1
|
Coassolo L, Wiggenhorn A, Svensson KJ. Understanding peptide hormones: from precursor proteins to bioactive molecules. Trends Biochem Sci 2025:S0968-0004(25)00063-5. [PMID: 40234176 DOI: 10.1016/j.tibs.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Peptide hormones are fundamental regulators of biological processes involved in homeostasis regulation and are often dysregulated in endocrine diseases. Despite their biological significance and established therapeutic potential, there is still a gap in our knowledge of their processing and post-translational modifications, as well as in the technologies for their discovery and detection. In this review, we cover insights into the peptidome landscape, including the proteolytic processing and post-translational modifications of peptide hormones. Understanding the full landscape of peptide hormones and their modifications could provide insights into leveraging proteolytic mechanisms to identify novel peptides with therapeutic potential. Therefore, we also discuss the need for future research aiming at better predicting, detecting, and characterizing new peptides with biological activities.
Collapse
Affiliation(s)
- Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Amanda Wiggenhorn
- Department of Chemistry, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA.
| |
Collapse
|
2
|
Ribeiro FM, Arnaldo L, P Milhomem L, S Aguiar S, Franco OL. The intricate relationship between circadian rhythms and gastrointestinal peptides in obesity. Peptides 2025; 185:171356. [PMID: 39929256 DOI: 10.1016/j.peptides.2025.171356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
There are different molecular pathways that regulate appetite, particularly the role of the hypothalamus, circadian rhythms, and gastrointestinal peptides. The hypothalamus integrates signals from orexigenic peptides like neuropeptide Y (NPY) and agouti-related protein (AgRP), which stimulate appetite, and anorexigenic peptides such as pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART), which promote satiety. These signals are influenced by peripheral hormones like leptin, ghrelin, insulin, and cortisol, as well as gut peptides including glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK). The circadian rhythm, regulated by proteins like circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1), modulates the secretion of these peptides, aligning feeding behaviors with the sleep-wake cycle. In obesity, these regulatory systems are disrupted, leading to leptin resistance, increased ghrelin sensitivity, and altered gut peptide secretion. This results in heightened appetite and impaired satiety, contributing to overeating and metabolic dysfunction. Additionally, circadian disruptions further impair metabolic processes, exacerbating obesity. The present article underscores the importance of understanding the molecular interplay between circadian rhythms and gastrointestinal peptides, particularly in the context of obesity. While some molecular interactions, such as the regulation of GLP-1 and PYY by reverberation of circadian rhythm α (REV-ERBα) and retinoic acid-related orphan receptor α (RORα), are well-established, clinical studies are scarce. Future research is expected to explore these pathways in obesity management, especially with the rise of incretin-based treatments like semaglutide. A deeper understanding of hypothalamic molecular mechanisms could lead to novel pharmacological and non-pharmacological therapies for obesity.
Collapse
Affiliation(s)
- Filipe M Ribeiro
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Luiz Arnaldo
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Postgraduate Program in Molecular Pathology, University of Brasília, Brasília, DF, Brazil
| | - Lana P Milhomem
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Samuel S Aguiar
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil
| | - Octavio L Franco
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, DF, Brazil; Postgraduate Program in Molecular Pathology, University of Brasília, Brasília, DF, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, MS, Brazil.
| |
Collapse
|
3
|
Ignot-Gutiérrez A, Serena-Romero G, Guajardo-Flores D, Alvarado-Olivarez M, Martínez AJ, Cruz-Huerta E. Proteins and Peptides from Food Sources with Effect on Satiety and Their Role as Anti-Obesity Agents: A Narrative Review. Nutrients 2024; 16:3560. [PMID: 39458554 PMCID: PMC11510221 DOI: 10.3390/nu16203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE Obesity, clinically defined as a body mass index (BMI) of 30 kg/m2 or higher, is a medical condition characterized by the excessive accumulation of body fat, which can lead to adverse health consequences. As a global public health issue with an escalating prevalence, controlling appetite and satiety is essential for regulating energy balance and managing body weight. Dietary proteins and peptides have gained interest in their potential to prevent and treat obesity by modulating satiety signals. This narrative review analyzes scientific evidence highlighting the role of dietary proteins and peptides in regulating satiety signals and investigates their therapeutic potential in preventing and treating obesity. METHODS A comprehensive literature search was conducted in multiple electronic databases, including PubMed, Scopus, and Web of Science. The search focused on articles examining the impact of dietary proteins and peptides on satiety and obesity, encompassing both preclinical and clinical trials. RESULTS Several studies have demonstrated a correlation between the intake of specific proteins or peptides from plant and animal sources and satiety regulation. These investigations identified mechanisms where amino acids and peptides interact with enteroendocrine cell receptors, activating intracellular signaling cascades that promote the release of anorexigenic gut hormones such as cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). Both in vitro and in vivo assays have shown that these interactions contribute to appetite regulation and the sensation of satiety. CONCLUSIONS Using proteins and peptides in the diet may be an effective strategy for regulating appetite and controlling body weight. However, more research-including clinical trials-is needed to understand the underlying mechanisms better and optimize the application of these bioactive compounds in preventing and treating obesity.
Collapse
Affiliation(s)
- Anaís Ignot-Gutiérrez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Gloricel Serena-Romero
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico;
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico;
| | - Mayvi Alvarado-Olivarez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Armando J. Martínez
- Instituto de Neuroetología, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa 91193, Veracruz, Mexico; (A.I.-G.); (M.A.-O.)
| | - Elvia Cruz-Huerta
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Industrial Ánimas, Xalapa-Enríquez 91193, Veracruz, Mexico
| |
Collapse
|
4
|
Liu CC, Khan A, Seban N, Littlejohn N, Shah A, Srinivasan S. A homeostatic gut-to-brain insulin antagonist restrains neuronally stimulated fat loss. Nat Commun 2024; 15:6869. [PMID: 39127676 PMCID: PMC11316803 DOI: 10.1038/s41467-024-51077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In C. elegans mechanisms by which peripheral organs relay internal state information to the nervous system remain unknown, although strong evidence suggests that such signals do exist. Here we report the discovery of a peptide of the ancestral insulin superfamily called INS-7 that functions as an enteroendocrine peptide and is secreted from specialized cells of the intestine. INS-7 secretion is stimulated by food withdrawal, increases during fasting and acts as a bona fide gut-to-brain peptide that attenuates the release of a neuropeptide that drives fat loss in the periphery. Thus, INS-7 functions as a homeostatic signal from the intestine that gates the neuronal drive to stimulate fat loss during food shortage. Mechanistically, INS-7 functions as an antagonist at the canonical DAF-2 receptor and functions via FOXO and AMPK signaling in ASI neurons. Phylogenetic analysis suggests that INS-7 bears greater resemblance to members of the broad insulin/relaxin superfamily than to conventional mammalian insulin and IGF peptides. The discovery of an endogenous insulin antagonist secreted by specialized intestinal cells with enteroendocrine functions suggests unexpected and important properties of the intestine and its role in directing neuronal functions.
Collapse
Affiliation(s)
- Chung-Chih Liu
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, CA, USA
| | - Ayub Khan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Nicolas Seban
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Nicole Littlejohn
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Aayushi Shah
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Supriya Srinivasan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA.
| |
Collapse
|
5
|
Zhong H, Jin Y, Abdullah, Hussain M, Liu X, Feng F, Guan R. Recent advances of hepatoprotective peptides: Production, structure, mechanisms, and interactions with intestinal microbiota. FOOD BIOSCI 2024; 58:103744. [DOI: 10.1016/j.fbio.2024.103744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Vosoughi A, Zendehdel M, Hassanpour S. Central effects of the serotoninergic, GABAergic, and cholecystokinin systems on neuropeptide VF (NPVF)-induced hypophagia and feeding behavior in neonatal broiler chicken. Neurosci Lett 2024; 818:137557. [PMID: 37972685 DOI: 10.1016/j.neulet.2023.137557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The study was performed to evaluate the role of central serotoninergic, GABAergic, and cholecystokinin systems in neuropeptide VF (NPVF)-induced hypophagia in broiler chickens. In this study, 9 experiments were designed, each with one control and three treatment groups (n = 44 in each experiment). Control chicks of all groups were subjected to normal saline + Evans blue 0.1 % Intracerebroventricular (ICV) injection. In the first experiment, 3 groups of chicks received NPVF (4, 8, and 16 nmol). In experiment 2-9, one group of chicks received NPVF (16 nmol), another received 10 µg fluoxetine (serotonin reuptake inhibitor) (experiment 2), 1.25 µg PCPA (serotonin synthesis inhibitor) (experiment 3), 1.5 µg SB-242,084 (5-HT2C receptor antagonist) (experiment 4), 15.25 nmol 8-OH-DPAT (5-HT1A receptor antagonist) (experiment 5), 0.5 µg picrotoxin (GABAA receptor antagonist) (experiment 6), 20 ng CGP54626 (GABAB receptor antagonist) (experiment 7), 1 nmol devazepide (CCKA receptor antagonist) (experiment 8), and 1 nmol/L-365(-|-),260 (CCKB receptor antagonist) (experiment 9), and another final group received combination of specific neurotransmitter + NPVF Then, the cumulative food intake was measured until 120 min post-injection. ICV injection of NPVF (8 and 16 nmol) significantly decreased food intake (P < 0.05). Simultaneous injection of fluoxetine + NPVF and also picrotoxin + NPVF significantly increased hypophagia caused by NPVF (P < 0.05). However, co-administration of PCPA + NPVF and also SB242084 + NPVF significantly decreased NPVF-induced hypophagia (P < 0.05). Finally, 8-OH-DPAT, CGP54626, devazepide, and L-365,260 had no effect on the hypophagia brought on by NPVF (P > 0.05). Count-type behaviors were dose-dependent and decreased in groups that received NPVF compared to the control group (P < 0.05). Our finding recommended an interconnection between central NPVF and serotoninergic, GABAergic, and cholecystokinin systems in neonatal chickens.
Collapse
Affiliation(s)
- Anahita Vosoughi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Shahin Hassanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
8
|
Lim JJ, Liu Y, Lu LW, Sequeira IR, Poppitt SD. No Evidence That Circulating GLP-1 or PYY Are Associated with Increased Satiety during Low Energy Diet-Induced Weight Loss: Modelling Biomarkers of Appetite. Nutrients 2023; 15:nu15102399. [PMID: 37242282 DOI: 10.3390/nu15102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Bariatric surgery and pharmacology treatments increase circulating glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), in turn promoting satiety and body weight (BW) loss. However, the utility of GLP-1 and PYY in predicting appetite response during dietary interventions remains unsubstantiated. This study investigated whether the decrease in hunger observed following low energy diet (LED)-induced weight loss was associated with increased circulating 'satiety peptides', and/or associated changes in glucose, glucoregulatory peptides or amino acids (AAs). In total, 121 women with obesity underwent an 8-week LED intervention, of which 32 completed an appetite assessment via a preload challenge at both Week 0 and Week 8, and are reported here. Visual analogue scales (VAS) were administered to assess appetite-related responses, and blood samples were collected over 210 min post-preload. The area under the curve (AUC0-210), incremental AUC (iAUC0-210), and change from Week 0 to Week 8 (∆) were calculated. Multiple linear regression was used to test the association between VAS-appetite responses and blood biomarkers. Mean (±SEM) BW loss was 8.4 ± 0.5 kg (-8%). Unexpectedly, the decrease in ∆AUC0-210 hunger was best associated with decreased ∆AUC0-210 GLP-1, GIP, and valine (p < 0.05, all), and increased ∆AUC0-210 glycine and proline (p < 0.05, both). The majority of associations remained significant after adjusting for BW and fat-free mass loss. There was no evidence that changes in circulating GLP-1 or PYY were predictive of changes in appetite-related responses. The modelling suggested that other putative blood biomarkers of appetite, such as AAs, should be further investigated in future larger longitudinal dietary studies.
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Yutong Liu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| | - Louise W Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Riddet Institute, Palmerston North 4442, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| |
Collapse
|
9
|
How Does the Level of Physical Activity Influence Eating Behavior? A Self-Determination Theory Approach. Life (Basel) 2023; 13:life13020298. [PMID: 36836655 PMCID: PMC9961293 DOI: 10.3390/life13020298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Physical activity and diet are two predominant determinants of population health status that may influence each other. Physical activity has been identified as a behavior that may lead to a healthier diet and regulates eating behaviors. This research aimed to investigate how the level of physical activity is associated with the motivation related to eating behaviors and, consequently, the eating style individuals have on a daily basis. This was a cross-sectional study in which participants completed an online questionnaire that assessed the following variables: the level of physical activity, the motivation toward eating behavior, and the type of eating behavior. In total, 440 individuals (180 men and 260 women) who regularly exercised in gyms and fitness centers aged between 19 and 64 years (M = 33.84; SD = 10.09) took part in the study. The data were collected following the Declaration of Helsinki and with the approval of the Ethics Committee of the Polytechnic of Leiria. For the statistical analysis, mean and standard deviations were first calculated, as well as bivariate correlations between all the variables of interest. Then, structural equation model analyses were performed considering the levels of physical activity as the independent variable, motivations toward eating behavior as the mediators, and eating styles as the dependent variables. It was concluded that a greater level of physical activity leads to a more self-determined type of eating regulation, which in turn results in less constricted eating behaviors that are influenced by external factors and emotional factors.
Collapse
|
10
|
Chemosensing of fat digestion by the expression pattern of GPR40, GPR120, CD36 and enteroendocrine profile in sheep. Res Vet Sci 2022; 150:89-97. [DOI: 10.1016/j.rvsc.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/20/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
|
11
|
Kamakura R, Raza GS, Sodum N, Lehto V, Kovalainen M, Herzig K. Colonic Delivery of Nutrients for Sustained and Prolonged Release of Gut Peptides: A Novel Strategy for Appetite Management. Mol Nutr Food Res 2022; 66:e2200192. [PMID: 35938221 PMCID: PMC9787473 DOI: 10.1002/mnfr.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Obesity is one of the major global threats to human health and risk factors for cardiometabolic diseases and certain cancers. Glucagon-like peptide-1 (GLP-1) plays a major role in appetite and glucose homeostasis and recently the USFDA approved GLP-1 agonists for the treatment of obesity and type 2 diabetes. GLP-1 is secreted from enteroendocrine L-cells in the distal part of the gastrointestinal (GI) tract in response to nutrient ingestion. Endogenously released GLP-1 has a very short half-life of <2 min and most of the nutrients are absorbed before reaching the distal GI tract and colon, which hinders the use of nutritional compounds for appetite regulation. The review article focuses on nutrients that endogenously stimulate GLP-1 and peptide YY (PYY) secretion via their receptors in order to decrease appetite as preventive action. In addition, various delivery technologies such as pH-sensitive, mucoadhesive, time-dependent, and enzyme-sensitive systems for colonic targeting of nutrients delivery are described. Sustained colonic delivery of nutritional compounds could be one of the most promising approaches to prevent obesity and associated metabolic diseases by, e.g., sustained GLP-1 release.
Collapse
Affiliation(s)
- Remi Kamakura
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Ghulam Shere Raza
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Nalini Sodum
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsFaculty of Science and ForestryUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Miia Kovalainen
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Karl‐Heinz Herzig
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
- Department of Pediatric Gastroenterology and Metabolic DiseasesPediatric InstitutePoznan University of Medical SciencesPoznań60–572Poland
| |
Collapse
|
12
|
Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Front Mol Biosci 2022; 9:956500. [PMID: 36090042 PMCID: PMC9456248 DOI: 10.3389/fmolb.2022.956500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Phoenixin is a newly discovered neuropeptide generated from small integral membrane protein 20. Phoenixin is a ligand for the G protein-coupled receptor 173 (GPR173) and has been detected in central and peripheral tissues of human, rats, mice, bovine, and zebrafish. It was initially involved in regulating reproductive function by stimulating the luteinizing hormone release from pituitary cells by increasing the level of gonadotropin-releasing hormone. Recently, many functions of phoenixin have been generalized, including regulation of food intake, memory, Alzheimer’s disease, anxiety, inflammation, neuronal and microglial activity, energy metabolism and body fluid balance, cardiovascular function, and endocrine activity. In addition, the interaction between phoenixin and nesfatin-1 have been revealed. The present article summarized the latest research progress on physiological function of phoenixin, suggesting that it is a potential target for novel drug development and clinical application.
Collapse
Affiliation(s)
- Han Liang
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
13
|
Conway E, O’Doherty JV, Mukhopadhya A, Dowley A, Vigors S, Maher S, Ryan MT, Sweeney T. Maternal and/or direct supplementation with a combination of a casein hydrolysate and yeast β-glucan on post-weaning performance and intestinal health in the pig. PLoS One 2022; 17:e0265051. [PMID: 35839254 PMCID: PMC9286230 DOI: 10.1371/journal.pone.0265051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
A 2 × 2 factorial experiment was conducted to investigate the effect of maternal supplementation from day 83 of gestation and/or direct supplementation from weaning of a bovine casein hydrolysate plus a yeast β-glucan (CH-YBG) on pig performance and intestinal health on day ten post-weaning. Twenty cross bred gilts (Large White × Landrace) were randomly assigned to one of two dietary groups (n = 10 gilts/group): basal diet (basal sows) and basal diet supplemented with CH-YBG (supplemented sows) from day 83 of gestation until weaning (2g/sow/day). At weaning, 120 pigs (6 pigs/sow) were selected. The two dam groups were further divided, resulting in four experimental groups (10 replicates/group; 3 pigs/pen) as follows: 1) BB (basal sows + basal pigs); 2) BS (basal sows + supplemented pigs); 3) SB (supplemented sows + basal pigs); 4) SS (supplemented sows + supplemented pigs). Supplemented pigs were offered 0.5g CH-YBG/kg of feed for 10 days post-weaning. On day 10 post-weaning, 1 pig/pen was humanely sacrificed and samples were taken from the gastrointestinal tract for analysis. Pigs weaned from supplemented sows (SS, SB) had reduced faecal scores and incidence of diarrhoea (P<0.05) compared to pigs weaned from basal sows (BB, BS), with SS pigs not displaying the transient rise in faecal scores seen in the other three groups from day 3 to day 10 post-weaning (P<0.05). Pigs weaned from supplemented sows had reduced feed intake (P<0.05), improved feed efficiency (P<0.05), increased butyrate concentrations (P<0.05), increased abundance of Lactobacillus (P<0.05) and decreased abundance of Enterobacteriaceae and Campylobacteraceae (P<0.05) compared to pigs weaned from basal sows. In conclusion, maternal supplementation increased the abundance of Lactobacillus and decreased the abundance of Enterobacteriaceae and Campylobacteraceae while also increasing butyrate concentrations. The combination of maternal and direct supplementation led to pigs having the lowest faecal scores compared to all other groups.
Collapse
Affiliation(s)
- Eadaoin Conway
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Anindya Mukhopadhya
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Alison Dowley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Shane Maher
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Marion T. Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
- * E-mail:
| |
Collapse
|
14
|
Determination of the Optimal Level of Dietary Zinc for Newly Weaned Pigs: A Dose-Response Study. Animals (Basel) 2022; 12:ani12121552. [PMID: 35739888 PMCID: PMC9219510 DOI: 10.3390/ani12121552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Piglets have a very low feed intake immediately after weaning. We hypothesise that the EU-legislated maximum dietary zinc concentration (150 mg zinc/kg diet) will increase the risk of zinc deficiency after weaning. Zinc deficiency includes symptoms such as impaired growth and increased risk of diarrhoea. However, a high dietary zinc concentration has an antimicrobial effect on the bacteria and increases the risk of antimicrobial resistance. The findings of this study show that the dietary zinc level had a quadratic effect on growth, with a turning point at an approximately 1400 mg zinc per kg diet. The risk of diarrhoea increased up to 60% for pigs that had a blood zinc concentration which decreased after weaning. Maintaining the blood zinc concentration seven days after weaning required up to 1121 mg zinc per kg diet. There was no evidence for an antimicrobial effect when feeding pigs a diet with up to 1601 mg zinc per kg. Abstract One hundred and eighty individually housed piglets with an initial body weight of 7.63 ± 0.98 kg (at 28 days of age) were fed a diet containing either 153, 493, 1022, 1601, 2052 or 2407 mg zinc/kg (added Zn as zinc oxide; ZnO) from day 0–21 post weaning to determine the optimal level of Zn for weaned piglets. Body weight, feed intake and faecal scores were recorded, and blood and faecal samples were collected. Dietary Zn content quadratically affected both feed intake and gain in the first two weeks, with an approximately 1400 mg Zn/kg diet and a Zn intake of 400 mg/day as the optimal levels. The relative risk of diarrhoea increased up to 60% at day 7 and 14 if serum Zn status dropped below the weaning level (767 µg/L), and maintain the weaning serum Zn status required approximately 1100 mg Zn/kg (166 mg Zn/day) during week 1. Blood markers of intestinal integrity (D-lactate and diamine oxidase) were unaffected by dietary Zn, and dietary Zn levels of 1022 and 1601 mg/kg did not affect the faecal numbers of total bacteria, Lactobacilli and E. Coli bacteria compared to 153 mg Zn/kg. These results indicate that the requirement for Zn in newly weaned piglets may be substantially higher than currently assumed.
Collapse
|
15
|
Yousefvand S, Hamidi F. Role of Lateral Hypothalamus Area in the Central Regulation of Feeding. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Sagkan Ozturk A, Aydin M, Bozkurt YA, Kuçukgul A, Ozturk A. Short term effects of experimental gastric outlet obstruction and truncal vagotomy on gut hormones. Biotech Histochem 2022; 97:90-98. [PMID: 33722110 DOI: 10.1080/10520295.2021.1896780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gastric outlet obstruction (GOO) is caused mainly by pyloric or duodenal blockage; gastric surgery and vagotomy are effective treatments. We investigated the short term effects of experimental GOO and truncal vagotomy (TV) on gut hormone levels. We used 8-week-old male Wistar rats divided randomly into four groups: control, GOO, TV, and GOO + TV. At the end of the experiment, blood and tissue samples of the pylorus and fundus were obtained for biochemical and immunohistochemical analysis. Gastric motility decreased in the TV group, but there was no difference in food intake compared to the control group; water consumption and urine output were increased. Feces excretion and food intake decreased due to loss of food movement from the stomach of GOO and GOO + TV rats. Levels of insulin and ghrelin were lower than for the control group, but levels of cholecystokinin were higher. Leptin and glucagon-like peptide 1 levels were increased in the GOO group, while somatostatin was decreased. Leptin immunostaining levels were decreased in the GOO + TV group. Gastrin and neuropeptide Y levels were lower in the GOO and GOO + TV groups compared to the other groups. We found that both gut hormone levels related to gastric motility and metabolism, and immunohistochemical staining of the stomach tissue were altered by TV and GOO. Measuring changes in gut hormones following gastric surgery could be useful for monitoring the effectiveness of treatment.
Collapse
Affiliation(s)
- Aliye Sagkan Ozturk
- Faculty of Veterinary Medicine, Department of Internal Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mehmet Aydin
- Sifa Bioresonance & Clinical Physiology Center, Kocaeli, Turkey
| | - Yesim Akaydın Bozkurt
- Faculty of Veterinary Medicine, Department of Histology and Embryology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Altug Kuçukgul
- Faculty of Veterinary Medicine, Department of Biochemistry, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Atakan Ozturk
- Faculty of Medicine, Department of Physiology, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
17
|
Vickers MH. Early life nutrition and neuroendocrine programming. Neuropharmacology 2021; 205:108921. [PMID: 34902348 DOI: 10.1016/j.neuropharm.2021.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Alterations in the nutritional environment in early life can significantly increase the risk for obesity and a range of development of metabolic disorders in offspring in later life, effects that can be passed onto future generations. This process, termed development programming, provides the framework of the developmental origins of health and disease (DOHaD) paradigm. Early life nutritional compromise including undernutrition, overnutrition or specific macro/micronutrient deficiencies, results in a range of adverse health outcomes in offspring that can be further exacerbated by a poor postnatal nutritional environment. Although the mechanisms underlying programming remain poorly defined, a common feature across the phenotypes displayed in preclinical models is that of altered wiring of neuroendocrine circuits that regulate satiety and energy balance. As such, altered maternal nutritional exposures during critical early periods of developmental plasticity can result in aberrant hardwiring of these circuits with lasting adverse consequences for the offspring. There is also increasing evidence around the role of an altered epigenome and the gut-brain axis in mediating some of the central programming effects observed. Further, although such programming was once considered to result in a permanent change in developmental trajectory, there is evidence, at least from preclinical models, that programming can be reversed via targeted nutritional manipulations during early development. Further work is required at a mechanistic level to allow for identification for early markers of later disease risk, delineation of sex-specific effects and pathways to implementation of strategies aimed at breaking the transgenerational transmission of disease.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
18
|
Snigdha S, Ha K, Tsai P, Dinan TG, Bartos JD, Shahid M. Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol Ther 2021; 231:107978. [PMID: 34492236 DOI: 10.1016/j.pharmthera.2021.107978] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Probiotics are live microorganisms, which when administered in adequate amounts, present a health benefit for the host. While the beneficial effects of probiotics on gastrointestinal function are generally well recognized, new animal research and clinical studies have found that alterations in gut microbial communities can have a broad range of effects throughout the body. Non-intestinal sites impacted include the immune, endocrine, cardiovascular and the central nervous system (CNS). In particular, there has been a growing interest and appreciation about the role that gut microbiota may play in affecting CNS-related function through the 'microbiota-gut-brain axis'. Emerging evidence suggests potential therapeutic benefits of probiotics in several CNS conditions, such as anxiety, depression, autism spectrum disorders and Parkinson's disease. There may also be some gender-specific variances in terms of probiotic mediated effects, with the gut microbiota shaping and being concurrently molded by the hormonal environment governing differences between the sexes. Probiotics may influence the ability of the gut microbiome to affect a variety of biological processes in the host, including neurotransmitter activity, vagal neurotransmission, generation of neuroactive metabolites and inflammatory response mediators. Some of these may engage in cross talk with host sex hormones, such as estrogens, which could be of relevance in relation to their effects on stress response and cognitive health. This raises the possibility of gender-specific variation with regards to the biological action of probiotics, including that on the endocrine and central nervous systems. In this review we aim to describe the current understanding in relation to the role and use of probiotics in microbiota-gut-brain axis-related dysfunction. Furthermore, we will address the conceptualization and classification of probiotics in the context of gender and lifespan as well as how restoring gut microbiota composition by clinical or dietary intervention can help in supporting health outcomes other than those related to the gastrointestinal tract. We also evaluate how these new learnings may impact industrial effort in probiotic research and the discovery and development of novel and more personalized, condition-specific, beneficial probiotic therapeutic agents.
Collapse
Affiliation(s)
| | - Kevin Ha
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Paul Tsai
- MeriCal, 233 E Bristol St., Orange, CA, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
19
|
Czerwińska M, Czarzasta K, Cudnoch-Jędrzejewska A. New Peptides as Potential Players in the Crosstalk Between the Brain and Obesity, Metabolic and Cardiovascular Diseases. Front Physiol 2021; 12:692642. [PMID: 34497533 PMCID: PMC8419452 DOI: 10.3389/fphys.2021.692642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023] Open
Abstract
According to the World Health Organization report published in 2016, 650 million people worldwide suffer from obesity, almost three times more than in 1975. Obesity is defined as excessive fat accumulation which may impair health with non-communicable diseases such as diabetes, cardiovascular diseases (hypertension, coronary artery disease, stroke), and some cancers. Despite medical advances, cardiovascular complications are still the leading causes of death arising from obesity. Excessive fat accumulation is caused by the imbalance between energy intake and expenditure. The pathogenesis of this process is complex and not fully understood, but current research is focused on the role of the complex crosstalk between the central nervous system (CNS), neuroendocrine and immune system including the autonomic nervous system, adipose tissue, digestive and cardiovascular systems. Additionally, special attention has been paid to newly discovered substances: neuropeptide 26RFa, preptin, and adropin. It was shown that the above peptides are synthesized both in numerous structures of the CNS and in many peripheral organs and tissues, such as the heart, adipose tissue, and the gastrointestinal tract. Recently, particular attention has been paid to the role of the presented peptides in the pathogenesis of obesity, metabolic and cardiovascular system diseases. This review summarizes the role of newly investigated peptides in the crosstalk between brain and peripheral organs in the pathogenesis of obesity, metabolic, and cardiovascular diseases.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW In this review, we present recent insights into the role of the gut microbiota on gastrointestinal (GI) peptide secretion and signalling, with a focus on the orexigenic hormone, ghrelin. RECENT FINDINGS Evidence is accumulating suggesting that secretion of GI peptides is modulated by commensal bacteria present in our GI tract. Recent data shows that the gut microbiome impacts on ghrelinergic signalling through its metabolites, at the level of the ghrelin receptor (growth hormone secretagogue receptor) and highlights concomitant changes in circulating ghrelin levels with specific gut microbiota changes. However, the mechanisms by which the gut microbiota interacts with gut peptide secretion and signalling, including ghrelin, are still largely unknown. SUMMARY The gut microbiota may directly or indirectly influence secretion of the orexigenic hormone, ghrelin, similar to the modulation of satiety inducing GI hormones. Although data demonstrating a role of the microbiota on ghrelinergic signalling is starting to emerge, future mechanistic studies are needed to understand the full impact of the microbiota-ghrelin axis on metabolism and central-regulated homeostatic and non-homeostatic controls of food intake.
Collapse
Affiliation(s)
- Natasha K. Leeuwendaal
- Department of Anatomy and Neuroscience
- APC Microbiome, Ireland University College Cork, Cork, Ireland
| | | | - Harriët Schellekens
- Department of Anatomy and Neuroscience
- APC Microbiome, Ireland University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Governa P, Caroleo MC, Carullo G, Aiello F, Cione E, Manetti F. FFAR1/GPR40: One target, different binding sites, many agonists, no drugs, but a continuous and unprofitable tug-of-war between ligand lipophilicity, activity, and toxicity. Bioorg Med Chem Lett 2021; 41:127969. [PMID: 33771587 DOI: 10.1016/j.bmcl.2021.127969] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
The progress made so far in the elucidation of the structure of free fatty acid receptor 1 (FFAR1) and its secondary and ternary complexes with partial and full allosteric ligands led to the discovery of various putative binding regions on the FFAR1 surface. Attempts to develop FFAR1 agonists culminated with the identification of TAK-875 (1), whose phase 3 clinical trials were terminated due to potential liver toxicity. In the search of safer agonists, numerous classes of new compounds were designed, synthesized, and tested. Chemical decoration of the scaffolds was rationalized to reach a good balance between lipophilicity, activity, and toxicity. Today, targeting FFAR1 with positive modulators represents an attractive pharmacological tool for the treatment of type 2 diabetes mellitus (T2DM), mainly because of the lack of hypoglycaemic side effects associated with several antidiabetic drugs currently available. Moreover, considering the involvement of FFAR1 in many physio-pathological processes, its agonists are also emerging as possible therapeutic tools for alleviating organ inflammation and fibrosis, as well as for the treatment of CNS disorders, such as Alzheimer's disease and dementia.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy.
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy.
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy.
| |
Collapse
|
22
|
Kohanmoo A, Faghih S, Akhlaghi M. Effect of short- and long-term protein consumption on appetite and appetite-regulating gastrointestinal hormones, a systematic review and meta-analysis of randomized controlled trials. Physiol Behav 2020; 226:113123. [PMID: 32768415 DOI: 10.1016/j.physbeh.2020.113123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023]
Abstract
AIM High-protein diets are considered as useful diets for weight loss programs. We collected randomized controlled trials that evaluated the effect of protein on appetite and gastrointestinal hormones involved in appetite regulation. METHODS Trials were included if participants were healthy adults and isocaloric treatments were used in control and treatment arms. Random-effects model was used to calculate mean difference and 95% confidence intervals. RESULTS In total, 49 publications for acute and 19 articles for long-term effect of protein were included. In acute interventions, protein decreased hunger (-7 mm visual analogue scale (VAS), P<0.001), desire to eat (-5 mm, P = 0.045), and prospective food consumption (-5 mm, P = 0.001) and increased fullness (10 mm, P<0.001) and satiety (4 mm, P<0.001). There was also a decrease in ghrelin (-20 pg/ml, P<0.001) and increase in cholecystokinin (30 pg/ml, P<0.001) and glucagon-like peptide-1 (GLP-1) (21 ng/ml, P<0.001), but no change in gastric inhibitory polypeptide and peptide YY was observed. Appetite markers were affected by protein doses < 35 g but ghrelin, cholecystokinin, and GLP-1 changed significantly after doses ≥ 35 g. Long-term ingestion of protein did not affect these outcomes, except for GLP-1 which showed a significant decrease. CONCLUSION Results of this meta-analysis showed that acute ingestion of protein suppresses appetite, decreases ghrelin, and augments cholecystokinin and GLP-1. Results of long-term trials are inconclusive and further trials are required before a clear and sound conclusion on these trials could be made.
Collapse
Affiliation(s)
- Ali Kohanmoo
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Abdelbaki TN, El-Sayes I, Talha A, Sharaan MA. Weight Loss and Diabetes Control Following Laparoscopic Sleeve Gastrectomy. J Laparoendosc Adv Surg Tech A 2020; 30:383-388. [PMID: 31971865 DOI: 10.1089/lap.2019.0680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tamer N. Abdelbaki
- General Surgery Department, Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Islam El-Sayes
- General Surgery Department, Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Ahmed Talha
- General Surgery Department, Medical Research Institute, Alexandria, Egypt
| | | |
Collapse
|
24
|
Fujihira K, Hamada Y, Suzuki K, Miyashita M. The effects of pre-meal drink volume on gastric motility and energy intake in healthy men. Physiol Behav 2020; 213:112726. [PMID: 31678198 DOI: 10.1016/j.physbeh.2019.112726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/13/2019] [Accepted: 10/26/2019] [Indexed: 11/30/2022]
Abstract
Pre-meal drink ingestion is an effective method of controlling energy intake in humans. However, no studies have addressed the influence of differences in the volume of drink intake on gastric motility and energy intake. The purpose of the present study was to examine the effects of differences in the volume of drink intake before a meal on subsequent gastric motility and energy intake in healthy young men. Twelve men completed two, one-day trials in a random order. Subjects visited the laboratory after a 10-h overnight fast and consumed the nutrient drink (0.84 MJ) in either 100 mL or 600 mL quantities over a 5-min period. Then, the subjects sat on a chair for over 2 h to measure their cross-sectional gastric antral areas and gastric contractions with an ultrasound imaging system. Thereafter, the subjects consumed a test meal until they felt completely full. Energy intake was calculated from the amount of food consumed. Energy intake in the 600 mL trial was 12% higher than the 100 mL trial (5.1 ± 1.3 vs. 4.6 ± 1.4 MJ, P = 0.046). The antral area (P = 0.046) and the frequency of the gastric contraction (P = 0.001) over 2 h after consuming the nutrient drink were higher in the 600 mL trial than the 100 mL trial. These findings demonstrated that consumption of a 600 mL nutrient drink increased energy intake. The modulation of gastric motility might have some effects on energy intake.
Collapse
Affiliation(s)
- Kyoko Fujihira
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Yuka Hamada
- Graduate School of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Masashi Miyashita
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| |
Collapse
|
25
|
Zhou Y, Qin J, Wang Y, Wang Y, Cheng Y. Gastrointestinal and metabolic effects of noodles-based konjac glucomannan in rats. Food Nutr Res 2019; 63:1997. [PMID: 31903092 PMCID: PMC6925537 DOI: 10.29219/fnr.v63.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 12/25/2022] Open
Abstract
This study was conducted to investigate the hypothesis that the beneficial metabolic effects of dietary fiber, konjac glucomannan (KGM), related with in vivo digestion might be altered if the complicated food matrix was taken into consideration. A diet of precooked noodles (PN), as widely produced and consumed in Asia, was used to simulate an actual food context. Assays were conducted with male Wistar rats (n = 80); the rats were divided into five groups and fed with either PN (control), PN supplemented with medium-dose KGM (MK), precooked low-dose KGM-supplemented noodles (LKD), precooked medium-dose KGM-supplemented noodles (MKD) or precooked high-dose KGM supplemented noodles (HKD). The time-dependent changes in blood glucose and the sensitivity to insulin after intragastric administration were determined to evaluate the postprandial glycemic response. The activity of intestinal Na+-K+-ATPase and the levels of gut hormones including motilin, cholecystokin, GLP-1, and orexin were also determined to provide insights into the function of gastrointestinal motion and after-meal hormonal feedback in each group. The noodles-based KGM showed much more efficacy in sustaining glucose homeostasis compared with KGM supplemented in a diet of noodles, indicating there might be potential long-term health outcomes of satiety and energy balance using noodles-based KGM. The postprandial glycemia was largely moderated by LKD and MKD. Despite the significant reduction in the production of glucose, MKD caused insensitivity to insulin-blood glucose regulation and a rapid gut negative feedback following a severe blood glucose fluctuation. In conclusion, the health-promoting benefits of KGM supplements on glycemic response highly depend on the type of matrix and the dose of KGM.
Collapse
Affiliation(s)
- Yun Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- College of Food Science, Southwest University, Chongqing, People’s Republic of China
| | - Jiangdan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongquan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yichen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongqiang Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Laminarin-rich extract improves growth performance, small intestinal morphology, gene expression of nutrient transporters and the large intestinal microbial composition of piglets during the critical post-weaning period. Br J Nutr 2019; 123:255-263. [PMID: 31640819 DOI: 10.1017/s0007114519002678] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of natural bioactive compounds which can prevent the post-weaning growth check and enhance gastrointestinal health in the absence of in-feed medications is an urgent priority for the swine industry. The objective of this experiment was to determine the effects of increasing dietary inclusion levels of laminarin in the first 14 d post-weaning on pig growth performance and weaning associated intestinal dysfunction. At weaning, ninety-six pigs (8·4 (sd 1·09) kg) (meatline boars × (large white × landrace sows)) were blocked by live weight, litter and sex and randomly assigned to: (1) basal diet; (2) basal + 100 parts per million (ppm) laminarin; (3) basal + 200 ppm laminarin and (4) basal + 300 ppm laminarin (three pigs/pen). The appropriate quantity of a laminarin-rich extract (65 % laminarin) was added to the basal diet to achieve the above dietary inclusion levels of laminarin. After 14 d of supplementation, eight pigs from the basal group and the best-performing laminarin group were euthanised for sample collection. The 300 ppm laminarin group was selected as this group had higher ADFI compared with all other groups and higher ADG than the basal group (P < 0·05). Laminarin supplementation increased villus height in the duodenum and jejunum (P < 0·05). Laminarin supplementation increased the expression of SLC2A8/GLUT8 in the duodenum, SLC2A2/GLUT2, SLC2A7/GLUT7, SLC15A1/PEPT1 and FABP2 in the jejunum and SLC16A1/MCT1 in the colon. Laminarin supplementation reduced Enterobacteriaceae numbers in the caecum (P < 0·05) and increased lactobacilli numbers (P < 0·05), total volatile fatty acid concentrations and the molar proportions of butyrate (P < 0·01) in the colon. In conclusion, 300 ppm laminarin from a laminarin-rich extract has potential, as a dietary supplement, to improve performance and prevent post-weaning intestinal dysfunction.
Collapse
|
27
|
Energy Homeostasis and Obesity: The Therapeutic Role of Anorexigenic and Orexigenic Peptide. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Prinz P. The role of dietary sugars in health: molecular composition or just calories? Eur J Clin Nutr 2019; 73:1216-1223. [PMID: 30787473 PMCID: PMC6760629 DOI: 10.1038/s41430-019-0407-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
This review will focus on the question of whether dietary sugars are a relevant determinant in the global rise of overweight and obesity in adults, adolescents, and children. Initially, the review describes the current definitions for sugars in the diet and makes reference to them while analyzing their role in overweight and obesity as well as diet-related diseases, including type 2 diabetes, cardiovascular diseases, non-alcoholic fatty liver disease and cancer. Second, it will focus particularly on sucrose and the question of whether it is the molecular composition of sucrose (glucose and fructose) or its energy content that promotes body weight gain and diet-related diseases. Finally, the review will clarify the molecular characteristics of sucrose regarding the release of the gastrointestinal glucose-dependent insulinotropic peptide (GIP) compared to other energy-providing nutrients and its relevance in metabolic diseases. Current data indicates that dietary sugars are only associated with an increase in obesity when consumed as an excess source of calories and with that an increase in the risk of diet-related diseases. Furthermore, it was shown that a diet rich in fat will stimulate GIP secretion more than a diet rich in sucrose. Taken together, current scientific evidence does not support the conclusion that dietary sugars per se are detrimental to human health.
Collapse
Affiliation(s)
- Philip Prinz
- Department of Nutritional Sciences, German Sugar Association, Berlin, Germany.
| |
Collapse
|
29
|
Affiliation(s)
- Gülin Öztürk Özkan
- Nutrition and Dietetics Department, İstanbul Medeniyet University, Health Sciences Faculty, İstanbul, Turkey
| |
Collapse
|
30
|
Afrasyabi S, Marandi SM, Kargarfard M. The effects of high intensity interval training on appetite management in individuals with type 2 diabetes: influenced by participants weight. J Diabetes Metab Disord 2019; 18:107-117. [PMID: 31275881 PMCID: PMC6582123 DOI: 10.1007/s40200-019-00396-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/28/2019] [Indexed: 12/19/2022]
Abstract
Background and purpose The connection between exercise and appetite has ramifications for acute energy balance and weight-management. Research would suggest that exercise training can transiently suppress appetite, particularly in overweight and T2D, healthy-weight individuals. However, the effect of such a transient appetite suppression on subsequent food intake may be restricted. The aim of this thesis was to investigate appetite responses to HIIT in obesity with T2D and to assess the effect of other exercise characteristics, as well as exercise intensity, in mediating these responses especially appetite hormones. Materials and methods Eighty individuals with type 2 diabetes (forty normal and forty obesity weight) performed HIIT trials, all in arandomly divided, in 8 groups (10 in each group) which included, obesity non-diabetic control, obesity diabetic control, normal weight diabetic control, obesity non-diabetic training, obesity diabetic training, normal weight, non-diabetic training, and normal weight diabetic training. Twelve-weeks HIIT sessions (each session of an interval training includes 60 s of high intensity training (85-95% of reserve heart rate)) + running for 60 s at low intensity (55-60% of reserve heart rate) were applied. Blood samples were taken at the beginning and after the fourth, eighth and twelfth week of the training. Data were analyzed using repeated variance analysis and Pearson correlation coefficient. Results The results showed that training reduced ghrelin plasma levels in obese diabetic subjects (P < 0.05). Training has reduced PYY plasma in healthy subjects (non-diabetic) with normal weight (P < 0.05). Training reduced plasma levels of PYY in diabetic patients with normal weight and increased it in obese diabetic and healthy subjects (P < 0.05). Training has increased GLP-1 plasma in obese diabetic and diabetic with normal weight groups (P < 0.05). Training reduced TNF-α in normal (non-diabetic) subjects with normal weight and diabetic and non-diabetic obese subjects. Conclusion Collectively, the studies reported here suggest that appetite hormones differ between lean and obesity participants. The finding also suggested HIIT is more likely to elicit appetite hormones responses in obesity than in lean individuals with type 2 diabetes. Therefore, with caution, it is recommended that the high intensity interval training can be beneficial for these patients.
Collapse
Affiliation(s)
- Saleh Afrasyabi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| | - Syed Mohamad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Hezar Jerib Street, P.O. Box 81746-7344, Isfahan, Iran
| |
Collapse
|
31
|
How Satiating Are the 'Satiety' Peptides: A Problem of Pharmacology versus Physiology in the Development of Novel Foods for Regulation of Food Intake. Nutrients 2019; 11:nu11071517. [PMID: 31277416 PMCID: PMC6682889 DOI: 10.3390/nu11071517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Developing novel foods to suppress energy intake and promote negative energy balance and weight loss has been a long-term but commonly unsuccessful challenge. Targeting regulation of appetite is of interest to public health researchers and industry in the quest to develop ‘functional’ foods, but poor understanding of the underpinning mechanisms regulating food intake has hampered progress. The gastrointestinal (GI) or ‘satiety’ peptides including cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) secreted following a meal, have long been purported as predictive biomarkers of appetite response, including food intake. Whilst peptide infusion drives a clear change in hunger/fullness and eating behaviour, inducing GI-peptide secretion through diet may not, possibly due to modest effects of single meals on peptide levels. We conducted a review of 70 dietary preload (DIET) and peptide infusion (INFUSION) studies in lean healthy adults that reported outcomes of CCK, GLP-1 and PYY. DIET studies were acute preload interventions. INFUSION studies showed that minimum increase required to suppress ad libitum energy intake for CCK, GLP-1 and PYY was 3.6-, 4.0- and 3.1-fold, respectively, achieved through DIET in only 29%, 0% and 8% of interventions. Whether circulating ‘thresholds’ of peptide concentration likely required for behavioural change can be achieved through diet is questionable. As yet, no individual or group of peptides can be measured in blood to reliably predict feelings of hunger and food intake. Developing foods that successfully target enhanced secretion of GI-origin ‘satiety’ peptides for weight loss remains a significant challenge.
Collapse
|
32
|
Intracerebroventricular injection of phoenixin alters feeding behavior and activates nesfatin-1 immunoreactive neurons in rats. Brain Res 2019; 1715:188-195. [DOI: 10.1016/j.brainres.2019.03.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 01/20/2023]
|
33
|
Klimov EA, Rudko OI, Stolpovsky YA. The Frequencies of Alleles of Single Nucleotide Substitutions in the CCK and CCK2R Genes in Some Russian Cattle Breeds. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419060061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Schalla MA, Stengel A. The role of phoenixin in behavior and food intake. Peptides 2019; 114:38-43. [PMID: 30953667 DOI: 10.1016/j.peptides.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
The recently discovered peptide phoenixin was initially implicated in reproduction as a regulator of gonadotropin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release from the pituitary. Subsequently, various functions of phoenixin have been demonstrated including mediation of itching sensation, stimulation of vasopressin secretion, stimulation of white adipogenesis and hypothalamic nutrient sensing. Subsequently, additional actions of phoenixin have been described, namely effects on behavior. A systematic search of four data bases was performed and original articles selected accordingly. The present systematic review will present the current knowledge on the effects of phoenixin on different behaviors such as anxiety and food intake as well as cognition. Lastly, gaps in knowledge will be mentioned to stimulate further research.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
35
|
The effect of peptide tyrosine tyrosine (PYY3–36), a selective Y2 receptor agonist on streptozotocin-induced diabetes in albino rats. Endocr Regul 2019; 53:26-33. [DOI: 10.2478/enr-2019-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Abstract
Objective. The aim of the present study was to assess the effect of the PYY3–36, as a potential therapy for the type 2 diabetes mellitus (T2DM), induced by high fat diet (HFD) and an intraperitoneal (i.p.) administration of streptozotocin (STZ) in albino rats.
Methods. Forty adult male albino Wistar rats were divided into: 1) control group (C, in which the rats were fed with a standard diet and received vehicle; 2) diabetic group (D, in which T2DM was induced by feeding the rats with HFD for four weeks followed by a single i.p. injection of 35 mg/kg STZ, this group was also allowed to have HFD till the end of the study; and 3) D+PYY3–36 group (in which the diabetic rats were treated with 50 µg/kg i.p. PYY3–36 twice a day for one week). Food intake, water intake, body weight (b.w.), visceral fat weight (VFW), liver glycogen content, serum levels of glucose, insulin, and interleukin-6 (IL-6), were measured. Homeostatic-model assessment of insulin resistance (HOMA-IR) was estimated. The gene expression of the hypothalamic neuropeptide Y (NPY) and visceral nuclear factor kappa B (NF-κB) were assessed by a reverse transcription polymerase chain reaction (RT-PCR).
Results. The PYY3–36 administration to the diabetic group of rats significantly increased the serum insulin levels and liver glycogen content, decreased the body weight, VFW, food intake, water intake, serum levels of the glucose, IL-6, and HOMA-IR. It also decreased the expression of both the hypothalamic NPY and the visceral fat NF-κB.
Conclusion. With respect to the fact of improved insulin release and enhanced insulin sensitivity (an effect that may be mediated via suppressing accumulation of visceral fat and inflammatory markers), in the rats treated with PYY3–36, the PYY3–36 might be considered for the future as a promising therapeutic tool in T2DM.
Collapse
|
36
|
Prinz P. The role of dietary sugars in health: molecular composition or just calories? Eur J Clin Nutr 2019. [PMID: 30787473 DOI: 10.1038/s41430-019-0407-z.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This review will focus on the question of whether dietary sugars are a relevant determinant in the global rise of overweight and obesity in adults, adolescents, and children. Initially, the review describes the current definitions for sugars in the diet and makes reference to them while analyzing their role in overweight and obesity as well as diet-related diseases, including type 2 diabetes, cardiovascular diseases, non-alcoholic fatty liver disease and cancer. Second, it will focus particularly on sucrose and the question of whether it is the molecular composition of sucrose (glucose and fructose) or its energy content that promotes body weight gain and diet-related diseases. Finally, the review will clarify the molecular characteristics of sucrose regarding the release of the gastrointestinal glucose-dependent insulinotropic peptide (GIP) compared to other energy-providing nutrients and its relevance in metabolic diseases. Current data indicates that dietary sugars are only associated with an increase in obesity when consumed as an excess source of calories and with that an increase in the risk of diet-related diseases. Furthermore, it was shown that a diet rich in fat will stimulate GIP secretion more than a diet rich in sucrose. Taken together, current scientific evidence does not support the conclusion that dietary sugars per se are detrimental to human health.
Collapse
Affiliation(s)
- Philip Prinz
- Department of Nutritional Sciences, German Sugar Association, Berlin, Germany.
| |
Collapse
|
37
|
Maletínská L, Popelová A, Železná B, Bencze M, Kuneš J. The impact of anorexigenic peptides in experimental models of Alzheimer's disease pathology. J Endocrinol 2019; 240:R47-R72. [PMID: 30475219 DOI: 10.1530/joe-18-0532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the elderly population. Numerous epidemiological and experimental studies have demonstrated that patients who suffer from obesity or type 2 diabetes mellitus have a higher risk of cognitive dysfunction and AD. Several recent studies demonstrated that food intake-lowering (anorexigenic) peptides have the potential to improve metabolic disorders and that they may also potentially be useful in the treatment of neurodegenerative diseases. In this review, the neuroprotective effects of anorexigenic peptides of both peripheral and central origins are discussed. Moreover, the role of leptin as a key modulator of energy homeostasis is discussed in relation to its interaction with anorexigenic peptides and their analogs in AD-like pathology. Although there is no perfect experimental model of human AD pathology, animal studies have already proven that anorexigenic peptides exhibit neuroprotective properties. This phenomenon is extremely important for the potential development of new drugs in view of the aging of the human population and of the significantly increasing incidence of AD.
Collapse
Affiliation(s)
- Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Michal Bencze
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| |
Collapse
|
38
|
Opazo R, Plaza-Parrochia F, Cardoso dos Santos GR, Carneiro GRA, Sardela VF, Romero J, Valladares L. Fasting Upregulates npy, agrp, and ghsr Without Increasing Ghrelin Levels in Zebrafish ( Danio rerio) Larvae. Front Physiol 2019; 9:1901. [PMID: 30733682 PMCID: PMC6353792 DOI: 10.3389/fphys.2018.01901] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/18/2018] [Indexed: 11/24/2022] Open
Abstract
Food intake in fish and mammals is orchestrated by hypothalamic crosstalk between orexigenic (food intake stimulation) and anorexigenic (food intake inhibition) signals. Some of these signals are released by peripheral tissues that are associated with energy homeostasis or nutrient availability. During the fish larva stage, orexigenic stimulation plays a critical role in individual viability. The goal of this study was to assess the mRNA levels of the main neuropeptides involved in food intake regulation (npy, agrp, carppt, and pomc), in concert with the mRNA levels and peptide levels of ghrelin, under a fasting intervention at the larval stage in zebrafish (Danio rerio). Prior to the fasting intervention, the zebrafish larva cohort was reared for 20 days post fertilization (dpf) and then randomly divided into two groups of 20 individuals. One group was subjected to a fasting intervention for 5 days (fasted group), and the other group was fed normally (fed group); this experimental protocol was performed twice independently. At the end of the fasting period, individuals from each experimental group were divided into different analysis groups, for evaluations such as relative gene expression, immunohistochemistry, and liquid chromatography coupled to nano high-resolution mass spectrometry (nLC-HRMS) analyses. The relative expression levels of the following genes were assessed: neuropeptide Y (npy), agouti-related peptide (agrp), proopiomelanocortin (pomc), cocaine and amphetamine-regulated transcript (cartpt), ghrelin (ghrl), ghrelin O-acyltransferase (mboat4), growth hormone secretagogue receptor (ghsr), and glucokinase (gck). In the fasted group, significant upregulation of orexigenic peptides (npy - agrp) and ghsr was observed, which was associated with significant downregulation of gck. The anorexigenic peptides (pomc and cartpt) did not show any significant modulation between the groups, similar to mboat4. Contrary to what was expected, the relative mRNA upregulation of the orexigenic peptides observed in the fasted experimental group could not be associated with significant ghrelin modulation as assessed by three different approaches: qPCR (relative gene expression of ghrelin), nLC-HRMS (des-acyl-ghrelin levels), and immunohistochemistry (integrated optical density of prepropeptides in intestinal and hepatopancreas tissues). Our results demonstrate that zebrafish larvae at 25 dpf exhibit suitable modulation of the relative mRNA levels of orexigenic peptides (npy and agrp) in response to fasting intervention; nevertheless, ghrelin was not coregulated by fasting. Therefore, it can be suggested that ghrelin is not an essential peptide for an increase in appetite in the zebrafish larva stage. These results give rise to new questions about food intake regulation factors in the early stages of fish.
Collapse
Affiliation(s)
- Rafael Opazo
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Francisca Plaza-Parrochia
- Laboratorio de Endocrinología y Biología de la Reproducción, Hospital Clínico, Universidad de Chile, Santiago, Chile
| | - Gustavo R. Cardoso dos Santos
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R. A. Carneiro
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius F. Sardela
- Laboratorio de Pesquisa, Desenvolvimento e Inovação (LPDI-LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime Romero
- Laboratorio de Biotecnología INTA, Universidad de Chile, Santiago, Chile
| | - Luis Valladares
- Laboratorio de Hormonas y Receptores INTA, Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Covasa M, Stephens RW, Toderean R, Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol (Lausanne) 2019; 10:82. [PMID: 30837951 PMCID: PMC6390476 DOI: 10.3389/fendo.2019.00082] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
There are more than 2 billion overweight and obese individuals worldwide, surpassing for the first time, the number of people affected by undernutrition. Obesity and its comorbidities inflict a heavy burden on the global economies and have become a serious threat to individuals' wellbeing with no immediate cure available. The causes of obesity are manifold, involving several factors including physiological, metabolic, neural, psychosocial, economic, genetics and the environment, among others. Recent advances in genome sequencing and metagenomic profiling have added another dimension to this complexity by implicating the gut microbiota as an important player in energy regulation and the development of obesity. As such, accumulating evidence demonstrate the impact of the gut microbiota on body weight, adiposity, glucose, lipid metabolism, and metabolic syndrome. This also includes the role of microbiota as a modulatory signal either directly or through its bioactive metabolites on intestinal lumen by releasing chemosensing factors known to have a major role in controlling food intake and regulating body weight. The importance of gut signaling by microbiota signaling is further highlighted by the presence of taste and nutrient receptors on the intestinal epithelium activated by the microbial degradation products as well as their role in release of peptides hormones controlling appetite and energy homeostasis. This review present evidence on how gut microbiota interacts with intestinal chemosensing and modulates the release and activity of gut peptides, particularly GLP-1 and PYY.
Collapse
Affiliation(s)
- Mihai Covasa
- Department of Health and Human Development, University of Suceava, Suceava, Romania
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Mihai Covasa
| | - Richard W. Stephens
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roxana Toderean
- Department of Health and Human Development, University of Suceava, Suceava, Romania
| | - Claudiu Cobuz
- Department of Health and Human Development, University of Suceava, Suceava, Romania
| |
Collapse
|
40
|
Feng RL, Qian C, Liu LY, Liu QJ, Jin YQ, Li SX, Liu W, Rayner CK, Ma J. Secretion of Gut Hormones and Expression of Sweet Taste Receptors and Glucose Transporters in a Rat Model of Obesity. Obes Facts 2019; 12:190-198. [PMID: 30928977 PMCID: PMC6547286 DOI: 10.1159/000497122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES This study was undertaken to compare gut hormone secretion between high-fat-fed and control rats, and to examine the corresponding changes in the expression of sweet taste receptors and glucose transporters in the small intestine and hypothalamus. METHODS Four-week-old male Sprague Dawley rats were fed a standard or high-fat diet for 8 weeks (10 in each group), followed by an oral glucose tolerance test (50% glucose solution, 2 g/kg). Blood was sampled for glucose, insulin, glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY) assays. One week later, small intestinal and hypothalamic tissue were analyzed for sweet taste receptor and glucose transporter expression by real-time PCR. RESULTS After oral glucose, plasma GLP-1 concentrations were higher in high-fat-fed than standard-fat-fed rats (group × time interaction, p < 0.01) with significant differences at t = 15 min (p < 0.01) and 30 min (p < 0.05). Plasma PYY concentrations were lower in high-fat-fed than control rats at t = 0, 15 min (p < 0.05, respectively) and 120 min (p < 0.01). There were no differences in the expression of sweet taste receptors or glucose transporters between high-fat-fed and control rats in the duodenum, ileum, or hypothalamus. CONCLUSIONS Changes in GLP-1 and PYY secretion after a high-fat diet appear unrelated to any changes in the expression of sweet taste receptors or glucose transporters. Impaired PYY secretion with high-fat feeding suggests that PYY analogues may provide a potential therapy in the treatment of obesity.
Collapse
Affiliation(s)
- Ri Lu Feng
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Cheng Qian
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Lian Yong Liu
- Department of Endocrinology and Metabolism, Shanghai Punan Hospital, Shanghai, China
| | - Qian Jing Liu
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yun Qiu Jin
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Sheng Xian Li
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Wei Liu
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Chris K Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Jing Ma
- Division of Endocrinology and Metabolism, School of Medicine, Renji Hospital affiliated to Shanghai Jiaotong University, Shanghai, China,
| |
Collapse
|
41
|
Park SY, Kim WJ. A Study of Fecal Calprotectin in Obese Children and Adults. J Obes Metab Syndr 2018; 27:233-237. [PMID: 31089568 PMCID: PMC6513304 DOI: 10.7570/jomes.2018.27.4.233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/19/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Obesity is a complex, medical condition causally contributing to many chronic diseases and a number of efforts have been made to find the associated markers for novel prevention and treatment of obesity. Our study was to evaluate the relationship between gut immune response and obesity and overweight with use of fecal calprotectin (FC) both in adult and children groups. METHODS Fecal samples were obtained from 74 subjects: 14 non-obese and overweight children (PN), 13 obese and overweight children (PO), 20 non-obese and overweight adults (AN), and 27 obese and overweight adults (AO). FC was measured using a commercial Legend Max quantitative enzyme-linked immunosorbent assay (BioLegend). Mann-Whitney U-test was used for statistical analysis. RESULTS Median FC concentration was 7.9 μg/g (range, 1.9-28.9 μg/g) for PN, 5.0 μg/g (range, 2.6-29.6 μg/g) for PO, 9.5 μg/g (range, 0.8-28.9 μg/g) for AN, and 10.0 μg/g (range, 1.6-25.6 μg/g) for AO, respectively. In both adults and children age groups, the FC showed no statistically significant difference between AO and AN or PO and PN. However, FC showed statistically significant difference (P<0.05) between AO and PO while not significant between AN and PN. CONCLUSION FC level in AO was significantly higher than that in PO, suggestive of different pathophysiologic mechanism between children obesity and adults obesity.
Collapse
Affiliation(s)
- Shin Young Park
- Department of Clinical Pathology, Cheju Halla University, Jeju,
Korea
| | - Woo Jin Kim
- Department of Laboratory Medicine, Cheju Halla General Hospital, Jeju,
Korea
| |
Collapse
|
42
|
Spetter MS. Current state of the use of neuroimaging techniques to understand and alter appetite control in humans. Curr Opin Clin Nutr Metab Care 2018; 21:329-335. [PMID: 29927764 DOI: 10.1097/mco.0000000000000493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW It is in the brain where the decision is made what and how much to eat. In the last decades neuroimaging research has contributed extensively to new knowledge about appetite control by revealing the underlying brain processes. Interestingly, there is the fast growing idea of using these methods to develop new treatments for obesity and eating disorders. In this review, we summarize the findings of the importance of the use of neuropharmacology and neuroimaging techniques in understanding and modifying appetite control. RECENT FINDINGS Appetite control is a complex interplay between homeostatic, hedonic, and cognitive processes. Administration of the neuropeptides insulin and oxytocin curb food intake and alter brain responses in reward and cognitive control areas. Additionally, these areas can be targeted for neuromodulation or neurofeedback to reduce food cravings and increase self-control to alter food intake. SUMMARY The recent findings reveal the potential of intranasal administration of hormones or modifying appetite control brain networks to reduce food consumption in volunteers with overweight and obesity or individuals with an eating disorder. Although long-term clinical studies are still needed.
Collapse
Affiliation(s)
- Maartje S Spetter
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
43
|
Stengel A, Taché Y. Gut-Brain Neuroendocrine Signaling Under Conditions of Stress-Focus on Food Intake-Regulatory Mediators. Front Endocrinol (Lausanne) 2018; 9:498. [PMID: 30210455 PMCID: PMC6122076 DOI: 10.3389/fendo.2018.00498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
The gut-brain axis represents a bidirectional communication route between the gut and the central nervous system comprised of neuronal as well as humoral signaling. This system plays an important role in the regulation of gastrointestinal as well as homeostatic functions such as hunger and satiety. Recent years also witnessed an increased knowledge on the modulation of this axis under conditions of exogenous or endogenous stressors. The present review will discuss the alterations of neuroendocrine gut-brain signaling under conditions of stress and the respective implications for the regulation of food intake.
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- VA Greater Los Angeles Health Care System, Los Angeles, CA, United States
| |
Collapse
|
44
|
Wang C, Kang C, Xian Y, Zhang M, Chen X, Pei M, Zhu W, Hang S. Sensing of L-Arginine by Gut-Expressed Calcium Sensing Receptor Stimulates Gut Satiety Hormones Cholecystokinin and Glucose-Dependent Insulinotropic Peptide Secretion in Pig Model. J Food Sci 2018; 83:2394-2401. [PMID: 30088839 DOI: 10.1111/1750-3841.14297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 01/09/2023]
Abstract
Nutrients regulate the secretion of gut satiety hormones, which is related to the modulation of food intake and blood glucose levels. Calcium-sensing receptor (CaSR) is involved in regulating gut hormone secretion in response to l-amino acids and multivalent cations. Rodents are often used to investigate the effect of nutrients on these hormonal release. However, results obtained using rodent models are difficult to be applied in humans, we used pigs as a model in this study because their physiology is similar to that of humans. In this study, we investigated whether l-Arginine (l-Arg) could induce gut hormones cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP) secretion in the porcine duodenum and if so, whether CaSR mediated l-Arg-regulated gut satiety hormone secretion. Our data showed that treatment with 20 and 50 mM l-Arg induced CCK and GIP secretion compared with 0 mM l-Arg. However, treatment with d-Arg (an inactive isomer) failed to elicit this response. The potency of l-Arg to induce CCK and GIP secretion was enhanced in the presence of extracellular Ca2+ and CaSR agonist cinacalcet. However, the effect of Arg on CCK and GIP secretion was attenuated by blocking CaSR and its downstream signaling molecules adenylate cyclase (AC) and phospholipase C (PLC). Taken all together, pig duodenum provides an appropriate model to explore the effects of l-Arg on the secretion of the satiety-related gut hormones CCK and GIP and the role of CaSR in this effect. Further investigations are needed to verify the effect of l-Arg on food intake and blood glucose in human study. PRACTICAL APPLICATION: l-Arginine is able to modulate cholecystokinin and glucose-dependent insulinotropic peptide secretion through the CaSR in pig model, which has a potential role in regulating food intake and blood glucose levels.
Collapse
Affiliation(s)
- Chao Wang
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Cuicui Kang
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Yihan Xian
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Mingyu Zhang
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Xiaolin Chen
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Mingcai Pei
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Weiyun Zhu
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| | - Suqin Hang
- WeiGang No. 1, Nanjing Agricultural Univ., Nanjing, Jiangsu 210095, China
| |
Collapse
|
45
|
Tasyurek HM, Altunbas HA, Balci MK, Griffith TS, Sanlioglu S. Therapeutic Potential of Lentivirus-Mediated Glucagon-Like Peptide-1 Gene Therapy for Diabetes. Hum Gene Ther 2018; 29:802-815. [PMID: 29409356 DOI: 10.1089/hum.2017.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postprandial glucose-induced insulin secretion from the islets of Langerhans is facilitated by glucagon-like peptide-1 (GLP-1)-a metabolic hormone with insulinotropic properties. Among the variety of effects it mediates, GLP-1 induces delta cell secretion of somatostatin, inhibits alpha cell release of glucagon, reduces gastric emptying, and slows food intake. These events collectively contribute to weight loss over time. During type 2 diabetes (T2DM), however, the incretin response to glucose is reduced and accompanied by a moderate reduction in GLP-1 secretion. To compensate for the reduced incretin effect, a human immunodeficiency virus-based lentiviral vector was generated to deliver DNA encoding human GLP-1 (LentiGLP-1), and the anti-diabetic efficacy of LentiGLP-1 was tested in a high-fat diet/streptozotocin-induced model of T2DM. Therapeutic administration of LentiGLP-1 reduced blood glucose levels in obese diabetic Sprague Dawley rats, along with improving insulin sensitivity and glucose tolerance. Normoglycemia was correlated with increased blood GLP-1 and pancreatic beta cell regeneration in LentiGLP-1-treated rats. Plasma triglyceride levels were also normalized after LentiGLP-1 injection. Collectively, these data suggest the clinical potential of GLP-1 gene transfer therapy for the treatment of T2DM.
Collapse
Affiliation(s)
- Hale M Tasyurek
- 1 Human Gene and Cell Therapy Center of Akdeniz University Hospitals , Antalya, Turkey
| | - Hasan Ali Altunbas
- 2 Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Mustafa Kemal Balci
- 2 Department of Internal Medicine, Division of Endocrinology and Metabolism, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Thomas S Griffith
- 3 Department of Urology, University of Minnesota , School of Medicine, Minneapolis, Minnesota
| | - Salih Sanlioglu
- 1 Human Gene and Cell Therapy Center of Akdeniz University Hospitals , Antalya, Turkey
| |
Collapse
|
46
|
O'Halloran F, Bruen C, McGrath B, Schellekens H, Murray B, Cryan JF, Kelly AL, McSweeney PL, Giblin L. A casein hydrolysate increases GLP-1 secretion and reduces food intake. Food Chem 2018; 252:303-310. [DOI: 10.1016/j.foodchem.2018.01.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
|
47
|
Impact of Laparoscopic Sleeve Gastrectomy on Gastrointestinal Motility. Gastroenterol Res Pract 2018; 2018:4135813. [PMID: 29849586 PMCID: PMC5907392 DOI: 10.1155/2018/4135813] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/04/2018] [Indexed: 01/19/2023] Open
Abstract
Objective Laparoscopic sleeve gastrectomy (LSG) was considered mainly as a restrictive procedure due to anatomic alterations in the upper gastrointestinal tract. Additionally, due to neurohormonal alterations, LSG modifies the gastrointestinal motility, which controls appetite and feeling of satiety. Aim The aim of the study was to review the impact of laparoscopic sleeve gastrectomy on gastrointestinal motility. Material and Methods A search of the medical literature was undertaken in Pubmed, Web of Science, and Cochrane library. Esophageal, gastric, bowel motility were assessed separately. Results Nine studies assessed esophageal motility. The data remain debatable attributing to the heterogeneity of follow-up timing, surgical technique, bougie size, and distance from pylorus. The stomach motility was assessed in eighteen studies. Functionally, the sleeve was divided into a passive sleeve and an accelerated antrum. All scintigraphic studies revealed accelerated gastric emptying after LSG except of one. Patients demonstrated a rapid gastroduodenal transit time. The resection of the gastric pacemaker had as a consequence aberrant distal ectopic pacemaking or bioelectrical quiescence after LSG. The bowel motility was the least studied. Small bowel transit time was reduced; opposite to that the initiation of cecal filling and the ileocecal valve transit was delayed. Conclusion Laparoscopic sleeve gastrectomy has impacts on gastrointestinal motility. The data remain debatable for esophageal motility. Stomach and small bowel motility were accelerated, while the initiation of cecal filling and the ileocecal valve transit was delayed. Further pathophysiological studies are needed to evaluate the correlation of motility data with clinical symptoms.
Collapse
|
48
|
Prinz P, Stengel A. Deep Brain Stimulation-Possible Treatment Strategy for Pathologically Altered Body Weight? Brain Sci 2018; 8:brainsci8010019. [PMID: 29361753 PMCID: PMC5789350 DOI: 10.3390/brainsci8010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
The treatment of obesity and eating disorders such as binge-eating disorder or anorexia nervosa is challenging. Besides lifestyle changes and pharmacological options, bariatric surgery represents a well-established and effective-albeit invasive-treatment of obesity, whereas for binge-eating disorder and anorexia nervosa mostly psychotherapy options exist. Deep brain stimulation (DBS), a method that influences the neuronal network, is by now known for its safe and effective applicability in patients with Parkinson’s disease. However, the use does not seem to be restricted to these patients. Recent preclinical and first clinical evidence points towards the use of DBS in patients with obesity and eating disorders as well. Depending on the targeted area in the brain, DBS can either inhibit food intake and body weight or stimulate energy intake and subsequently body weight. The current review focuses on preclinical and clinical evidence of DBS to modulate food intake and body weight and highlight the different brain areas targeted, stimulation protocols applied and downstream signaling modulated. Lastly, this review will also critically discuss potential safety issues and gaps in knowledge to promote further studies.
Collapse
Affiliation(s)
- Philip Prinz
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12200 Berlin, Germany.
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12200 Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
49
|
Abstract
The prevalence of obesity and overweight has plateaued in developed countries, although at high levels, but in most parts of the world, it continues to increase. Current recommendations for preventing and treating obesity are based mainly on the notion that overeating results from hedonic eating as a result of unlimited access to palatable foods, particularly those high in sugar and fat, and that hedonic centers are able to "override" the body's homeostatic mechanisms. This article proposes that the homeostatic mechanisms affecting appetite and satiety are more important in chronic overeating, and that sufficient evidence exists for adopting a new paradigm for controlling individual and global obesity based on controlling energy homeostasis via the enteroendocrine and gut microbiota systems. Many obese children and adolescents have chronic hunger, supporting the notion that they have a homeostatic rather than hedonic abnormality. The effectiveness of weight loss drugs and bariatric surgery suggests that the brain centers controlling energy homeostasis are able to override centers controlling hedonic drives. Energy homeostasis can also be influenced by nutrition, in particular, by avoiding sweetened drinks and consuming whole grains, vegetables, fruits and other foods that are high in dietary fiber, and thereby influence appetite and satiety. New recommendations are outlined for preventing and treating individual and global obesity based on a paradigm that targets appetite and satiety.
Collapse
|
50
|
Abot A, Cani PD, Knauf C. Impact of Intestinal Peptides on the Enteric Nervous System: Novel Approaches to Control Glucose Metabolism and Food Intake. Front Endocrinol (Lausanne) 2018; 9:328. [PMID: 29988396 PMCID: PMC6023997 DOI: 10.3389/fendo.2018.00328] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
The gut is one of the most important sources of bioactive peptides in the body. In addition to their direct actions in the brain and/or peripheral tissues, the intestinal peptides can also have an impact on enteric nervous neurons. By modifying the endogenousproduction of these peptides, one may expect modify the "local" physiology such as glucose absorption, but also could have a "global" action via the gut-brain axis. Due to the various origins of gut peptides (i.e., nutrients, intestinal wall, gut microbiota) and the heterogeneity of enteric neurons population, the potential physiological parameters control by the interaction between the two partners are multiple. In this review, we will exclusively focus on the role of enteric nervous system as a potential target of gut peptides to control glucose metabolism and food intake. Potential therapeutic strategies based on per os administration of gut peptides to treat type 2 diabetes will be described.
Collapse
Affiliation(s)
- Anne Abot
- NeuroMicrobiota, European Associated Laboratory (EAL), INSERM, Université catholique de Louvain (UCL), Toulouse, France
- INSERM U1220 Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Université Toulouse III Paul Sabatier, Paris, France
| | - Patrice D. Cani
- NeuroMicrobiota, European Associated Laboratory (EAL), INSERM, Université catholique de Louvain (UCL), Toulouse, France
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Université catholique de Louvain (UCL), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory (EAL), INSERM, Université catholique de Louvain (UCL), Toulouse, France
- INSERM U1220 Institut de Recherche en Santé Digestive (IRSD), CHU Purpan, Université Toulouse III Paul Sabatier, Paris, France
- *Correspondence: Claude Knauf,
| |
Collapse
|