23 kb. The virB11 gene of C. jejuni was characterised using PCR and there was no gene amplification in the isolated strains. All multidrug-resistant (MDR) isolates from poultry farms and slaughterhouses had full-length lipo-oligosaccharide molecules, based on their molecular weight.4. The MDR strain C. jejuni (LCJ5) was chosen for its survival rate from various sources, including lamb, chicken meat and eggs, as well as in the slaughterhouse environment, which contains materials like stainless steel, iron and wood. The findings suggested that the prevalence of Campylobacter can be reduced through improved hygiene practices and by raising awareness about the importance of consuming properly cooked meat products.
Collapse
Affiliation(s)
- M Divya
- Department of Microbiology, Periyar University, Salem, India
| | - S Rajakumar
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli,India
| | - P M Ayyasamy
- Department of Microbiology, Periyar University, Salem, India
| |
Collapse
|
2
|
Venkataraman S, Shahgolzari M, Yavari A, Hefferon K. Bacteriophages as Targeted Therapeutic Vehicles: Challenges and Opportunities. Bioengineering (Basel) 2025; 12:469. [PMID: 40428088 PMCID: PMC12109052 DOI: 10.3390/bioengineering12050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Bacteriophages, with their distinctive ability to selectively target host bacteria, stand out as a compelling tool in the realm of drug and gene delivery. Their assembly from proteins and nucleic acids, coupled with their modifiable and biologically unique properties, enables them to serve as efficient and safe delivery systems. Unlike conventional nanocarriers, which face limitations such as non-specific targeting, cytotoxicity, and reduced transfection efficiency in vivo, engineered phages exhibit promising potential to overcome these hurdles and improve delivery outcomes. This review highlights the potential of bacteriophage-based systems as innovative and efficient systems for delivering therapeutic agents. It explores strategies for engineering bacteriophage, categorizes the principal types of phages employed for drug and gene delivery, and evaluates their applications in disease therapy. It provides intriguing details of the use of natural and engineered phages in the therapy of diseases such as cancer, bacterial and viral infections, veterinary diseases, and neurological disorders, as well as the use of phage display technology in generating monoclonal antibodies against various human diseases. Additionally, the use of CRISPR-Cas9 technology in generating genetically engineered phages is elucidated. Furthermore, it provides a critical analysis of the challenges and limitations associated with phage-based delivery systems, offering insights for overcoming these obstacles. By showcasing the advancements in phage engineering and their integration into nanotechnology, this study underscores the potential of bacteriophage-based delivery systems to revolutionize therapeutic approaches and inspire future innovations in medicine.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Mehdi Shahgolzari
- Dental Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan P.O. Box 6517838678, Iran
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Kathleen Hefferon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
3
|
Xiao K, Pan Q, Wu Y, Ding Y, Wu Q, Zhang J, Wang Z, Liu Z, Wang W, Wang J. Application of a novel phage vB_CjeM_WX1 to control Campylobacter jejuni in foods. Int J Food Microbiol 2025; 427:110975. [PMID: 39550792 DOI: 10.1016/j.ijfoodmicro.2024.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Campylobacter jejuni is one of the leading causes of human gastroenteritis. Phage biocontrol is recognized as a natural, environmentally friendly technique that effectively targets pathogens in various foods. In this study, a novel C. jejuni phage named vB_CjeM_WX1 (WX1) was isolated from chicken feces. According to the morphology and genomic analysis, the phage belongs to the Eucampyvirinae genus within the subfamily of Caudoviricetes WX1 exhibited favorable physiological characteristics, as it could maintain its activity even under extreme conditions such as high temperatures (70 °C), acidity (pH = 4), alkalinity (pH = 12), NaCl concentration (1000 mM) and was UV-resistant for 50 min. WX1 could lyse 35 strains of C. jejuni, all of which are highly virulent and multi-drug resistant. Among them, 10 strains of C. jejuni exhibit strong biofilm formation, a critical factor in bacterial persistence and resistance to environmental stressors. The lysis rate of WX1 reached up to 47.3 % in 76 strains of C. jejuni. Phage WX1 inhibited the growth of multi-drug resistant, high virulence and strong biofilm C. jejuni 178-2B in NZCYM broth, as well as greatly reduced biofilm formation on stainless-steel, polyethylene surfaces, and glass. Moreover, phage WX1 decreased the number of C. jejuni in chicken skin to below the detection limit within 48 h. Therefore, phage WX1 can be used in food processing environments and poultry farming, both primary production and during slaughter with a great prospect.
Collapse
Affiliation(s)
- Kaishan Xiao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Qiqi Pan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Yu Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Yu Ding
- Department of Food Science and Technology, College of Life Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Zhi Wang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Zekun Liu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Weisong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
4
|
Fang Q, Yin X, He Y, Feng Y, Zhang L, Luo H, Yin G, McNally A, Zong Z. Safety and efficacy of phage application in bacterial decolonisation: a systematic review. THE LANCET. MICROBE 2024; 5:e489-e499. [PMID: 38452780 DOI: 10.1016/s2666-5247(24)00002-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 03/09/2024]
Abstract
Colonisation by bacterial pathogens typically precedes invasive infection and seeds transmission. Thus, effective decolonisation strategies are urgently needed. The literature reports attempts to use phages for decolonisation. To assess the in-vivo efficacy and safety of phages for bacterial decolonisation, we performed a systematic review by identifying relevant studies to assess the in-vivo efficacy and safety of phages for bacterial decolonisation. We searched PubMed, Embase (Ovid), MEDLINE (Ovid), Web of Science, and the Cochrane Library to identify relevant articles published between Jan 1, 1990, and May 12, 2023, without language restrictions. We included studies that assessed the efficacy of phage for bacterial decolonisation in humans or vertebrate animal models. This systematic review is registered with PROSPERO, CRD42023457637. We identified 6694 articles, of which 56 (51 animal studies and five clinical reports) met the predetermined selection criteria and were included in the final analysis. The gastrointestinal tract (n=49, 88%) was the most studied bacterial colonisation site, and other sites were central venous catheters, lung, nose, skin, and urinary tract. Of the 56 included studies, the bacterial load at the colonisation site was reported to decrease significantly in 45 (80%) studies, but only five described eradication of the target bacteria. 15 studies reported the safety of phages for decolonisation. No obvious adverse events were reported in both the short-term and long-term observation period. Given the increasing life-threatening risks posed by bacteria that are difficult to treat, phages could be an alternative option for bacterial decolonisation, although further optimisation is required before their application to meet clinical needs.
Collapse
Affiliation(s)
- Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Xin Yin
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yanling He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yan Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Linwan Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Huan Luo
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| |
Collapse
|
5
|
Peh E, Szott V, Reichelt B, Friese A, Ploetz M, Roesler U, Kittler S. Combined application of bacteriophages with a competitive exclusion culture and carvacrol with organic acids can reduce Campylobacter in primary broiler production. Sci Rep 2024; 14:9218. [PMID: 38649444 PMCID: PMC11035546 DOI: 10.1038/s41598-024-59563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
For reducing Campylobacter (C.) in the food production chain and thus the risk to the consumer, the combined application of different measures as a multiple-hurdle approach is currently under discussion. This is the first study to investigate possible synergistic activities in vivo, aiming at reducing intestinal C. jejuni counts by administering (i) bacteriophages (phages) in combination with a competitive exclusion (CE) product and (ii) carvacrol combined with organic acids. The combined application of the two selected phages (Fletchervirus phage NCTC 12673 and Firehammervirus phage vB_CcM-LmqsCPL1/1) and the CE product significantly reduced C. jejuni loads by 1.0 log10 in cecal and colonic contents as well as in cloacal swabs at the end of the trial (33 and 34 days post hatch). The proportion of bacterial isolates showing reduced phage susceptibility ranged from 10.9% (isolates from cecal content) to 47.8% (isolates from cloacal swabs 32 days post hatch) for the Fletchervirus phage, while all tested isolates remained susceptible to the Firehammervirus phage. The use of carvacrol combined with an organic acid blend (sorbic acid, benzoic acid, propionic acid, and acetic acid) significantly reduced Campylobacter counts by 1.0 log10 in cloacal swabs on day 30 only.
Collapse
Affiliation(s)
- E Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - V Szott
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - B Reichelt
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - A Friese
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - M Ploetz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - U Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - S Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
6
|
Zhang X, Tang M, Zhou Q, Lu J, Zhang H, Tang X, Ma L, Zhang J, Chen D, Gao Y. A broad host phage, CP6, for combating multidrug-resistant Campylobacter prevalent in poultry meat. Poult Sci 2024; 103:103548. [PMID: 38442560 DOI: 10.1016/j.psj.2024.103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Campylobacter is a major cause of bacterial foodborne diarrhea worldwide. Consumption of raw or undercooked chicken meat contaminated with Campylobacter is the most common causative agent of human infections. Given the high prevalence of contamination in poultry meat and the recent rise of multi-drug-resistant (MDR) Campylobacter strains, an effective intervention method of reducing bird colonization is needed. In this study, the Campylobacter-specific lytic phage CP6 was isolated from chicken feces. Phage CP6 exhibited a broad host range against different MDR Campylobacter isolates (97.4% of strains were infected). Some biological characteristics were observed, such as a good pH (3-9) stability and moderate temperature tolerance (<50 ℃). The complete genome sequence revealed a linear double-stranded DNA (178,350 bp, group II Campylobacter phage) with 27.51% GC content, including 209 predicted open reading frames, among which only 54 were annotated with known functions. Phylogenetic analysis of the phage major capsid protein demonstrated that phage CP6 was closely related to Campylobacter phage CPt10, CP21, CP20, IBB35, and CP220. CP6 phage exerted good antimicrobial effects on MDR Campylobacter in vitro culture and reduced CFUs of the host cells by up to 1-log compared with the control in artificially contaminated chicken breast meat. Our findings suggested the potential of CP6 phage as a promising antimicrobial agent for combating MDR Campylobacter in food processing.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Qian Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Junxian Lu
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xiujun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Lina Ma
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Jing Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Dawei Chen
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Yushi Gao
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection & Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
7
|
Bianchessi L, De Bernardi G, Vigorelli M, Dall’Ara P, Turin L. Bacteriophage Therapy in Companion and Farm Animals. Antibiotics (Basel) 2024; 13:294. [PMID: 38666970 PMCID: PMC11047634 DOI: 10.3390/antibiotics13040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
Bacteriophages, which are viruses with restricted tropism for bacteria, have been employed for over a century as antimicrobial agents; they have been largely abandoned in Western countries but are constantly used in Eastern European countries with the advent of antibiotics. In recent decades, the growing spread of multidrug-resistant bacteria, which pose a serious threat to worldwide public health, imposed an urgent demand for alternative therapeutic approaches to antibiotics in animal and human fields. Based on this requirement, numerous studies have been published on developing and testing bacteriophage-based therapy. Overall, the literature largely supports the potential of this perspective but also highlights the need for additional research as the current standards are inadequate to receive approval from regulatory authorities. This review aims to update and critically revise the current knowledge on the application of bacteriophages to treat bacterial-derived infectious diseases in animals in order to provide topical perspectives and innovative advances.
Collapse
Affiliation(s)
| | | | | | | | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy; (L.B.); (G.D.B.); (M.V.); (P.D.)
| |
Collapse
|
8
|
Bogun K, Peh E, Meyer-Kühling B, Hartmann J, Hirnet J, Plötz M, Kittler S. Investigating bacteriophages as a novel multiple-hurdle measure against Campylobacter: field trials in commercial broiler plants. Sci Rep 2024; 14:3182. [PMID: 38326411 PMCID: PMC10850366 DOI: 10.1038/s41598-024-53365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Campylobacter mitigation along the food production chain is considered effective for minimizing the public health burden of human campylobacteriosis. This study is the first combining different measures in a multiple-hurdle approach, using drinking water additives and feed additives in single and combined application schemes in commercial broiler plants. Broiler chickens in the study groups were naturally contaminated with Campylobacter. Application of an organic acid blend via drinking water, consisting of sodium propionate, potassium sorbate, and sodium diacetate, resulted in significant reductions of up to 4.9 log10 CFU/mL in fecal samples and in cecal samples at slaughter. The application of a phage mixture, consisting of Fletchervirus phage NCTC 12673 and Firehammervirus phage vB_CcM-LmqsCPL1/1, resulted in reductions of up to 1.1 log10 CFU/mL in fecal samples 1 day after dosing. The sole administration of curcumin via feed resulted in small and inconsistent reductions. In the group receiving a combination of all tested measures, reductions of up to 1.1 log10 CFU/mL were observed. Based on the results of our field trials, it was shown that both the sole application and the combined application of mitigation measures in primary production can reduce the Campylobacter load in broiler chickens, while no synergism could be observed.
Collapse
Affiliation(s)
- Katrin Bogun
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | | - Juliane Hirnet
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
9
|
Ostenfeld LJ, Sørensen AN, Neve H, Vitt A, Klumpp J, Sørensen MCH. A hybrid receptor binding protein enables phage F341 infection of Campylobacter by binding to flagella and lipooligosaccharides. Front Microbiol 2024; 15:1358909. [PMID: 38380094 PMCID: PMC10877375 DOI: 10.3389/fmicb.2024.1358909] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Flagellotropic bacteriophages are interesting candidates as therapeutics against pathogenic bacteria dependent on flagellar motility for colonization and causing disease. Yet, phage resistance other than loss of motility has been scarcely studied. Here we developed a soft agar assay to study flagellotropic phage F341 resistance in motile Campylobacter jejuni. We found that phage adsorption was prevented by diverse genetic mutations in the lipooligosaccharides forming the secondary receptor of phage F341. Genome sequencing showed phage F341 belongs to the Fletchervirus genus otherwise comprising capsular-dependent C. jejuni phages. Interestingly, phage F341 encodes a hybrid receptor binding protein (RBP) predicted as a short tail fiber showing partial similarity to RBP1 encoded by capsular-dependent Fletchervirus, but with a receptor binding domain similar to tail fiber protein H of C. jejuni CJIE1 prophages. Thus, C. jejuni prophages may represent a genetic pool from where lytic Fletchervirus phages can acquire new traits like recognition of new receptors.
Collapse
Affiliation(s)
- Line Jensen Ostenfeld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Horst Neve
- Department of Microbiology and Biotechnology, Max-Rubner Institut, Kiel, Germany
| | - Amira Vitt
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
10
|
Chinivasagam HN, Estella W, Finn D, Mayer DG, Rodrigues H, Diallo I. Broiler farming practices using new or re-used bedding, inclusive of free-range, have no impact on Campylobacter levels, species diversity, Campylobacter community profiles and Campylobacter bacteriophages. AIMS Microbiol 2024; 10:12-40. [PMID: 38525040 PMCID: PMC10955168 DOI: 10.3934/microbiol.2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 03/26/2024] Open
Abstract
A multi-stage option to address food-safety can be produced by a clearer understanding of Campylobacter's persistence through the broiler production chain, its environmental niche and its interaction with bacteriophages. This study addressed Campylobacter levels, species, genotype, bacteriophage composition/ levels in caeca, litter, soil and carcasses across commercial broiler farming practices to inform on-farm management, including interventions. Broilers were sequentially collected as per company slaughter schedules over two-years from 17 farms, which represented four commercially adopted farming practices, prior to the final bird removal (days 39-53). The practices were conventional full clean-out, conventional litter re-use, free-range-full cleanout and free-range-litter re-use. Caeca, litter and soil collected on-farm, and representative carcases collected at the processing plant, were tested for Campylobacter levels, species dominance and Campylobacter bacteriophages. General community profiling via denaturing gradient gel electrophoresis of the flaA gene was used to establish the population relationships between various farming practices on representative Campylobacter isolates. The farming practice choices did not influence the high caeca Campylobacter levels (log 7.5 to log 8.5 CFU/g), the carcass levels (log 2.5 to log 3.2 CFU/carcass), the C. jejuni/C. coli dominance and the on-farm bacteriophage presence/levels. A principal coordinate analysis of the flaA distribution for farm and litter practices showed strong separation but no obvious farming practice related grouping of Campylobacter. Bacteriophages originated from select farms, were not practice-dependent, and were detected in the environment (litter) only if present in the birds (caeca). This multifaceted study showed no influence of farming practices on on-farm Campylobacter dynamics. The significance of this study means that a unified on-farm risk-management could be adopted irrespective of commercial practice choices to collectively address caeca Campylobacter levels, as well as the potential to include Campylobacter bacteriophage biocontrol. The impact of this study means that there are no constraints in re-using bedding or adopting free-range farming, thus contributing to environmentally sustainable (re-use) and emerging (free-range) broiler farming choices.
Collapse
Affiliation(s)
| | - Wiyada Estella
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - Damien Finn
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - David G. Mayer
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - Hugh Rodrigues
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - Ibrahim Diallo
- Department of Agriculture and Fisheries, Biosecurity Sciences Laboratory, Coopers Plains QLD 4108
| |
Collapse
|
11
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
12
|
Liu S, Quek SY, Huang K. Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Crit Rev Food Sci Nutr 2023; 64:12574-12598. [PMID: 37698066 DOI: 10.1080/10408398.2023.2254837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Bacteriophages (phages), highly prevalent in aquatic and terrestrial environments, have emerged as novel antimicrobial agents in food and agricultural systems. Owing to their efficient and unique infection mechanism, phages offer an alternative to antibiotic therapy as they specifically target their host bacteria without causing antibiotic resistance. However, the real-world applications of phages as antimicrobials are still limited due to their low survivability under harsh conditions and reduced antimicrobial efficacy. There is an unmet need to understand the challenges of using phages in food and agricultural systems and potential strategies to enhance their stability and delivery. This review overviews the challenges of using phages, including acidic conditions, improper temperatures, UV-light irradiation, desiccation, and inefficient delivery. It also summarizes novel strategies such as encapsulation, embedding, and immobilization, which enable improved viability and enhanced delivery. The protein capsid and nucleic acid components of phages are delicate and sensitive to physicochemical stresses. Incorporating phages into biocompatible materials can provide a physical barrier for improving phage stability and enhancing phage delivery, resulting in a high antimicrobial efficacy. In conclusion, the development of phage delivery systems can significantly overcome the challenges associated with phage treatments and reduce the risk of foodborne diseases in the industry.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
13
|
Peh E, Szott V, Reichelt B, Friese A, Rösler U, Plötz M, Kittler S. Bacteriophage cocktail application for Campylobacter mitigation - from in vitro to in vivo. BMC Microbiol 2023; 23:209. [PMID: 37543585 PMCID: PMC10403930 DOI: 10.1186/s12866-023-02963-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Effective strategies are urgently needed to control Campylobacteriosis, one of the most important foodborne gastrointestinal diseases worldwide. Administering bacteriophages (phages) is under evaluation as a possible intervention strategy in primary poultry production to reduce the public health risk of human infection. A major challenge is the translation of results from small-scale animal studies to large broiler flocks. In this study, the in vitro lytic activity of 18 Campylobacter-specific group II phages and 19 group III phages were examined singly, and in different combinations from the same group and from both groups using a planktonic killing assay. Based on these results, a combination of phage NCTC 12,673 (group III) and vB_CcM-LmqsCPL1/1 (group II) was selected for in vivo application in a seeder bird model to study its effectiveness under conditions as close as possible to field conditions. One hundred eighty Ross 308 broiler chickens were divided into a control and a treatment group. Ten days post hatch, seeder birds were orally inoculated with the C. jejuni target strain. Phages were administered via drinking water at a total concentration of 107 PFU/mL four, three, and two days before necropsy. RESULTS Combining group II and group III phages resulted in significantly higher in vitro growth inhibition against the C. jejuni target strain BfR-CA-14,430 than single application or combinations of phages from the same group. The results of the animal trial showed that the application of the two phages significantly reduced Campylobacter counts in cloacal swabs. At necropsy, Campylobacter counts in colonic content of the treatment group were significantly reduced by 2 log10 units compared to the control group. CONCLUSIONS We demonstrated that combining phages of groups II and III results in significantly increased lytic activities. The in vitro results were successfully translated into practical application in a study design close to field conditions, providing new data to apply phages in conventional broiler flocks in the future. Phage application reduced the fecal Campylobacter excretion and Campylobacter concentrations in the colon of broilers.
Collapse
Affiliation(s)
- Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Vanessa Szott
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Benjamin Reichelt
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Uwe Rösler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
14
|
Bumunang EW, Zaheer R, Niu D, Narvaez-Bravo C, Alexander T, McAllister TA, Stanford K. Bacteriophages for the Targeted Control of Foodborne Pathogens. Foods 2023; 12:2734. [PMID: 37509826 PMCID: PMC10379335 DOI: 10.3390/foods12142734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne illness is exacerbated by novel and emerging pathotypes, persistent contamination, antimicrobial resistance, an ever-changing environment, and the complexity of food production systems. Sporadic and outbreak events of common foodborne pathogens like Shiga toxigenic E. coli (STEC), Salmonella, Campylobacter, and Listeria monocytogenes are increasingly identified. Methods of controlling human infections linked with food products are essential to improve food safety and public health and to avoid economic losses associated with contaminated food product recalls and litigations. Bacteriophages (phages) are an attractive additional weapon in the ongoing search for preventative measures to improve food safety and public health. However, like all other antimicrobial interventions that are being employed in food production systems, phages are not a panacea to all food safety challenges. Therefore, while phage-based biocontrol can be promising in combating foodborne pathogens, their antibacterial spectrum is generally narrower than most antibiotics. The emergence of phage-insensitive single-cell variants and the formulation of effective cocktails are some of the challenges faced by phage-based biocontrol methods. This review examines phage-based applications at critical control points in food production systems with an emphasis on when and where they can be successfully applied at production and processing levels. Shortcomings associated with phage-based control measures are outlined together with strategies that can be applied to improve phage utility for current and future applications in food safety.
Collapse
Affiliation(s)
- Emmanuel W Bumunang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 1M4, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Claudia Narvaez-Bravo
- Food and Human Nutritional Sciences, Faculty of Agricultural & Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Trevor Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 1M4, Canada
| |
Collapse
|
15
|
Zia S, Alkheraije KA. Recent trends in the use of bacteriophages as replacement of antimicrobials against food-animal pathogens. Front Vet Sci 2023; 10:1162465. [PMID: 37303721 PMCID: PMC10247982 DOI: 10.3389/fvets.2023.1162465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
A major public health impact is associated with foodborne illnesses around the globe. Additionally, bacteria are becoming more resistant to antibiotics, which pose a global threat. Currently, many scientific efforts have been made to develop and implement new technologies to combat bacteria considering the increasing emergence of multidrug-resistant bacteria. In recent years, there has been considerable interest in using phages as biocontrol agents for foodborne pathogens in animals used for food production and in food products themselves. Foodborne outbreaks persist, globally, in many foods, some of which lack adequate methods to control any pathogenic contamination (like fresh produce). This interest may be attributed both to consumers' desire for more natural food and to the fact that foodborne outbreaks continue to occur in many foods. Poultry is the most common animal to be treated with phage therapy to control foodborne pathogens. A large number of foodborne illnesses worldwide are caused by Salmonella spp. and Campylobacter, which are found in poultry and egg products. Conventional bacteriophage-based therapy can prevent and control humans and animals from various infectious diseases. In this context, describing bacteriophage therapy based on bacterial cells may offer a breakthrough for treating bacterial infections. Large-scale production of pheasants may be economically challenging to meet the needs of the poultry market. It is also possible to produce bacteriophage therapy on a large scale at a reduced cost. Recently, they have provided an ideal platform for designing and producing immune-inducing phages. Emerging foodborne pathogens will likely be targeted by new phage products in the future. In this review article, we will mainly focus on the Bacteriophages (phages) that have been proposed as an alternative strategy to antibiotics for food animal pathogens and their use for public health and food safety.
Collapse
Affiliation(s)
- Sana Zia
- Department of Zoology, Government Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
16
|
Abreu R, Semedo-Lemsaddek T, Cunha E, Tavares L, Oliveira M. Antimicrobial Drug Resistance in Poultry Production: Current Status and Innovative Strategies for Bacterial Control. Microorganisms 2023; 11:microorganisms11040953. [PMID: 37110376 PMCID: PMC10141167 DOI: 10.3390/microorganisms11040953] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
The world population’s significant increase has promoted a higher consumption of poultry products, which must meet the specified demand while maintaining their quality and safety. It is well known that conventional antimicrobials (antibiotics) have been used in livestock production, including poultry, as a preventive measure against or for the treatment of infectious bacterial diseases. Unfortunately, the use and misuse of these compounds has led to the development and dissemination of antimicrobial drug resistance, which is currently a serious public health concern. Multidrug-resistant bacteria are on the rise, being responsible for serious infections in humans and animals; hence, the goal of this review is to discuss the consequences of antimicrobial drug resistance in poultry production, focusing on the current status of this agroeconomic sector. Novel bacterial control strategies under investigation for application in this industry are also described. These innovative approaches include antimicrobial peptides, bacteriophages, probiotics and nanoparticles. Challenges related to the application of these methods are also discussed.
Collapse
Affiliation(s)
- Raquel Abreu
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Teresa Semedo-Lemsaddek
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
17
|
Abdelrahman F, Gangakhedkar R, Nair G, El-Didamony G, Askora A, Jain V, El-Shibiny A. Pseudomonas Phage ZCPS1 Endolysin as a Potential Therapeutic Agent. Viruses 2023; 15:520. [PMID: 36851734 PMCID: PMC9961711 DOI: 10.3390/v15020520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
The challenge of antibiotic resistance has gained much attention in recent years due to the rapid emergence of resistant bacteria infecting humans and risking industries. Thus, alternatives to antibiotics are being actively searched for. In this regard, bacteriophages and their enzymes, such as endolysins, are a very attractive alternative. Endolysins are the lytic enzymes, which are produced during the late phase of the lytic bacteriophage replication cycle to target the bacterial cell walls for progeny release. Here, we cloned, expressed, and purified LysZC1 endolysin from Pseudomonas phage ZCPS1. The structural alignment, molecular dynamic simulation, and CD studies suggested LysZC1 to be majorly helical, which is highly similar to various phage-encoded lysozymes with glycoside hydrolase activity. Our endpoint turbidity reduction assay displayed the lytic activity against various Gram-positive and Gram-negative pathogens. Although in synergism with EDTA, LysZC1 demonstrated significant activity against Gram-negative pathogens, it demonstrated the highest activity against Bacillus cereus. Moreover, LysZC1 was able to reduce the numbers of logarithmic-phase B. cereus by more than 2 log10 CFU/mL in 1 h and also acted on the stationary-phase culture. Remarkably, LysZC1 presented exceptional thermal stability, pH tolerance, and storage conditions, as it maintained the antibacterial activity against its host after nearly one year of storage at 4 °C and after being heated at temperatures as high as 100 °C for 10 min. Our data suggest that LysZC1 is a potential candidate as a therapeutic agent against bacterial infection and an antibacterial bio-control tool in food preservation technology.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
| | - Rutuja Gangakhedkar
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gokul Nair
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gamal El-Didamony
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, 6th of October City 12578, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt
| |
Collapse
|
18
|
Natural Killers: Opportunities and Challenges for the Use of Bacteriophages in Microbial Food Safety from the One Health Perspective. Foods 2023; 12:foods12030552. [PMID: 36766081 PMCID: PMC9914193 DOI: 10.3390/foods12030552] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Ingestion of food or water contaminated with pathogenic bacteria may cause serious diseases. The One Health approach may help to ensure food safety by anticipating, preventing, detecting, and controlling diseases that spread between animals, humans, and the environment. This concept pays special attention to the increasing spread and dissemination of antibiotic-resistant bacteria, which are considered one of the most important environment-related human and animal health hazards. In this context, the development of innovative, versatile, and effective alternatives to control bacterial infections in order to assure comprehensive food microbial safety is becoming an urgent issue. Bacteriophages (phages), viruses of bacteria, have gained significance in the last years due to the request for new effective antimicrobials for the treatment of bacterial diseases, along with many other applications, including biotechnology and food safety. This manuscript reviews the application of phages in order to prevent food- and water-borne diseases from a One Health perspective. Regarding the necessary decrease in the use of antibiotics, results taken from the literature indicate that phages are also promising tools to help to address this issue. To assist future phage-based real applications, the pending issues and main challenges to be addressed shortly by future studies are also taken into account.
Collapse
|
19
|
Bacteriophage and their lysins: A new era of biocontrol for inactivation of pathogenic bacteria in poultry processing and production—A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Oyejobi GK, Sule WF, Akinde SB, Khan FM, Ogolla F. Multidrug-resistant enteric bacteria in Nigeria and potential use of bacteriophages as biocontrol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153842. [PMID: 35183626 DOI: 10.1016/j.scitotenv.2022.153842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Enteric bacterial pathogens have been implicated in many cases of gastroenteritis in Nigeria, a West African country. This situation is worsened by some reports of the high prevalence of multidrug-resistant enteric bacteria. To better prepare for situations in which even antibiotics of last resort would fail to treat infections caused by these pathogens, attention should be paid to alternative antimicrobial strategies. Here, we summarize existing reports of multidrug-resistant enteric bacterial infections in Nigeria, and importantly present the use of bacteriophages (viruses of bacteria) as an attractive antimicrobial alternative to combat these pathogens. It is hoped that this review will encourage research into the use of lytic bacteriophages against multidrug-resistant enteric bacteria in Nigeria.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo 230212, Osun State, Nigeria; Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; International College, University of Chinese Academy of Sciences, Beijing, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya.
| | - Waidi Folorunso Sule
- Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo 230212, Osun State, Nigeria
| | - Sunday Babatunde Akinde
- Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo 230212, Osun State, Nigeria
| | - Fazal Mehmood Khan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Faith Ogolla
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; International College, University of Chinese Academy of Sciences, Beijing, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya; Sino-Africa Joint Research Center, Nairobi, Kenya
| |
Collapse
|
21
|
Mota-Gutierrez J, Lis L, Lasagabaster A, Nafarrate I, Ferrocino I, Cocolin L, Rantsiou K. Campylobacter spp. prevalence and mitigation strategies in the broiler production chain. Food Microbiol 2022; 104:103998. [DOI: 10.1016/j.fm.2022.103998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
|
22
|
Al-Mohammadi AR, El-Didamony G, Abd El Moneem MS, Elshorbagy IM, Askora A, Enan G. Isolation and Characterization of Lytic Bacteriophages Specific for Campylobacter jejuni and Campylobacter coli. ZOONOTIC DISEASES 2022; 2:59-72. [DOI: 10.3390/zoonoticdis2020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In this study, two lytic bacteriophages designated as vB_CjP and vB_CcM were isolated and evaluated for their ability to combat multidrug-resistant bacteria Campylobacter jejuni and Campylobacter coli, respectively. A morphological analysis of these phages by transmission electron microscopy revealed that the vB-CjP bacteriophage had a mean head dimension of 66.6 ± 2.1 nm and a short non-contractile tail and belongs to the Podoviridae family, whereas vB_CcM had a mean head dimension of 80 ± 3.2 nm, a contractile tail, and a length calculated to be 60 ± 2.5 nm and belongs to the Myoviridae family. The results of the host range assay showed that vB_CjP could infect 5 of 10 C. jejuni isolates, whereas vB_CcM could infect 4 of 10 C. coli isolates. Both phages were thermostable and did not lose their infectivity and ability to lyse their host following exposure to 60 °C for 10 min; furthermore, phage particles were relatively stable within a pH range of 6–8. A one-step growth curve indicated that the phages produced estimated burst sizes of 110 and 120 PFU per infected cell with latent periods of 10 and 15 min, for vB-CjP and vB-CcM, respectively. The lytic activity of these phages against planktonic Campylobacter showed that these phages were able to control the growth of Campylobacter in vitro. These results suggest that these phages have a high potential for phage applications and can reduce significantly the counts of Campylobacter spp. The lytic activity of vB-CjP and vB-CcM phages at different (MOIs) against multidrug resistance Campylobacter strains was evaluated. The bacterial growth was slightly delayed by both phages, and the highest efficiency of both phages was observed when MOI = 1 was applied.
Collapse
|
23
|
Olson EG, Micciche AC, Rothrock MJ, Yang Y, Ricke SC. Application of Bacteriophages to Limit Campylobacter in Poultry Production. Front Microbiol 2022; 12:458721. [PMID: 35069459 PMCID: PMC8766974 DOI: 10.3389/fmicb.2021.458721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is a major foodborne pathogen with over a million United States cases a year and is typically acquired through the consumption of poultry products. The common occurrence of Campylobacter as a member of the poultry gastrointestinal tract microbial community remains a challenge for optimizing intervention strategies. Simultaneously, increasing demand for antibiotic-free products has led to the development of several alternative control measures both at the farm and in processing operations. Bacteriophages administered to reduce foodborne pathogens are one of the alternatives that have received renewed interest. Campylobacter phages have been isolated from both conventionally and organically raised poultry. Isolated and cultivated Campylobacter bacteriophages have been used as an intervention in live birds to target colonized Campylobacter in the gastrointestinal tract. Application of Campylobacter phages to poultry carcasses has also been explored as a strategy to reduce Campylobacter levels during poultry processing. This review will focus on the biology and ecology of Campylobacter bacteriophages in poultry production followed by discussion on current and potential applications as an intervention strategy to reduce Campylobacter occurrence in poultry production.
Collapse
Affiliation(s)
- Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Micciche
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
24
|
Steffan SM, Shakeri G, Hammerl JA, Kehrenberg C, Peh E, Rohde M, Jackel C, Plotz M, Kittler S. Isolation and Characterization of Group III Campylobacter jejuni-Specific Bacteriophages From Germany and Their Suitability for Use in Food Production. Front Microbiol 2021; 12:761223. [PMID: 34956123 PMCID: PMC8696038 DOI: 10.3389/fmicb.2021.761223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter spp. are a major cause of bacterial foodborne diarrhea worldwide. While thermophilic Campylobacter species asymptomatically colonize the intestines of chickens, most human infections in industrial countries have been attributed to consumption of chicken meat or cross-contaminated products. Bacteriophages (phages) are natural predators of bacteria and their use at different stages of the food production chain has been shown to reduce the public health burden of human campylobacteriosis. However, regarding regulatory issues, the use of lytic phages in food is still under discussion and evaluation. This study aims to identify lytic phages suitable for reducing Campylobacter bacteria along the food production chain. Therefore, four of 19 recently recovered phages were further characterized in detail for their lytic efficacy against different Campylobacter field strains and their suitability under food production settings at different temperatures and pH values. Based on the results of this study, the phages vB_CjM-LmqsCP1-4 and vB_CjM-LmqsCP1-5 appear to be promising candidates for the reduction of Campylobacter jejuni in food production settings.
Collapse
Affiliation(s)
- Severin Michael Steffan
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Golshan Shakeri
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Claudia Jackel
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Madeleine Plotz
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, Foundation University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
25
|
Kaur G, Agarwal R, Sharma RK. Bacteriophage Therapy for Critical and High-Priority Antibiotic-Resistant Bacteria and Phage Cocktail-Antibiotic Formulation Perspective. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:433-446. [PMID: 34120319 DOI: 10.1007/s12560-021-09483-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Phage therapy is revolving to address the issues mainly dealing with antibiotic resistance in the pathogenic bacteria. Among the drug-resistant microbial populations, the bacterial species have been categorized as high-priority or critical-priority bacteria. This review summarizes the efficiency and development in phage therapy used against these drug-resistant bacteria in the past few years mainly belonging to the critical- and high-priority list. Phage therapy is more than just an alternative to antibiotics as it not only kills the target microbial population directly but also leads to the chemical and physical modifications in bacterial cell structures. These phage-mediated modifications in the bacterial cell may make them antibiotic sensitive. Application of phage therapy in antibiotic-resistant foodborne bacteria and possible modulation in gut microbes has also been explored. Further, the phage cocktail antibiotic formulation, containing more than one type of phage with antibiotics, has also been discussed.
Collapse
Affiliation(s)
- Gursneh Kaur
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Ritika Agarwal
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
26
|
Mosimann S, Desiree K, Ebner P. Efficacy of phage therapy in poultry: a systematic review and meta-analysis. Poult Sci 2021; 100:101472. [PMID: 34695636 PMCID: PMC8554251 DOI: 10.1016/j.psj.2021.101472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/21/2023] Open
Abstract
The increasing prevalence of antimicrobial resistant bacteria has sparked a renewed interest in alternative bacterial control methods, including bacteriophage administration. In order to determine the overall efficacy of bacteriophage administration for the reduction of bacterial concentrations in poultry, a systematic literature review and a meta-analysis were conducted. The systematic review included studies in which 1) live chickens were challenged with a known quantity of bacteria; and 2) challenged chickens were administered a known quantity of bacteriophages; and 3) concentrations of the challenge bacteria were measured in tissue/fluid samples from both challenged and unchallenged chickens after phage administration; and 4) either standard deviation or standard error was reported. Results of a meta-analysis of the 12 studies included in this review (total inputs: n = 41; total observations: n = 711) indicated that concentrations of challenge bacteria were significantly lower (P < 0.001) in challenged, phage-treated chickens than in challenged, untreated chickens (effect size = -0.82 log10 cfu/g). Phage treatment effects were significantly greater (P < 0.01) in chickens administered phages via feed than in chickens administered phages via drinking water or aerosol spray. No significant differences were observed between subgroups when data were disaggregated by various other experimental characteristics, though some significant differences were observed across subgroups after further disaggregation by sampling time and animal age. As a whole, findings from the systematic review and meta-analysis indicate that phage administration can significantly lower concentrations of targeted bacteria in chickens and that, in some instances, the effect may be greater in the short-term vs. the long-term and in older vs. younger chickens.
Collapse
Affiliation(s)
- S Mosimann
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - K Desiree
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - P Ebner
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Can good broiler flock welfare prevent colonization by Campylobacter? Poult Sci 2021; 100:101420. [PMID: 34607156 PMCID: PMC8493578 DOI: 10.1016/j.psj.2021.101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Using data on rearing and welfare metrics of multiple commercial broiler flocks, we investigate how welfare measures such as hock burn, mortality, and pododermatitis, among others, impact the likelihood of a flock becoming colonized by Campylobacter. Using both logistic regression and Bayesian networks, we show that, while some welfare metrics were weakly related to Campylobacter colonization, evidence could not be found to suggest that these metrics directly exacerbated Campylobacter colonization, rather that they were both symptoms of the same parent variable – the managing company. Observed dependency on the management of the flock suggested that yet-undiscovered differences in rearing practice were the principal factor explaining both poor bird welfare and increased risk of Campylobacter, suggesting that action can be taken to improve both these factors simultaneously.
Collapse
|
28
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
29
|
Vizzini P, Vidic J, Manzano M. Enrichment Free qPCR for Rapid Identification and Quantification of Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis in Chicken Meat Samples by a New Couple of Primers. Foods 2021; 10:foods10102341. [PMID: 34681388 PMCID: PMC8535059 DOI: 10.3390/foods10102341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Campylobacter is the main cause of bacterial foodborne disease and poultry meat is the principal source of human infections. Rapid methods for Campylobacter detection are urgently needed to decrease high bacterial prevalence in poultry products. In this study, we developed new primers, CampyPFw and CampyPRv, that target the 16S-23S rRNA genes of Campylobacter jejuni, C. coli, C. lari and C. upsaliensis. The primers were tested on positive and negative reference strains in pure cultures and in inoculated poultry meat samples before their application in real-time PCR (qPCR) protocol for analyzing chicken meat samples. In parallel, the samples were tested by using the ISO 10272-1:2006 method. The qPCR protocol based on CampyPFw and CampyPRv showed good sensitivity, with the limit of detection of 4.6 × 102 cells/mL in chicken samples without enrichment steps.
Collapse
Affiliation(s)
- Priya Vizzini
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy;
| | - Jasmina Vidic
- AgroParisTech, INRAE, Micalis Institute, Université Paris-Saclay, 78350 Jouy en Josas, France;
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy;
- Correspondence:
| |
Collapse
|
30
|
Reduced Infection Efficiency of Phage NCTC 12673 on Non-Motile Campylobacter jejuni Strains Is Related to Oxidative Stress. Viruses 2021; 13:v13101955. [PMID: 34696385 PMCID: PMC8540345 DOI: 10.3390/v13101955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 01/26/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative foodborne pathogen that causes diarrheal disease and is associated with severe post-infectious sequelae. Bacteriophages (phages) are a possible means of reducing Campylobacter colonization in poultry to prevent downstream human infections. However, the factors influencing phage-host interactions must be better understood before this strategy can be predictably employed. Most studies have focused on Campylobacter phage binding to the host surface, with all phages classified as either capsule- or flagella-specific. Here we describe the characterization of a C. jejuni phage that requires functional flagellar glycosylation and motor genes for infection, without needing the flagella for adsorption to the cell surface. Through phage infectivity studies of targeted C. jejuni mutants, transcriptomic analysis of phage-resistant mutants, and genotypic and phenotypic analysis of a spontaneous phage variant capable of simultaneously overcoming flagellar gene dependence and sensitivity to oxidative stress, we have uncovered a link between oxidative stress, flagellar motility, and phage infectivity. Taken together, our results underscore the importance of understanding phage-host interactions beyond the cell surface and point to host oxidative stress state as an important and underappreciated consideration for future phage-host interaction studies.
Collapse
|
31
|
Bacteriophage mediated control of necrotic enteritis caused by C. perfringens in broiler chickens. Vet Res Commun 2021; 45:409-421. [PMID: 34518969 DOI: 10.1007/s11259-021-09821-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/11/2021] [Indexed: 01/15/2023]
Abstract
In Egypt, little attention has been paid to the isolation and application of C. perfringens phages for treating necrotic enteritis at the farm level. This study aims to evaluate the efficiency of the podovirus C. perfringens phage in treating necrotic enteritis in broiler chickens. Accordingly, C. perfringens phage was isolated from cecal samples of apparently healthy chickens and characterized by transmission electron microscopy, thermal stability test, and pH stability test. Commercial 14-day-old Arbor Acres broiler chickens were allocated to three groups: group Ӏ received BHI broth and assigned as a negative control, group П served as a positive control group that was challenged with C. perfringens via oral gavage for four successive days, and group Ш was administrated six phage doses on several occasions after oral gavage challenge with C. perfringens. Daily clinical symptoms and mortality were recorded. At three-time intervals, necrotic enteritis lesions were scored. Cecal samples were examined for re-isolation and counting of C. perfringens. The isolated C. perfringens phage was a podovirus with an icosahedral head diameter of 78.7 nm and a short non-contractile tail length of 22.2 nm. It remained stable for 60 min at 30 °C and 50 °C at pH values of 2, 4, 8, and 10. The phage-treated group (Ш) showed mild gross lesions with a lower mortality rate and reduced colony-forming units than the positive control group (П). The findings revealed that the isolated C. perfringens phage effectively treated experimental necrotic enteritis in broiler chickens.
Collapse
|
32
|
D’Angelantonio D, Scattolini S, Boni A, Neri D, Di Serafino G, Connerton P, Connerton I, Pomilio F, Di Giannatale E, Migliorati G, Aprea G. Bacteriophage Therapy to Reduce Colonization of Campylobacter jejuni in Broiler Chickens before Slaughter. Viruses 2021; 13:v13081428. [PMID: 34452294 PMCID: PMC8402772 DOI: 10.3390/v13081428] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/23/2023] Open
Abstract
Campylobacteriosis is the most commonly reported gastrointestinal disease in humans. Campybacter jejuni is the main cause of the infection, and bacterial colonization in broiler chickens is widespread and difficult to prevent, leading to high risk of occurrence in broiler meat. Phage therapy represents an alternative strategy to control Campylobacter in poultry. The aim of this work was to assess the efficacy of two field-isolated bacteriophages against experimental infections with an anti-microbial resistant (AMR) Campylobacter jejuni strain. A two-step phage application was tested according to a specific combination between chickens’ rearing time and specific multiplicities of infections (MOIs), in order to reduce the Campylobacter load in the animals at slaughtering and to limit the development of phage-resistant mutants. In particular, 75 broilers were divided into three groups (A, B and C), and phages were administered to animals of groups B and C at day 38 (Φ 16-izsam) and 39 (Φ 7-izsam) at MOI 0.1 (group B) and 1 (group C). All broilers were euthanized at day 40, and Campylobacter jejuni was enumerated in cecal contents. Reductions in Campylobacter counts were statistically significant in both group B (1 log10 colony forming units (cfu)/gram (gr)) and group C (2 log10 cfu/gr), compared to the control group. Our findings provide evidence about the ability of phage therapy to reduce the Campylobacter load in poultry before slaughtering, also associated with anti-microbial resistance pattern.
Collapse
Affiliation(s)
- Daniela D’Angelantonio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Arianna Boni
- Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Diana Neri
- Local Health Unit of Ferrara (USL Ferrara), 44121 Ferrara, Italy;
| | | | - Philippa Connerton
- Division of Food Science, School of Bioscience, The University of Nottingham, Nottingham LE12 5RD, UK; (P.C.); (I.C.)
| | - Ian Connerton
- Division of Food Science, School of Bioscience, The University of Nottingham, Nottingham LE12 5RD, UK; (P.C.); (I.C.)
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Elisabetta Di Giannatale
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Giacomo Migliorati
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
| | - Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (D.D.); (S.S.); (F.P.); (E.D.G.); (G.M.)
- Correspondence: ; Tel.: +39-0861-33-2-469
| |
Collapse
|
33
|
Ruhnau D, Hess C, Doupovec B, Grenier B, Schatzmayr D, Hess M, Awad W. Deepoxy-deoxynivalenol (DOM-1), a derivate of deoxynivalenol (DON), exhibits less toxicity on intestinal barrier function, Campylobacter jejuni colonization and translocation in broiler chickens. Gut Pathog 2021; 13:44. [PMID: 34217373 PMCID: PMC8254355 DOI: 10.1186/s13099-021-00440-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background Intestinal epithelial cells are challenged by mycotoxins and many bacterial pathogens. It was previously shown that the mycotoxin deoxynivalenol (DON) as well as Campylobacter (C.) jejuni have a negative impact on gut integrity. Recently, it was demonstrated that DON increased the load of C. jejuni in the gut and inner organs. Based on this finding, it was hypothesized the DON metabolite (deepoxy-deoxynivalenol, DOM-1) should be able to reduce the negative effects of DON on colonization and translocation of C. jejuni in broilers, since it lacks the epoxide ring, which is responsible for the toxicity of DON. Methods A total of 180 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were divided into six groups (n = 30 with 5 replicates/group): 1. Control, 2. DOM-1, 3. DON, 4. DOM-1 + C. jejuni, 5. DON + C. jejuni, 6. C. jejuni. At day 14, birds of groups 4, 5 and 6 were orally inoculated via feeding tube (gavage) with 1-ml of a PBS suspension containing 1 × 108 CFU of C. jejuni NCTC 12744. The performance parameters: body weight (BW), body weight gain (BWG), and feed intake of the birds were determined. At 7, 14, and 21 days post infection, samples from liver, spleen, duodenum, jejunum and cecum were aseptically collected and processed for bacteriological investigations. Finally, at each killing time point, segments of duodenum, jejunum and cecum were harvested and prepared for Ussing chamber studies to measure the paracellular mannitol fluxes. Results A significant decrease in body weight was observed for chickens receiving the DON diet with or without C. jejuni compared to the other groups. Furthermore, it was found that the co-exposure of birds to DON and C. jejuni resulted in a higher C. jejuni load not only in the gut but also in liver and spleen due to increased paracellular permeability of the duodenum, jejunum and cecum. On the contrary, DOM-1 supplementation in the feed improved the birds’ performance and led to a better feed conversion ratio throughout the trial. Furthermore, DOM-1 did not negatively affect gut permeability and decreased the C. jejuni counts in the intestine and internal organs. Conclusion Altogether, the presence of DOM-1 in the feed as a result of the enzymatic biotransformation of DON leads to a lower C. jejuni count in the intestine and better feed conversion ratio. Moreover, this study demonstrates that the detoxification product of DON, DOM-1, does not have negative effects on the gastrointestinal tract and reduces the Campylobacter burden in chickens and also the risk for human infection.
Collapse
Affiliation(s)
- Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | | | | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Wageha Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
34
|
Adiguzel MC, Goulart DB, Wu Z, Pang J, Cengiz S, Zhang Q, Sahin O. Distribution of CRISPR Types in Fluoroquinolone-Resistant Campylobacter jejuni Isolates. Pathogens 2021; 10:345. [PMID: 33809410 PMCID: PMC8000906 DOI: 10.3390/pathogens10030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022] Open
Abstract
To aid development of phage therapy against Campylobacter, we investigated the distribution of the clustered regularly interspaced short palindromic repeats (CRISPR) systems in fluoroquinolone (FQ)-resistant Campylobacter jejuni. A total of 100 FQ-resistant C. jejuni strains from different sources were analyzed by PCR and DNA sequencing to determine resistance-conferring mutation in the gyrA gene and the presence of various CRISPR systems. All but one isolate harbored 1-5 point mutations in gyrA, and the most common mutation was the Thr86Ile change. Ninety-five isolates were positive with the CRISPR PCR, and spacer sequences were found in 86 of them. Among the 292 spacer sequences identified in this study, 204 shared 93-100% nucleotide homology to Campylobacter phage D10, 44 showed 100% homology to Campylobacter phage CP39, and 3 had 100% homology with Campylobacter phage CJIE4-5. The remaining 41 spacer sequences did not match with any phages in the database. Based on the results, it was inferred that the FQ-resistant C. jejuni isolates analyzed in this study were potentially resistant to Campylobacter phages D10, CP39, and CJIE4-5 as well as some unidentified phages. These phages should be excluded from cocktails of phages that may be utilized to treat FQ-resistant Campylobacter.
Collapse
Affiliation(s)
- Mehmet Cemal Adiguzel
- Department of Microbiology, College of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (M.C.A.); (S.C.)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Debora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Seyda Cengiz
- Department of Microbiology, College of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (M.C.A.); (S.C.)
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
35
|
Kittler S, Steffan S, Peh E, Plötz M. Phage Biocontrol of Campylobacter: A One Health Approach. Curr Top Microbiol Immunol 2021; 431:127-168. [PMID: 33620651 DOI: 10.1007/978-3-030-65481-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human infections by Campylobacter species are among the most reported bacterial gastrointestinal diseases in the European Union and worldwide with severe outcomes in rare cases. Considering the transmission routes and farm animal reservoirs of these zoonotic pathogens, a comprehensive One Health approach will be necessary to reduce human infection rates. Bacteriophages are viruses that specifically infect certain bacterial genera, species, strains or isolates. Multiple studies have demonstrated the general capacity of phage treatments to reduce Campylobacter loads in the chicken intestine. However, phage treatments are not yet approved for extensive use in the agro-food industry in Europe. Technical inconvenience is mainly related to the efficacy of phages, depending on the optimal choice of phages and their combination, as well as application route, concentration and timing. Additionally, regulatory uncertainties have been a major concern for investment in commercial phage-based products. This review addresses the question as to how phages can be put into practice and can help to solve the issue of human campylobacteriosis in a sustainable One Health approach. By compiling the reported findings from the literature in a standardized manner, we enabled inter-experimental comparisons to increase our understanding of phage infection in Campylobacter spp. and practical on-farm studies. Further, we address some of the hurdles that still must be overcome before this new methodology can be adapted on an industrial scale. We envisage that phage treatment can become an integrated and standardized part of a multi-hurdle anti-bacterial strategy in food production. The last part of this chapter deals with some of the issues raised by legal authorities, bringing together current knowledge on Campylobacter-specific phages and the biosafety requirements for approval of phage treatment in the food industry.
Collapse
Affiliation(s)
- Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Severin Steffan
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| |
Collapse
|
36
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|
37
|
Hakeem MJ, Lu X. Survival and Control of Campylobacter in Poultry Production Environment. Front Cell Infect Microbiol 2021; 10:615049. [PMID: 33585282 PMCID: PMC7879573 DOI: 10.3389/fcimb.2020.615049] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Campylobacter species are Gram-negative, motile, and non-spore-forming bacteria with a unique helical shape that changes to filamentous or coccoid as an adaptive response to environmental stresses. The relatively small genome (1.6 Mbp) of Campylobacter with unique cellular and molecular physiology is only understood to a limited extent. The overall strict requirement of this fastidious microorganism to be either isolated or cultivated in the laboratory settings make itself to appear as a weak survivor and/or an easy target to be inactivated in the surrounding environment of poultry farms, such as soil, water source, dust, surfaces and air. The survival of this obligate microaerobic bacterium from poultry farms to slaughterhouses and the final poultry products indicates that Campylobacter has several adaptive responses and/or environmental niches throughout the poultry production chain. Many of these adaptive responses remain puzzles. No single control method is yet known to fully address Campylobacter contamination in the poultry industry and new intervention strategies are required. The aim of this review article is to discuss the transmission, survival, and adaptation of Campylobacter species in the poultry production environments. Some approved and novel control methods against Campylobacter species throughout the poultry production chain will also be discussed.
Collapse
Affiliation(s)
- Mohammed J Hakeem
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Ste Anne de Bellevue, QC, Canada
| |
Collapse
|
38
|
Isolation, host specificity and genetic characterization of Campylobacter specific bacteriophages from poultry and swine sources. Food Microbiol 2021; 97:103742. [PMID: 33653521 DOI: 10.1016/j.fm.2021.103742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
The isolation and characterization of 304 Campylobacter specific bacteriophage isolates from broiler and swine sources is reported in this study. Genome size characterization determined by PFGE classified these isolates,called CAM1-CAM304, within the campylophages group II (n = 18) and group III (n = 286). Host range analyses showed a high host specificity and similar lytic spectrum among isolates of the same group. Campylophages of group II infected C. jejuni, C. coli and even a C. fetus strain whereas those of group III only infected C. jejuni strains. The most promising 59 campylophage candidates were selected according to their lytic activity and their genetic diversity was analyzed by RFLP using SmiI and HhaI endonucleases for group II and III campylophages, respectively. Moreover, RAPD-PCR technique was for the first time assessed in the genetic characterization of campylophages and it was shown to be effective only for those of group II. Bacteriophage isolates grouped in a same genotype displayed different host ranges, therefore, 13 campylophages of group II and eight of group III were differentiated considering all the approaches assayed. An in-depth analysis of these bacteriophages will be performed to confirm their promising potential for the biocontrol of Campylobacter within the farm to fork process.
Collapse
|
39
|
Premaratne A, Zhang H, Wang R, Chinivasagam N, Billington C. Phage Biotechnology to Mitigate Antimicrobial Resistance in Agriculture. SUSTAINABLE AGRICULTURE REVIEWS 2021. [DOI: 10.1007/978-3-030-58259-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Lu T, Marmion M, Ferone M, Wall P, Scannell AGM. On farm interventions to minimise Campylobacter spp. contamination in chicken. Br Poult Sci 2020; 62:53-67. [PMID: 32835499 DOI: 10.1080/00071668.2020.1813253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. This review explores current and proposed on-farm interventions and assess the potential of these interventions against Campylobacter spp. 2. Interventions such as vaccination, feed/water-additives and, most importantly, consistent biosecurity, exhibit potential for the effective control of this pathogen and its dissemination within the food chain. 3. Due to the extensive diversity in the Campylobacter spp. genome and surface-expressed proteins, vaccination of poultry is not yet regarded as a completely effective strategy. 4. The acidification of drinking water through the addition of organic acids has been reported to decrease the risk of Campylobacter spp. colonisation in broiler flocks. Whilst this treatment alone will not completely protect birds, use of water acidification in combination with in-feed measures to further reduce the level of Campylobacter spp. colonisation in poultry may be an option meriting further exploration. 5. The use of varied types of feed supplements to reduce the intestinal population and shedding rate of Campylobacter spp. in poultry is an area of growing interest in the poultry industry. Such supplements include pro - and pre-biotics, organic acids, bacteriocins and bacteriophage, which may be added to feed and water. 6. From the literature, it is clear that a distinct, albeit not unexpected, difference between the performance of in-feed interventions exists when examined in vitro compared to those determined in in vivo studies. It is much more likely that pooling some of the discussed approaches in the in-feed tool kit will provide an answer. 7. Whilst on-farm biosecurity is essential to maintain a healthy flock and reduce disease transmission, even the most stringent biosecurity measures may not have sufficient, consistent and predictable effects in controlling Campylobacter spp. Furthermore, the combination of varied dietary approaches and improved biosecurity measures may synergistically improve control.
Collapse
Affiliation(s)
- T Lu
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Marmion
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Ferone
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - P Wall
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| | - A G M Scannell
- UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| |
Collapse
|
41
|
Abdelhamid AG, El-Dougdoug NK. Controlling foodborne pathogens with natural antimicrobials by biological control and antivirulence strategies. Heliyon 2020; 6:e05020. [PMID: 32995651 PMCID: PMC7511826 DOI: 10.1016/j.heliyon.2020.e05020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Foodborne diseases represent a global health threat besides the great economic losses encountered by the food industry. These hazards necessitate the implementation of food preservation methods to control foodborne pathogens, the causal agents of human illnesses. Until now, most control methods rely on inhibiting the microbial growth or eliminating the pathogens by applying lethal treatments. Natural antimicrobials, which inhibit microbial growth, include traditional chemicals, naturally occurring antimicrobials, or biological preservation (e.g. beneficial microbes, bacteriocins, or bacteriophages). Although having great antimicrobial effectiveness, challenges due to the adaptation of foodborne pathogens to such control methods are becoming apparent. Such adaptation enables the survival of the pathogens in foods or food-contact environments. This imperative concern inspires contemporary research and food industry sector to develop technologies which do not target microbial growth but disarming microbial virulence factors. These technologies, referred to as "antivirulence", render the microbe non-capable of causing the disease with very limited or no opportunities for the pathogenic microorganisms to develop resistance. For the sake of safer and fresh-like foods, with no effect on the sensory properties of foods, a combination of two or more natural antimicrobials or with other stressors, is now widespread, to preserve foods. This review introduces and critically describes the traditional versus the emerging uses of natural antimicrobials for controlling foodborne pathogens in foods. Development of biological control strategies using natural antimicrobials proved to be effective in inhibiting microbial growth in foods and allowing improved food safety. In the meanwhile, discovery of new antivirulence agents could be a transformative strategy in food preservation in the far future.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| |
Collapse
|
42
|
Adhikari N, Acharya KP. Effectiveness of Bacteriophage Therapy in Field Conditions and Possible Future Applications. Curr Pharm Biotechnol 2020; 21:364-373. [PMID: 31845630 DOI: 10.2174/1389201021666191217111156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bacteriophages are viruses, which are obligate parasites of specific bacteria for the completion of their lifecycle. Bacteriophages could be the possible alternative to antibioticresistant bacterial diseases. With this objective, extensive research in different fields is published which are discussed in this article. METHODS After a review of bacteriophage therapy, bacteriophages were found to be effective against the multidrug-resistant bacteria individually or synergistically with antibiotics. They were found to be more effective, even better than the bacteria in the development of a vaccine. RESULTS Apart from the bacteriophages, their cell contents like Lysin enzymes were found equally very much effective. Only the major challenge faced in phage therapy was the identification and characterization of bacteria-specific phages due to the wide genetic diversity of bacterial populations. Similarly, the threshold level of bacteriophages to act effectively was altered by ultraviolet radiation and heat exposure. CONCLUSION Thus, bacteriophage therapy offers promising alternatives in the treatment of antibioticresistant bacteria in different fields. However, their effectiveness is determined by a triad of bacteriophages (type & quantity), host (bacteria) and environmental factors.
Collapse
Affiliation(s)
- Niran Adhikari
- Animal Health Training and Consultancy Services (AHTCS), Pokhara, Nepal
| | - Krishna P Acharya
- Animal Quarantine Office (AQO), Budhanilakantha, Kathmandu, Nepal.,Ministry of Land Management, Agriculture and Co-operatives (MoLMAC), Gandaki State, Pokhara, Nepal
| |
Collapse
|
43
|
Nastasijevic I, Proscia F, Boskovic M, Glisic M, Blagojevic B, Sorgentone S, Kirbis A, Ferri M. The European Union control strategy for
Campylobacter
spp. in the broiler meat chain. J Food Saf 2020. [DOI: 10.1111/jfs.12819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Marija Boskovic
- Faculty of Veterinary Medicine University of Belgrade Belgrade Serbia
| | - Milica Glisic
- Faculty of Veterinary Medicine University of Belgrade Belgrade Serbia
| | - Bojan Blagojevic
- Faculty of Agriculture, Department for Veterinary Medicine University of Novi Sad Novi Sad Serbia
| | | | - Andrej Kirbis
- Faculty of Veterinary Medicine University of Ljubljana Ljubljana Slovenia
| | - Maurizio Ferri
- Italian Society of Preventive Veterinary Medicine Rome Italy
| |
Collapse
|
44
|
Soro AB, Whyte P, Bolton DJ, Tiwari BK. Strategies and novel technologies to control Campylobacter in the poultry chain: A review. Compr Rev Food Sci Food Saf 2020; 19:1353-1377. [PMID: 33337085 DOI: 10.1111/1541-4337.12544] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
Campylobacteriosis is one of the most common bacterial infections worldwide causing economic costs. The high prevalence of Campylobacter spp. in poultry meat is a result of several contamination and cross-contamination sources through the production chain. Moreover, survival mechanisms, such as biofilm formation, viable but nonculturable state, and antimicrobial resistance, enable its persistence during food processing. Therefore, mitigation strategies are necessary in order to avoid and/or inactivate Campylobacter at farm, abattoir, industry, and retail level. In this review, a number of potential strategies and novel technologies that could reduce the prevalence of Campylobacter in poultry meat have been identified and evaluated to provide a useful overview. At farm level for instance, biosecurity, bacteriocins, probiotics, feed and water additives, bacteriophages, and vaccination could potentially reduce colonization in chicken flocks. However, current technologies used in the chicken slaughter and processing industry may be less effective against this foodborne pathogen. Novel technologies and strategies such as cold plasma, ultraviolet light, high-intensity light pulses, pulsed electric fields, antimicrobials, and modified atmosphere packaging are discussed in this review for reducing Campylobacter contamination. Although these measures have achieved promising results, most have not been integrated within processing operations due to a lack of knowledge or an unwillingness to implement these into existing processing systems. Furthermore, a combination of existing and novel strategies might be required to decrease the prevalence of this pathogen in poultry meat and enhance food safety. Therefore, further research will be essential to assess the effectiveness of all these strategies.
Collapse
Affiliation(s)
- Arturo B Soro
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Ireland.,UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Declan J Bolton
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Ireland
| |
Collapse
|
45
|
Chinivasagam HN, Estella W, Maddock L, Mayer DG, Weyand C, Connerton PL, Connerton IF. Bacteriophages to Control Campylobacter in Commercially Farmed Broiler Chickens, in Australia. Front Microbiol 2020; 11:632. [PMID: 32395115 PMCID: PMC7197261 DOI: 10.3389/fmicb.2020.00632] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
This study describes the development and use of bacteriophage cocktails to control Campylobacter in broiler chickens, in a commercial setting, in Queensland Australia, following the birds from farm to the processing plant. The components of the bacteriophage cocktails were selected to be effective against the maximum number of Campylobacter jejuni and Campylobacter coli isolates encountered on SE Queensland farms. Farms were identified that had suitable Campylobacter target populations and phage were undetectable 1 week prior to the intended treatment. Cocktails of phages were administered at 47 days of age. Groups of study birds were slaughtered the following day, on-farm, at the end of flock transport to the plant, and at processing (approximately 28 h post-treatment). On Farm A, the phage treatment significantly reduced Campylobacter levels in the ceca at the farm in the range of 1-3 log10 CFU/g (p = 0.007), compared to mock treated controls. However, individual birds sampled on farm (1/10) or following transport (2/10) exhibited high cecal Campylobacter counts with low phage titers, suggesting that treatment periods > 24 h may be required to ensure phage replication for effective biocontrol in vivo. At the time of the trial the control birds in Farm B were phage positive despite having been negative one week earlier. There was no significant difference in the cecal Campylobacter counts between the treatment and control groups following treatment but a fall of 1.7 log10 CFU/g was observed from that determined from birds collected the previous week (p = 0.0004). Campylobacter isolates from both farms retained sensitivity to the treatment phages. These trials demonstrated bacteriophages sourced from Queensland farms have the potential to reduce intestinal Campylobacter levels in market ready broiler chickens.
Collapse
Affiliation(s)
- Helene N. Chinivasagam
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Wiyada Estella
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Lance Maddock
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - David G. Mayer
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Caitlin Weyand
- EcoSciences Precinct, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Phillippa L. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ian F. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
46
|
Development of a Lyophilization Process for Campylobacter Bacteriophage Storage and Transport. Microorganisms 2020; 8:microorganisms8020282. [PMID: 32093083 PMCID: PMC7074765 DOI: 10.3390/microorganisms8020282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages are a sustainable alternative to control pathogenic bacteria in the post-antibiotic era. Despite promising reports, there are still obstacles to phage use, notably titer stability and transport-associated expenses for applications in food and agriculture. In this study, we have developed a lyophilization approach to maintain phage titers, ensure efficacy and reduce transport costs of Campylobacter bacteriophages. Lyophilization methods were adopted with various excipients to enhance stabilization in combination with packaging options for international transport. Lyophilization of Eucampyvirinae CP30A using tryptone formed a cake that limited processing titer reduction to 0.35 ± 0.09 log10 PFU mL−1. Transmission electron microscopy revealed the initial titer reduction was associated with capsid collapse of a subpopulation. Freeze-dried phages were generally stable under refrigerated vacuum conditions and showed no significant titer changes over 3 months incubation at 4 °C (p = 0.29). Reduced stability was observed for lyophilized phages that were incubated either at 30 °C under vacuum or at 4 °C at 70% or 90% relative humidity. Refrigerated international transport and rehydration of the cake resulted in a total phage titer reduction of 0.81 ± 0.44 log10 PFU mL−1. A significantly higher titer loss was observed for phages that were not refrigerated during transport (2.03 ± 0.32 log10 PFU mL−1). We propose that lyophilization offers a convenient method to preserve and transport Campylobacter phages, with minimal titer reduction after the drying process.
Collapse
|
47
|
Ushanov L, Lasareishvili B, Janashia I, Zautner AE. Application of Campylobacter jejuni Phages: Challenges and Perspectives. Animals (Basel) 2020; 10:E279. [PMID: 32054081 PMCID: PMC7070343 DOI: 10.3390/ani10020279] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages (phages) are the most abundant and diverse biological entities in the biosphere. Due to the rise of multi-drug resistant bacterial strains during the past decade, phages are currently experiencing a renewed interest. Bacteriophages and their derivatives are being actively researched for their potential in the medical and biotechnology fields. Phage applications targeting pathogenic food-borne bacteria are currently being utilized for decontamination and therapy of live farm animals and as a biocontrol measure at the post-harvest level. For this indication, the United States Food and Drug Administration (FDA) has approved several phage products targeting Listeria sp., Salmonella sp. and Escherichia coli. Phage-based applications against Campylobacter jejuni could potentially be used in ways similar to those against Salmonella sp. and Listeria sp.; however, only very few Campylobacter phage products have been approved anywhere to date. The research on Campylobacter phages conducted thus far indicates that highly diverse subpopulations of C. jejuni as well as phage isolation and enrichment procedures influence the specificity and efficacy of Campylobacter phages. This review paper emphasizes conclusions from previous findings instrumental in facilitating isolation of Campylobacter phages and improving specificity and efficacy of the isolates.
Collapse
Affiliation(s)
- Leonid Ushanov
- Institute of Veterinary Medicine, Agricultural University of Georgia, 0159 Tbilisi, Georgia; (L.U.); (B.L.)
| | - Besarion Lasareishvili
- Institute of Veterinary Medicine, Agricultural University of Georgia, 0159 Tbilisi, Georgia; (L.U.); (B.L.)
| | - Irakli Janashia
- Institute of Entomology, Agricultural University of Georgia, 0159 Tbilisi, Georgia;
| | - Andreas E. Zautner
- Institute of Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
48
|
Zhou C, Zhu M, Wang Y, Yang Z, Ye M, Wu L, Bao H, Pang M, Zhou Y, Wang R, Sun L, Wang H, Zheng C, Zhang H. Broad host range phage vB-LmoM-SH3-3 reduces the risk of Listeria contamination in two types of ready-to-eat food. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106830] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Gigante A, Atterbury RJ. Veterinary use of bacteriophage therapy in intensively-reared livestock. Virol J 2019; 16:155. [PMID: 31831017 PMCID: PMC6909661 DOI: 10.1186/s12985-019-1260-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Zoonoses are infectious diseases transmitted directly or indirectly between animals and humans. Several important zoonotic pathogens colonize farm animals asymptomatically, which may lead to contamination of the food chain and public health hazards. Moreover, routine sampling of carcasses at retail by government authorities over the past 20 years suggests the prevalence of antibiotic resistance in foodborne pathogens has increased. If this continues, antibiotics may be ineffective against such pathogens in the future and alternative approaches, such as phage therapy, may be necessary. Intensive livestock farming is the only realistic way of meeting the demand for meat from an increasing global population and growth in middle class consumers in developing countries, particularly in Asia. This review elaborates on the use of phages to control zoonotic pathogens in intensively-reared livestock (poultry and pigs).
Collapse
Affiliation(s)
- Adriano Gigante
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD UK
| | - Robert J Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD UK
| |
Collapse
|
50
|
|