1
|
Drozd M, Luboń W, Turpin JAP, Grzyb W. The Influence of Step Load Periodisation Based on Time Under Tension in Hypoxic Conditions on Hormone Concentrations and Postoperative ACL Rehabilitation of a Judo Athlete: A Case Study. J Clin Med 2025; 14:2549. [PMID: 40283380 PMCID: PMC12027879 DOI: 10.3390/jcm14082549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
The aim of this study was to determine the effect of a step load periodisation protocol for the rehabilitation of the anterior cruciate ligament (ACL) based on the variables of both the tempo of movement and time under tension (TUT) in normobaric hypoxia using a case study. Introduction: We verified the influence of variables such as time under tension (TUT) and the tempo of movement in hypoxia on the concentration of insulin-like growth factor 1 (IGF-1), growth hormone (GH), and erythropoietin (EPO). The effectiveness of the protocol also concerned variables such as peak torque of the knee flexors and extensors and maximum oxygen uptake (VO2max), as well as body composition analysis. Methods: The study used a 28-year-old judoka athlete from the national team, competing in the weight category up to 73 kg. Results: The use of short partial rest breaks between series (80s) in combination with six exercises in four series and a hypoxic environment (FiO2 = 15%) significantly increased metabolic stress, resulting in the highest increase in GH and IGF in the main phase of accumulation of the 3:1 step load. During 16 running sessions, the rehabilitated athlete achieved a significant increase in individual variables in the running test. Conclusions: The combination of a hypoxic environment combined with a periodized rehabilitation protocol can induce a number of positive hormonal, circulatory and respiratory reactions as well as positively influence muscle asymmetry, which can ultimately shorten the time it takes for an athlete to return to sport (RTS).
Collapse
Affiliation(s)
- Miłosz Drozd
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
| | - Wojciech Luboń
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
- Department of Ophthalmology, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| | - Jose Antonio Perez Turpin
- Institute of I.U. Tourist Research, Department of General Didactic and Specific Didactic, University of Alicante, 03690 Alicante, Spain;
| | - Wojciech Grzyb
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| |
Collapse
|
2
|
Wang H, Tuerhongjiang M, Zeng Z, Wang Y, Liu J, Liu R. The effects of normobaric hypoxic resistance training on muscle strength in healthy adults. Eur J Appl Physiol 2025:10.1007/s00421-025-05736-y. [PMID: 39994007 DOI: 10.1007/s00421-025-05736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Normobaric hypoxic resistance training (NHRT) has emerged as a novel approach to enhancing muscle strength, potentially offering advantages over conventional resistance training. However, its efficacy in healthy adults remains uncertain. This systematic review and meta-analysis aimed to evaluate the effects of NHRT on muscle strength indicators, including one-repetition maximum (1RM), isometric strength, and isokinetic strength, in healthy adults. METHODS Following PRISMA 2020 guidelines, four databases (PubMed, Web of Science, SportDiscus, and CNKI) were searched from inception to October 25, 2024, for randomized controlled trials. Study quality was assessed using the Cochrane Risk of Bias tool. Effect sizes were calculated using Review Manager 5.4. RESULTS A total of 22 RCTs involving 487 healthy adults were included. The meta-analysis revealed a significant small-to-moderate improvement in 1RM (SMD = 0.22, 95% CI [0.06, 0.38]) but no statistically significant effects on isometric strength (SMD = 0.32, 95% CI [-0.05, 0.70]) and isokinetic strength (SMD = 0.25, 95% CI [-0.11, 0.62]). Subgroup analyses indicated that oxygen concentrations of 14-16% and training loads of 60-80% 1RM produced the most substantial gains, particularly among untrained participants. CONCLUSIONS NHRT is a promising strategy for enhancing 1RM in healthy adults, with its effectiveness influenced by hypoxic levels, training load, and baseline training status. Optimal outcomes were observed at oxygen concentrations of 14-16% and moderate training loads (60-80% 1RM), particularly in untrained individuals. Further high-quality studies are warranted to confirm these outcomes and explore the underlying mechanisms.Registration number on PROSPEROCRD42024547100.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Sport University, NO.48 Xinxi Road, Beijing, 100084, China
| | | | - Zichen Zeng
- Beijing Sport University, NO.48 Xinxi Road, Beijing, 100084, China
| | - Yi Wang
- Shenyang Sport University, NO.36 Jinqiansong East Road, Liaoning, 110102, China
| | - Jianxiu Liu
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China.
| | - Ruidong Liu
- Beijing Sport University, NO.48 Xinxi Road, Beijing, 100084, China.
| |
Collapse
|
3
|
Kurhaluk N, Tkaczenko H. L-Arginine and Nitric Oxide in Vascular Regulation-Experimental Findings in the Context of Blood Donation. Nutrients 2025; 17:665. [PMID: 40004994 PMCID: PMC11858268 DOI: 10.3390/nu17040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This narrative review provides an analysis of the role of nitric oxide (NO) and its precursors, particularly L-arginine, in vascular regulation and health, with an emphasis on findings from our experimental research in animal models. NO serves as a critical mediator of vascular function, contributing to vasodilation, the regulation of blood flow, and the prevention of thrombosis. As a primary precursor of NO, L-arginine is essential for maintaining endothelial integrity, modulating mitochondrial function, and reducing oxidative damage. This review synthesises the data and contextualises these findings within the physiological challenges faced by blood donors, such as repeated blood donation and associated oxidative stress. It examines the effects of L-arginine supplementation on mitochondrial respiration, lipid peroxidation, and microsomal oxidation in different conditions, including differences in age, gender, and dietary interventions. The mechanisms by which L-arginine enhances NO production, improves vascular elasticity, and alleviates endothelial dysfunction caused by reduced NO bioavailability are also investigated. By integrating experimental findings with insights from the existing literature, this review provides a perspective on the potential of L-arginine supplementation to address the specific physiological needs of blood donors. It highlights the importance of personalised nutritional approaches in enhancing donor recovery and vascular resilience. In addition, this review assesses the wider implications of L-arginine supplementation in mitigating oxidative stress and preserving vascular function. The interplay between NO bioavailability, dietary factors, and physiological adaptation in blood donors is highlighted, along with the identification of current knowledge gaps and recommendations for future research. By presenting both original experimental evidence and a critical synthesis of the literature, this article highlights the therapeutic potential of NO precursors, particularly L-arginine, in promoting vascular health in the context of blood donation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| | | |
Collapse
|
4
|
Li M, Chen Z, He Z, Zhang X, Liu Y, Zhou H, Yang H, Liu T, Wang X, Zhang R, Zhang J. A preliminary exploration of establishing a mice model of hypoxic training. Sci Rep 2025; 15:816. [PMID: 39755749 PMCID: PMC11700093 DOI: 10.1038/s41598-024-84371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Altitude training has been widely adopted. This study aimed to establish a mice model to determine the time point for achieving the best endurance at the lowland. C57BL/6 and BALB/c male mice were used to establish a mice model of hypoxic training with normoxic training mice, hypoxic mice, and normoxic mice as controls. All hypoxic mice were placed in a chamber filled with 16% O2 and N2, and hypoxic training mice were trained for two weeks. Then mice were removed from the chamber and tested at normoxic conditions weekly at the beginning of the experiment and the second, third, fourth, and sixth weeks. The tests for endurance ability include maximal aerobic speed (MAS), Rota-rod, and grip strength. In addition, the open field, visual cliff, and Y maze were used to test cognitive abilities. Body composition and lactic acid tolerance level were also measured. For BALB/c but not C57BL/6 mice were evaluated for effectively training. Based on the average MAS of all mice, mice successfully passed the training according to the procedure: the first week (32%MAS/10min, 48%MAS/10min, and 64%MAS/10min) and second week (40%MAS/10min, 56%MAS/10min, and 72%MAS/10min). Hypoxic training mice reached peak rotarod performance on the 7th day post-training (Test 3), with significant improvements compared to Test 1, 2, 4, and 5. At Test 3, their rotarod scores significantly differed from both H and N groups, and showing a trend towards difference from NT group. Meanwhile, hypoxic mice showed significant cognitive impairment, anxiety, depression, muscle loss, and fat gain compared with hypoxic training mice after hypoxia intervation. Two consecutive weeks of 16% O2 training followed by one week of reoxygenation may be the best for endurance competition. Thus, we think a mouse model for hypoxic training was built, with Rota-rod testing as a detection indicator. Moreover, hypoxic training may alleviate the damage of hypoxia to the body.
Collapse
Affiliation(s)
- Minglu Li
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhijie Chen
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ziyang He
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
- Institute of Applied Psychology, Minnan Normal University, Zhangzhou, Fujian, China
- Fujian Province Key Laboratory of Applied Cognition and Personality, Zhangzhou, Fujian, China
- School of Education and Psychology, Minnan Normal University, Zhangzhou, China
| | - Yanqiu Liu
- Physical Education Institute, Jimei University, Xiamen, 361021, Fujian, China
| | - Hui Zhou
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hang Yang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Tao Liu
- Physical Education Institute, Jimei University, Xiamen, 361021, Fujian, China
| | - Xiaochuan Wang
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
5
|
Benavente C, Feriche B. The influence of specific resistance training methodological prescription variables on strength development under hypoxic conditions: A systematic review and meta-analysis. J Sports Sci 2024:1-10. [PMID: 39551931 DOI: 10.1080/02640414.2024.2425536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
A systematic review and meta-analysis were conducted focused on the impact of specific methodological prescription variables in resistance training (RT) programming on muscle strength under hypoxic conditions. Searches of Pubmed-Medline, Web of Science, Sport Discuss and the Cochrane Library compared the effect of RT on strength development under hypoxic (RTH) vs. normoxic (RTN) conditions through the 1-repetition maximum (1RM) test. Apart from the overall meta-analysis, several RT methodological prescription variables available in the included studies (set end point, total weekly training volume, type of exercise, region of the body measured or type of routine) were analysed. Thirteen studies met the inclusion criteria. The overall analyses showed trivial differences in 1RM favouring RTH over RTN (SMD = 0.18 [CI: 0.04; 0.31]; p = 0.030). Sub-analyses revealed that a RT programme of a non-full-body routine, including 9 or more sets per exercise/week of multi-joint exercises performed to non-failure, favoured RTH for enhancing 1RM (p < 0.10). In conclusion, the evidence ratified a trivial benefit of RTH over RTN for muscle strength gains after a RT period. However, the handling of specific RT methodological prescription variables can slightly improve strength development outcomes in hypoxia.
Collapse
Affiliation(s)
- Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Allsopp GL, Britto FA, Wright CR, Deldicque L. The Effects of Normobaric Hypoxia on the Acute Physiological Responses to Resistance Training: A Narrative Review. J Strength Cond Res 2024; 38:2001-2011. [PMID: 39178049 DOI: 10.1519/jsc.0000000000004909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Allsopp, GL, Britto, FA, Wright, CR, and Deldicque, L. The effects of normobaric hypoxia on the acute physiological responses to resistance training: a narrative review. J Strength Cond Res 38(11): 2001-2011, 2024-Athletes have used altitude training for many years as a strategy to improve endurance performance. The use of resistance training in simulated altitude (normobaric hypoxia) is a growing strategy that aims to improve the hypertrophy and strength adaptations to training. An increasing breadth of research has characterized the acute physiological responses to resistance training in hypoxia, often with the goal to elucidate the mechanisms by which hypoxia may improve the training adaptations. There is currently no consensus on the overall effectiveness of hypoxic resistance training for strength and hypertrophy adaptations, nor the underlying biochemical pathways involved. There are, however, numerous interesting physiological responses that are amplified by performing resistance training in hypoxia. These include potential changes to the energy system contribution to exercise and alterations to the level of metabolic stress, hormone and cytokine production, autonomic regulation, and other hypoxia-induced cellular pathways. This review describes the foundational exercise physiology underpinning the acute responses to resistance training in normobaric hypoxia, potential applications to clinical populations, including training considerations for athletic populations. The review also presents a summary of the ideal training parameters to promote metabolic stress and associated training adaptations. There are currently many gaps in our understanding of the physiological responses to hypoxic resistance training, partly caused by the infancy of the research field and diversity of hypoxic and training parameters.
Collapse
Affiliation(s)
- Giselle L Allsopp
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | | | - Craig R Wright
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Victoria, Australia
| | - Louise Deldicque
- Institute of Neuroscience, UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Park W, Park HY, Kim SW. Effects of 12 Weeks of Combined Exercise Training in Normobaric Hypoxia on Arterial Stiffness, Inflammatory Biomarkers, and Red Blood Cell Hemorheological Function in Obese Older Women. Healthcare (Basel) 2024; 12:1887. [PMID: 39337228 PMCID: PMC11431341 DOI: 10.3390/healthcare12181887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES The present study examined the effect of 12-week combined exercise training in normobaric hypoxia on arterial stiffness, inflammatory biomarkers, and red blood cell (RBC) hemorheological function in 24 obese older women (mean age: 67.96 ± 0.96 years). METHODS Subjects were randomly divided into two groups (normoxia (NMX; n = 12) and hypoxia (HPX; n = 12)). Both groups performed aerobic and resistance exercise training programs three times per week for 12 weeks, and the HPX group performed exercise programs in hypoxic environment chambers during the intervention period. Body composition was estimated using bioelectrical impedance analysis equipment. Arterial stiffness was measured using an automatic waveform analyzer. Biomarkers of inflammation and oxygen transport (tumor necrosis factor alpha, interleukin 6 (IL-6), erythropoietin (EPO), and vascular endothelial growth factor (VEGF)), and RBC hemorheological parameters (RBC deformability and aggregation) were analyzed. RESULTS All variables showed significantly more beneficial changes in the HPX group than in the NMX group during the intervention. The combined exercise training in normobaric hypoxia significantly reduced blood pressure (systolic blood pressure: p < 0.001, diastolic blood pressure: p < 0.001, mean arterial pressure: p < 0.001, pulse pressure: p < 0.05) and brachial-ankle pulse wave velocity (p < 0.001). IL-6 was significantly lower in the HPX group than in the NMX group post-test (p < 0.001). Also, EPO (p < 0.01) and VEGF (p < 0.01) were significantly higher in the HPX group than in the NMX group post-test. Both groups showed significantly improved RBC deformability (RBC EI_3Pa) (p < 0.001) and aggregation (RBC AI_3Pa) (p < 0.001). CONCLUSIONS The present study suggests that combined exercise training in normobaric hypoxia can improve inflammatory biomarkers and RBC hemorheological parameters in obese older women and may help prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Wonil Park
- Department of Sports Science, Korea Institute of Sports Science, 424 Olympic-ro, Songpa-gu, Seoul 05540, Republic of Korea;
| | - Hun-Young Park
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Department of Sports Medicine and Science, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
- Physical Activity and Performance Institute, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Rodríguez-Zamora L, Benavente C, Petrer I, Padial P, Timón R, Arguelles J, Feriche B. Hypoxia matters: comparison of external and internal training load markers during an 8-week resistance training program in normoxia, normobaric hypoxia and hypobaric hypoxia. Eur J Appl Physiol 2024; 124:2273-2283. [PMID: 38446192 PMCID: PMC11322269 DOI: 10.1007/s00421-024-05442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE To compare external and internal training load markers during resistance training (RT) in normoxia (N), intermittent hypobaric hypoxia (HH), and intermittent normobaric hypoxia (NH). METHODS Thirty-three volunteers were assigned an 8-week RT program in either N (690 m, n = 10), HH (2320 m, n = 10), or NH (inspired fraction of oxygen = 15.9%; ~ 2320 m, n = 13). The RT program (3x/week) consisted of six exercises, with three sets of six to 12 repetitions at ~ 70% of one repetition maximum (1RM) with the first session of each week used for analysis. 1RM in back squat and bench press was used to evaluate muscle strength before and after the program. External load was assessed by the volume load relative to body mass (RVL, kg·kg-1). Internal load was assessed by the ratings of perceived exertion (RPE) and heart rate (HR). RESULTS Smaller relative improvements were found for the back squat in the N group (11.5 ± 8.8%) when compared to the NH group (22.2 ± 8.2%, P = 0.01) and the HH group (22 ± 8.1%, P = 0.02). All groups showed similar RVL, HR responses and RPE across the program (P˃0.05). However, reduced HR recovery values, calculated as the difference between the highest HR value (HRpeak) and the resting heart rate after a two min rest, were seen in the N and NH groups across the program (P < 0.05). CONCLUSION It seems that 8 weeks of intermittent RT in hypoxic environments could maximize time-efficiency when aiming to improve strength levels in back squat without evoking higher levels of physiological stress. Performing RT at hypobaric hypoxia may improve the cardiorespiratory response, which in turn could speed recovery.
Collapse
Affiliation(s)
- Lara Rodríguez-Zamora
- School of Health and Medical Sciences, Division of Sport Sciences, Örebro University, Örebro, Sweden.
| | - Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Irene Petrer
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Rafa Timón
- Faculty of Sport Sciences, University of Extremadura, Cáceres, Spain
| | - Javier Arguelles
- High Performance Center of Sierra Nevada, Spanish Sport Council, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
9
|
Motowidło J, Stronska-Garbien K, Bichowska-Pawęska M, Kostrzewa M, Zając A, Ficek K, Drozd M. Effect of Step Load Based on Time under Tension in Hypoxia on the ACL Pre-Operative Rehabilitation and Hormone Levels: A Case Study. J Clin Med 2024; 13:2792. [PMID: 38792333 PMCID: PMC11122198 DOI: 10.3390/jcm13102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of the study was to determine the effect of step load in hypoxia on the effectiveness of preoperative rehabilitation (PR) and hormone levels based on a case study. Introduction: We assessed the impact of variables such as rate of movement and time under tension (TUT) in normobaric hypoxia on the levels of growth hormone (GH), insulin-like growth factor 1 (IGF-1), and erythropoietin (EPO). Additionally, the impact of step load on the hypertrophy and strength of knee extensors and flexors was assessed. Methods: The work uses a case study, the research subject of which was a 23-year-old female professional handball player. The tests included an isokinetic assessment of the peak torque of knee extensors and flexors as well as body composition analysis. Results: The results showed a more than (10.81-fold) increase in GH after the microcycle with time under tension (TUT). The deficit between the lower limbs was also reduced. Conclusions: Using a hypoxic environment based on an appropriate altitude, combined with changes such as a short rest break between sets and a controlled tempo of movement with an eccentric phase, TUT may offer an alternative to the PR process, especially among athletes who care about fast RTS.
Collapse
Affiliation(s)
- Joanna Motowidło
- Department of Sports Training, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (K.S.-G.); (M.K.); (A.Z.); (K.F.)
| | - Katarzyna Stronska-Garbien
- Department of Sports Training, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (K.S.-G.); (M.K.); (A.Z.); (K.F.)
| | - Marta Bichowska-Pawęska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Maciej Kostrzewa
- Department of Sports Training, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (K.S.-G.); (M.K.); (A.Z.); (K.F.)
| | - Adam Zając
- Department of Sports Training, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (K.S.-G.); (M.K.); (A.Z.); (K.F.)
| | - Krzysztof Ficek
- Department of Sports Training, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (K.S.-G.); (M.K.); (A.Z.); (K.F.)
| | - Miłosz Drozd
- Department of Sports Training, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (K.S.-G.); (M.K.); (A.Z.); (K.F.)
| |
Collapse
|
10
|
Wang X, Feng L, Lu Y, Zhang H. miR-122/PPARβ axis is involved in hypoxic exercise and modulates fatty acid metabolism in skeletal muscle of obese rats. Heliyon 2024; 10:e26572. [PMID: 38434053 PMCID: PMC10906430 DOI: 10.1016/j.heliyon.2024.e26572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Hypoxic exercise is an effective intervention for obesity, because it promotes weight loss by regulating fatty acid (FA) metabolism. The regulation of peroxisome proliferator-activated receptor β (PPARβ) by miR-122 may be involved in this process, but the detailed mechanisms are unknown. In order to address this issue, we probed how miR-122 affected the expression of factors associated with FA metabolism in skeletal muscle of obese rats undergoing hypoxic training. By injecting adeno-associated virus 9 containing miR-122 overexpression vector or miR-122 inhibitor into skeletal muscles of rats with a 4-week hypoxic exercise regimen, the miR-122 expression level can be regulated. Body composition and blood lipid levels were analyzed, and PPARβ, carnitine palmitoyltransferase 1b (CPT1b), acetylCoA carboxylase 2 (ACC2), and FA synthase (FAS) mRNA and protein levels were evaluated using quantitative reverse transcription quantitative PCR(RT-qPCR) and Western blot analysis. We found that miR-122 overexpression increased low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels and decreased PPARβ, ACC2, and FAS expression. Conversely, miR-122 inhibition decreased TG level, increased high-density lipoprotein cholesterol (HDL-C) level, and upregulated PPARβ, ACC2, FAS, and CPT1b. These data indicated that the negative regulation of PPARβ by miR-122 promotes FA metabolism by altering the levels of the factors related to FA metabolism in skeletal muscle of obese rat under hypoxic training, thus providing molecular-level insight into the beneficial effects of this intervention.
Collapse
Affiliation(s)
- Xuebing Wang
- College of Physical Education, Guangxi University, Nanning, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Haibo Zhang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
11
|
Lili L, Meydan C, Rickard N, Zhang B. The importance of personalization in high altitude protocols for hematologic and metabolic benefits in sports: A multi-dimensional N-of-1 case study. Heliyon 2024; 10:e23159. [PMID: 38170057 PMCID: PMC10758776 DOI: 10.1016/j.heliyon.2023.e23159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The hematologic and metabolic benefits of high altitude exposure have been extensively studied in athletes due to their promising performance enhancing effects. However, despite the increased research and development of various high altitude protocols for achieving peak performance, the reproducibility of the results at the individual level remains sparse. To systematically address this limitation and establish a more effective method to achieve consistent results at the individual level, we conducted a multi-dimensional study of one elite endurance athlete in two Phases. In Phase 1, we applied the standard protocol of LHTH (Live-High-Train-High) using a commercially available, at-home, normobaric, high altitude simulation tent under the SHTL (Sleep-High-Train-Low) model. Then, we developed the athlete's personalized protocol for peak hematologic parameters during their off-season. This protocol determined the exact total high altitude exposure time required to achieve peak hematologic parameters, which in the case of this athlete, amounted to 45 nights with approximately 8hrs per night. In Phase 2, we replicated the Phase 1 protocol during the athlete's in-season and observed the same or even higher hematologic and metabolic benefits compared to Phase 1. During both phases, we collected thousands of multi-dimensional data points to ensure that the athlete's lifestyle and environmental factors remained stable, and to increase the likelihood that physiological changes resulted primarily from the high altitude exposure. The data trends in both Phases validated that, for this athlete, hematologic measures such as red blood cell count, hematocrit, and hemoglobin, as well as electrolyte content, body weight and gut microbiome composition improved to their personal best values after a total of approximately 15 days of high altitude exposure (45 nights with roughly 8hrs per night totaling 360hrs or 15days). These improvements did not occur after the 21 days recommended by the LHTH protocol highlighting the significance of personalization in high altitude protocols that are designed for peak performance parameters. Therefore, to maximize the benefits in hematologic and other metabolic values and thus increase muscle oxygen supply and peak aerobic capacity through high altitude exposure, each athlete may require a unique total duration of high altitude exposure tailored to their individual physiology. This duration must be determined by their specific response in hematologic peaking. Therefore, initially establishing a personalized protocol for an athlete by determining their required total duration of high altitude exposure for peak hematologic values during their off-season and applying this protocol during their in-season phase may lead to more successful and reproducible benefits compared to following a generalized protocol alone.
Collapse
Affiliation(s)
- Loukia Lili
- Thorne HealthTech, Inc., 152W 57th st, New York, NY 10019, USA
| | - Cem Meydan
- Thorne HealthTech, Inc., 152W 57th st, New York, NY 10019, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10021, USA
| | - Nate Rickard
- Thorne HealthTech, Inc., 152W 57th st, New York, NY 10019, USA
| | - Bodi Zhang
- Thorne HealthTech, Inc., 152W 57th st, New York, NY 10019, USA
| |
Collapse
|
12
|
Benavente C, Schoenfeld BJ, Padial P, Feriche B. Efficacy of resistance training in hypoxia on muscle hypertrophy and strength development: a systematic review with meta-analysis. Sci Rep 2023; 13:3676. [PMID: 36871095 PMCID: PMC9985626 DOI: 10.1038/s41598-023-30808-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A systematic review and meta-analysis was conducted to determine the effects of resistance training under hypoxic conditions (RTH) on muscle hypertrophy and strength development. Searches of PubMed-Medline, Web of Science, Sport Discus and the Cochrane Library were conducted comparing the effect of RTH versus normoxia (RTN) on muscle hypertrophy (cross sectional area (CSA), lean mass and muscle thickness) and strength development [1-repetition maximum (1RM)]. An overall meta-analysis and subanalyses of training load (low, moderate or high), inter-set rest interval (short, moderate or long) and severity of hypoxia (moderate or high) were conducted to explore the effects on RTH outcomes. Seventeen studies met inclusion criteria. The overall analyses showed similar improvements in CSA (SMD [CIs] = 0.17 [- 0.07; 0.42]) and 1RM (SMD = 0.13 [0.0; 0.27]) between RTH and RTN. Subanalyses indicated a medium effect on CSA for longer inter-set rest intervals and a small effect for moderate hypoxia and moderate loads favoring RTH. Moreover, a moderate effect for longer inter-set rest intervals and a trivial effect for severe hypoxia and moderate loads favoring RTH was found on 1RM. Evidence suggests that RTH employed with moderate loads (60-80% 1RM) and longer inter-set rest intervals (≥ 120 s) enhances muscle hypertrophy and strength compared to normoxia. The use of moderate hypoxia (14.3-16% FiO2) seems to be somewhat beneficial to hypertrophy but not strength. Further research is required with greater standardization of protocols to draw stronger conclusions on the topic.
Collapse
Affiliation(s)
- Cristina Benavente
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Brad J Schoenfeld
- Department of Exercise Science and Recreation, CUNY Lehman College, The Bronx, NY, USA
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
13
|
Tee CCL, Cooke MB, Chong MC, Yeo WK, Camera DM. Mechanisms for Combined Hypoxic Conditioning and Divergent Exercise Modes to Regulate Inflammation, Body Composition, Appetite, and Blood Glucose Homeostasis in Overweight and Obese Adults: A Narrative Review. Sports Med 2023; 53:327-348. [PMID: 36441492 PMCID: PMC9877079 DOI: 10.1007/s40279-022-01782-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
Obesity is a major global health issue and a primary risk factor for metabolic-related disorders. While physical inactivity is one of the main contributors to obesity, it is a modifiable risk factor with exercise training as an established non-pharmacological treatment to prevent the onset of metabolic-related disorders, including obesity. Exposure to hypoxia via normobaric hypoxia (simulated altitude via reduced inspired oxygen fraction), termed hypoxic conditioning, in combination with exercise has been increasingly shown in the last decade to enhance blood glucose regulation and decrease the body mass index, providing a feasible strategy to treat obesity. However, there is no current consensus in the literature regarding the optimal combination of exercise variables such as the mode, duration, and intensity of exercise, as well as the level of hypoxia to maximize fat loss and overall body compositional changes with hypoxic conditioning. In this narrative review, we discuss the effects of such diverse exercise and hypoxic variables on the systematic and myocellular mechanisms, along with physiological responses, implicated in the development of obesity. These include markers of appetite regulation and inflammation, body conformational changes, and blood glucose regulation. As such, we consolidate findings from human studies to provide greater clarity for implementing hypoxic conditioning with exercise as a safe, practical, and effective treatment strategy for obesity.
Collapse
Affiliation(s)
- Chris Chow Li Tee
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Matthew B Cooke
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Mee Chee Chong
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Wee Kian Yeo
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Donny M Camera
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
14
|
Effects of Resistance Training in Hypobaric vs. Normobaric Hypoxia on Circulating Ions and Hormones. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063436. [PMID: 35329124 PMCID: PMC8949299 DOI: 10.3390/ijerph19063436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
Hypobaric hypoxia (HH) seems to lead to different responses compared to normobaric hypoxia (NH) during physical conditioning. The aim of the study was to analyze the hormonal and circulating ion responses after performing high-intensity resistance training with different inter-set rest under HH and NH condition. Sixteen male volunteers were randomly divided into two training groups. Each group completed two counterbalanced resistance training sessions (three sets × ten repetitions, remaining two repetitions in reserve), with both one- and two-minute inter-set rest, under HH and NH. Blood samples were obtained to determine hormones and circulating ions (Ca2+, Pi, and HCO3−) at baseline and after training sessions (5, 10, and 30 min). Resistance training with one-minute rest caused greater hormonal stress than with two-minute rest in cortisol and growth hormone, although the hypoxic environmental condition did not cause any significant alterations in these hormones. The short inter-set rest also caused greater alterations in HCO3− and Pi than the longer rest. Additionally, higher levels of Ca2+ and Pi, and lower levels of HCO3−, were observed after training in HH compared to NH. Metabolic and physiological responses after resistance training are mediated by inter-set rest intervals and hypoxic environmental condition. According to the alterations observed in the circulating ions, HH could cause greater muscular fatigue and metabolic stress than NH.
Collapse
|
15
|
Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021; 11:life11020106. [PMID: 33573198 PMCID: PMC7912455 DOI: 10.3390/life11020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxic training is believed to be generally useful for improving exercise performance in various athletes. Nowadays, exercise intervention in hypoxia is recognized as a new therapeutic modality for health promotion and disease prevention or treatment based on the lower mortality and prevalence of people living in high-altitude environments than those living in low-altitude environments. Recently, resistance training in hypoxia (RTH), a new therapeutic modality combining hypoxia and resistance exercise, has been attempted to improve muscle hypertrophy and muscle function. RTH is known to induce greater muscle size, lean mass, increased muscle strength and endurance, bodily function, and angiogenesis of skeletal muscles than traditional resistance exercise. Therefore, we examined previous studies to understand the clinical and physiological aspects of sarcopenia and RTH for muscular function and hypertrophy. However, few investigations have examined the combined effects of hypoxic stress and resistance exercise, and as such, it is difficult to make recommendations for implementing universal RTH programs for sarcopenia based on current understanding. It should also be acknowledged that a number of mechanisms proposed to facilitate the augmented response to RTH remain poorly understood, particularly the role of metabolic, hormonal, and intracellular signaling pathways. Further RTH intervention studies considering various exercise parameters (e.g., load, recovery time between sets, hypoxic dose, and intervention period) are strongly recommended to reinforce knowledge about the adaptational processes and the effects of this type of resistance training for sarcopenia in older people.
Collapse
|