1
|
Madad A, Vasser M, Viazis S, Neil KP, Kirchner M, Blessington T, Pightling A, Ingram DT, Grunenfelder L, Hughes S, Bell RL, Wang H, Nork B, Fernandez E, Gerrity K, Ladines E, Hise K, Hummadi O, Barnes A, Grant K, Lowe AM, Kearney A, Gieraltowski L, Salter M, Bazaco M, Carstens CK. An International Outbreak Investigation of Salmonella Enteritidis Infections in the United States and Canada Linked to Peaches - 2020. J Food Prot 2025; 88:100519. [PMID: 40287140 DOI: 10.1016/j.jfp.2025.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
During August-October 2020, United States federal, state, and Canadian partners investigated an outbreak of Salmonella Enteritidis infections, in the U.S. and Canada, linked to fresh, whole peaches packed and supplied by a grower and packer with multiple orchards (Farm A). In the U.S., a total of 101 ill people and 28 hospitalizations were reported in 17 states, while in Canada, 57 ill people and 12 hospitalizations were reported in two Canadian provinces. The U.S. traceback investigation included 14 points of service (POS), representing 18 illnesses in eight states. Multiple distributors, packinghouses, and orchards supplied bagged and loose peaches during the timeframe of interest to identified POS, with peaches and packinghouses linked to Farm A being the primary source. Orchards of interest were identified for peach fruit, orchard tree leaf, and soil drag swab sample collection using traceback and geospatial analysis. Geospatial analyses showed that several orchards were in proximity to animal operations. While none of the Salmonella isolates recovered matched the outbreak strain, Salmonella Alachua was recovered from peaches and leaf samples, and Salmonella Montevideo was recovered from orchard tree leaves. Whole genome sequencing indicated that these Salmonella isolates were closely related to historical poultry and cattle isolates. Farm A voluntarily recalled loose peaches sold from June 1 to August 3, 2020, and bagged Brand A conventional and organic peaches sold from June 1 to August 19, 2020. Recalled products were likely distributed to at least 14 different countries. Findings suggest that adjacent animal operations may be a potential contributing factor to Salmonella contamination of peaches, with windborne or fugitive dust as a possible route. The findings from this first reported international outbreak of Salmonella linked to peaches grown in the U.S. highlight the importance of grower awareness of adjacent land use.
Collapse
Affiliation(s)
- Asma Madad
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA.
| | - Michael Vasser
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stelios Viazis
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | - Karen P Neil
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret Kirchner
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | - Tyann Blessington
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | - Arthur Pightling
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | - David T Ingram
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | - Laura Grunenfelder
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | - Stephen Hughes
- Human Foods Program, Food and Drug Administration, Laurel, MD 20708, USA
| | - Rebecca L Bell
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | - Hua Wang
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | - Brittany Nork
- Office of Inspections and Investigations, Food and Drug Administration, Loveland, Colorado, USA
| | - Estefania Fernandez
- Office of Inspections and Investigations, Food and Drug Administration, Suisun City, California, USA
| | - Kevin Gerrity
- Office of Inspections and Investigations, Food and Drug Administration, San Diego, California, USA
| | - Evelyn Ladines
- Human Foods Program, Food and Drug Administration, Irvine, California, USA
| | - Kelley Hise
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Omar Hummadi
- California Department of Public Health, Sacramento, California, USA
| | - Amber Barnes
- California Department of Public Health, Sacramento, California, USA
| | - Krista Grant
- Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | | | - Ashley Kearney
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Monique Salter
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | - Michael Bazaco
- Human Foods Program, Food and Drug Administration, College Park, MD 20740, USA
| | | |
Collapse
|
2
|
Trazias H, Mayengo M, Irunde J, Kgosimore M. Dynamical modeling of Salmonellosis in humans and dairy cattle with temperature and pH effects. Res Vet Sci 2025; 184:105514. [PMID: 39733721 DOI: 10.1016/j.rvsc.2024.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
Approximately 20 million cases and 0.15 million human fatalities worldwide each year are caused by Salmonellosis. A mechanistic compartmental model based on ordinary differential equations is proposed to evaluate the effects of temperature and pH on the transmission dynamics of Salmonellosis. The transmission potential of the disease in areas with temperature and pH stresses is examined. The next-generation matrix method is applied to compute the temperature-pH-dependent reproduction number ℛPT. The dynamical regimes of the system are examined using Lyapunov stability theory and backward bifurcation analysis. The uncertainty and global sensitivity analysis are examined using the Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficient (PRCC) methods. The numerical simulations of the proposed model under favorable and unfavorable temperatures are performed with a 95% confidence interval (CI) for the reliability assessment of the model parameters. The analysis shows that the ingestion rates of Salmonella enterica subsp. enterica serovar Typhimurium bacteria in humans and dairy cattle, human-to-human transmission rate, cattle-to-cattle transmission rate, human shedding rate, dairy cattle shedding rate, and the rate of producing contaminated dairy products are directly proportional to the number of infected humans and infected dairy cattle. The temperature ranges of 100C-200C and 300C-400C and pHs greater than 3.8 have a significant effect on the dynamics of Salmonellosis. In order to eliminate Salmonellosis, the study recommends treating natural water bodies using the recommended chemical disinfectants during summer seasons and in areas with temperature ranges of 100C-200C, cooking food at the hottest temperatures, and storing food at the lowest temperatures for all pHs.
Collapse
Affiliation(s)
- Herman Trazias
- School of Computation and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. BOX 447, Arusha, Tanzania; Department of Mathematics and Statistics, Mbeya University of Science and Technology, P.O. Box 131, Mbeya, Tanzania.
| | - Maranya Mayengo
- School of Computation and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. BOX 447, Arusha, Tanzania
| | - Jacob Irunde
- Department of Mathematics, Physics and Informatics, Mkwawa University College of Education, P.O.Box 2513, Iringa, Tanzania
| | - Moatlhodi Kgosimore
- Botswana University of Agriculture and Natural Resources, P/Bag BR 0027, Gaborone, Botswana
| |
Collapse
|
3
|
Nakamoto S, Kobayashi I, Watanabe K, Kikuta T, Imamura S, Shimada T. Identification of a comprehensive set of transcriptional regulators involved in the long-term survivability of Escherichia coli in soil. Sci Rep 2025; 15:4279. [PMID: 39905026 PMCID: PMC11794783 DOI: 10.1038/s41598-025-85609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Bacteria that typically do not thrive in soil can survive therein for long periods. While much research has been conducted on the external environmental factors affecting the long-term survival of bacteria in soil, their inherent factors are poorly understood. To adapt to environmental changes, bacteria alter their gene expression patterns using transcriptional regulators such as sigma factors. Using Escherichia coli as a model bacterium, we examined the effects of each transcriptional regulator on the long-term survivability of E. coli in soil. The survivability of 294 E. coli strains deficient in transcriptional regulators in soil was measured over 6 weeks. The results showed that ten strains deficient in transcription factors significantly reduced survivability, whereas four deficient strains increased it. The functions common to several of these transcriptional regulators included carbon and nitrogen metabolism, stationary phase adaptation, and osmotic stress adaptation. These transcription factors are often global regulators and conserved among other pathogenic bacterial species. Taken together, we successfully identified a comprehensive set of transcription factors involved in the long-term survival of E. coli in soil. These findings will be useful for understanding the mechanisms underlying the adaptation of microorganisms to soil environments.
Collapse
Affiliation(s)
- Soma Nakamoto
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Koichi Watanabe
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Takeru Kikuta
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, NTT Corporation, Musashino-Shi, Tokyo, 180-8585, Japan.
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan.
| |
Collapse
|
4
|
Kharel K, Bardsley CA, Appolon CB, Dunn LL, Kumar GD, Prabha K, Sharma M, Danyluk MD, Schneider KR. The Effect of Heat-treated Poultry Pellets and Composted Poultry Litter on E. coli Survival in Southeastern US Soils: Florida and Georgia. J Food Prot 2025; 88:100439. [PMID: 39706572 DOI: 10.1016/j.jfp.2024.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Biological soil amendments of animal origin (BSAAO) are a source of foodborne pathogens that can contaminate fresh produce. This study evaluated the survival of E. coli over 140 d in agricultural soils amended with composted poultry litter (PL), heat-treated poultry pellets (HTPP), or unamended (UN) in Florida (FL) and Georgia (GA). Raised-bed plots (1 × 3 m2; n = 3) were either left unamended (UN) or amended with PL or HTPP (680 g/plot). Each plot was spray-inoculated with 1 L of rifampicin-resistant E. coli (7-8 log CFU/mL) and hand-tilled into the soil (∼5.9 and 4.5 log CFU/g for FL and GA, respectively). Soil samples were enumerated using a spread plate or most probable number technique at 0, 1, 3, 7, 14, 28, 56, 84, 112, and 140 d. Weather-related parameters were collected to assess their impact on E. coli survival. A mixed-model analysis was used to evaluate factors influencing E. coli survival, a biphasic model was used for the E. coli die-off rate, and Spearman correlations were used to understand the associations between environmental factors and survival. Time, amendment type, and location * treatment * time influenced (P < 0.05) the survival of E. coli in soil. In FL, HTPP-amended soils supported higher levels of E. coli compared to PL-amended soils; in Georgia, similar survival was observed between PL- and HTPP-amended soils, both of which were higher (P < 0.05) than in UN soils. In both locations, E. coli levels fell to the limit of detection (-0.24 log MPN/g) by 112 d in UN plots; however, they persisted at levels between 0.30 and 1.57 log CFU/g in HTTP- and PL-amended soils until 140 d. Weak to moderate correlations were observed for rainfall and soil moisture and their effect on E. coli survival; no other weather factors were impactful. The use of BSAAO in soils can prolong the survival of E. coli (>140 d) irrespective of the factors intrinsic to the locations and have implications regarding the safe use of BSAAOs during fruit and vegetable production.
Collapse
Affiliation(s)
- Karuna Kharel
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, United States
| | - Cameron A Bardsley
- US Department of Agriculture, Agricultural Research Service, Southeastern Fruit and Tree Nut Research Station, Byron, GA 31008, United States
| | - Charles Bency Appolon
- Department of Food Science and Technology, Food Science Building, University of Georgia, 100 Cedar Street, Athens, GA 30602, United States
| | - Laurel L Dunn
- Department of Food Science and Technology, Food Science Building, University of Georgia, 100 Cedar Street, Athens, GA 30602, United States
| | - Govindaraj Dev Kumar
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, United States
| | - Krishna Prabha
- Department of Food Science and Technology, Food Science Building, University of Georgia, 100 Cedar Street, Athens, GA 30602, United States
| | - Manan Sharma
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, United States
| | - Michelle D Danyluk
- Food Science and Human Nutrition Department, Citrus Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Lake Alfred, FL 33850, United States
| | - Keith R Schneider
- Food Science and Human Nutrition Department, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
5
|
Fabri ND, Santman-Berends IMGA, Weber MF, van Schaik G. Risk factors for the introduction of Salmonella spp. serogroups B and D into Dutch dairy herds. Prev Vet Med 2024; 232:106313. [PMID: 39180947 DOI: 10.1016/j.prevetmed.2024.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Salmonella spp. infections in animals are a concern due to their zoonotic nature, welfare effects and economic impact on the livestock industry. To enable targeted surveillance, it is important to identify risk factors for the introduction of Salmonella spp. in a herd. Since 2009, Dutch dairy processors require herds delivering milk to their plants to participate in a Salmonella programme. In this programme, bulk milk is tested three times a year (i.e. test rounds) by ELISA on presence of antibodies against Salmonella spp. serogroups B and D. Based on these bulk milk results we identified newly infected herds, and aimed to identify associated risk factors. Effects of putative risk factors for becoming newly infected were studied using a multivariable population average logistic regression (PA-GEE) model with binomial distribution. Per test round in 2019-2021, 0.85-4.10 % of the Dutch dairy herds at risk became newly infected, with large regional differences. Several risk factors for becoming newly infected in the context of the low herd-level prevalence were identified. The most evident risk factors that were identified were having at least one infected or recently recovered dairy herd within 500 m (OR = 2.67), on-farm presence of pigs (OR = 1.63), introduction of more than 2 cattle from other herds in the previous 12 months (OR = 1.17), being in an area with a relative soil moisture of >0.54 % (OR = 1.31), being located in an area with a high water surface area (>2 %; OR = 1.14) and a larger herd size (OR = 1.65). These results indicate that, in addition to introduction of cattle, local transmission plays an important role in the between-herd transmission of Salmonella spp. Information on risk factors for becoming newly infected based on regularly collected data, can be used to improve surveillance and to implement targeted control measures against salmonellosis.
Collapse
Affiliation(s)
- N D Fabri
- Royal GD, Arnsbergstraat 7, Deventer 7418 EZ, The Netherlands.
| | | | - M F Weber
- Royal GD, Arnsbergstraat 7, Deventer 7418 EZ, The Netherlands.
| | - G van Schaik
- Royal GD, Arnsbergstraat 7, Deventer 7418 EZ, The Netherlands; Utrecht University, Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Murphy CM, Weller DL, Bardsley CA, Ingram DT, Chen Y, Oryang D, Rideout SL, Strawn LK. Survival of Twelve Pathogenic and Generic Escherichia coli Strains in Agricultural Soils as Influenced by Strain, Soil Type, Irrigation Regimen, and Soil Amendment. J Food Prot 2024; 87:100343. [PMID: 39147099 PMCID: PMC11537252 DOI: 10.1016/j.jfp.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Biological soil amendments of animal origin (BSAAO) play an important role in agriculture but can introduce pathogens into soils. Pathogen survival in soil is widely studied, but data are needed on the impacts of strain variability and field management practices. This study monitored the population of 12 Escherichia coli strains (generic, O157, and non-O157) in soils while evaluating the interactions of soil type, irrigation regimen, and soil amendment in three independent, greenhouse-based, randomized complete block design trials. Each E. coli strain (4-5 log10 CFU/g) was homogenized in bovine manure amended or nonamended sandy-loam or clay-loam soil. E. coli was enumerated in 25 g samples on 0, 0.167 (4 h), 1, 2, 4, 7, 10, 14, 21, 28, 56, 84, 112, 168, 210, 252, and 336 days postinoculation (dpi). Regression analyses were developed to understand the impact of strain, soil type, irrigation regimen, and soil amendment on inactivation rates. E. coli survived for 112 to 336 dpi depending on the treatment combination. Pathogenic and generic E. coli survived 46 days [95% Confidence interval (CI) = 20.85, 64.72; p = 0.001] longer in soils irrigated weekly compared to daily and 146 days (CI = 114.50, 184.50; p < 0.001) longer in amended soils compared to unamended soils. Pathogenic E. coli strains were nondetectable 69 days (CI = 39.58, 98.66, p = 0.015) earlier than generic E. coli strains. E. coli inactivation rates demonstrated a tri-phasic pattern, with breakpoints at 26 dpi (CI = 22.3, 29.2) and 130 dpi (CI = 121.0, 138.1). The study findings demonstrate that using bovine manure as BSAAO in soil enhances E. coli survival, regardless of strain, and adequate food safety practices are needed to reduce the risk of crop contamination. The findings of this study contribute data on E. coli concentrations in amended soils to assist stakeholders and regulators in making risk-based decisions on time intervals between the application of BSAAO and the production and harvest of fruits and vegetables.
Collapse
Affiliation(s)
- Claire M Murphy
- School of Food Science, Washington State University - Irrigated Agriculture Research and Extension Center, Prosser, Washington, USA; Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Daniel L Weller
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Cameron A Bardsley
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - David T Ingram
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Yuhuan Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - David Oryang
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Steven L Rideout
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
7
|
Chen F, Zhou B, Yang L, Zhuang J, Chen X. Assessing the risk of E. coli contamination from manure application in Chinese farmland by integrating machine learning and Phydrus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124345. [PMID: 38852664 DOI: 10.1016/j.envpol.2024.124345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
This study aims to present a comprehensive study on the risks associated with the residual presence and transport of Escherichia coli (E. coli) in soil following the application of livestock manure in Chinese farmlands by integrating machine learning algorithms with mechanism-based models (Phydrus). We initially review 28 published papers to gather data on E. coli's die-off and attachment characteristics in soil. Machine learning models, including deep learning and gradient boosting machine, are employed to predict key parameters such as the die-off rate of E. coli and first-order attachment coefficient in soil. Then, Phydrus was used to simulate E. coli transport and survival in 23692 subregions in China. The model considered regional differences in E. coli residual risk and transport, influenced by soil properties, soil depths, precipitation, seasonal variations, and regional disparities. The findings indicate higher residual risks in regions such as the Northeast China, Eastern Qinghai-Tibet Plateau, and pronounced transport risks in the fringe of the Sichuan Basin fringe, the Loess Plateau, the North China Plain, the Northeast Plain, the Shigatse Basin, and the Shangri-La region. The study also demonstrates a significant reduction in both residual and transport risks one month after manure application, highlighting the importance of timing manure application and implementing region-specific standards. This research contributes to the broader understanding of pathogen behavior in agricultural soils and offers practical guidelines for managing the risks associated with manure use. This study's comprehensive method offers a potentially valuable tool for evaluating microbial contaminants in agricultural soils across the globe.
Collapse
Affiliation(s)
- Fengxian Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Bin Zhou
- Chair of model-based environmental exposure science, Faculty of Medicine, University of Augsburg, Augsburg 86159, Germany
| | - Liqiong Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, United States
| | - Xijuan Chen
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
8
|
Doddabematti Prakash S, Rivera J, Sabillón L, Siliveru K. From wheat grain to flour: a review of potential sources of enteric pathogen contamination in wheat milled products. Crit Rev Food Sci Nutr 2024; 65:2965-2975. [PMID: 38766719 DOI: 10.1080/10408398.2024.2353892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The number of food safety issues linked to wheat milled products have increased in the past decade. These incidents were mainly caused by the contamination of wheat-based products by enteric pathogens. This manuscript is the first of a two-part review on the status of the food safety of wheat-based products. This manuscript focused on reviewing the available information on the potential pre-harvest and post-harvest sources of microbial contamination, and potential foodborne pathogens present in wheat-based products. Potential pre-harvest sources of microbial contamination in wheat included animal activity, water, soil, and manure. Improper grain storage practices, pest activity, and improperly cleaned and sanitized equipment are potential sources of post-harvest microbial contamination for wheat-based foods. Raw wheat flour products and flour-based products are potentially contaminated with enteric pathogens such as Shiga toxin-producing E. coli (STECs), and Salmonella at low concentrations. Wheat grains and their derived products (i.e., flours) are potential vehicles for foodborne illness in humans due to the presence of enteric pathogens. A more holistic approach is needed for assuring the food safety of wheat-based products in the farm-to-table continuum. Future developments in the wheat supply chain should also be aimed at addressing this emerging food safety threat.
Collapse
Affiliation(s)
| | - Jared Rivera
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Luis Sabillón
- Department of Family Consumer Sciences, New Mexico State University, Las Cruces, NM, USA
- Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM, USA
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
9
|
Diekman CM, Cook C, Strawn LK, Danyluk MD. Factors Associated with the Prevalence of Salmonella, Generic Escherichia coli, and Coliforms in Florida's Agricultural Soils. J Food Prot 2024; 87:100265. [PMID: 38492643 DOI: 10.1016/j.jfp.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Limited data exist on the environmental factors that impact pathogen prevalence in the soil. The prevalence of foodborne pathogens, Salmonella and Listeria monocytogenes, and the prevalence and concentration of generic E. coli in Florida's agricultural soils were evaluated to understand the potential risk of microbial contamination at the preharvest level. For all organisms but L. monocytogenes, a longitudinal field study was performed in three geographically distributed agricultural areas across Florida. At each location, 20 unique 5 by 5 m field sampling sites were selected, and soil was collected and evaluated for Salmonella presence (25 g) and E. coli and coliform concentrations (5 g). Complementary data collected from October 2021 to April 2022 included: weather; adjacent land use; soil properties, including macro- and micro-nutrients; and field management practices. The overall Salmonella and generic E. coli prevalence was 0.418% (1/239) and 11.3% (27/239), respectively; with mean E. coli concentrations in positive samples of 1.56 log CFU/g. Farm A had the highest prevalence of generic E. coli, 22.8% (18/79); followed by Farm B, 10% (8/80); and Farm C 1.25% (1/80). A significant relationship (p < 0.05) was observed between generic E. coli and coliforms, and farm and sampling trip. Variation in the prevalence of generic E. coli and changes in coliform concentrations between farms suggest environmental factors (e.g. soil properties) at the three farms were different. While Salmonella was only detected once, generic E. coli was detected in Florida soils throughout the duration of the growing season meaning activities that limit contact between soil and horticultural crops should continue to be emphasized. Samples collected during an independent sampling trip were evaluated for L. monocytogenes, which was not detected. The influence of local environmental factors on the prevalence of indicator organisms in the soil presents a unique challenge when evaluating the applicability of more global models to predict pathogen prevalence in preharvest produce environments.
Collapse
Affiliation(s)
- Clara M Diekman
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Camryn Cook
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle D Danyluk
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA.
| |
Collapse
|
10
|
Metcalf R, Fellows R, White HL, Quilliam RS. Persistence of 'wet wipes' in beach sand: An unrecognised reservoir for localised E. coli contamination. MARINE POLLUTION BULLETIN 2024; 201:116175. [PMID: 38422824 DOI: 10.1016/j.marpolbul.2024.116175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The flushing of wet wipes down toilets leads to blockages of sewerage systems. This, together with unregulated sewage discharge, often results in increasing numbers of wet wipes washing up onto beaches. However, it is unclear how long wet wipes can persist on the beach and whether they pose a prolonged public health risk if contaminated by E. coli. In this mesocosm study, three types of wet wipes (plastic containing, and home and commercially compostable) colonised with E. coli were buried in beach sand and their degradation, tensile strength, and concentration of E. coli was quantified over 15 weeks. Wet wipes containing plastic remained largely intact for 15 weeks, whilst both compostable wet wipes fragmented and degraded. Importantly, E. coli persisted on all three wet wipe types, representing localised reservoirs of E. coli in the sand, which could present a human health risk at the beach.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
11
|
Detert K, Währer J, Nieselt K, Schmidt H. Broad time-dependent transcriptional activity of metabolic genes of E. coli O104:H4 strain C227/11Φcu in a soil microenvironment at low temperature. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:582-596. [PMID: 37644642 PMCID: PMC10667640 DOI: 10.1111/1758-2229.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
In the current study, metabolic genes and networks that influence the persistence of pathogenic Escherichia coli O104:H4 strain C227/11Φcu in agricultural soil microenvironments at low temperature were investigated. The strain was incubated in alluvial loam (AL) and total RNA was prepared from samples at time point 0, and after 1 and 4 weeks. Differential transcriptomic analysis was performed by RNA sequencing analysis and values obtained at weeks 1 and 4 were compared to those of time point 0. We found differential expression of more than 1500 genes for either time point comparison. The two lists of differentially expressed genes were then subjected to gene set enrichment of Gene Ontology terms. In total, 17 GO gene sets and 3 Pfam domains were found to be enriched after 1 week. After 4 weeks, 17 GO gene sets and 7 Pfam domains were statistically enriched. Especially stress response genes and genes of the primary metabolism were particularly affected at both time points. Genes and gene sets for uptake of carbohydrates, amino acids were strongly upregulated, indicating adjustment to a low nutrient environment. The results of this transcriptome analysis show that persistence of C227/11Φcu in soils is associated with a complex interplay of metabolic networks.
Collapse
Affiliation(s)
- Katharina Detert
- Department of Food Microbiology and Hygiene, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| | - Jonathan Währer
- Institute for Bioinformatics and Medical InformaticsUniversity of TübingenTübingenGermany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical InformaticsUniversity of TübingenTübingenGermany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
12
|
Detert K, Schmidt H. Sporadic Detection of Escherichia coli O104:H4 Strain C227/11Φcu in the Edible Parts of Lamb's Lettuce Cultured in Contaminated Agricultural Soil Samples. Microorganisms 2023; 11:2072. [PMID: 37630632 PMCID: PMC10457958 DOI: 10.3390/microorganisms11082072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In the current study, we demonstrate that E. coli O104:H4 strain C227/11Φcu, a derivative of the 2011 enterohemorrhagic/enteroaggregative (EHEC/EAEC) E. coli outbreak strain, migrated into the edible portion of lamb's lettuce plants upon contamination of the surrounding soil. Seeds were surface-sterilized and cultivated on Murashige-Skoog agar or in autoclaved agricultural soil. Migration into the edible portions was investigated by inoculating the agar or soil close to the plants with 108 colony-forming units (CFU). The edible parts, which did not come into contact with the contaminated medium or soil, were quantitatively analyzed for the presence of bacteria after 2, 4 and 8 weeks. Strain C227/11Φcu could colonize lamb's lettuce when contamination of medium or soil occurs. The highest recovery rate (27%) was found for lettuce cultivated in agar, and up to 1.6 × 103 CFU/g lettuce was detected. The recovery rate was lower for the soil samples (9% and 13.5%). Although the used contamination levels were high, migration of C227/11Φcu from the soil into the edible parts was demonstrated. This study further highlights the risk of crop plant contamination with pathogenic E. coli upon soil contamination.
Collapse
Affiliation(s)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany;
| |
Collapse
|
13
|
Murphy CM, Hamilton AM, Waterman K, Rock C, Schaffner D, Strawn LK. Sanitizer Type and Contact Time Influence Salmonella Reductions in Preharvest Agricultural Water Used on Virginia Farms. J Food Prot 2023; 86:100110. [PMID: 37268194 DOI: 10.1016/j.jfp.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
No Environmental Protection Agency (EPA) chemical treatments for preharvest agricultural water are currently labeled to reduce human health pathogens. The goal of this study was to examine the efficacy of peracetic acid- (PAA) and chlorine (Cl)-based sanitizers against Salmonella in Virginia irrigation water. Water samples (100 mL) were collected at three time points during the growing season (May, July, September) and inoculated with either the 7-strain EPA/FDA-prescribed cocktail or a 5-strain Salmonella produce-borne outbreak cocktail. Experiments were conducted in triplicate for 288 unique combinations of time point, residual sanitizer concentration (low: PAA, 6 ppm; Cl, 2-4 ppm or high: PAA, 10 ppm; Cl, 10-12 ppm), water type (pond, river), water temperature (12°C, 32°C), and contact time (1, 5, 10 min). Salmonella were enumerated after each treatment combination and reductions were calculated. A log-linear model was used to characterize how treatment combinations influenced Salmonella reductions. Salmonella reductions by PAA and Cl ranged from 0.0 ± 0.1 to 5.6 ± 1.3 log10 CFU/100 mL and 2.1 ± 0.2 to 7.1 ± 0.2 log10 CFU/100 mL, respectively. Physicochemical parameters significantly varied by untreated water type; however, Salmonella reductions did not (p = 0.14), likely due to adjusting the sanitizer amounts needed to achieve the target residual concentrations regardless of source water quality. Significant differences (p < 0.05) in Salmonella reductions were observed for treatment combinations, with sanitizer (Cl > PAA) and contact time (10 > 5 > 1 min) having the greatest effects. The log-linear model also revealed that outbreak strains were more treatment-resistant. Results demonstrate that certain treatment combinations with PAA- and Cl-based sanitizers were effective at reducing Salmonella populations in preharvest agricultural water. Awareness and monitoring of water quality parameters are essential for ensuring adequate dosing for the effective treatment of preharvest agricultural water.
Collapse
Affiliation(s)
- Claire M Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alexis M Hamilton
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Kim Waterman
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Channah Rock
- Department of Environmental Science, University of Arizona - Maricopa Agricultural Center, Maricopa, Arizona, USA
| | - Donald Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
14
|
Alegbeleye O, Sant'Ana AS. Survival of Salmonella spp. under varying temperature and soil conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163744. [PMID: 37142008 DOI: 10.1016/j.scitotenv.2023.163744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Soils can serve as suitable reservoirs for or barriers against microbial contamination of water resources and plant produce. The magnitude of water or food contamination risks through soil depends on several factors, including the survival potential of microorganisms in the soil. This study assessed and compared the survival/persistence of 14 Salmonella spp. strains in loam and sandy soils at 5, 10, 20, 25, 30, 35, 37 °C and under uncontrolled ambient temperature conditions in Campinas Sao Paulo. The ambient temperature ranged from 6 °C (minimum) to 36 °C (maximum). Bacterial population densities were determined by the conventional culture method (plate counts) and monitored for 216 days. Statistical differences among the test parameters were determined by Analysis of Variance, while relationships between temperature and soil type were evaluated using Pearson correlation analysis. Similarly, relationships between time and temperature for survival of the various strains were evaluated using Pearson correlation analysis. Results obtained indicate that temperature and soil type influence the survival of Salmonella spp. in soils. All 14 strains survived for up to 216 days in the organic-rich loam soil under at least three of the temperature conditions evaluated. However, comparatively lower survival rates were recorded in sandy soil, especially at lower temperature. The optimum temperature for survival varied among the strains, where some survived best at 5 °C and others between 30 and 37 °C. Under uncontrolled temperature conditions, the Salmonella strains survived better in loam than in sandy soils. Bacterial growth over post inoculation storage period was overall more impressive in loam soil. In general, the results indicate that temperature and soil type can interact to influence the survival of Salmonella spp. strains in soil. For the survival of some strains, there were significant correlations between soil type and temperature, while for some others, no significant relationship between soil and temperature was determined. A similar trend was observed for the correlation between time and temperature.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
15
|
Peng S, Song D, Zhou B, Hua Q, Lin X, Wang Y. Persistence of Salmonella Typhimurium and antibiotic resistance genes in different types of soil influenced by flooding and soil properties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114330. [PMID: 36436254 DOI: 10.1016/j.ecoenv.2022.114330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Salmonella is a zoonotic foodborne bacterial pathogen that can seriously harm health. Persistence of Salmonella and antibiotic resistance genes (ARGs) in different types of soil under flooding and natural conditions are rare explored. This study investigated the dynamic changes of the Salmonella, ARGs and bacterial communities in three types of soils applied with pig manure in lab scale. Abundance of the Salmonella Typhimurium in soils reduced to the detection limit varied from 40 to 180 days, most of the Salmonella did not survive in soil for more than 90 days. Flooding and soil texture (content of sand) promote the decline rate of Salmonella. No Salmonella was found have acquired resistance gene from the soil or manure after 90 days. 64 ARGs and 11 MGEs were quantified, abundance of these genes and risky ARGs both gradually decline along with the extension of time. Most of the extrinsic ARGs cannot colonize in soil, cellular protection and antibiotic deactivation were their main resistance mechanism. Multidrug resistance and efflux pump were the dominant class and mechanism of soil intrinsic ARGs. Flooding can affect the ARGs profiles by reducing the types of extrinsic ARGs invaded into soil and inhibit the proliferation of intrinsic genes. Soil sand content, soil moisture and nutrition concentrations had significant direct effect on the abundance or profile of ARGs. Soil bacterial community structures also changed along with the extension of time and affected by flooding. Network analyses between ARGs and bacteria taxa revealed that Actinobacteria and Myxococcia were the main hosts of intrinsic ARGs, some taxa may play a role in inhibiting extrinsic ARGs colonization in the soils. These findings unveil that saturate soil with water may play a positive role in reducing potential risk of Salmonella and ARGs in the farmland environment.
Collapse
Affiliation(s)
- Shuang Peng
- College of Environment and Ecology, Jiangsu Open University, Nanjing, Jiangsu 210017, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, PR China
| | - Dan Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Beibei Zhou
- College of Environment and Ecology, Jiangsu Open University, Nanjing, Jiangsu 210017, PR China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Qingqing Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
16
|
Bardsley CA, Young MJ, Sharma M, Kessler C, Appolon CB, Schneider KR. Growth Media of Escherichia coli Does Not Affect Its Survival in Soil under Static Conditions. J Food Prot 2022; 85:1842-1847. [PMID: 36150096 DOI: 10.4315/jfp-22-082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Many studies have examined the survival of Escherichia coli and foodborne pathogens in agricultural soils. The results of these studies can be influenced by various growth conditions and growth media used when preparing cultures for an experiment. The objectives of this study were to (i) determine the growth curves of rifampin (R)-resistant E. coli in three types of growth media containing R: tryptic soy agar (TSA-R); tryptic soy broth (TSB-R); and poultry pellet extract (PPE-R) and (ii) evaluate the influence of growth media on the survival of E. coli in agricultural soil. Poultry pellet extract (PPE) was prepared by filter sterilizing a 1:10 suspension of heat-treated poultry pellets in sterile water. Generic E. coli (TVS 353) acclimated to 80 μg/mL of R was grown in TSA-R, TSB-R, and PPE-R at 3.0 to 3.5 log CFU/mL and incubated at 37°C. Growth curves were determined by quantifying E. coli populations at 0, 4, 8, 16, 24, and 32 h. Soil microcosms were inoculated with E. coli (6.0 log CFU/g) previously cultured in one of the three media types and stored at 25°C, and soil samples were quantified for E. coli on days 0, 1, 3, 7, 14, 28, and 42. Growth curves and survival models were generated by using DMFit and GInaFiT, respectively. E. coli growth rates were 0.88, 0.77, and 0.69 log CFU/mL/h in TSA-R, TSB-R, and PPE-R, respectively. E. coli populations in the stationary phase were greater for cultures grown in TSA-R (9.4 log CFU/mL) and TSB-R (9.1 log CFU/mL) compared with PPE-R (7.9 log CFU/mL). The E. coli populations in the soil remained stable up to 3 days before declining. An approximate 2 log CFU/g decline of E. coli in soil was observed for each culture type between days 3 and 7, after which E. coli populations declined more slowly from days 7 to 42. A biphasic shoulder model was used to evaluate E. coli survival in soils on the basis of growth media. Using standardized culture growth preparation may aid in determining the complex interactions of enteric pathogen survival in soils. HIGHLIGHTS
Collapse
Affiliation(s)
- Cameron A Bardsley
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, 32611
| | - Mason J Young
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, 32611
| | - Manan Sharma
- U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Avenue, Beltsville, Maryland, 20705
| | - Christina Kessler
- Food Science and Human Nutrition Department, Citrus Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Lake Alfred, Florida 33850, USA
| | - Charles B Appolon
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, 32611
| | - Keith R Schneider
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
17
|
Piveteau P, Druilhe C, Aissani L. What on earth? The impact of digestates and composts from farm effluent management on fluxes of foodborne pathogens in agricultural lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156693. [PMID: 35700775 DOI: 10.1016/j.scitotenv.2022.156693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The recycling of biomass is the cornerstone of sustainable development in the bioeconomy. In this context, digestates and composts from processed agricultural residues and biomasses are returned to the soil. Whether or not the presence of pathogenic microorganisms in these processed biomasses is a threat to the sustainability of the current on-farm practices is still the subject of debate. In this review, we describe the microbial pathogens that may be present in digestates and composts. We then provide an overview of the current European regulation designed to mitigate health hazards linked to the use of organic fertilisers and soil improvers produced from farm biomasses and residues. Finally, we discuss the many factors that underlie the fate of microbial pathogens in the field. We argue that incorporating land characteristics in the management of safety issues connected with the spreading of organic fertilisers and soil improvers can improve the sustainability of biomass recycling.
Collapse
|
18
|
Murphy CM, Weller DL, Reiter MS, Bardsley CA, Eifert J, Ponder M, Rideout SL, Strawn LK. Anaerobic soil disinfestation, amendment-type, and irrigation regimen influence Salmonella survival and die-off in agricultural soils. J Appl Microbiol 2022; 132:2342-2354. [PMID: 34637586 PMCID: PMC8860855 DOI: 10.1111/jam.15324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
AIMS This study investigated Salmonella concentrations following combinations of horticultural practices including anaerobic soil disinfestation (ASD), soil amendment type and irrigation regimen. METHODS AND RESULTS Sandy-loam soil was inoculated with a five-serovar Salmonella cocktail (5.5 ± 0.2 log CFU per gram) and subjected to one of six treatments: (i) no soil amendment, ASD (ASD control), (ii) no soil amendment, no-ASD (non-ASD control) and (iii-vi) soil amended with pelletized poultry litter, rye, rapeseed or hairy vetch with ASD. The effect of irrigation regimen was determined by collecting samples 3 and 7 days after irrigation. Twenty-five-gram soil samples were collected pre-ASD, post-soil saturation (i.e. ASD-process), and at 14 time-points post-ASD, and Salmonella levels enumerated. Log-linear models examined the effect of amendment type and irrigation regimen on Salmonella die-off during and post-ASD. During ASD, Salmonella concentrations significantly decreased in all treatments (range: -0.2 to -2.7 log CFU per gram), albeit the smallest decrease (-0.2 log CFU per gram observed in the pelletized poultry litter) was of negligible magnitude. Salmonella die-off rates varied by amendment with an average post-ASD rate of -0.05 log CFU per gram day (CI = -0.05, -0.04). Salmonella concentrations remained highest over the 42 days post-ASD in pelletized poultry litter, followed by rapeseed, and hairy vetch treatments. Findings suggested ASD was not able to eliminate Salmonella in soil, and certain soil amendments facilitated enhanced Salmonella survival. Salmonella serovar distribution differed by treatment with pelletized poultry litter supporting S. Newport survival, compared with other serovars. Irrigation appeared to assist Salmonella survival with concentrations being 0.14 log CFU per gram (CI = 0.05, 0.23) greater 3 days, compared with 7 days post-irrigation. CONCLUSIONS ASD does not eliminate Salmonella in soil, and may in fact, depending on the soil amendment used, facilitate Salmonella survival. SIGNIFICANCE AND IMPACT OF THE STUDY Synergistic and antagonistic effects on food safety hazards of implementing horticultural practices should be considered.
Collapse
Affiliation(s)
- Claire M. Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel L. Weller
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Mark S. Reiter
- Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA 23420, USA
| | - Cameron A. Bardsley
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joseph Eifert
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Monica Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Steve L. Rideout
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Laura K. Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061, USA,Author for correspondence. Laura K. Strawn, Department of Food Science and Technology, Virginia Tech, 1230 Washington Street, SW, Blacksburg, VA 24061, USA. Tel: 540-231-6806; Fax: 540-231-9293;
| |
Collapse
|
19
|
Detert K, Schmidt H. Survival of Enterohemorrhagic Escherichia coli O104:H4 Strain C227/11Φcu in Agricultural Soils Depends on rpoS and Environmental Factors. Pathogens 2021; 10:pathogens10111443. [PMID: 34832598 PMCID: PMC8620961 DOI: 10.3390/pathogens10111443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022] Open
Abstract
The consumption of contaminated fresh produce caused outbreaks of enterohemorrhagic (EHEC) Escherichia coli. Agricultural soil might be a reservoir for EHEC strains and represent a contamination source for edible plants. Furthermore, the application of manure as fertilizer is an important contamination route. Thus, the German fertilizer ordinance prohibits the use of manure 12 weeks before crop harvest to avoid pathogen transmission into the food chain. In this study, the survival of E. coli O104:H4 strain C227/11Φcu in soil microenvironments with either diluvial sand or alluvial loam at two temperatures was investigated for more than 12 weeks. It was analyzed whether the addition of cattle manure extends EHEC survival in these microenvironments. The experiments were additionally performed with isogenic ΔrpoS and ΔfliC deletion mutants of C227/11Φcu. The survival of C227/11Φcu was highest at 4 °C, whereas the soil type had a minor influence. The addition of cattle manure increased the survival at 22 °C. Deletion of rpoS significantly decreased the survival period under all cultivation conditions, whereas fliC deletion did not have any influence. The results of our study demonstrate that EHEC C227/11Φcu is able to survive for more than 12 weeks in soil microenvironments and that RpoS is an important determinant for survival.
Collapse
|
20
|
Stone W, Lukashe NS, Blake LI, Gwandu T, Hardie AG, Quinton J, Johnson K, Clarke CE. The microbiology of rebuilding soils with water treatment residual co-amendments: Risks and benefits. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1381-1394. [PMID: 34464455 DOI: 10.1002/jeq2.20286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Water treatment residual (WTR) is composed of sludges from the potable water treatment process, currently largely destined for landfill. This waste can be diverted to rebuild degraded soils, aligning with the UN's Sustainable Development Goals 12 (Consumption and Production) and 15 (Terrestrial Ecosystems). Biosolids are tested against stringent pathogen guidelines, yet few studies have explored the microbial risk of WTR land application, despite anthropogenic impacts on water treatment. We explored the microbial risks and benefits of amending nutrient-poor sandy soil with WTRs. Our results showed that the culturable pathogen load of wet and dry WTRs did not warrant pre-processing before land application, according to South African national quality guidelines, with fecal coliforms not exceeding 104 colony forming units per gram dry weight in wet sludges sampled from four South African and Zimbabwean water treatment plants and decreasing upon drying and processing. There was no culturable pathogenic (fecal coliforms, enterococci, Salmonella, and Shigella) regrowth in soil incubations amended with dry WTR. However, the competition (microbial load and diversity) introduced by a WTR co-amendment did not limit pathogen survival in soils amended with biosolids. Application of WTR to nutrient-poor sandy soils for wheat (Triticum aestivum L.) growth improved the prokaryotic and eukaryotic culturable cell concentrations, similar to compost. However, the compost microbiome more significantly affected the bacterial beta diversity of the receiving soil than WTR when analyzed with automated ribosomal intergenic spacer analysis. Thus, although there was a low pathogen risk for WTR amendment in receiving soils and total soil microbial loads were increased, microbial diversity was more significantly enhanced by compost than WTR.
Collapse
Affiliation(s)
- Wendy Stone
- Environmental Microbiology Laboratory, Dep. of Microbiology, Stellenbosch Univ., Stellenbosch, 7602, South Africa
| | - Noxolo S Lukashe
- Dep. of Soil Science, Stellenbosch Univ., Stellenbosch, 7602, South Africa
| | | | - Tariro Gwandu
- Dep. of Engineering, Durham Univ., Durham, DH1 3LE, UK
- Dep. of Soil Science & Environment, Univ. of Zimbabwe, Harare, Zimbabwe
| | - Ailsa G Hardie
- Dep. of Soil Science, Stellenbosch Univ., Stellenbosch, 7602, South Africa
| | - John Quinton
- Lancaster Environment Centre, Lancaster Univ., Lancaster, Lancashire, UK
| | - Karen Johnson
- Dep. of Engineering, Durham Univ., Durham, DH1 3LE, UK
| | | |
Collapse
|
21
|
Morgado ME, Jiang C, Zambrana J, Upperman CR, Mitchell C, Boyle M, Sapkota AR, Sapkota A. Climate change, extreme events, and increased risk of salmonellosis: foodborne diseases active surveillance network (FoodNet), 2004-2014. Environ Health 2021; 20:105. [PMID: 34537076 PMCID: PMC8449873 DOI: 10.1186/s12940-021-00787-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/06/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Infections with nontyphoidal Salmonella cause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence of Salmonella in soil and food. However, the impact of extreme weather events on Salmonella infection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions. METHODS To address this knowledge gap, we obtained Salmonella case data for S. Enteriditis, S. Typhimurium, S. Newport, and S. Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95th percentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates. RESULTS We observed that extreme heat exposure was associated with increased rates of infection with S. Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates of S. Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate of S. Newport infections in Maryland associated with extreme precipitation events. CONCLUSIONS Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection with Salmonella serovars that persist in environmental or plant-based reservoirs, such as S. Javiana and S. Newport, appear to be of particular significance regarding increased heat and rainfall events.
Collapse
Affiliation(s)
- Michele E. Morgado
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234F SPH Building #255, College Park, MD 20742 USA
| | - Chengsheng Jiang
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234F SPH Building #255, College Park, MD 20742 USA
| | - Jordan Zambrana
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234F SPH Building #255, College Park, MD 20742 USA
| | - Crystal Romeo Upperman
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234F SPH Building #255, College Park, MD 20742 USA
- Aclima, Inc., San Francisco, CA USA
| | - Clifford Mitchell
- Maryland Department of Health, Prevention and Health Promotion Administration, Baltimore, MD USA
| | - Michelle Boyle
- Maryland Department of Health, Prevention and Health Promotion Administration, Baltimore, MD USA
| | - Amy R. Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234F SPH Building #255, College Park, MD 20742 USA
| | - Amir Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, 2234F SPH Building #255, College Park, MD 20742 USA
| |
Collapse
|
22
|
He LY, He LK, Gao FZ, Wu DL, Zou HY, Bai H, Zhang M, Ying GG. Dissipation of antibiotic resistance genes in manure-amended agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147582. [PMID: 33992936 DOI: 10.1016/j.scitotenv.2021.147582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/25/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Soil antibiotic resistance due to animal manure application is of great concern in recent years. Little is known about the fate of antibiotic resistance genes (ARGs) in agricultural soils associated with long-term manure application. Here we used soil microcosms to investigate the dissipation of ARGs and the change of bacterial community in agricultural soil originated from a vegetable field which had received 24 years' swine manure application. Soil microcosms were conducted at different soil moistures and with or without biochar over a testing period of two years in lab. Results showed that continuous manure application induced an accumulation of ARGs in soil, wherein the dissipation of ARGs differed from those in non-manure amended soil. ARGs persisted in soils at least two years, although their abundance declined gradually. Meanwhile, soil moisture and biochar had significant impact on the fate of ARGs. ARGs dissipated faster in soil with higher moisture. Biochar amendment contributed to the maintenance of bacterial diversity. Within the two years of simulation experiment, biochar enhanced soil ARG retention as they dissipated slowly in the soil amended with biochar. Succession of microbial community may have sustained the transfer and resilience of ARGs. This study provides insight into the dissipation of antibiotic resistance genes in manure-applied agricultural soil.
Collapse
Affiliation(s)
- Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lun-Kai He
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Loots M, Chidamba L, Korsten L. Microbial Load and Prevalence of Escherichia coli and Salmonella spp. in Macadamia Nut Production Systems. J Food Prot 2021; 84:1088-1096. [PMID: 33508076 DOI: 10.4315/jfp-20-238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT This study evaluated the potential impact of environmental factors and harvesting practices on the microbial load of macadamia nuts. Three farms located in primary macadamia nut production regions, the Mbombela (A), Barberton (B) and White River (C) areas in Mpumalanga Province, South Africa, were sampled over a 2-year period. A total of 264 irrigation water (54), soil (30), and macadamia nut (180) samples were collected and evaluated for microbial load. All water samples had mean Escherichia coli loads below 1,000 MPN/100 mL, which is the standard regulatory requirement for agricultural water considered fit for irrigation in South Africa. Mean total aerobic plate counts of nut-in-husk on-tree samples (3.91 log CFU/g; n = 60) were higher after harvesting (5.98 log CFU/g; n = 60) but were lower after dehusking (to 4.89 log CFU/g; n = 60) on nut-in-shell samples. Salmonella spp. were only detected in water samples from farm B (67%; n = 18) and farm C (15%; n = 18). Neither Listeria monocytogenes nor Salmonella spp. were detected in the soil samples. E. coli was only detected in 20% (n = 10) of soil samples collected from two farms (farms A and B). None of the E. coli isolated in this study was positive for the eae, stx1, and stx2 enterohemorrhagic E. coli virulence genes. This study provides basic data that can be used in the development of macadamia nut-specific hazard assessment tools within primary production environments. HIGHLIGHTS
Collapse
Affiliation(s)
- Maike Loots
- Department of Plant and Soil Sciences, University of Pretoria, Lynnwood Road, Pretoria 0001, South Africa, and Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Lizyben Chidamba
- Department of Plant and Soil Sciences, University of Pretoria, Lynnwood Road, Pretoria 0001, South Africa, and Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Lynnwood Road, Pretoria 0001, South Africa, and Private Bag X20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
24
|
Desiree K, Schwan CL, Ly V, Hok L, Bello NM, Nwadike L, Phebus RK, Vipham JL. Investigating Salmonella enterica, Escherichia coli, and Coliforms on Fresh Vegetables Sold in Informal Markets in Cambodia†. J Food Prot 2021; 84:843-849. [PMID: 33320940 DOI: 10.4315/jfp-20-219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/11/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Vegetables in Cambodia are commonly sold in informal markets lacking food safety standards and controls. Current data on microbial contamination of vegetables in Cambodian informal markets are limited. The purpose of this study was to investigate Salmonella enterica and indicator organisms (Escherichia coli and coliforms) on the surface of fresh vegetables sold in informal markets in Cambodia. Samples of loose-leaf lettuce, tomatoes, and cucumbers were collected from 104 vendors at four informal markets in Battambang and Siem Reap provinces during the rainy and dry seasons. Detection methods for S. enterica were adapted from the U.S. Food and Drug Administration's Bacteriological Analytical Manual. Coliform and E. coli populations were quantified by plating onto E. coli/coliform count plates. S. enterica was most prevalent on lettuce during the dry season (56.5%, 95% confidence interval [CI] [41.0, 70.8]) than during the rainy season (15.4%, 95% CI [7.5, 29.1]), whereas no significant seasonal differences were apparent for tomatoes and cucumbers. Regardless of season, levels of S. enterica were highest on lettuce (5.7 log CFU/g, 95% CI [5.5, 5.9]), relative to cucumbers (4.2 log CFU/g, 95% CI [3.8, 4.6]) and tomatoes (4.3 log CFU/g, 95% CI [4.1, 4.6]). For E. coli, prevalence was higher during the rainy season (34.0%, 95% CI [25.4, 43.8]) than during the dry season (9.1%, 95% CI [4.9, 16.5]), with the highest prevalence estimated on lettuce. Coliform levels on lettuce and tomatoes were greater during the rainy season (6.3 and 5.3 log CFU/g, 95% CI [5.7, 6.8] and [4.7, 5.8], respectively) than during the dry season (5.2 and 3.9 log CFU/g, 95% CI [4.7, 5.7] and [3.4, 4.4], respectively). These results indicate seasonal patterns for microbial prevalence in lettuce and an overall high level of bacterial contamination on raw vegetables sold in Cambodian informal markets. HIGHLIGHTS
Collapse
Affiliation(s)
- Karina Desiree
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, Kansas 66506, USA.,https://orcid.org/0000-0001-5910-4195 [K.D.]
| | - Carla L Schwan
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, Kansas 66506, USA.,https://orcid.org/0000-0002-1853-2553 [C.L.S.]
| | - Visoth Ly
- Faculty of Agro-Industry, Royal University of Agriculture, Phnom Penh, Cambodia
| | - Lyda Hok
- Faculty of Agronomy and Center of Excellence on Sustainable Agricultural Intensification and Nutrition, Royal University of Agriculture, Phnom Penh, Cambodia (ORCID: https://orcid.org/0000-0003-2175-1412 [L.H.])
| | - Nora M Bello
- Department of Statistics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Londa Nwadike
- Research and Extension, Kansas State University and University of Missouri, Olathe, Kansas 66061, USA (ORCID: https://orcid.org/0000-0002-4683-0224 [L.N.])
| | - Randall K Phebus
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, Kansas 66506, USA.,https://orcid.org/0000-0003-3427-9751 [R.K.P.]
| | - Jessie L Vipham
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, Kansas 66506, USA.,https://orcid.org/0000-0002-2918-1058 [J.L.V.]
| |
Collapse
|
25
|
Bardsley CA, Weller DL, Ingram DT, Chen Y, Oryang D, Rideout SL, Strawn LK. Strain, Soil-Type, Irrigation Regimen, and Poultry Litter Influence Salmonella Survival and Die-off in Agricultural Soils. Front Microbiol 2021; 12:590303. [PMID: 33796083 PMCID: PMC8007860 DOI: 10.3389/fmicb.2021.590303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/29/2021] [Indexed: 11/20/2022] Open
Abstract
The use of untreated biological soil amendments of animal origin (BSAAO) have been identified as one potential mechanism for the dissemination and persistence of Salmonella in the produce growing environment. Data on factors influencing Salmonella concentration in amended soils are therefore needed. The objectives here were to (i) compare die-off between 12 Salmonella strains following inoculation in amended soil and (ii) characterize any significant effects associated with soil-type, irrigation regimen, and amendment on Salmonella survival and die-off. Three greenhouse trials were performed using a randomized complete block design. Each strain (~4 log CFU/g) was homogenized with amended or non-amended sandy-loam or clay-loam soil. Salmonella levels were enumerated in 25 g samples 0, 0.167 (4 h), 1, 2, 4, 7, 10, 14, 21, 28, 56, 84, 112, 168, 210, 252, and 336 days post-inoculation (dpi), or until two consecutive samples were enrichment negative. Regression analysis was performed between strain, soil-type, irrigation, and (i) time to last detect (survival) and (ii) concentration at each time-point (die-off rate). Similar effects of strain, irrigation, soil-type, and amendment were identified using the survival and die-off models. Strain explained up to 18% of the variance in survival, and up to 19% of variance in die-off rate. On average Salmonella survived for 129 days in amended soils, however, Salmonella survived, on average, 30 days longer in clay-loam soils than sandy-loam soils [95% Confidence interval (CI) = 45, 15], with survival time ranging from 84 to 210 days for the individual strains during daily irrigation. When strain-specific associations were investigated using regression trees, S. Javiana and S. Saintpaul were found to survive longer in sandy-loam soil, whereas most of the other strains survived longer in clay-loam soil. Salmonella also survived, on average, 128 days longer when irrigated weekly, compared to daily (CI = 101, 154), and 89 days longer in amended soils, than non-amended soils (CI = 61, 116). Overall, this study provides insight into Salmonella survival following contamination of field soils by BSAAO. Specifically, Salmonella survival may be strain-specific as affected by both soil characteristics and management practices. These data can assist in risk assessment and strain selection for use in challenge and validation studies.
Collapse
Affiliation(s)
- Cameron A. Bardsley
- Department of Food Science and Technology, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA, United States
| | - Daniel L. Weller
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - David T. Ingram
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States
| | - Yuhuan Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States
| | - David Oryang
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, United States
| | - Steven L. Rideout
- School of Plant and Environmental Sciences, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA, United States
| | - Laura K. Strawn
- Department of Food Science and Technology, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, VA, United States
| |
Collapse
|
26
|
Lenzi A, Marvasi M, Baldi A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Zhang J, Khan S, Chousalkar KK. Development of PMAxx TM-Based qPCR for the Quantification of Viable and Non-viable Load of Salmonella From Poultry Environment. Front Microbiol 2020; 11:581201. [PMID: 33072053 PMCID: PMC7536286 DOI: 10.3389/fmicb.2020.581201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
Determining the viable and non-viable load of foodborne pathogens in animal production can be useful in reducing the number of human outbreaks. In this study, we optimized a PMAxxTM-based qPCR for quantifying viable and non-viable load of Salmonella from soil collected from free range poultry environment. The optimized nucleic acid extraction method resulted in a significantly higher (P < 0.05) yield and quality of DNA from the pure culture and Salmonella inoculated soil samples. The optimized primer for the amplification of the invA gene fragment showed high target specificity and a minimum detection limit of 102 viable Salmonella from soil samples. To test the optimized PMAxxTM-based qPCR assay, soil obtained from a free range farm was inoculated with Salmonella Enteritidis or Salmonella Typhimurium, incubated at 5, 25, and 37°C over 6 weeks. The survivability of Salmonella Typhimurium was significantly higher than Salmonella Enteritidis. Both the serovars showed moisture level dependent survivability, which was significantly higher at 5°C compared with 25°C and 37°C. The PMAxxTM-based qPCR was more sensitive in quantifying the viable load compared to the culture method used in the study. Data obtained in the current study demonstrated that the optimized PMAxxTM-based qPCR is a suitable assay for quantification of a viable and non-viable load of Salmonella from poultry environment. The developed assay has applicability in poultry diagnostics for determining the load of important Salmonella serovars containing invA.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
28
|
Baker CA, Lee S, De J, Jeong KC, Schneider KR. Survival of Escherichia coli O157 in autoclaved and natural sandy soil mesocosms. PLoS One 2020; 15:e0234562. [PMID: 32525952 PMCID: PMC7289397 DOI: 10.1371/journal.pone.0234562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/28/2020] [Indexed: 01/14/2023] Open
Abstract
While the soil microbiome may influence pathogen survival, determining the major contributors that reduce pathogen survival is inconclusive. This research was performed to determine the survival of E. coli O157 in autoclaved and natural (unautoclaved) sandy soils. Soils were inoculated with three different E. coli O157 strains (stx1+/stx2+, stx1-/stx2-, and stx1-/stx2+), and enumerated until extinction at 30°C. There was a significant difference in the survival of E. coli O157 based on soil treatment (autoclaved versus natural) at 30°C on days 1 (P = 0.00022), 3, (P = 2.53e-14), 7 (P = 5.59e-16), 14 (P = 1.072e-12), 30 (P = 7.18e-9), and 56 (P = 0.00029), with greater survival in autoclaved soils. The time to extinction (two consecutive negative enrichments) for all three strains was 169 and 84 days for autoclaved and natural soils, respectively. A separate E. coli O157 trial supplemented with 16S rRNA gene sequencing of the soil microbiome was performed at 15°C and 30°C on days 0, 7, 14, and 28 for each soil treatment. Greater species richness (Chao1, P = 2.2e-16) and diversity (Shannon, P = 2.2e-16) was observed in natural soils in comparison with autoclaved soils. Weighted UniFrac (beta-diversity) showed a clear distinction between soil treatments (P = 0.001). The greatest reduction of E. coli O157 was observed in natural soils at 30°C, and several bacterial taxa positively correlated (relative abundance) with time (day 0 to 28) in these soils (P < 0.05), suggesting that the presence of those bacteria might cause the reduction of E. coli O157. Taken together, a clear distinction in E. coli O157 survival, was observed between autoclaved and natural soils along with corresponding differences in microbial diversity in soil treatments. This research provides further insights into the bacterial taxa that may influence E. coli O157 in soils.
Collapse
Affiliation(s)
- Christopher A. Baker
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
| | - Shinyoung Lee
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
| | - Jaysankar De
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
| | - Kwangcheol C. Jeong
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
S. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments. Salmonella is responsible for many nontyphoidal foodborne infections and enteric (typhoid) fever in humans. Of the two Salmonella species, Salmonella enterica is highly diverse and includes 10 known subspecies and approximately 2,600 serotypes. Understanding the evolutionary processes that generate the tremendous diversity in Salmonella is important in reducing and controlling the incidence of disease outbreaks and the emergence of virulent strains. In this study, we aim to elucidate the impact of homologous recombination in the diversification of S. enterica subspecies. Using a data set of previously published 926 Salmonella genomes representing the 10 S. enterica subspecies and Salmonella bongori, we calculated a genus-wide pan-genome composed of 84,041 genes and the S. enterica pan-genome of 81,371 genes. The size of the accessory genomes varies between 12,429 genes in S. enterica subsp. arizonae (subsp. IIIa) to 33,257 genes in S. enterica subsp. enterica (subsp. I). A total of 12,136 genes in the Salmonella pan-genome show evidence of recombination, representing 14.44% of the pan-genome. We identified genomic hot spots of recombination that include genes associated with flagellin and the synthesis of methionine and thiamine pyrophosphate, which are known to influence host adaptation and virulence. Last, we uncovered within-species heterogeneity in rates of recombination and preferential genetic exchange between certain donor and recipient strains. Frequent but biased recombination within a bacterial species may suggest that lineages vary in their response to environmental selection pressure. Certain lineages, such as the more uncommon non-enterica subspecies (non-S. enterica subsp. enterica), may also act as a major reservoir of genetic diversity for the wider population. IMPORTANCES. enterica is a major foodborne pathogen, which can be transmitted via several distinct routes from animals and environmental sources to human hosts. Multiple subspecies and serotypes of S. enterica exhibit considerable differences in virulence, host specificity, and colonization. This study provides detailed insights into the dynamics of recombination and its contributions to S. enterica subspecies evolution. Widespread recombination within the species means that new adaptations arising in one lineage can be rapidly transferred to another lineage. We therefore predict that recombination has been an important factor in the emergence of several major disease-causing strains from diverse genomic backgrounds and their ability to adapt to disparate environments.
Collapse
|
30
|
Tokarskyy O, Korda M. Influence of suspension liquid total solids on E. coli O157:H7 survival and transfer efficacy between green tomatoes and cardboard. POTRAVINARSTVO 2019. [DOI: 10.5219/1210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objectives of this study were: a) to determine E. coli O157:H7 survival on tomatoes and cardboard squares post-drying, stored at 25 ºC in humidified environment for four days, in buffered peptone water (BPW), and 0.1% diluted peptone (DP); b) to determine pathogen transfer rates (0, 1.5, or 24-hours drying post-inoculation), from inoculated tomato surfaces to uninoculated cardboard squares and conversely; and c) to evaluate SystemSure Plus ATP luminometer for recognizing contamination on visibly soiled (BPW) or visible clean (DP) cardboard. In tomato inoculation studies, E. coli O157:H7 survived better on the fruit when the inoculum was prepared using DP as compared to BPW. The 1.5-hours post drying counts of 5.34 and 5.76 log10 CFU.mL-1 in the rinsate substantially declined to 1.45 and 1.17 log10 CFU.mL-1 on day four, for DP and BPW, respectively. In cardboard inoculation studies, E. coli O157:H7 persisted for four days, with 1.5-hours post-drying counts and day four counts of 4.53 (DP) and 2.55 log10 CFU.mL-1 (BPW), contrary to 3.81 (DP) and 1.92 log10 CFU.mL-1 (BPW). Under the first impression, the slower die-off of E. coli O157:H7 on cardboard questions the possibility of reusing cardboard boxes due to the potential for cross-contamination. In wet transfer (0 hour drying) trials, both tomato-to-cardboard and cardboard-to-tomato yielded 100% positive transfers irrespective of diluent type. Dry transfer (1.5-hours drying interval post inoculation) from tomato-to-cardboard were 100% positive, but no positives were noted when inoculated, dried cardboard was contacted to tomatoes, irrespective of diluent. Results of transfers with BPW as the diluent showed 100% positive transfer from 24-hours dry tomatoes-to-cardboard, as inoculation spots on the tomatoes remained moist due to hygroscopic nature of solutes in BPW. Conversely, only a 40% positive transfer rate was observed under the same conditions with DP as diluent. No positive transfers were recorded from 24-hours dry cardboard-to-tomatoes, irrespective of diluent type. Though E. coli O157:H7 survived better on the surface of cardboard compared to the surface of tomatoes on day four, the dry transfers were more efficient from tomatoes-to-cardboard than conversely, possibly due to smooth and hydrophobic properties of the tomato, and rough and porous surface of the cardboard. ATP luciferase UltrasnapTM swab test showed 9/9 “pass” results for sterile liquid DP and BPW, while 9/9 “fail” results were observed with liquid peptone and BPW contaminated at ca. 9.0 log10 CFU.mL-1E. coli O157:H7. Cardboard squares treated and dried, with sterile DP, showed 8/9 “pass” ATP luciferase results, and 1/9 “warning”, while cardboard squares with contaminated DP showed 9/9 “fail” result. Cardboard squares treated and dried, with sterile BPW, showed 7/9 “pass” ATP luciferase results, and 2/9 “warning”, while cardboard squares with contaminated BPW showed 9/9 “fail” result. Luminometer can simplify detection of microbial load, as well as organic residues, helping to check cardboard boxes for cleanness.
Collapse
|
31
|
Lee D, Tertuliano M, Harris C, Vellidis G, Levy K, Coolong T. Salmonella Survival in Soil and Transfer onto Produce via Splash Events. J Food Prot 2019; 82:2023-2037. [PMID: 31692392 DOI: 10.4315/0362-028x.jfp-19-066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nearly one-half of foodborne illnesses in the United States can be attributed to fresh produce consumption. The preharvest stage of production presents a critical opportunity to prevent produce contamination in the field from contaminating postharvest operations and exposing consumers to foodborne pathogens. One produce-contamination route that is not often explored is the transfer of pathogens in the soil to edible portions of crops via splash water. We report here on the results from multiple field and microcosm experiments examining the potential for Salmonella contamination of produce crops via splash water, and the effect of soil moisture content on Salmonella survival in soil and concentration in splash water. In field and microcosm experiments, we detected Salmonella for up to 8 to 10 days after inoculation in soil and on produce. Salmonella and suspended solids were detected in splash water at heights of up to 80 cm from the soil surface. Soil-moisture conditions before the splash event influenced the detection of Salmonella on crops after the splash events-Salmonella concentrations on produce after rainfall were significantly higher in wet plots than in dry plots (geometric mean difference = 0.43 CFU/g; P = 0.03). Similarly, concentrations of Salmonella in splash water in wet plots trended higher than concentrations from dry plots (geometric mean difference = 0.67 CFU/100 mL; P = 0.04). These results indicate that splash transfer of Salmonella from soil onto crops can occur and that antecedent soil-moisture content may mediate the efficiency of microbial transfer. Splash transfer of Salmonella may, therefore, pose a hazard to produce safety. The potential for the risk of splash should be further explored in agricultural regions in which Salmonella and other pathogens are present in soil. These results will help inform the assessment of produce safety risk and the development of management practices for the mitigation of produce contamination.
Collapse
Affiliation(s)
- Debbie Lee
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322
| | | | | | | | - Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia 30322
| | - Timothy Coolong
- Department of Horticulture, College of Agricultural & Environmental Sciences, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793, USA
| |
Collapse
|
32
|
Patterson L, Navarro-Gonzalez N, Jay-Russell MT, Aminabadi P, Antaki-Zukoski E, Pires AFA. Persistence ofEscherichia coliin the soil of an organic mixed crop-livestock farm that integrates sheep grazing within vegetable fields. Zoonoses Public Health 2018; 65:887-896. [DOI: 10.1111/zph.12503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/16/2018] [Accepted: 06/20/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Laura Patterson
- Department Population Health and Reproduction, School of Veterinary Medicine; University of California-Davis; Davis California
| | | | | | - Peiman Aminabadi
- Western Center for Food Safety; University of California-Davis; Davis California
| | | | - Alda F. A. Pires
- Department Population Health and Reproduction, School of Veterinary Medicine; University of California-Davis; Davis California
| |
Collapse
|