1
|
Liu Y, Sun Y, Chen A, Chen J, Zhu T, Wang S, Qiao W, Zhou D, Zhang X, Chen S, Shi Y, Yang Y, Wang J, Wu L, Fan L. Involvement of disulfidptosis in the pathophysiology of autism spectrum disorder. Life Sci 2025; 369:123531. [PMID: 40054734 DOI: 10.1016/j.lfs.2025.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder, with oxidative stress recognized as a key pathogenic mechanisms. Oxidative stress disrupts intracellular dynamic- thiol/disulfide homeostasis (DTDH), potentially leading to disulfidptosis, a newly identified cell death mechanism. While studies suggest a link between DTDH and ASD, direct evidence implicating disulfidptosis in ASD pathogenesis remains limited. In this study, Mendelian randomization analysis revealed a significant causal association between disulfidptosis-related sulfhydryl oxidase 1 and 2 and ASD (OR1 = 0.883, OR2 = 0.924, p < 0.05). A positive correlation between protein disulfide-isomerase and cognitive performance (OR = 1.021, p < 0.01) further supported the role of disulfidptosis in ASD. Seven disulfidptosis-related genes (TIMP1, STAT3, VWA1, ADA, IL5, PF4, and TXNDC12) were identified and linked to immune cell alterations. A TF-miRNA-mRNA regulatory network and a predictive model (AUC = 0.759) were constructed and external validation datasets (AUC = 0.811). Immune infiltration analysis demonstrated altered expression of naive B cells and three other types of immune cells in ASD children. Animal experiments further validated the differential expression of key genes, highlighting their relevance to ASD pathogenesis. Animal experiments found that BTBR mice exhibit glucose starvation and NADPH depletion, with the specific indicator Slc7a11 being highly expressed. Silencing Slc7a11 can improve core ASD impairments in BTBR mice. CONCLUSION: This study establishes the first mechanistic link between disulfidptosis and ASD, identifies seven key genes and their regulatory network, and develops a predictive model with clinical utility. Animal experiments further confirmed the strong association between disulfidpotosis and ASD phenotypes. These findings offer novel therapeutic targets for modulating oxidative stress in ASD.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Tikang Zhu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shuting Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Wanying Qiao
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Ding Zhou
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Shuangshuang Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Key Laboratory of Children development and genetic research, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Key Laboratory of Children development and genetic research, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin 150081, China
| | - Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Key Laboratory of Children development and genetic research, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
2
|
Davias A, Verghese M, Bridgman SL, Tun HM, Field CJ, Hicks M, Pei J, Hicks A, Moraes TJ, Simons E, Turvey SE, Subbarao P, Scott JA, Mandhane PJ, Kozyrskyj AL. Gut microbiota metabolites, secretory immunoglobulin A and Bayley-III cognitive scores in children from the CHILD Cohort Study. Brain Behav Immun Health 2025; 44:100946. [PMID: 39911944 PMCID: PMC11795817 DOI: 10.1016/j.bbih.2025.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
Background Dysbiosis of the gut microbiota has been demonstrated in neurodevelopmental disorders but the underlying mechanisms that may explain these associations are poorly understood. Gut secretory immunoglobulin A (SIgA) binds pathogenic microbes, preventing mucosal penetration. Gut microbes also influence SIgA production and its binding characteristics through short-chain fatty acid (SCFA) metabolites, allowing them to regulate the immune response. Serum IgA deficiency has been noted in children with autism spectrum disorders (ASD). In this study, we aimed to determine whether SIgA level in infancy is associated with gut microbiota taxonomy and metabolites, and neurodevelopmental outcomes in preschool children. Methods For a subsample of 178 children from the Canadian CHILD Cohort Study, gut microbiota of fecal samples collected at 3-4 months and 12 months was profiled using 16S rRNA sequencing. Gut bacterial metabolites levels and SIgA level were measured by nuclear magnetic resonance (NMR) based metabolomics and SIgA enzyme-linked immunosorbent assay at 3-4 months, respectively. Bayley-III Scale of Infant Development was assessed at 12 and 24 months. We evaluated direct relationships in multiple linear regression models and putative causal relationships in statistical mediation models. Results Propionate and butyrate levels at 3-4 months were associated with decreased Bayley cognitive score at 24 months (p-values: 0.01 and 0.02, respectively) in adjusted multiple linear regression models, but when we investigated an indirect relationship mediated by decreased SIgA level at 3-4 months, it did not reach statistical significance (p-values: 0.18 and 0.20, respectively). Lactate level at 3-4 months was associated with increased Bayley cognitive score at 24 months in adjusted multiple linear regression models (p-value: 0.01), but the statistical model mediated by increased SIgA level at 3-4 months did not reach statistical significance neither (p-value: 0.20). Conclusions Our study contributes to growing evidence that neurodevelopment is influenced by the infant gut microbiota and that it might involve SIgA level, but larger studies are required.
Collapse
Affiliation(s)
- Aline Davias
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Environmental Epidemiology Applied to Development and Respiratory Health Team, Institute for Advanced Biosciences, University Grenoble Alpes, Inserm, CNRS, 38700, La Tronche, France
| | - Myah Verghese
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sarah L. Bridgman
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hein M. Tun
- The Jockey Club School of Public Health and Primary Care, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada
| | - Matthew Hicks
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Jacqueline Pei
- Department of Educational Psychology, Faculty of Education, University of Alberta, Edmonton, Canada
| | - Anne Hicks
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Theo J. Moraes
- Hospital for Sick Children (SickKids), Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Elinor Simons
- Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Stuart E. Turvey
- BC Children's Hospital, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Padmaja Subbarao
- Hospital for Sick Children (SickKids), Department of Pediatrics, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, Division of Occupational and Environmental Health, University of Toronto, Toronto, Canada
| | - James A. Scott
- Dalla Lana School of Public Health, Division of Occupational and Environmental Health, University of Toronto, Toronto, Canada
| | - Piushkumar J. Mandhane
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anita L. Kozyrskyj
- Edmonton Clinic Health Academy, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Arteaga-Henríquez G, Gisbert L, Ramos-Quiroga JA. Immunoregulatory and/or Anti-inflammatory Agents for the Management of Core and Associated Symptoms in Individuals with Autism Spectrum Disorder: A Narrative Review of Randomized, Placebo-Controlled Trials. CNS Drugs 2023; 37:215-229. [PMID: 36913130 PMCID: PMC10024667 DOI: 10.1007/s40263-023-00993-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a so far poorly understood underlying pathogenesis, and few effective therapies for core symptoms. Accumulating evidence supports an association between ASD and immune/inflammatory processes, arising as a possible pathway for new drug intervention. However, current literature on the efficacy of immunoregulatory/anti-inflammatory interventions on ASD symptoms is still limited. The aim of this narrative review was to summarize and discuss the latest evidence on the use of immunoregulatory and/or anti-inflammatory agents for the management of this condition. During the last 10 years, several randomized, placebo-controlled trials on the effectiveness of (add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, N-acetylcysteine (NAC), sulforaphane (SFN), and/or omega-3 fatty acids have been performed. Overall, a beneficial effect of prednisolone, pregnenolone, celecoxib, and/or omega-3 fatty acids on several core symptoms, such as stereotyped behavior, was found. (Add-on) treatment with prednisolone, pregnenolone, celecoxib, minocycline, NAC, SFN, and/or omega-3 fatty acids was also associated with a significantly higher improvement in other symptoms, such as irritability, hyperactivity, and/or lethargy when compared with placebo. The mechanisms by which these agents exert their action and improve symptoms of ASD are not fully understood. Interestingly, studies have suggested that all these agents may suppress microglial/monocyte proinflammatory activation and also restore several immune cell imbalances (e.g., T regulatory/T helper-17 cell imbalances), decreasing the levels of proinflammatory cytokines, such as interleukin (IL)-6 and/or IL-17A, both in the blood and in the brain of individuals with ASD. Although encouraging, the performance of larger randomized placebo-controlled trials, including more homogeneous populations, dosages, and longer periods of follow-up, are urgently needed in order to confirm the findings and to provide stronger evidence.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- NCRR-The National Center for Register-Based Research, Aahrus University, Aahrus, Denmark
| | - Laura Gisbert
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Catalonia, Spain.
- Group of Psychiatry, Mental Health and Addictions, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain.
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Al-Beltagi M, Saeed NK, Bediwy AS, Alhawamdeh R, Qaraghuli S. Effects of COVID-19 on children with autism. World J Virol 2022; 11:411-425. [PMID: 36483100 PMCID: PMC9724198 DOI: 10.5501/wjv.v11.i6.411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic affects all countries and populations worldwide, significantly impacting people with autism with a high risk of morbidity and mortality due to COVID-19. Approximately 25% of children with autism have an asymptomatic or symptomatic immune deficiency or dysfunction. In addition, they frequently have various comorbid conditions that increase the severity of COVID-19. In addition, severe COVID-19 during pregnancy may increase the risk of autism in the offspring. Furthermore, severe acute respiratory syndrome coronavirus 2 could target human nervous system tissues due to its neurotrophic effects. The COVID-19 pandemic intensely impacts many patients and families in the autism community, especially the complex management of autism-associated disorders during the complete lockdown. During the complete lockdown, children with autism had difficulties coping with the change in their routine, lack of access to special education services, limited physical space available, and problems related to food and sleep. Additionally, children with autism or intellectual disabilities are more liable to be abused by others during the pandemic when the standard community supports are no longer functioning to protect them. Early detection and vaccination of children with autism against COVID-19 are highly indicated. They should be prioritized for testing, vaccination, and proper management of COVID-19 and other infectious diseases. In this review, we discuss the various effects of COVID-19 on children with autism, the difficulties they face, the increased risk of infection during pregnancy, how to alleviate the impact of COVID-19, and how to correct the inequalities in children with autism.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, Arabian Gulf University, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
- Department of Pediatrics, University Medical Center, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Department of Medical Microbiology Section, Pathology Department, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Manama, Bahrain
- Department of Microbiology Section, Pathology Department, Irish Royal College of Surgeon, Busiateen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Rawan Alhawamdeh
- Research and Development Department, Pediatric Occupational Therapist and Neuropsychologist, Genomics Development and Play Center (Genomisc WLL), 0000, Manama, Bahrain
- Research and Development Department, Pediatric Occupational Therapist and Neuropsychologist, Sensory Middle East (SENSORYME DWC-LLC), 282228 Dubai, United Arab Emirates
| | - Samara Qaraghuli
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Mustansiriya University, Baghdad 14022, Baghdad, Iraq
| |
Collapse
|
5
|
Activation of the Monocyte/Macrophage System and Abnormal Blood Levels of Lymphocyte Subpopulations in Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232214329. [PMID: 36430805 PMCID: PMC9699353 DOI: 10.3390/ijms232214329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with a so far unknown etiology. Increasing evidence suggests that a state of systemic low-grade inflammation may be involved in the pathophysiology of this condition. However, studies investigating peripheral blood levels of immune cells, and/or of immune cell activation markers such as neopterin are lacking and have provided mixed findings. We performed a systematic review and meta-analysis of studies comparing total and differential white blood cell (WBC) counts, blood levels of lymphocyte subpopulations and of neopterin between individuals with ASD and typically developing (TD) controls (PROSPERO registration number: CRD CRD42019146472). Online searches covered publications from 1 January 1994 until 1 March 2022. Out of 1170 publication records identified, 25 studies were finally included. Random-effects meta-analyses were carried out, and sensitivity analyses were performed to control for potential moderators. Results: Individuals with ASD showed a significantly higher WBC count (k = 10, g = 0.29, p = 0.001, I2 = 34%), significantly higher levels of neutrophils (k = 6, g = 0.29, p = 0.005, I2 = 31%), monocytes (k = 11, g = 0.35, p < 0.001, I2 = 54%), NK cells (k = 7, g = 0.36, p = 0.037, I2 = 67%), Tc cells (k = 4, g = 0.73, p = 0.021, I2 = 82%), and a significantly lower Th/Tc cells ratio (k = 3, g = −0.42, p = 0.008, I2 = 0%), compared to TD controls. Subjects with ASD were also characterized by a significantly higher neutrophil-to-lymphocyte ratio (NLR) (k = 4, g = 0.69, p = 0.040, I2 = 90%), and significantly higher neopterin levels (k = 3, g = 1.16, p = 0.001, I2 = 97%) compared to TD controls. No significant differences were found with respect to the levels of lymphocytes, B cells, Th cells, Treg cells, and Th17 cells. Sensitivity analysis suggested that the findings for monocyte and neutrophil levels were robust, and independent of other factors, such as medication status, diagnostic criteria applied, and/or the difference in age or sex between subjects with ASD and TD controls. Taken together, our findings suggest the existence of a chronically (and systemically) activated inflammatory response system in, at least, a subgroup of individuals with ASD. This might have not only diagnostic, but also, therapeutic implications. However, larger longitudinal studies including more homogeneous samples and laboratory assessment methods and recording potential confounding factors such as body mass index, or the presence of comorbid psychiatric and/or medical conditions are urgently needed to confirm the findings.
Collapse
|
6
|
Nour-Eldine W, Ltaief SM, Abdul Manaph NP, Al-Shammari AR. In search of immune cellular sources of abnormal cytokines in the blood in autism spectrum disorder: A systematic review of case-control studies. Front Immunol 2022; 13:950275. [PMID: 36268027 PMCID: PMC9578337 DOI: 10.3389/fimmu.2022.950275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Abnormal cytokine levels in circulating blood have been repeatedly reported in autism; however, the underlying cause remains unclear. This systematic review aimed to investigate cytokine levels in peripheral blood compartments and identify their potential immune cellular sources in subjects with autism through comparison with controls. We conducted an electronic database search (PubMed, Scopus, ProQuest Central, Ovid, SAGE Journals, and Wiley Online Library) from inception (no time limits) to July 9, 2020, and identified 75 relevant articles. Our qualitative data synthesis focused on results consistently described in at least three independent studies, and we reported the results according to the PRISMA protocol. We found that compared with controls, in subjects with autism, cytokines IL-6, IL-17, TNF-α, and IL-1β increased in the plasma and serum. We also identified monocytes, neutrophils, and CD4+ T cells as potential sources of these elevated cytokines in autism. Cytokines IFN-γ, TGF-β, RANTES, and IL-8 were increased in the plasma/serum of subjects with autism, and IFN-γ was likely produced by CD4+ T cells and natural killer (NK) cells, although conflicting evidence is present for IFN-γ and TGF-β. Other cytokines-IL-13, IL-10, IL-5, and IL-4-were found to be unaltered in the plasma/serum and post-stimulated blood immune cells in autistic individuals as compared with controls. The frequencies of T cells, monocytes, B cells, and NK cells were unchanged in subjects with autism as opposed to controls, suggesting that abnormal cytokines were unlikely due to altered cell numbers but might be due to altered functioning of these cells in autism. Our results support existing studies of abnormal cytokines in autism and provide comprehensive evidence of potential cellular sources of these altered cytokines in the context of autism. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020205224, identifier [CRD42020205224].
Collapse
Affiliation(s)
| | | | | | - Abeer R. Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
7
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
8
|
Nagaishi T, Watabe T, Kotake K, Kumazawa T, Aida T, Tanaka K, Ono R, Ishino F, Usami T, Miura T, Hirakata S, Kawasaki H, Tsugawa N, Yamada D, Hirayama K, Yoshikawa S, Karasuyama H, Okamoto R, Watanabe M, Blumberg RS, Adachi T. Immunoglobulin A-specific deficiency induces spontaneous inflammation specifically in the ileum. Gut 2022; 71:487-496. [PMID: 33963042 PMCID: PMC8809603 DOI: 10.1136/gutjnl-2020-322873] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although immunoglobulin A (IgA) is abundantly expressed in the gut and known to be an important component of mucosal barriers against luminal pathogens, its precise function remains unclear. Therefore, we tried to elucidate the effect of IgA on gut homeostasis maintenance and its mechanism. DESIGN We generated various IgA mutant mouse lines using the CRISPR/Cas9 genome editing system. Then, we evaluated the effect on the small intestinal homeostasis, pathology, intestinal microbiota, cytokine production, and immune cell activation using intravital imaging. RESULTS We obtained two lines, with one that contained a <50 base pair deletion in the cytoplasmic region of the IgA allele (IgA tail-mutant; IgAtm/tm) and the other that lacked the most constant region of the IgH α chain, which resulted in the deficiency of IgA production (IgA-/-). IgA-/- exhibited spontaneous inflammation in the ileum but not the other parts of the gastrointestinal tract. Associated with this, there were significantly increased lamina propria CD4+ T cells, elevated productions of IFN-γ and IL-17, increased ileal segmented filamentous bacteria and skewed intestinal microflora composition. Intravital imaging using Ca2+ biosensor showed that IgA-/- had elevated Ca2+ signalling in Peyer's patch B cells. On the other hand, IgAtm/tm seemed to be normal, suggesting that the IgA cytoplasmic tail is dispensable for the prevention of the intestinal disorder. CONCLUSION IgA plays an important role in the mucosal homeostasis associated with the regulation of intestinal microbiota and protection against mucosal inflammation especially in the ileum.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan .,Department of Advanced Therapeutics for GI Diseases, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Taro Watabe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kunihiko Kotake
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Research and Development Department, Ichibiki Co., Ltd, Nagoya, Aichi, Japan
| | - Toshihiko Kumazawa
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Research and Development Department, Ichibiki Co., Ltd, Nagoya, Aichi, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Ryuichi Ono
- Department of Epigenetics, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan,Current address: Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Takako Usami
- Laboratory of Recombinant Animals, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Satomi Hirakata
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Hiroko Kawasaki
- Biological Resource Center, National Institute of Technology and Evaluation (NITE), Shibuya-ku, Tokyo, Japan
| | - Naoya Tsugawa
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Daiki Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan,Current address: Department of Cellular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical Science, TMDU, Bunkyo-ku, Tokyo, Japan,Advanced Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Science, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan,Advanced Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan
| | - Richard S Blumberg
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, TMDU, Bunkyo-ku, Tokyo, Japan .,Current address: Department of Precision Health, Medical Research Institute, TMDU, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
9
|
Maltsev D. Результати ретроспективного аналізу застосування нормального внутрішньовенного імуноглобуліну людини у високій дозі для лікування імунозалежної енцефалопатії з клінічною картиною розладів аутистичного спектра в дітей з генетичним дефіцитом фолатного циклу. INTERNATIONAL NEUROLOGICAL JOURNAL 2022; 17:26-38. [DOI: 10.22141/2224-0713.17.8.2021.250818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Актуальність. Раніше неодноразово повідомлялося про ефективність внутрішньовенної імуноглобулінотерапії в деяких дітей з розладами аутистичного спектра (РАС) без уточнення критеріїв відбору потенційних респондентів на імунотерапію. Мета: оцінити ефективність і безпечність 6-місячного курсу високодозової імуноглобулінотерапії при імунозалежній енцефалопатії з клінічною картиною РАС у дітей з генетичним дефіцитом фолатного циклу (ГДФЦ). Матеріали та методи. Досліджувану групу (ДГ) ретроспективного аналізу становили 225 дітей віком від 2 до 9 років із РАС, асоційованим із ГДФЦ, які отримували імуноглобулін внутрішньовенно в дозі 2 г/кг/міс протягом 6 місяців. До контрольної групи (КГ) увійшли діти з РАС, асоційованим із ГДФЦ, з аналогічним розподілом за віком і статтю, які отримували лише немедикаментозну реабілітаційну підтримку. Методом полімеразної ланцюгової реакції з рестрикцією виявляли такі патогенні поліморфізми, як MTHFR 677 C>T, MTHFR 1298 A>C, MTRR A>G і MTR A>G у різних комбінаціях. Динаміку психіатричних симптомів оцінювали за шкалою Aberrant Behavior Checklist (ABC). Результати. Вірогідне покращення за шкалою ABC було досягнуто в 199 із 225 дітей ДГ (88% випадків; p < 0,05; Z < Z0,05). Паралельно відзначали позитивну динаміку інших клінічних проявів фенотипу ГДФЦ: PANS/PITANDS/PANDAS (у 27 із 32 % випадків; p < 0,05; Z < Z0,05), епілепсії (у 33 із 43% випадків; p < 0,05; Z < Z0,05) та шлунково-кишкового синдрому (у 69 із 82 % випадків; p < 0,05; Z< Z0,05). Позитивної динаміки з боку симптомів ураження пірамідного та мозочкового трактів зареєстровано не було (p > 0,05; Z > Z0,05). Досягнуто зниження загального герпесвірусного навантаження та збільшення абсолютної кількості природних кілерів (NK) у периферичній крові (p<0,05; Z < Z0,05). Майже повне зникнення МР-симптомів лейкоенцефалопатії спостерігалося в 69 із 88 % випадків у ДГ (p < 0,05; Z< Z0,05). Висновки. Внутрішньовенний імуноглобулін у високій дозі справляє комплексний полімодальний позитивний вплив на прояви ГДФЦ, включаючи РАС, екстрапірамідні порушення, обсесивно-компульсивний синдром, епілептиформну активність кори головного мозку, імунозапальне ураження кишечника, дефіцит NK-клітин і лейкоенцефалопатію.
Collapse
|
10
|
Ellul P, Rosenzwajg M, Peyre H, Fourcade G, Mariotti-Ferrandiz E, Trebossen V, Klatzmann D, Delorme R. Regulatory T lymphocytes/Th17 lymphocytes imbalance in autism spectrum disorders: evidence from a meta-analysis. Mol Autism 2021; 12:68. [PMID: 34641964 PMCID: PMC8507168 DOI: 10.1186/s13229-021-00472-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Immune system dysfunction has been proposed to play a critical role in the pathophysiology of autism spectrum disorders (ASD). Conflicting reports of lymphocyte subpopulation abnormalities have been described in numerous studies of patients with ASD. To better define lymphocytes abnormalities in ASD, we performed a meta-analysis of the lymphocyte profiles from subjects with ASD. Methods We used the PRISMA recommendations to query PubMed, Embase, PsychoINFO, BIOSIS, Science Direct, Cochrane CENTRAL, and Clinicaltrials.gov for terms related to clinical diagnosis of ASD and to lymphocytes’ populations. We selected studies exploring lymphocyte subpopulations in children with ASD. The search protocol has been registered in the international Prospective Register of Systematic Reviews (CRD42019121473). Results We selected 13 studies gathering 388 ASD patients and 326 healthy controls. A significant decrease in the CD4+ lymphocyte was found in ASD patients compared to controls [− 1.51 (95% CI − 2.99; − 0.04) p = 0.04] (I2 = 96% [95% CI 94.6, 97.7], p < 0.01). No significant difference was found for the CD8+ T, B and natural killer lymphocytes. Considering the CD4+ subpopulation, there was a significant decrease in regulatory T lymphocytes (Tregs) in ASD patients (n = 114) compared to controls (n = 107) [− 3.09 (95% CI − 4.41; − 1.76) p = 0.0001]; (I2 = 90.9%, [95% CI 76.2, 96.5], p < 0.0001) associated with an increase oin the Th17 lymphocytes (ASD; n = 147 controls; n = 128) [2.23 (95% CI 0.79; 3.66) p = 0,002] (I2 = 95.1% [95% CI 90.4, 97.5], p < 0.0001). Limitations Several factors inducing heterogeneity should be considered. First, differences in the staining method may be responsible for a part in the heterogeneity of results. Second, ASD population is also by itself heterogeneous, underlying the need of studying sub-groups that are more homogeneous. Conclusion Our meta-analysis indicates defects in CD4+ lymphocytes, specifically decrease oin Tregs and increase in Th17 in ASD patients and supports the development of targeted immunotherapies in the field of ASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00472-4.
Collapse
Affiliation(s)
- Pierre Ellul
- AP-HP (Assistance Publique-Hôpitaux de Paris), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris University, 48 Boulevard Sérurier, 75019, Paris, France. .,INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France.
| | - Michelle Rosenzwajg
- INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi), Paris, France
| | - Hugo Peyre
- AP-HP (Assistance Publique-Hôpitaux de Paris), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris University, 48 Boulevard Sérurier, 75019, Paris, France.,Robert Debré Hospital, UMR 1141, NeuroDiderot Inserm - Paris University, Paris, France
| | - Gwladys Fourcade
- INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
| | | | - Vincent Trebossen
- AP-HP (Assistance Publique-Hôpitaux de Paris), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris University, 48 Boulevard Sérurier, 75019, Paris, France
| | - David Klatzmann
- INSERM, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi), Paris, France
| | - Richard Delorme
- AP-HP (Assistance Publique-Hôpitaux de Paris), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris University, 48 Boulevard Sérurier, 75019, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| |
Collapse
|
11
|
A Systematic Review and Meta-Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. J Pers Med 2021; 11:jpm11060488. [PMID: 34070826 PMCID: PMC8229039 DOI: 10.3390/jpm11060488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 2% of children in the United States. Growing evidence suggests that immune dysregulation is associated with ASD. One immunomodulatory treatment that has been studied in ASD is intravenous immunoglobulins (IVIG). This systematic review and meta-analysis examined the studies which assessed immunoglobulin G (IgG) concentrations and the therapeutic use of IVIG for individuals with ASD. Twelve studies that examined IgG levels suggested abnormalities in total IgG and IgG 4 subclass concentrations, with concentrations in these IgGs related to aberrant behavior and social impairments, respectively. Meta-analysis supported possible subsets of children with ASD with low total IgG and elevated IgG 4 subclass but also found significant variability among studies. A total of 27 publications reported treating individuals with ASD using IVIG, including four prospective, controlled studies (one was a double-blind, placebo-controlled study); six prospective, uncontrolled studies; 2 retrospective, controlled studies; and 15 retrospective, uncontrolled studies. In some studies, clinical improvements were observed in communication, irritability, hyperactivity, cognition, attention, social interaction, eye contact, echolalia, speech, response to commands, drowsiness, decreased activity and in some cases, the complete resolution of ASD symptoms. Several studies reported some loss of these improvements when IVIG was stopped. Meta-analysis combining the aberrant behavior checklist outcome from two studies demonstrated that IVIG treatment was significantly associated with improvements in total aberrant behavior and irritability (with large effect sizes), and hyperactivity and social withdrawal (with medium effect sizes). Several studies reported improvements in pro-inflammatory cytokines (including TNF-alpha). Six studies reported improvements in seizures with IVIG (including patients with refractory seizures), with one study reporting a worsening of seizures when IVIG was stopped. Other studies demonstrated improvements in recurrent infections, appetite, weight gain, neuropathy, dysautonomia, and gastrointestinal symptoms. Adverse events were generally limited but included headaches, vomiting, worsening behaviors, anxiety, fever, nausea, fatigue, and rash. Many studies were limited by the lack of standardized objective outcome measures. IVIG is a promising and potentially effective treatment for symptoms in individuals with ASD; further research is needed to provide solid evidence of efficacy and determine the subset of children with ASD who may best respond to this treatment as well as to investigate biomarkers which might help identify responsive candidates.
Collapse
|
12
|
Gong W, Qiao Y, Li B, Zheng X, Xu R, Wang M, Mi X, Li Y. The Alteration of Salivary Immunoglobulin A in Autism Spectrum Disorders. Front Psychiatry 2021; 12:669193. [PMID: 34093280 PMCID: PMC8175640 DOI: 10.3389/fpsyt.2021.669193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives: Autism spectrum disorders (ASD) are neurodevelopmental disorders with changes in the gut and oral microbiota. Based on the intimate relationship between the oral microbiota and oral mucosal immunity, this study aimed to investigate changes in salivary immunoglobulin A (IgA) level in ASD and the underlying mechanism for any such changes. Methods: We recruited 36 children diagnosed with ASD and 35 normally developing children and measured their salivary IgA content using enzyme-linked immunosorbent assay (ELISA). The valproate (VPA) -treated ASD mouse model was established by prenatal exposure to valproate and mouse salivary IgA content was also quantified by ELISA. The submandibular glands of VPA and control mice were isolated and analyzed using qRT-PCR, immunofluorescence staining, and flow cytometry. ASD-related Streptococci were co-incubated with the human salivary gland (HSG) cell line, and western blotting was used to detect the levels of relevant proteins. Results: We found that salivary IgA content was significantly decreased in patients with ASD and had a significant ASD diagnostic value. The salivary IgA content also decreased in VPA mice and was significantly correlated with autistic-like behaviors among them. The mRNA and protein levels of the polymeric immunoglobulin receptor (Pigr) were downregulated in the submandibular glands of VPA mice and the Pigr mRNA level was positively correlated with mouse salivary IgA content. HSG cells treated with ASD-related Streptococci had reduced PIGR protein level. Conclusion: Therefore, protective IgA levels were reduced in the saliva of individuals with ASD, which correlated with the bacteria-induced downregulation of Pigr in salivary glands. This study suggests a new direction for ASD diagnosis and prevention of oral diseases in ASD cohorts and provides evidence for the ASD mucosal immunophenotype in the oral cavity.
Collapse
Affiliation(s)
- Wuyi Gong
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Yanan Qiao
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Bosheng Li
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Xiaoguo Zheng
- Shanghai Key Laboratory of Embryo Original Disease, School of Medicine, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruihuan Xu
- Clinic Lab, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, National Center for Children's Health, Xiamen Branch of Children's Hospital of Fudan University (Xiamen Children's Hospital), Children's Hospital of Fudan University, Shanghai, China
| | - Xiaohui Mi
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Yongming Li
- Department of Orthodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Transcriptome signatures from discordant sibling pairs reveal changes in peripheral blood immune cell composition in Autism Spectrum Disorder. Transl Psychiatry 2020; 10:106. [PMID: 32291385 PMCID: PMC7156413 DOI: 10.1038/s41398-020-0778-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Notwithstanding several research efforts in the past years, robust and replicable molecular signatures for autism spectrum disorders from peripheral blood remain elusive. The available literature on blood transcriptome in ASD suggests that through accurate experimental design it is possible to extract important information on the disease pathophysiology at the peripheral level. Here we exploit the availability of a resource for molecular biomarkers in ASD, the Italian Autism Network (ITAN) collection, for the investigation of transcriptomic signatures in ASD based on a discordant sibling pair design. Whole blood samples from 75 discordant sibling pairs selected from the ITAN network where submitted to RNASeq analysis and data analyzed by complementary approaches. Overall, differences in gene expression between affected and unaffected siblings were small. In order to assess the contribution of differences in the relative proportion of blood cells between discordant siblings, we have applied two different cell deconvolution algorithms, showing that the observed molecular signatures mainly reflect changes in peripheral blood immune cell composition, in particular NK cells. The results obtained by the cell deconvolution approach are supported by the analysis performed by WGCNA. Our report describes the largest differential gene expression profiling in peripheral blood of ASD subjects and controls conducted by RNASeq. The observed signatures are consistent with the hypothesis of immune alterations in autism and an increased risk of developing autism in subjects exposed to prenatal infections or stress. Our study also points to a potential role of NMUR1, HMGB3, and PTPRN2 in ASD.
Collapse
|
14
|
Ozonoff S, Iosif AM. Changing conceptualizations of regression: What prospective studies reveal about the onset of autism spectrum disorder. Neurosci Biobehav Rev 2019; 100:296-304. [PMID: 30885812 PMCID: PMC6451681 DOI: 10.1016/j.neubiorev.2019.03.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/12/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
Abstract
Until the last decade, studies of the timing of early symptom emergence in autism spectrum disorder (ASD) relied upon retrospective methods. Recent investigations, however, are raising significant questions about the accuracy and validity of such data. Questions about when and how behavioral signs of autism emerge may be better answered through prospective studies, in which infants are enrolled near birth and followed longitudinally until the age at which ASD can be confidently diagnosed or ruled out. This review summarizes the results of recent studies that utilized prospective methods to study infants at high risk of developing ASD due to family history. Collectively, prospective studies demonstrate that the onset of ASD involves declines in the rates of key social and communication behaviors during the first years of life for most children. This corpus of literature suggests that regressive onset patterns occur much more frequently than previously recognized and may be the rule rather than the exception.
Collapse
Affiliation(s)
- Sally Ozonoff
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California - Davis, 2825 50th Street, Sacramento CA, 95817, USA.
| | - Ana-Maria Iosif
- Department of Public Health Sciences, University of California - Davis, Medical Sciences 1C, Davis CA, 95616, USA.
| |
Collapse
|
15
|
Boterberg S, Charman T, Marschik PB, Bölte S, Roeyers H. Regression in autism spectrum disorder: A critical overview of retrospective findings and recommendations for future research. Neurosci Biobehav Rev 2019; 102:24-55. [PMID: 30917924 DOI: 10.1016/j.neubiorev.2019.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
Abstract
Historically, two onset patterns in autism spectrum disorder (ASD) were described: early onset of symptoms and regression in which one-third appear to show a loss of previously established skills in the second year of life. Since this phenomenon could represent a distinct ASD subtype and provide more insight into the etiology, diagnosis, and prognosis, many studies have compared these two groups. The present review discusses definitions, etiology, and methods used in research with a retrospective design and provides an overview of the results on early development and outcomes. However, retrospective research has not provided clear answers on regression as a distinct subtype of ASD and the historic division between early onset and regression does not seem to fit the empirical findings. Based on inconsistent results, future research on onset patterns in ASD needs to be more systematic on the definitions and methods used. Several recommendations to enhance the reliability of future retrospective results are discussed. The combination of a categorical and dimensional approach provides a new interesting framework.
Collapse
Affiliation(s)
- Sofie Boterberg
- Department of Experimental Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium.
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Peter B Marschik
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany; iDN - Interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia, Australia
| | - Herbert Roeyers
- Department of Experimental Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Gabriel T, Paul S, Berger A, Massoubre C. Anorexia Nervosa and Autism Spectrum Disorders: Future Hopes Linked to Mucosal Immunity. Neuroimmunomodulation 2019; 26:265-275. [PMID: 31715599 DOI: 10.1159/000502997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022] Open
Abstract
Mental health is becoming a public health priority worldwide. Anorexia nervosa and autism spectrum disorders are 2 important types of childhood disorders with a bad prognosis. They share cognitive impairments and, in both cases, the microbiota appears to be a crucial factor. Alteration of the microbiota-gut-brain axis is an appealing hypothesis to define new pathophysiological mechanisms. Mucosal immunity plays a key role between the microbiota and the brain. The mucosal immune system receives and integrates messages from the intestinal microenvironment and the microbiota and then transmits the information to the nervous system. Abnormalities in this sensorial system may be involved in the natural history of mental diseases and might play a role in their maintenance. This review aims to highlight data about the relationship between intestinal mucosal immunity and these disorders. We show that shared cognitive impairments could be found in these 2 disorders, which both present dysbiosis. This literature review provides details on the immune status of anorexic and autistic patients, with a focus on intestinal mucosal factors. Finally, we suggest future research hypotheses that seem important for understanding the implication of the gut-brain-axis in psychiatric diseases.
Collapse
Affiliation(s)
- Tristan Gabriel
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
- Centre Référent des Troubles du Comportement Alimentaire, CHU Saint Etienne Hôpital Nord, Saint-Etienne, France
| | - Stéphane Paul
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Anne Berger
- Laboratoire d'Immunologie, GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Catherine Massoubre
- Centre Référent des Troubles du Comportement Alimentaire, CHU Saint Etienne Hôpital Nord, Saint-Etienne, France,
| |
Collapse
|
17
|
Pearson N, Charman T, Happé F, Bolton PF, McEwen FS. Regression in autism spectrum disorder: Reconciling findings from retrospective and prospective research. Autism Res 2018; 11:1602-1620. [PMID: 30475449 DOI: 10.1002/aur.2035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/21/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022]
Abstract
The way in which the behavioral manifestations of autism spectrum disorder (ASD) emerge in infancy is variable. Regression-loss of previously acquired skills-occurs in a subset of children. However, the etiology and significance of regression remains unclear. Until recently, investigation of regression relied on retrospective report by parents or examination of home videos from early in life. However, home videos and retrospective report of the nature and timing of regression, and association with factors such as illness or immunization, is potentially subject to bias. The advent of prospective studies of infant siblings at familial high-risk of ASD has the potential to document regression as it occurs. Recent research has suggested that subtle loss of skills occurs in a larger proportion of children with ASD than previously assumed; however, there are few reports of clear-cut regressions, such as that involving dramatic loss of language and other established skills, in the prospective literature. This could be because of the following: clear-cut regression occurs less commonly than parent report suggests, study design limits the potential to detect regression, or there are differences between multiplex and simplex families in the rate of de novo genetic mutations and therefore regression risk. This review will bring together literature from retrospective and prospective research and attempt to reconcile diverging findings, with a specific focus on methodological issues. Changing conceptualizations of regression will be discussed, as well as etiological factors that may be associated with regression. The main challenges that need to be addressed to measure regression in prospective studies will be set out. Autism Research 2018, 11: 1602-1620. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Regression-a loss of previously established skills-occurs in a subset of children with ASD. Parental recall is not always accurate but studying younger siblings of children with ASD, 10-20% of whom will develop ASD, should make it possible to measure regression as it occurs. Clear-cut regression, like loss of language, has not often been reported in infant sibling studies, but recent research suggests that gradual loss of social engagement might be more common. This review looks at the evidence for regression from infant sibling studies and asks how study design affects the likelihood of capturing regression.
Collapse
Affiliation(s)
- Niamh Pearson
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,South London and Maudsley National Health Service (NHS) Foundation Trust, Maudsley Hospital, London, UK
| | - Francesca Happé
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patrick F Bolton
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,South London and Maudsley National Health Service (NHS) Foundation Trust, Maudsley Hospital, London, UK.,Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fiona S McEwen
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Biological & Experimental Psychology, School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci 2018; 12:405. [PMID: 30483058 PMCID: PMC6242891 DOI: 10.3389/fncel.2018.00405] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurological disorders that are highly variable and are clinically characterized by deficits in social interactions, communication, and stereotypical behaviors. Prevalence has risen from 1 in 10,000 in 1972 to 1 in 59 children in the United States in 2014. This rise in prevalence could be due in part to better diagnoses and awareness, however, these together cannot solely account for such a significant rise. While causative connections have not been proven in the majority of cases, many current studies focus on the combined effects of genetics and environment. Strikingly, a distinct picture of immune dysfunction has emerged and been supported by many independent studies over the past decade. Many players in the immune-ASD puzzle may be mechanistically contributing to pathogenesis of these disorders, including skewed cytokine responses, differences in total numbers and frequencies of immune cells and their subsets, neuroinflammation, and adaptive and innate immune dysfunction, as well as altered levels of immunoglobulin and the presence of autoantibodies which have been found in a substantial number of individuals with ASD. This review summarizes the latest research linking ASD, autoimmunity and immune dysfunction, and discusses evidence of a potential autoimmune component of ASD.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Emily Mills Ko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
19
|
Gładysz D, Krzywdzińska A, Hozyasz KK. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 2018; 55:6387-6435. [PMID: 29307081 PMCID: PMC6061181 DOI: 10.1007/s12035-017-0822-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
20
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
21
|
Scott O, Shi D, Andriashek D, Clark B, Goez HR. Clinical clues for autoimmunity and neuroinflammation in patients with autistic regression. Dev Med Child Neurol 2017; 59:947-951. [PMID: 28383115 DOI: 10.1111/dmcn.13432] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/20/2022]
Abstract
AIM Autistic regression is a unique variant within the autism spectrum disorders (ASDs), with recent reports raising the possibility of immune aetiology. This study explores clinical clues for an association between autistic regression and autoimmunity. METHOD Single-centre charts of children diagnosed with ASD in 2014 were reviewed. We compared the rates of: (1) familial autoimmunity in first-degree and second-degree relatives; (2) febrile illness preceding initial parental concern, as a potential precipitant of immune activation; and (3) possible non-immune precipitants such as pregnancy and postnatal complications. RESULTS The charts of 206 children with ASD and 33 diagnosed with autistic regression variant were reviewed. The incidence of febrile illness in the 6 months prior to initial parental concern was significantly higher in the children with autistic regression compared with those with ASD (30% vs 0%; p<0.001). The overall prevalence of familial autoimmunity was also higher in children with autistic regression compared with those with ASD (33% vs 12%; p<0.001). Type 1 diabetes and autoimmune thyroiditis were both more common in families with children with autistic regression. Other non-immune risk factors did not differ between the two groups. INTERPRETATION Our findings suggest that predisposition to autoimmunity, and immune/inflammatory activation, may be associated with autistic regression.
Collapse
Affiliation(s)
- Ori Scott
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Diya Shi
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Diana Andriashek
- Department of Pediatrics, Glenrose Rehabilitation Hospital, Edmonton, AB, Canada
| | - Brenda Clark
- Department of Pediatrics, Glenrose Rehabilitation Hospital, Edmonton, AB, Canada
| | - Helly R Goez
- Division of Pediatric Neurology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks - a possible new overlap syndrome. Pediatric Health Med Ther 2015; 6:153-166. [PMID: 29388597 PMCID: PMC5683266 DOI: 10.2147/phmt.s85717] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a genetically determined neurodevelopmental brain disorder presenting with restricted, repetitive patterns of behaviors, interests, and activities, or persistent deficits in social communication and social interaction. ASD is characterized by many different clinical endophenotypes and is potentially linked with certain comorbidities. According to current recommendations, children with ASD are at risk of having alimentary tract disorders - mainly, they are at a greater risk of general gastrointestinal (GI) concerns, constipation, diarrhea, and abdominal pain. GI symptoms may overlap with ASD core symptoms through different mechanisms. These mechanisms include multilevel pathways in the gut-brain axis contributing to alterations in behavior and cognition. Shared pathogenetic factors and pathophysiological mechanisms possibly linking ASD and GI disturbances, as shown by most recent studies, include intestinal inflammation with or without autoimmunity, immunoglobulin E-mediated and/or cell-mediated GI food allergies as well as gluten-related disorders (celiac disease, wheat allergy, non-celiac gluten sensitivity), visceral hypersensitivity linked with functional abdominal pain, and dysautonomia linked with GI dysmotility and gastroesophageal reflux. Dysregulation of the gut microbiome has also been shown to be involved in modulating GI functions with the ability to affect intestinal permeability, mucosal immune function, and intestinal motility and sensitivity. Metabolic activity of the microbiome and dietary components are currently suspected to be associated with alterations in behavior and cognition also in patients with other neurodegenerative diseases. All the above-listed GI factors may contribute to brain dysfunction and neuroinflammation depending upon an individual patient's genetic vulnerability. Due to a possible clinical endophenotype presenting as comorbidity of ASD and GI disorders, we propose treating this situation as an "overlap syndrome". Practical use of the concept of an overlap syndrome of ASD and GI disorders may help in identifying those children with ASD who suffer from an alimentary tract disease. Unexplained worsening of nonverbal behaviors (agitation, anxiety, aggression, self-injury, sleep deprivation) should alert professionals about this possibility. This may shorten the time to diagnosis and treatment commencement, and thereby alleviate both GI and ASD symptoms through reducing pain, stress, or discomfort. Furthermore, this may also protect children against unnecessary dietary experiments and restrictions that have no medical indications. A personalized approach to each patient is necessary. Our understanding of ASDs has come a long way, but further studies and more systematic research are warranted.
Collapse
Affiliation(s)
- Jolanta Wasilewska
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Mark Klukowski
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
23
|
Golla S, Sweeney JA. Corticosteroid therapy in regressive autism: Preliminary findings from a retrospective study. BMC Med 2014; 12:79. [PMID: 24884537 PMCID: PMC4022409 DOI: 10.1186/1741-7015-12-79] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 11/21/2022] Open
Abstract
Some children with autism spectrum disorders (ASD; 15% to 30% of patients) show a significant and persistent regression in speech and social function during early childhood. There are no established treatments for the regressive symptoms. However, there are some known causes of this type of regression, such as Rett syndrome and Landau-Kleffner syndrome (LKS). In LKS, steroids have been used as a treatment. Some evidence suggests an autoimmune contribution to the pathophysiology of autism (Chez MG, Guido-Estrada N: Immune therapy in autism: historical experience and future directions with immunomodulatory therapy. Neurotherapeutics 2010, 7:293-301, Wasilewska J, Kaczmarski M, Stasiak-Barmuta A, Tobolczyk J, Kowalewska E: Low serum IgA and increased expression of CD23 on B lymphocytes in peripheral blood in children with regressive autism aged 3-6 years old. Arch Med Sci 2012, 8:324-331, Stefanatos G: Changing perspectives on Landau-Kleffner syndrome. Clin Neuropsychol 2011, 25:963-988), raising the possibility that steroids might be a useful therapy for regression in ASD. A retrospective study published in BMC Neurology by Duffy et al. (Duffy, et al: Corticosteroid therapy in regressive autism: A retrospective study of effects on the Frequency Modulated Auditory Evoked Response (FMAER), language, and behavior. BMC Neurol 2014, 14:70) reviewed 20 steroid treated R-ASD (STAR) patients and 24 ASD control patients not treated with steroids (NSA). Improvements in clinical function and in a neurophysiological biomarker were seen in the steroid-treated children pre- to post-prednisolone treatment. This research provides a rationale for a randomized trial with steroid therapy to determine the longer term benefits and complications of steroids in this population.
Collapse
Affiliation(s)
- Sailaja Golla
- Division of Pediatric Neurology, Neurodevelopmental Pediatrics, UT Southwestern and Children's Medical Center at Dallas, Dallas, USA.
| | | |
Collapse
|
24
|
Antibodies against food antigens in patients with autistic spectrum disorders. BIOMED RESEARCH INTERNATIONAL 2013; 2013:729349. [PMID: 23984403 PMCID: PMC3747333 DOI: 10.1155/2013/729349] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/18/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE Immune system of some autistic patients could be abnormally triggered by gluten/casein assumption. The prevalence of antibodies to gliadin and milk proteins in autistic children with paired/impaired intestinal permeability and under dietary regimen either regular or restricted is reported. METHODS 162 ASDs and 44 healthy children were investigated for intestinal permeability, tissue-transglutaminase (tTG), anti-endomysium antibodies (EMA)-IgA, and total mucosal IgA to exclude celiac disease; HLA-DQ2/-DQ8 haplotypes; total systemic antibodies (IgA, IgG, and IgE); specific systemic antibodies: α-gliadin (AGA-IgA and IgG), deamidated-gliadin-peptide (DGP-IgA and IgG), total specific gliadin IgG (all fractions: α, β, γ, and ω), β-lactoglobulin IgG, α-lactalbumin IgG, casein IgG; and milk IgE, casein IgE, gluten IgE,-lactoglobulin IgE, and α-lactalbumin IgE. RESULTS AGA-IgG and DPG-IgG titers resulted to be higher in ASDs compared to controls and are only partially influenced by diet regimen. Casein IgG titers resulted to be more frequently and significantly higher in ASDs than in controls. Intestinal permeability was increased in 25.6% of ASDs compared to 2.3% of healthy children. Systemic antibodies production was not influenced by paired/impaired intestinal permeability. CONCLUSIONS Immune system of a subgroup of ASDs is triggered by gluten and casein; this could be related either to AGA, DPG, and Casein IgG elevated production or to impaired intestinal barrier function.
Collapse
|