1
|
Liu HC, Zhu HM, Li M, Chen BR, Yang ZY, Wang Y, Wang SZ, Chen SQ, Lin JP. Chinese Tuina ameliorates muscle damage by regulating endoplasmic reticulum stress and autophagy in a rat model of skeletal muscle contusion. Tissue Cell 2025; 95:102874. [PMID: 40168839 DOI: 10.1016/j.tice.2025.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 04/03/2025]
Abstract
Chinese Tuina has been used to treat skeletal muscle contusion (SMC) for a long time in China, yet its efficacy and mechanisms remain unclear. Previous studies have shown the vital roles of endoplasmic reticulum (ER) stress and autophagy during injured skeletal muscle recovery, we postulated that Chinese Tuina could expedite the healing of SMC by fine-tuning these processes. In this study, we established a rat model of SMC through weight-dropping and divided the rats into three groups: SMC, SMC+Tuina, and SMC+Tuina+ 3-methyladenine (3-MA) groups, while using untreated normal SD rats as a control. We assessed gait and edema via CatWalk gait analysis and swelling measurements, respectively. Tumor necrosis factor-α (TNF-α) expression was determined by immunohistochemistry (IHC). Morphological and ultrastructural alterations in the damaged muscle tissue were examined using hematoxylin and eosin (HE) staining and transmission electron microscopy (TEM), respectively. Expression of GRP78, LC3B and FAM134b was determined by western blot, and Colocalization of LC3B and FAM134b was examined by immunofluorescence. SMC+Tuina exhibited significantly improved gait and reduced edema. SMC+Tuina showed improvements in morphology and ultrastructure of damaged muscles, as well as decreased expression of TNF-α. Additionally, in SMC+Tuina, expression of GRP78 was downregulated, while expressions of FAM134 and LC3B were upregulated, and colocalization of FAM134 and LC3B was also enhanced. However, autophagy inhibitor 3-MA weakened the aforementioned effects of Chinese Tuina. The obtained results indicated that Chinese Tuina has a positive therapeutic effect in rats with SMC, potentially by promoting autophagy to reduce inflammation and ER stress.
Collapse
Affiliation(s)
- Hai-Chao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hao-Ming Zhu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ming Li
- School of Health, Fujian Medical University, Fuzhou, China
| | - Bo-Rui Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zheng-Yu Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shi-Zhong Wang
- School of Health, Fujian Medical University, Fuzhou, China.
| | - Shao-Qing Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Jian-Ping Lin
- School of Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Dewi NM, Meiliana A, Defi IR, Amalia R, Sartika CR, Wijaya A, Barliana MI. Targeted Therapy for Skeletal Muscle Fibrosis: Regulation of Myostatin, TGF-β, MMP, and TIMP to Maintain Extracellular Matrix Homeostasis. Biologics 2025; 19:213-229. [PMID: 40260056 PMCID: PMC12011048 DOI: 10.2147/btt.s508221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
Muscle fibrosis, defined by the excessive deposition of extracellular matrix (ECM) components, is a key pathological process that hinders muscle regeneration following injury. Despite muscle's inherent regenerative potential, severe or chronic injuries often result in fibrosis, which compromises muscle function and impedes healing. This review explores a range of therapeutic strategies aimed at modulating the molecular pathways involved in muscle fibrosis, with a focus on the inhibition of myostatin and transforming growth factor-β (TGF-β), as well as the regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Some therapy modalities, including physiotherapy and exercise therapy, which are commonly used, have demonstrated the ability to regulate extracellular matrix (ECM) components and promote muscle repair. In addition, the use of TGF-β inhibitors, herbal plants, and other biochemically relevant compounds, holds promise in controlling fibrosis by targeting key signaling pathways that drive ECM accumulation as well as having anti-fibrotic and anti-inflammatory properties. Regenerative medicine, including therapies using stem cell, secretome, and platelet-rich plasma (PRP), have also been used as single or adjuvant treatment for muscle fibrosis, and represents a novel and minimally invasive approach. Although these therapeutic strategies show considerable promise, translating preclinical findings to clinical practice remains challenging owing to variability in patient responses and the complexity of human muscle injuries. In conclusion, a multifaceted approach targeting ECM regulation, either as single treatment or combined treatment, offers a promising avenue for the treatment of muscle fibrosis.
Collapse
Affiliation(s)
- Nurrani Mustika Dewi
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- PT Prodia Widyahusada, Jakarta, Indonesia
| | - Anna Meiliana
- PT Prodia Widyahusada, Jakarta, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Irma Ruslina Defi
- Department of Physical Medicine and Rehabilitation, Hasan Sadikin General Hospital/Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | | | - Andi Wijaya
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- PT Prodia StemCell Indonesia, Jakarta, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
3
|
Ergan M, Keskіn T, Candan İA, Erzurumlu Y, Aşci H, Çömlekçı S, Başkurt F. Investigation of the efficiency of pulsed electromagnetic field treatment and stretching exercise in experimental skeletal muscle injury model. BMC Musculoskelet Disord 2025; 26:289. [PMID: 40128672 PMCID: PMC11931823 DOI: 10.1186/s12891-025-08442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVE Pulsed electromagnetic fields (PEMF) and stretching exercises are safe and noninvasive methods that could have a therapeutic effect on tissue healing. This study aimed to assess the effectiveness of these methods in treatment of muscle injury (INJ). METHOD Rats were divided into 5 groups (Control, INJ, INJ + Exercise, INJ + PEMF, INJ + Exercise + PEMF). At the end of the experiment, genetic, histopathological, and immunohistochemical evaluations were made in the muscle tissue. RESULTS Mononuclear cell infiltration, muscle degeneration, atrophy, and necrosis were found to be higher in the INJ group than in all groups (p < 0.001). On the 7th day, fibroblast growth factor (FGF) was found to be higher in the INJ group compared to both the control and the INJ + Exercise group (p < 0.05). On the 14th day, Vascular endothelial growth factor values were found to be higher in the injury group than the other groups except for the PEMF group (p < 0.05), and FGF values were higher in the injury group compared to all groups (p < 0.001). The expressions of transforming growth factor beta 1 (TGF-β1) and endothelial nitric oxide synthase (eNOS) on the 7th and 14th days showed a significant increase in the INJ group compared to the other groups (p < 0.001). CONCLUSION In this study, it has been shown that PEMF and stretching exercise is effective in the treatment of muscle injuries as they balance the inflammatory process in the muscle, have a positive effect on muscle development, accelerate healing, prevent fibrosis development by reducing TGF-β1 signaling, and inhibit inflammatory-induced eNOS activity.
Collapse
Affiliation(s)
- Mesut Ergan
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Süleyman Demirel University, Isparta, 32200, Turkey.
| | - Tahir Keskіn
- Faculty of Physical Therapy and Rehabilitation, Bingöl University, Bіngöl, 12000, Turkey
| | - İbrahim Aydın Candan
- Faculty of Medicine, Department of Histology and Embryology, Alanya Alaaddin Keykubat Unıversıty, Alanya, Turkey
| | - Yalçın Erzurumlu
- Faculty of Pharmacy, Department of Biochemistry, Süleyman Demirel University, Isparta, Turkey
| | - Halil Aşci
- Faculty of Medicine, Department of Pharmacology, Süleyman Demirel University, Isparta, Turkey
| | - Selçuk Çömlekçı
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Ferdi Başkurt
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Süleyman Demirel University, Isparta, 32200, Turkey
| |
Collapse
|
4
|
Renner MN, Lam KC, Srygler EC, Adler SN, Chambers JS, Bell DR. Factors That Impact Time to Athletic Trainer Evaluation Following Acute Injury Among Secondary School Athletes: A Report From the Athletic Training Practice-Based Research Network. J Athl Train 2025; 60:29-33. [PMID: 39099552 PMCID: PMC11789747 DOI: 10.4085/1062-6050-0287.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
CONTEXT Immediate athletic trainer (AT) availability for acute injuries is essential as worse long-term outcomes are associated with delays in receiving medical care. Several factors have been found to influence AT availability between secondary schools, but few studies have evaluated how medical coverage varies between athlete groups. OBJECTIVE The purpose of this project was to identify factors that impact the time to AT evaluation following acute sport-related injury in a secondary school setting. DESIGN Cross-sectional study. SETTING Retrospective analysis of deidentified patient records via the Athletic Training Practice-Based Research Network. PATIENTS OR OTHER PARTICIPANTS High school athletes diagnosed with an acute sport-related injury during in-season play from 2010 to 2023. MAIN OUTCOME MEASURE(S) Time to AT evaluation was measured as the number of days between injury onset, reported by the patient, and AT evaluation. RESULTS This report consists of 17 354 patient cases representing 20 different sports. Overall, 46.9% (n = 8138) of patients who sustained an injury during in-season play were evaluated by an AT the same day (range, 0-14 days). Significant group differences were reported for sex (P < .001), setting (P < .001), and sport level (P < .01), with female athletes and in-game injuries associated with longer times to AT evaluation. Freshmen were evaluated sooner than junior varsity (P < .01) and varsity (P < .001) athletes. No difference was observed between junior varsity and varsity athletes (P = .34). CONCLUSIONS Almost half of patients received medical care within 24 hours following an acute injury during in-season play, highlighting how qualified health care is accessible for many student-athletes through ATs in the secondary school setting. Differences in time to AT evaluation may be attributable to sex discrepancies in immediate medical coverage between sports and injury reporting patterns among athletes.
Collapse
|
5
|
Wang K, Wang X, Wang Y. Factors, mechanisms and improvement methods of muscle strength loss. Front Cell Dev Biol 2024; 12:1509519. [PMID: 39698495 PMCID: PMC11653071 DOI: 10.3389/fcell.2024.1509519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Muscle strength is a crucial aspect of muscle function, essential for maintaining normal physical activity and quality of life. The global aging population coupled with the increasing prevalence of muscle disorders and strength loss, poses a remarkable public health challenge. Understanding the mechanisms behind muscle strength decline is vital for improving public health outcomes. This review discusses recent research advancements on muscle strength loss from various perspectives, including factors contributing to muscle strength decline, the signaling pathways involved in the deterioration of muscle function, and the methods for assessing muscle strength. The final section explores the influence of exercise stimulation and nutrition on muscle strength.
Collapse
Affiliation(s)
- Kaiyong Wang
- Department of Physical Education, Guangdong University of Finance and Economics, Guangzhou, Guangdong, China
| | - Xuyu Wang
- Master program under the Graduate School of Education, Graduate University of Mongolia, Ulaanbaatar, Mongolia
| | - Yanqiu Wang
- School of Physical Education, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Tang D, Wu S, Kong M, Liu Z, Li Z, Han Y, Gong Y, Hu J. A Fluorescent Lateral Flow Immunoassay for the Detection of Skeletal Muscle Troponin I in Serum for Muscle Injury Monitoring at the Point of Care. BIOSENSORS 2024; 14:381. [PMID: 39194610 DOI: 10.3390/bios14080381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024]
Abstract
Exercise-induced muscle injury is one of the most common types of sports injuries. Skeletal muscle troponin I (skTnI) serves as an ideal biomarker in assessing such injuries, facilitating timely detection and evaluation. In this study, we develop a fluorescent sandwich lateral flow immunoassay (LFIA) combined with a desktop analyzer for rapid detection of skTnI. Through optimizing the reaction system, the assay achieves a satisfying detection performance, reaching a limit of detection (LOD) of 0.5 ng/mL with a turnaround time of 15 min. The proposed detection platform offers portability, ease of use, and high sensitivity, which facilitates the monitoring of exercise-induced muscle injuries at the point of care. This feature is particularly advantageous for end users, enabling timely detection of sports-related injuries and ultimately enhancing prognosis and sports life.
Collapse
Affiliation(s)
- Deding Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
- Public Teaching Department, Maanshan Teacher's College, Maanshan 243041, China
| | - Shuang Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengqi Kong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
- Suzhou Diyinan Biotech Company, Suzhou 215129, China
| | - Zhaonan Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
- Suzhou Diyinan Biotech Company, Suzhou 215129, China
| | - Zonghao Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
- Suzhou Diyinan Biotech Company, Suzhou 215129, China
| | - Ying Han
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yan Gong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Hu
- Suzhou Diyinan Biotech Company, Suzhou 215129, China
| |
Collapse
|
7
|
Trivedi AH, Wang VZ, McClain EJ, Vyas PS, Swink IR, Snell ED, Cheng BC, DeMeo PJ. The Categorization of Perinatal Derivatives for Orthopedic Applications. Biomedicines 2024; 12:1544. [PMID: 39062117 PMCID: PMC11274709 DOI: 10.3390/biomedicines12071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Musculoskeletal (MSK) pathology encompasses an array of conditions that can cause anything from mild discomfort to permanent injury. Their prevalence and impact on disability have sparked interest in more effective treatments, particularly within orthopedics. As a result, the human placenta has come into focus within regenerative medicine as a perinatal derivative (PnD). These biologics are sourced from components of the placenta, each possessing a unique composition of collagens, proteins, and factors believed to aid in healing and regeneration. This review aims to explore the current literature on PnD biologics and their potential benefits for treating various MSK pathologies. We delve into different types of PnDs and their healing effects on muscles, tendons, bones, cartilage, ligaments, and nerves. Our discussions highlight the crucial role of immune modulation in the healing process for each condition. PnDs have been observed to influence the balance between anti- and pro-inflammatory factors and, in some cases, act as biologic scaffolds for tissue growth. Additionally, we assess the range of PnDs available, while also addressing gaps in our understanding, particularly regarding biologic processing methods. Although certain PnD biologics have varying levels of support in orthopedic literature, further clinical investigations are necessary to fully evaluate their impact on human patients.
Collapse
Affiliation(s)
- Amol H. Trivedi
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
- Drexel University College of Medicine, Drexel University, University City Campus, Philadelphia, PA 19104, USA
| | - Vicki Z. Wang
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward J. McClain
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Praveer S. Vyas
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Isaac R. Swink
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward D. Snell
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Boyle C. Cheng
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Patrick J. DeMeo
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| |
Collapse
|
8
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
9
|
Wang C, Stovitz SD, Kaufman JS, Steele RJ, Shrier I. Principles of musculoskeletal sport injuries for epidemiologists: a review. Inj Epidemiol 2024; 11:21. [PMID: 38802864 PMCID: PMC11131288 DOI: 10.1186/s40621-024-00507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Musculoskeletal injuries are a common occurrence in sport. The goal of sport injury epidemiology is to study these injuries at a population level to inform their prevention and treatment. MAIN BODY This review provides an overview of musculoskeletal sport injuries and the musculoskeletal system from a biological and epidemiologic perspective, including injury mechanism, categorizations and types of sport injuries, healing, and subsequent injuries. It is meant to provide a concise introductory substantive background of musculoskeletal sport injuries for epidemiologists who may not have formal training in the underlying anatomy and pathophysiology. CONCLUSION An understanding of sport injuries is important for researchers in sport injury epidemiology when determining how to best define and assess their research questions and measures.
Collapse
Affiliation(s)
- Chinchin Wang
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Steven D Stovitz
- Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, USA
| | - Jay S Kaufman
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Russell J Steele
- Department of Mathematics and Statistics, McGill University, Montreal, Canada
| | - Ian Shrier
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada.
- Department of Family Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
10
|
Yi H, Chen G, Qiu S, Maxwell JT, Lin G, Criswell T, Zhang Y. Urine-derived stem cells genetically modified with IGF1 improve muscle regeneration. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:64-87. [PMID: 38736619 PMCID: PMC11087207 DOI: 10.62347/qskh2686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE In this study we aimed to determine the impact of human urine derived stem cells (USC) and genetically modified USC that were designed to overexpress myogenic growth factor IGF1 (USCIGF), on the regenerative capacity of cardiotoxin (CTX)-injured murine skeletal muscle. METHODS We overexpressed IGF1 in USC and investigated the alterations in myogenic capacity and regenerative function in cardiotoxin-injured muscle tissues. RESULTS Compared with USC alone, USCIGF1 activated the IGF1-Akt-mTOR signaling pathway, significantly improved myogenic differentiation capacity in vitro, and enhanced the secretion of myogenic growth factors and cytokines. In addition, IGF1 overexpression increased the ability of USC to fuse with skeletal myocytes to form myotubes, regulated the pro-regenerative immune response and inflammatory cytokines, and increased myogenesis in an in vivo model of skeletal muscle injury. CONCLUSION Overall, USC genetically modified to overexpress IGF1 significantly enhanced skeletal muscle regeneration by regulating myogenic differentiation, paracrine effects, and cell fusion, as well as by modulating immune responses in injured skeletal muscles in vivo. This study provides a novel perspective for evaluating the myogenic function of USC as a nonmyogenic cell source in skeletal myogenesis. The combination of USC and IGF1 expression has the potential to provide a novel efficient therapy for skeletal muscle injury and associated muscular defects in patients with urinary incontinence.
Collapse
Affiliation(s)
- Hualin Yi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
- Department of Spine Surgery and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated HospitalGuangzhou, Guangdong, China
| | - Gang Chen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and ScienceXiangyang, Hubei, China
| | - Shuai Qiu
- Department of Microsurgery and Orthopedic Trauma, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Joshua T Maxwell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
| | - Guiting Lin
- Department of Urology, University of CaliforniaSan Francisco, California, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of MedicineWinston Salem, North Carolina, USA
| |
Collapse
|
11
|
Chou YC, Hsu YH, Lee D, Yang JW, Yu YH, Chan EC, Liu SJ. Novel Bioresorbable Drug-Eluting Mesh Scaffold for Therapy of Muscle Injury. ACS Biomater Sci Eng 2024; 10:2595-2606. [PMID: 38480510 DOI: 10.1021/acsbiomaterials.3c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A novel bioresorbable drug-eluting polycaprolactone (PCL) mesh scaffold was developed, utilizing a solvent-cast additive manufacturing technique, to promote therapy of muscle injury. The degradation rate and mechanical properties strength of the PCL mesh were characterized after immersion in a buffer solution for different times. The in vitro release characteristics of vancomycin, ceftazidime, and lidocaine from the prepared mesh were evaluated using a high-performance liquid chromatography (HPLC) assay. In addition, the in vivo efficacy of PCL meshes for the repair of muscle injury was investigated on a rat model with histological examinations. It was found that the additively manufactured PCL meshes degraded by 13% after submission in buffered solution for four months. All PCL meshes with different pore sizes exhibited greater strength than rat muscle and survived through 10,000 cyclic loadings. Furthermore, the meshes could offer a sustained release of antibiotics and analgesics for more than 3 days in vitro. The results of this study suggest that drug-loaded PCL mesh exhibits superior ability to pure PCL mesh in terms of effectively promoting muscle repair in rat models. The histological assay also showed adequate biocompatibility of the resorbable meshes. The additively manufactured biodegradable drug-eluting meshes may be adopted in the future in humans for the therapy of muscle injuries.
Collapse
Affiliation(s)
- Ying-Chao Chou
- Bone and Joint Research Center, Department of Orthopedics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Department of Orthopedics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Demei Lee
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jheng-Wei Yang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hsun Yu
- Bone and Joint Research Center, Department of Orthopedics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Err-Cheng Chan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shih-Jung Liu
- Bone and Joint Research Center, Department of Orthopedics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
12
|
Lubin P, Zidi M. Mechanical properties change of immobilized skeletal muscle in short position measured by shear wave elastography and pure shearing test. J Mech Behav Biomed Mater 2024; 150:106317. [PMID: 38118374 DOI: 10.1016/j.jmbbm.2023.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The purpose of this study was to evaluate the effects of immobilization on mechanical properties of skeletal muscle over the time. An in vivo rat model was used to investigate the shear modulus change of the flexor carpi ulnaris (FCU) in a short position. Measurements were performed by shear wave elastography (SWE) to compare contralateral and immobilized cases. The results showed a significant increase of 18.1% (p = 3.86. 10-7) in the shear modulus of immobilized skeletal muscle after two weeks (D14) when compared with the contralateral case. For the purposes of comparison, in vitro mechanical pure shearing tests were performed on samples collected from the skeletal muscles of the same rats. Although the difference between contralateral and immobilized cases was 17.6% (p = 0.32) at D14, the shear modulus difference was 35.7% (p = 0.0126 and p = 1.57.10-5 for immobilization and contralateral respectively) between in vivo and in vitro approaches. The mechanical properties changes were then correlated with the density of collagen from histological analysis, and it was shown that the contralateral collagen surface density was 25.4% higher than the immobilized density at D14 (p = 0.001). Thus, the results showed the feasibility of the comparison between the two approaches, which can surely be improved by optimizing the experimental protocols.
Collapse
Affiliation(s)
- Pénélope Lubin
- Bioengineering, Tissues and Neuroplasticity, UR 7377, Université Paris-Est Créteil, Faculté de Santé /EPISEN, 8 rue du Général Sarrail, 94010, Créteil, France
| | - Mustapha Zidi
- Bioengineering, Tissues and Neuroplasticity, UR 7377, Université Paris-Est Créteil, Faculté de Santé /EPISEN, 8 rue du Général Sarrail, 94010, Créteil, France.
| |
Collapse
|
13
|
Lu YH, Huang YF, Hsieh CP, Chen JK, Chen HY, Chuang SM. Betulin Accelerated the Functional Recovery of Injured Muscle in a Mouse Model of Muscle Contusion. Int J Med Sci 2024; 21:37-44. [PMID: 38164348 PMCID: PMC10750331 DOI: 10.7150/ijms.87649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024] Open
Abstract
Muscle contusion is an injury to muscle fibers and connective tissues. It commonly happens in impact events, and could result in pain, swelling, and limited range of motion. Diclofenac is one of commonly used nonsteroidal anti-inflammatory drugs to alleviate pain and inflammation after injury. However, it can potentially cause some side effects including gastrointestinal complications and allergy. Betulin is a lupine-type pentacyclic triterpenoid. It is showed to have valuable pharmacological effects, but the physiological effect of betulin on muscle contusion has not been reported. This study aimed to explore the therapeutic effects of betulin on muscle contusion that produced by the drop-mass method in mice. C57BL/6 mice were randomly assigned to control (no injury), only drop-mass injury (Injury), diclofenac treatment (Injury+diclofenac), and betulin treatment (Injury+betulin) groups. Injury was executed on the gastrocnemius of the right hind limb, and then phosphate-buffered saline (PBS), diclofenac, or betulin were oral gavage administrated respectively for 7 days. Results revealed that betulin significantly restored motor functions based on locomotor activity assessments, rota-rod test, and footprints analysis. Betulin also attenuated serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels after muscle injury. Neutrophil infiltration was alleviated and desmin levels were increased after betulin treatment. Our data demonstrated that betulin attenuated muscle damage, alleviated inflammatory response, improved muscle regeneration, and restored motor functions after muscle contusion. Altogether, betulin may be a potential compound to accelerate the repair of injured muscle.
Collapse
Affiliation(s)
- Yueh-Hsiu Lu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Yi-Fu Huang
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Cheng-Pu Hsieh
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, 50006, Taiwan
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, 50006, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Kinesiology, Health and Leisure Studies, Chien Kuo Technology University, Changhua, 50094, Taiwan
| | - Jr-Kai Chen
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Hsuan-Ying Chen
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua, 50006, Taiwan
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Law, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
14
|
Hanna BS, Yaghi OK, Langston PK, Mathis D. The potential for Treg-enhancing therapies in tissue, in particular skeletal muscle, regeneration. Clin Exp Immunol 2023; 211:138-148. [PMID: 35972909 PMCID: PMC10019136 DOI: 10.1093/cei/uxac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Foxp3+CD4+ regulatory T cells (Tregs) are famous for their role in maintaining immunological tolerance. With their distinct transcriptomes, growth-factor dependencies and T-cell receptor (TCR) repertoires, Tregs in nonlymphoid tissues, termed "tissue-Tregs," also perform a variety of functions to help assure tissue homeostasis. For example, they are important for tissue repair and regeneration after various types of injury, both acute and chronic. They exert this influence by controlling both the inflammatory tenor and the dynamics of the parenchymal progenitor-cell pool in injured tissues, thereby promoting efficient repair and limiting fibrosis. Thus, tissue-Tregs are seemingly attractive targets for immunotherapy in the context of tissue regeneration, offering several advantages over existing therapies. Using skeletal muscle as a model system, we discuss the existing literature on Tregs' role in tissue regeneration in acute and chronic injuries, and various approaches for their therapeutic modulation in such contexts, including exercise as a natural Treg modulator.
Collapse
Affiliation(s)
- Bola S Hanna
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - Omar K Yaghi
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - P Kent Langston
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| |
Collapse
|
15
|
Thangadurai M, Ajith A, Budharaju H, Sethuraman S, Sundaramurthi D. Advances in electrospinning and 3D bioprinting strategies to enhance functional regeneration of skeletal muscle tissue. BIOMATERIALS ADVANCES 2022; 142:213135. [PMID: 36215745 DOI: 10.1016/j.bioadv.2022.213135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Skeletal muscles are essential for body movement, and the loss of motor function due to volumetric muscle loss (VML) limits the mobility of patients. Current therapeutic approaches are insufficient to offer complete functional recovery of muscle damages. Tissue engineering provides viable ways to fabricate scaffolds to regenerate damaged tissues. Hence, tissue engineering options are explored to address existing challenges in the treatment options for muscle regeneration. Electrospinning is a widely employed fabrication technique to make muscle mimetic nanofibrous scaffolds for tissue regeneration. 3D bioprinting has also been utilized to fabricate muscle-like tissues in recent times. This review discusses the anatomy of skeletal muscle, defects, the healing process, and various treatment options for VML. Further, the advanced strategies in electrospinning of natural and synthetic polymers are discussed, along with the recent developments in the fabrication of hybrid scaffolds. Current approaches in 3D bioprinting of skeletal muscle tissues are outlined with special emphasis on the combination of electrospinning and 3D bioprinting towards the development of fully functional muscle constructs. Finally, the current challenges and future perspectives of these convergence techniques are discussed.
Collapse
Affiliation(s)
- Madhumithra Thangadurai
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Athulya Ajith
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
16
|
Azhar M, Wardhani BWK, Renesteen E. The regenerative potential of Pax3/Pax7 on skeletal muscle injury. J Genet Eng Biotechnol 2022; 20:143. [PMID: 36251225 PMCID: PMC9574840 DOI: 10.1186/s43141-022-00429-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022]
Abstract
Background
Skeletal muscle mishaps are the most well-known incidents in society, especially among athletes and the military population. From the various urgency, this accident needs to be cured more quickly. However, the current treatment still has some shortcomings and is less effective. In this case, Paired box 3 and Paired box 7 (Pax3/Pax7) proteins that induce stem cells could potentially be an alternative treatment for skeletal muscle injuries. This paper aimed to analyse the potential treatment of Pax3/Pax7 proteins inducing the stem cell for skeletal muscle injuries. The main body of the abstract We did a narrative review by gathering several scientific journals from several leading platforms like PubMed and Scopus. As common accidents, skeletal muscle disease could be due to workplace and non-workplace causes. The highest risk occurs in the athlete and military environment. The treatment of current skeletal muscle injuries is protection, rest, ice, compression, and elevation (PRICE), non-steroidal anti-inflammatory drugs (NSAIDs), and mechanical stimulation. However, it is considered less effective, especially in NSAIDs, inhibiting myogenic cell proliferation. The current finding indicates that the stem cells have markers known as Pax3/Pax7. The role of both markers in muscle injury, Pax3/Pax7, as transcription factors will induce cell division by H3K4 methylation mechanisms and chromatin modifications that stimulate gene activation. Conclusion Regulation by Pax3/Pax7 factors that affect stem cells and stem cell proliferation is one of the alternative treatments. This regulation can accelerate the healing of injury victims, especially injuries to the skeletal muscles. Finally, after being compared, Pax3/Pax7 induces stem cells to have the potential to be one of the skeletal muscle injury treatments. Keywords Pax3 and Pax7, Pax3/Pax7, Skeletal muscle, Athlete, Stem cells, Cell proliferation, Injuries.
Collapse
Affiliation(s)
- Muhamad Azhar
- Faculty of Military Pharmacy, The Republic of Indonesia Defense University, Bogor, 16810, West Java, Indonesia
| | | | - Editha Renesteen
- Faculty of Military Pharmacy, The Republic of Indonesia Defense University, Bogor, 16810, West Java, Indonesia.
| |
Collapse
|
17
|
Nölle LV, Mishra A, Martynenko OV, Schmitt S. Evaluation of muscle strain injury severity in active human body models. J Mech Behav Biomed Mater 2022; 135:105463. [PMID: 36137370 DOI: 10.1016/j.jmbbm.2022.105463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/04/2021] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Even though significant efforts in the field of injury detection with finite element active human body models (FE AHBMs) have been made, injuries of the muscle-tendon unit (MTU) have not yet been taken into consideration. Therefore, the goal of this study was to define a muscle strain injury criterion (MSIC) to evaluate the damage sustained by the musculature during muscle driven movement scenarios. The MSIC was derived from biomechanical tests found in the literature and the proposed threshold values were substantiated through a comparison to an estimate of the ultimate tensile strength of human skeletal muscle and the forces acting on the biceps femoris long head muscle during one sprinting gait cycle. The application of the MSIC to state-of-the-art FE AHBMs was demonstrated by evaluating the strain injury severity of selected neck muscles of a full-body AHBM during two seat rotation load cases. The results of the MSIC substantiation suggest that all three injury threshold values proposed in this work fall in a plausible corridor of forces acting on the MTU. The combined results of the AHBM simulations indicate that neither of the two examined seat rotations are likely to cause strain injury to the neck muscles and that the proposed MSIC can easily be applied to current AHBMs without further modification of the model architecture or the muscle parameters. The MSIC was also used to formulate a hypothesis on the aetiology of muscle strain injuries, through which it was demonstrated that material inhomogeneities in the MTU might be the cause for strain injuries sustained during otherwise physiological movements. This work is a first step in the direction of the definition of a wholistic injury criterion for the human skeletal muscle fibre.
Collapse
Affiliation(s)
- Lennart V Nölle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.
| | - Atul Mishra
- Mercedes-Benz Research and Development, Bangalore, India
| | - Oleksandr V Martynenko
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
18
|
Electroacupuncture of Weizhong (BL-40) Acupoint Inspires Muscular Satellite Cell Regeneration and Promotes Muscle Repair Capacity after Back Muscle Injury in Sprague-Dawley Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2695679. [PMID: 35966754 PMCID: PMC9371836 DOI: 10.1155/2022/2695679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
Background Back muscle injury is the most common illness involved in aged people. Muscular satellite cells, playing a key role in the muscle repairing process, are gradually losing their regenerative ability with aging, which attenuates the injured muscle repairing process. Electroacupuncture at Weizhong acupoint has been widely used in the treatment of young and aged patients with back muscle damage. Its efficacy has been proven by a randomized double-blind placebo clinical trial. However, the rehabilitation mechanisms are largely unknown. This study will explore the possible mechanisms associated with electroacupuncture at the Weizhong acupoint (BL 40) promoting muscle repairing ability. Method A total of 58 male and female Sprague-Dawley rats were divided into a younger group (4-month-old) and an aged group (16-month-old), younger and aged rats were further divided as a sham, injured, injured rats treated with electroacupuncture at Weizhong point or treated with Non-Weizhong point groups. The back muscle injury model was produced in rats as a previously described method with modification. Furthermore, Weizhong acupoints underwent electroacupuncture treatment with 15 V magnitude, 2 Hz/10 Hz frequency density, 1.0 mA current intensity, and 10 min each day for 10 consecutive days using HANS's electroacupuncture apparatus. After the last treatment, the paravertebral muscles and serum of all animals were undergone histological, immunohistochemistry, and flow cytometry analysis. Serum levels of Creatine Kinase (CK) and proinflammatory cytokine, interleukin 6 (IL-6), were measured separately by using ELISA kit. Results Electroacupuncture of Weizhong (BL 40) acupoints significantly attenuated back muscle damage in both young and aged rats, increasing PAX7 (a marker of muscle satellite cells) and MYOD (major marker of myoblasts) cells, simultaneously, reducing serum proinflammatory cytokines, IL-6, and downregulation of p38 MAPK signaling in aged muscular satellite cells. Conclusion Our studies suggest that electroacupuncture of Weizhong (BL 40) acupoints can restore aged back muscular satellite cells and their regeneration capacity. These suggested electroacupuncture may be a potential means of promoting rehabilitation for muscular injury in aged patients.
Collapse
|
19
|
Oh HJ, Jin H, Lee BY. The non-saponin fraction of Korean Red Ginseng ameliorates sarcopenia by regulating immune homeostasis in 22–26-month-old C57BL/6J mice. J Ginseng Res 2022; 46:809-818. [DOI: 10.1016/j.jgr.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 10/31/2022] Open
|
20
|
Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration. Acta Biomater 2022; 143:282-294. [PMID: 35278687 DOI: 10.1016/j.actbio.2022.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 01/01/2023]
Abstract
Moderate muscular injuries that exceed muscular tissue's auto-healing capacity are still a topic of noteworthy concern. Tissue engineering appeared as a promising therapeutic strategy capable of overcoming this unmet clinical need. To attain such goal, herein we propose an in situ-crosslinking gellan gum (GG)-based hydrogel tethered with a skeletal muscle-inspired laminin-derived peptide RKRLQVQLSIRTC(Q) and encapsulated with skeletal muscle cells (SMCs). Pre-hydrogel solutions presented decreasing shear viscosity with increasing shear rate and shear stress, and required low forces for extrusion, validating their injectability. The GGDVS hydrogel was functionalized with Q-peptide with 30% of efficiency. C2C12 were able to adhere to the developed hydrogel, remained living and spreading 7 days post-encapsulation. Q-peptide release studies indicated that 25% of the unbound peptide can be released from the hydrogels up to 7 days, dependent on the hydrogel formulation. Treatment of a chemically-induced muscular lesion in mice with an injection of C2C12-laden hydrogels improved myogenesis, primarily promoted by the C2C12. In accordance, a high density of myoblasts (α-SA+ and MYH7+) were localized in tissues treated with the C2C12 (alone or encapsulated in the hydrogel). α-SA protein levels were significantly increased 8 weeks post-treatment with C2C12-laden hydrogels and MHC protein levels were increased in all experimental groups 4 weeks post-treatment, in relation to the SHAM. Neovascularization and neoinnervation was also detected in the defects. Altogether, this study indicates that C2C12-laden hydrogels hold great potential for skeletal muscle regeneration. STATEMENT OF SIGNIFICANCE: We developed an injectable gellan gum-based hydrogel for delivering C2C12 into localized myopathic model. The gellan gum was biofunctinalized with laminin-derived peptide to mimic the native muscular ECM. In addition, hydrogel was physically tuned to mimic the mechanical properties of native tissue. To the best of our knowledge, this formula was used for the first time under the context of skeletal muscle tissue regeneration. The injectability of the developed hydrogel provided non-invasive administration method, combined with a reliable microenvironment that can host C2C12 with nominal inflammation, indicated by the survival and adhesion of encapsulated cells post-injection. The treatment of skeletal muscle defect with the cell-laden hydrogel approach significantly enhanced the regeneration of localized muscular trauma.
Collapse
|
21
|
Zhao P, Xia W, Wei J, Feng Y, Xie M, Niu Z, Liu H, Ke S, Liu H, Tang A, He G. An Investigation of the Mechanisms of Radiation-Induced Muscle Injury in a Tree Shrew ( Tupaia belangeri) Model. Dose Response 2022; 20:15593258221082878. [PMID: 35360454 PMCID: PMC8961377 DOI: 10.1177/15593258221082878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Animal models suitable for investigating mechanisms behind radiation-induced
muscle injury are lacking. We developed a tree shrew model of such injury
and investigated pathological changes and mechanisms. Methods Animals were divided into control (n = 5), radiation-induced acute injury (n
= 5), and radiation-induced chronic injury (n = 5) groups. Tensor veli
palatini (TVP) muscles of acute injury and chronic injury groups were
dissected under a microscope at 1 and 24 weeks after radiation therapy,
respectively. TVP muscles were stained with HE and Masson to visualize
pathological changes. ELISA was performed to measure oxidative injury.
RT-qPCR and immunohistochemical staining was performed to measure expression
levels of miR-206 and histone deacetylase 4 (HDAC4). Results Compared to the control group, acute injury group showed a significant
decrease in miR-206 expression (.061 ± .38, P < .05) and a significant
increase in HDAC4 expression (37.05 ± 20.68, P < .05). Chronic injury
group showed a significant decrease in miR-206 expression (.23 ± .19, P <
.05) and a significant increase in HDAC4 expression (9.66 ± 6.12, P
< .05). Discussion A tree shrew model of radiation-induced muscle injury was established by
exposing TVP muscle region to radiation of 20-Gy. Experimental results
indicated that injury caused by radiation persisted despite gradual healing
of the TVP muscle and miR-206 regulatory pathway plays a key role in
regulating radiation-induced muscle injury.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Wei Xia
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Jianglian Wei
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Yiwei Feng
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Mao Xie
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Zhijie Niu
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Heng Liu
- School of Information and Management, Guangxi Medical University, Nanning, China
| | - Shenghui Ke
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Huayu Liu
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Anzhou Tang
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Guangyao He
- Department of Otolaryngology–Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
22
|
Martínez-Rodríguez R, Galán-Del-Río F, Cantalapiedra JA, Flórez-García MT, Martínez-Martín J, Álvaro-Meca A, Koppenhaver SL, Fernández-de-Las-Peñas C. Reliability and discriminative validity of real-time ultrasound elastography in the assessment of tissue stiffness after calf muscle injury. J Bodyw Mov Ther 2021; 28:463-469. [PMID: 34776179 DOI: 10.1016/j.jbmt.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/18/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the reliability and discriminative validity of real-time ultrasound elastography (RTE) measures of soft-tissue elasticity after calf muscle tear. DESIGN Cross-sectional, intra/inter-examiner reliability and comparative validity study. SETTING Department of Physical Therapy. PARTICIPANTS Twenty-one recreational athletes were included and examined 6 weeks after sustaining a grade I-II calf musculature tear. MAIN OUTCOME MEASURES Soft-tissue elasticity was measured by two experienced assessors using RTE assessments in both the longitudinal and transverse planes of the athletes' injured and uninjured calf muscles. Elasticity was estimated by using the strain ratio (SR), which was calculated by dividing the strain (displacement) value taken at the medial gastrocnemius-soleus myotendinous junction (reference) by the strain value taken at the centre of the injury (index) as visualized on B-mode sonogram. Intra- and inter-observer reliability was estimated calculating intra-class correlation coefficients (ICCs) and standard error of measurement (SEM). Differences in elasticity between injured and healthy legs were assessed using t-tests or Wilcoxon tests for repeated measures. RESULTS All RTE assessments in both planes showed ICC values ranging from 0.77 to 0.95 and SEM values ranging from 0.72 to 0.99. Additionally, RTE enabled both assessors to determine differences in elastic properties between injured and control legs (p < 0.001). CONCLUSION RTE measures of calf muscles demonstrated good reliability and were able to differentiate injured from non-injured muscle tissue. RTE may provide a fast and objective measure in sports medicine to improve the detection of risk factors for muscle injury related to alterations of the mechanical behaviour of soft tissues during healing process.
Collapse
Affiliation(s)
| | - Fernando Galán-Del-Río
- Spanish Football Federation, Physiotherapy Team, Madrid, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Madrid, Spain.
| | - Juan Aboítiz Cantalapiedra
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Madrid, Spain; Orthopaedic Surgery, Traumatology and Rehabilitation Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Mariano T Flórez-García
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Madrid, Spain; Orthopaedic Surgery, Traumatology and Rehabilitation Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Javier Martínez-Martín
- Orthopaedic Surgery, Traumatology and Rehabilitation Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Alejandro Álvaro-Meca
- Department of Preventive Medicine & Public Health, Universidad Rey Juan Carlos, Madrid, Spain
| | | | - César Fernández-de-Las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
23
|
Han H, Li M, Liu H, Li H. Electroacupuncture regulates inflammation, collagen deposition and macrophage function in skeletal muscle through the TGF-β1/Smad3/p38/ERK1/2 pathway. Exp Ther Med 2021; 22:1457. [PMID: 34737797 PMCID: PMC8561769 DOI: 10.3892/etm.2021.10892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle injury is one of the most common sports injury, which accounts for ~40% of all sports-related injuries among the elderly. In addition, cases of full recovery from treatment are rare. Although electroacupuncture (EA) is an integral aspect of traditional Chinese medicine, the effects of EA on skeletal muscle fibrosis and the possible underlying mechanism remain unclear. To investigate the effect and potential mechanism of EA on skeletal inflammation, collagen deposition and macrophage function, a skeletal muscle injury model was established by injecting 100 µl cardiotoxin into the anterior tibial muscle of Sprague Dawley rats. The animals were randomly divided into the following three groups: Control, model and EA. The expression of inflammation-related factors (IL-6, IL-4, IL-33, IL-10 and TNF-α) were measured using ELISA. H&E staining, Masson's staining and immunohistochemistry (collagen II, Axin2 and β-catenin) were performed to assess collagen deposition and fibrosis in the muscle tissues. Additionally, immunofluorescence was performed to measure the ratio of M1 to M2 macrophages. Western blotting was performed to examine the activity of the TGF-β1/Smad3/p38/ERK1/2 pathway. Compared with that in the control rats, the mental state, such as the degree of activity and excitement, of the model rats deteriorated, with clear activity limitations. Compared with those in the model rats, EA-treated rats exhibited improved mental status and activity, reduced levels of IL-6, IL-4 and TNF-α, reduced collagen deposition and fibrosis, in addition to increased expression of IL-33 and IL-10. This improvement became increasingly evident with prolonged intervention time. EA also promoted the transformation of macrophages from the M1 into the M2 sub-type, where the M1/M2 ratio on day 7 was lower compared with that on day 14. Western blotting results showed that compared with that in the model rats, the expression of TGF-β1, MMP-2, MMP-7 and the activation of Smad3 and p38 was decreased in EA-treated rats, whilst the activation of ERK1/2 was significantly elevated. In conclusion, EA can inhibit inflammation and collagen deposition whilst promoting the transformation of macrophages from the M1 into the M2 sub-type. The underlying mechanism was found to be associated with TGF-β1/Smad3/p38/ERK1/2 signaling.
Collapse
Affiliation(s)
- Hong Han
- Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei 430000, P.R. China
| | - Ming Li
- Department of Rehabilitation, Hubei Provincial Hospital, Wuhan, Hubei 430071, P.R. China
| | - Huilin Liu
- Department of Neurological Physical Therapy, China Rehabilitation Research Center, Bo Ai Hospital, Beijing 100068, P.R. China
| | - Haohan Li
- The Facility of Business and Law, Deakin University Health Faculty, Geelong, Victoria 3220, Australia
| |
Collapse
|
24
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
25
|
Zampieri S, Sandri M, Cheatwood JL, Balaraman RP, Anderson LB, Cobb BA, Latour CD, Hockerman GH, Kern H, Sartori R, Ravara B, Merigliano S, Da Dalt G, Davie JK, Kohli P, Pond AL. The ERG1A K + Channel Is More Abundant in Rectus abdominis Muscle from Cancer Patients Than that from Healthy Humans. Diagnostics (Basel) 2021; 11:diagnostics11101879. [PMID: 34679577 PMCID: PMC8534910 DOI: 10.3390/diagnostics11101879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The potassium channel encoded by the ether-a-gogo-related gene 1A (erg1a) has been detected in the atrophying skeletal muscle of mice experiencing either muscle disuse or cancer cachexia and further evidenced to contribute to muscle deterioration by enhancing ubiquitin proteolysis; however, to our knowledge, ERG1A has not been reported in human skeletal muscle. METHODS AND RESULTS Here, using immunohistochemistry, we detect ERG1A immunofluorescence in human Rectus abdominis skeletal muscle sarcolemma. Further, using single point brightness data, we report the detection of ERG1A immunofluorescence at low levels in the Rectus abdominis muscle sarcolemma of young adult humans and show that it trends toward greater levels (10.6%) in healthy aged adults. Interestingly, we detect ERG1A immunofluorescence at a statistically greater level (53.6%; p < 0.05) in the skeletal muscle of older cancer patients than in age-matched healthy adults. Importantly, using immunoblot, we reveal that lower mass ERG1A protein is 61.5% (p < 0.05) more abundant in the skeletal muscle of cachectic older adults than in healthy age-matched controls. Additionally, we report that the ERG1A protein is detected in a cultured human rhabdomyosarcoma line that may be a good in vitro model for the study of ERG1A in muscle. CONCLUSIONS The data demonstrate that ERG1A is detected more abundantly in the atrophied skeletal muscle of cancer patients, suggesting it may be related to muscle loss in humans as it has been shown to be in mice experiencing muscle atrophy as a result of malignant tumors.
Collapse
Affiliation(s)
- Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy; (S.Z.); (B.R.); (S.M.); (G.D.D.)
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (M.S.); (R.S.)
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (M.S.); (R.S.)
| | - Joseph L. Cheatwood
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL 62902, USA; (J.L.C.); (L.B.A.); (B.A.C.)
| | - Rajesh P. Balaraman
- Department of Chemistry and Biochemistry, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.P.B.); (P.K.)
| | - Luke B. Anderson
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL 62902, USA; (J.L.C.); (L.B.A.); (B.A.C.)
| | - Brittan A. Cobb
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL 62902, USA; (J.L.C.); (L.B.A.); (B.A.C.)
| | - Chase D. Latour
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Gregory H. Hockerman
- Medicinal Chemistry and Molecular Pharmacology Department, Purdue University School of Pharmacy, West Lafayette, IN 47906, USA;
| | - Helmut Kern
- Physiko-und Rheumatherapie GmbH, 3100 St. Poelten, Austria;
| | - Roberta Sartori
- Department of Biomedical Sciences, University of Padova, 35122 Padova, Italy; (M.S.); (R.S.)
| | - Barbara Ravara
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy; (S.Z.); (B.R.); (S.M.); (G.D.D.)
| | - Stefano Merigliano
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy; (S.Z.); (B.R.); (S.M.); (G.D.D.)
| | - Gianfranco Da Dalt
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy; (S.Z.); (B.R.); (S.M.); (G.D.D.)
| | - Judith K. Davie
- Biochemistry Department, Southern Illinois University School of Medicine, Carbondale, IL 62902, USA;
| | - Punit Kohli
- Department of Chemistry and Biochemistry, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.P.B.); (P.K.)
| | - Amber L. Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL 62902, USA; (J.L.C.); (L.B.A.); (B.A.C.)
- Correspondence:
| |
Collapse
|
26
|
Cebrián-Ponce Á, Irurtia A, Carrasco-Marginet M, Saco-Ledo G, Girabent-Farrés M, Castizo-Olier J. Electrical Impedance Myography in Health and Physical Exercise: A Systematic Review and Future Perspectives. Front Physiol 2021; 12:740877. [PMID: 34594243 PMCID: PMC8476966 DOI: 10.3389/fphys.2021.740877] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Electrical impedance myography (EIM) is a non-invasive method that provides information about muscle health and changes that occur within it. EIM is based on the analysis of three impedance variables: resistance, reactance, and the phase angle. This systematic review of the literature provides a deeper insight into the scope and range of applications of EIM in health and physical exercise. The main goal of this work was to systematically review the studies on the applications of EIM in health and physical exercise in order to summarize the current knowledge on this method and outline future perspectives in this growing area, including a proposal for a research agenda. Furthermore, some basic assessment principles are provided. Methods: Systematic literature searches on PubMed, Scopus, SPORTDiscus and Web of Science up to September 2020 were conducted on any empirical investigations using localized bioimpedance devices to perform EIM within health and physical exercise contexts. The search included healthy individuals, elite soccer players with skeletal muscle injury, and subjects with primary sarcopenia. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was used to develop the systematic review protocol. The quality and risk of bias of the studies included were assessed with the AQUA tool. Results: Nineteen eligible original articles were included in this review, which were separated into three tables according to the nature of the study. The first table includes six studies on the bioelectrical characterization of muscle. The second table includes five studies analyzing muscle changes in injured elite soccer players. The third table includes studies on the short-, medium-, and long-term bioelectrical adaptations to physical exercise. Conclusions: EIM has been used for the evaluation of the muscle condition in the clinical field over the last few years, especially in different neuromuscular diseases. It can also play an important role in other contexts as an alternative to complex and expensive methods such as magnetic resonance imaging. However, further research is needed. The main step in establishing EIM as a valid tool in the scientific field is to standardize the protocol for performing impedance assessments.
Collapse
Affiliation(s)
- Álex Cebrián-Ponce
- Barcelona Sports Sciences Research Group, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfredo Irurtia
- Barcelona Sports Sciences Research Group, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Carrasco-Marginet
- Barcelona Sports Sciences Research Group, Institut Nacional d'Educació Física de Catalunya (INEFC), Universitat de Barcelona (UB), Barcelona, Spain
| | - Gonzalo Saco-Ledo
- Bioenergy and Motion Analysis Laboratory, National Research Center on Human Evolution (CENIEH), Burgos, Spain
| | | | | |
Collapse
|
27
|
Diagnosis and Simultaneous Treatment of Musculoskeletal Injury Using H 2O 2-Triggered Echogenic Antioxidant Polymer Nanoparticles in a Rat Model of Contusion Injury. NANOMATERIALS 2021; 11:nano11102571. [PMID: 34685012 PMCID: PMC8537538 DOI: 10.3390/nano11102571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
Ultrasound is clinically used for diagnosis and interventions for musculoskeletal injuries like muscle contusion, but contrast of ultrasonography still remains a challenge in the field of the musculoskeletal system. A level of hydrogen peroxide (H2O2) is known to be elevated during mechanical tissue damage and therefore H2O2 can be exploited as a diagnostic and therapeutic marker for mechanical injuries in the musculoskeletal system. We previously developed poly(vanillin-oxalate) (PVO) as an inflammation-responsive polymeric prodrug of vanillin, which is designed to rapidly respond to H2O2 and exert antioxidant and anti-inflammatory activities. The primary aim of this study is to verify whether PVO nanoparticles could serve as contrast agents as well as therapeutic agents for musculoskeletal injuries simultaneously. In a rat model of contusion-induced muscle injury, PVO nanoparticles generated CO2 bubbles to enhance the ultrasound contrast in the injury site. A single intramuscular injection of PVO nanoparticles also suppressed contusion-induced muscle damages by inhibiting the expression of pro-inflammatory cytokines and inflammatory cell infiltration. We, therefore, anticipate that PVO nanoparticles have great translational potential as not only ultrasound imaging agents but also therapeutic agents for the musculoskeletal disorders such as contusion.
Collapse
|
28
|
Gupta A, Maffulli N, Rodriguez HC, Mistovich RJ, Delfino K, Cady C, Fauser AM, Cundiff ED, Martinez MA, Potty AG. Cell-free stem cell-derived extract formulation for treatment of knee osteoarthritis: study protocol for a preliminary non-randomized, open-label, multi-center feasibility and safety study. J Orthop Surg Res 2021; 16:514. [PMID: 34416898 PMCID: PMC8377854 DOI: 10.1186/s13018-021-02672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Musculoskeletal conditions are highly prevalent, and knee OA is most common. Current treatment modalities have limitations and either fail to solve the underlying pathophysiology or are highly invasive. To address these limitations, attention has focused on the use of biologics. The efficacy of these devices is attributed to presence of growth factors (GFs), cytokines (CKs), and extracellular vesicles (EVs). With this in mind, we formulated a novel cell-free stem cell-derived extract (CCM) from human progenitor endothelial stem cells (hPESCs). A preliminary study demonstrated the presence of essential components of regenerative medicine, namely GFs, CKs, and EVs, including exosomes, in CCM. The proposed study aims to evaluate the safety and efficacy of intraarticular injection of the novel cell-free stem cell-derived extract (CCM) for the treatment of knee OA. METHODS AND ANALYSIS This is a non-randomized, open-label, multi-center, prospective study in which the safety and efficacy of intraarticular CCM in patients suffering from grade II/III knee OA will be evaluated. Up to 20 patients with grade II/III OA who meet the inclusion and exclusion criteria will be consented and screened to recruit 12 patients to receive treatment. The study will be conducted at up to 2 sites within the USA, and the 12 participants will be followed for 24 months. The study participants will be monitored for adverse reactions and assessed using Numeric Pain Rating Scale (NPRS), Patient-Reported Outcomes Measurement Information System (PROMIS) Score, Knee Injury and Osteoarthritis Outcome Score Jr. (KOOS Jr.), 36-ietm short form survey (SF-36), Single Assessment Numeric Evaluation (SANE), physical exams, plain radiography, and magnetic resonance imaging (MRI) with Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score for improvements in pain, function, satisfaction, and cartilage regeneration. DISCUSSION This prospective study will provide valuable information into the safety and efficacy of intraarticular administration of cell-free stem cell-derived extract (CCM) in patients suffering with grade II/III knee OA. The outcomes from this initial study of novel CCM will lay the foundation for a larger randomized, placebo-controlled, multi-center clinical trial of intraarticular CCM for symptomatic knee OA. TRIAL REGISTRATION Registered on July 21, 2021. ClinicalTrials.gov NCT04971798.
Collapse
Affiliation(s)
- Ashim Gupta
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH 44118 USA
- Future Biologics, Lawrenceville, GA USA
- South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX USA
- Veterans in Pain (V.I.P.), Los Angeles, CA USA
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Orthopedica” Department, Hospital of Salerno, Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent, UK
| | - Hugo C. Rodriguez
- Future Biologics, Lawrenceville, GA USA
- South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX USA
- School of Osteopathic Medicine, University of The Incarnate Word, San Antonio, TX USA
- Future Physicians of South Texas, San Antonio, TX USA
| | - R. Justin Mistovich
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH 44118 USA
- Department of Orthopaedics, School of Medicine, Case Western Reserve University, Cleveland, OH USA
| | - Kristin Delfino
- Southern Illinois University, School of Medicine, Springfield, IL USA
| | - Craig Cady
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH 44118 USA
- Bohlander Stem Cell Research Laboratory, Department of Biology, Bradley University, Peoria, IL USA
| | - Anne-Marie Fauser
- Bohlander Stem Cell Research Laboratory, Department of Biology, Bradley University, Peoria, IL USA
| | - Echo D. Cundiff
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH 44118 USA
| | | | - Anish G. Potty
- General Therapeutics, 2956 Washington Blvd, Cleveland Heights, OH 44118 USA
- South Texas Orthopedic Research Institute (STORI Inc.), Laredo, TX USA
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK
- Laredo Sports Medicine Clinic, Laredo, TX USA
| |
Collapse
|
29
|
Blum J, Epstein R, Watts S, Thalacker-Mercer A. Importance of Nutrient Availability and Metabolism for Skeletal Muscle Regeneration. Front Physiol 2021; 12:696018. [PMID: 34335302 PMCID: PMC8322985 DOI: 10.3389/fphys.2021.696018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle is fundamentally important for quality of life. Deterioration of skeletal muscle, such as that observed with advancing age, chronic disease, and dystrophies, is associated with metabolic and functional decline. Muscle stem/progenitor cells promote the maintenance of skeletal muscle composition (balance of muscle mass, fat, and fibrotic tissues) and are essential for the regenerative response to skeletal muscle damage. It is increasing recognized that nutrient and metabolic determinants of stem/progenitor cell function exist and are potential therapeutic targets to improve regenerative outcomes and muscle health. This review will focus on current understanding as well as key gaps in knowledge and challenges around identifying and understanding nutrient and metabolic determinants of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Jamie Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Rebekah Epstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Stephen Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
30
|
Zhao N, Liu B, Liu SW, Zhang W, Li HN, Pang G, Luo XF, Wang JG. The Combination of Electroacupuncture and Massage Therapy Alleviates Myofibroblast Transdifferentiation and Extracellular Matrix Production in Blunt Trauma-Induced Skeletal Muscle Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5543468. [PMID: 34306140 PMCID: PMC8282377 DOI: 10.1155/2021/5543468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
Complementary therapies, such as acupuncture and massage, had been previously reported to have therapeutic effects on skeletal muscle contusions. However, the recovery mechanisms on skeletal muscles after blunt trauma via the combination of electroacupuncture (EA) and massage therapy remain unclear. In the present study, a rat model of the skeletal muscle fibrosis following blunt trauma to rat skeletal muscle was established, and the potential molecular mechanisms of EA + massage therapy on the skeletal muscle fibrosis were investigated. The results suggested that EA + massage therapy could significantly decrease inflammatory cells infiltration and collagenous fiber content and ameliorate the disarrangement of sarcomeres within myofibrils compared to the model group. Further analysis revealed that EA + massage therapy could reduce the degree of fibrosis and increase the degree of myofibroblast apoptosis by downregulating the mRNA and protein expression of transforming growth factor- (TGF-) β1 and connective tissue growth factor (CTGF). Furthermore, the fibrosis of injured skeletal muscle was inhibited after treatment through the normalization of balance between matrix metalloproteinase- (MMP-) 1 and tissue inhibitor of matrix metalloproteinase (TIMP). These findings suggested that the combination of electroacupuncture and massage therapy could alleviate the fibrotic process by regulating TGF β1-CTGF-induced myofibroblast transdifferentiation and MMP-1/TIMP-1 balance for extracellular matrix production.
Collapse
Affiliation(s)
- Na Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Bo Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Si-Wen Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Wei Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Hua-Nan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Geng Pang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiong-Fei Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Jin-Gui Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| |
Collapse
|
31
|
Early Life Nociception is Influenced by Peripheral Growth Hormone Signaling. J Neurosci 2021; 41:4410-4427. [PMID: 33888610 DOI: 10.1523/jneurosci.3081-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
A number of cellular systems work in concert to modulate nociceptive processing in the periphery, but the mechanisms that regulate neonatal nociception may be distinct compared with adults. Our previous work indicated a relationship between neonatal hypersensitivity and growth hormone (GH) signaling. Here, we explored the peripheral mechanisms by which GH modulated neonatal nociception under normal and injury conditions (incision) in male and female mice. We found that GH receptor (GHr) signaling in primary afferents maintains a tonic inhibition of peripheral hypersensitivity. After injury, a macrophage dependent displacement of injury-site GH was found to modulate neuronal transcription at least in part via serum response factor (SRF) regulation. A single GH injection into the injured hindpaw muscle effectively restored available GH signaling to neurons and prevented acute pain-like behaviors, primary afferent sensitization, and neuronal gene expression changes. GH treatment also inhibited long-term somatosensory changes observed after repeated peripheral insult. Results may indicate a novel mechanism of neonatal nociception.SIGNIFICANCE STATEMENT Although it is noted that mechanisms of pain development in early life are unique compared with adults, little research focuses on neonatal-specific peripheral mechanisms of nociception. This gap is evident in the lack of specialized care for infants following an injury including surgeries. This report evaluates how distinct cellular systems in the periphery including the endocrine, immune and nervous systems work together to modulate neonatal-specific nociception. We uncovered a novel mechanism by which muscle injury induces a macrophage-dependent sequestration of peripheral growth hormone (GH) that effectively removes its normal tonic inhibition of neonatal nociceptors to promote acute pain-like behaviors. Results indicate a possible new strategy for treatment of neonatal postsurgical pain.
Collapse
|
32
|
Hamada Y, Tanaka S, Fujishita Y, Cho JS, Usuki T, Yokoyama Y, Wu X, Mori S, Yamamoto H, Kogo M. The synthetic peptide SVVYGLR promotes myogenic cell motility via the TGFβ1/Smad signaling pathway and facilitates skeletal myogenic differentiation in vitro. Dent Mater J 2021; 40:957-963. [PMID: 33716279 DOI: 10.4012/dmj.2020-354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, we investigated the possible involvement of the TGF-β/Smad signaling pathway in the osteopontin-derived SVVYGLR (SV) peptide-mediated migratory activities of myogenic cells and evaluated the facilitative effects of the SV peptide on the differentiation of myogenic cells in vitro. The SV peptide-induced migration in both human-derived satellite cells and myoblasts was substantially suppressed by the TGF-β1 receptor inhibitor SB431542 or SB505124. Besides, the expression level of the Smad3 phosphorylation was further enhanced by the addition of the SV peptide in comparison with control groups. Furthermore, an increase in the expression of myogenin-positive nuclei and a higher number of nascent myotubes with myosin heavy chain expression was confirmed in cultured myoblasts supplemented with the SV peptide. These results suggest that the involvement of the TGF-β/Smad signaling pathway in the SV peptide-mediated migration and the facilitative effect of the SV peptide on the differentiation of myogenic cells into myotubes.
Collapse
Affiliation(s)
- Yoshinosuke Hamada
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Department of Health Economics and Management, Graduate School of Medicine, Osaka University.,Department of Pediatric Dentistry, Osaka Dental University
| | - Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yohei Fujishita
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Jung-Soo Cho
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Takasuke Usuki
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Seiji Mori
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| |
Collapse
|
33
|
Tanaka S, Fujishita Y, Kawaguchi N, Usuki T, Yokoyama Y, Wu X, Mori S, Yamamoto H, Kogo M. The synthetic peptide SVVYGLR promotes cell motility of myogenic cells and facilitates differentiation in skeletal muscle regeneration. Dent Mater J 2021; 40:766-771. [PMID: 33563848 DOI: 10.4012/dmj.2020-317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study was designed to evaluate the effects of the osteopontin-derived multifunctional short peptide, SVVYGLR (SV) peptide on the biological properties of skeletal muscle-specific myogenic cells. We employed human-derived satellite cells (HSkMSC) and skeletal muscle myoblasts (HSMM) and performed a series of biochemical experiments. The synthetic SV peptide showed no influence on the proliferation and adhesion properties of HSkMSC and HSMM, while it showed a significant increase in cell motility, including migration activities upon treatment with the SV peptide. In a rat model with volumetric loss of masticatory muscle, immunohistochemical staining of regenerating muscle tissue immediately after injury demonstrated an increase of the number of both MyoD- and myogenin-positive cells in SV peptide-treated group. These results suggest that SV peptide plays a potent role in facilitating skeletal muscle regeneration by promoting the migration, and differentiation of myogenic precursor and progenitor cells.
Collapse
Affiliation(s)
- Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yohei Fujishita
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Naomasa Kawaguchi
- Department of Cardiovascular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Departments of Drug Discovery Cardiovascular Regeneration, Graduate School of Medicine, Osaka, Osaka University.,Graduate School of Health Sciences, Morinomiya University of Medical Sciences
| | - Takasuke Usuki
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Seiji Mori
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| |
Collapse
|
34
|
Nag HL, Jain G, Nayak M, Goyal A. Result of delayed repair of quadriceps muscle following a sharp cut injury. BMJ Case Rep 2021; 14:14/3/e239863. [PMID: 33658217 PMCID: PMC7931759 DOI: 10.1136/bcr-2020-239863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We herewith report a case of a 22-year-old man who suffered from a transverse laceration of the quadriceps muscle. The patient presented to us after 3 months of the injury with an inability to extend the knee. We undertook a surgical repair of the muscle tear using the modified Mason-Allen technique and a polypropylene mesh augmentation. To the best of our knowledge, the use of polypropylene mesh for repair augmentation of mid-substance tear of quadriceps muscle has never been described in the literature. The patient had achieved a full active knee extension at 9 months following the surgery. At 3 years of follow-up, the patient has maintained the movements and strength of the knee. He has no functional limitations and is satisfied with the outcome. Thus, the middle term results are good and the treatment is promising.
Collapse
Affiliation(s)
- Hira Lal Nag
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Gunjar Jain
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Mayur Nayak
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| | - Archit Goyal
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
35
|
Castillo AC, Kaltwasser K, Morris R, Sanchez ER, Rai S, Lombana N, Tran D, Branski L, Zhang AY. Comparing 3 Suture Techniques After Muscle Laceration Repair. Hand (N Y) 2021; 16:67-72. [PMID: 30924359 PMCID: PMC7818024 DOI: 10.1177/1558944719837021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Skeletal muscle lacerations are a relatively common injury. Compared with nonrepaired lacerations, surgically repaired muscle lacerations regenerate faster, develop less scar tissue, have a higher return to baseline strength, and have lower incidence of hematomas. Despite the benefits of repair, the optimal repair technique is still unknown. The purpose of this study was to examine the biomechanical properties of common muscle repair techniques to determine the optimal repair. Methods: Forty-two fusiform porcine muscle specimens were dissected and used for this study. Three suture techniques were used for comparative analysis: Figure-eight, Mason Allen, and Perimeter. Each muscle was transected and then repaired using one of the 3 techniques. Fourteen muscle-tendon specimens were prepared for each group and tested for tensile failure using a material testing system. Biomechanical properties, including peak failure point and stiffness, were compared for differences between the suture groups by 1-way analysis of variance. The average time per repair technique was also recorded. Results: The Perimeter technique showed a statistically significant higher peak failure point than the Mason Allen technique (P = .03). Both the Figure-eight (P = .047) and Perimeter techniques (P < .001) were significantly stiffer than the Mason Allen technique. The repair time was comparable across all 3 techniques. Conclusions: The Figure-eight and Perimeter repairs were found to be similar in peak failure point and stiffness, whereas the Mason Allen technique showed significantly lower stiffness and peak failure point. The Figure-eight was the quickest repair to perform. The Figure-eight technique may be strongly considered for muscle laceration repairs due to its simplicity and efficiency.
Collapse
Affiliation(s)
| | | | - Randal Morris
- The University of Texas Medical Branch
at Galveston, USA
| | | | - Surjit Rai
- The University of Texas Medical Branch
at Galveston, USA
| | | | - Dat Tran
- The University of Texas Medical Branch
at Galveston, USA
| | - Ludwik Branski
- The University of Texas Medical Branch
at Galveston, USA
| | - Andrew Y. Zhang
- University of Texas Southwestern,
Dallas, USA,Andrew Y. Zhang, Department of Plastic
Surgery, University of Texas Southwestern, 1801 Inwood Road, 4th Floor, Dallas,
TX 75390-1932, USA.
| |
Collapse
|
36
|
Beggs I. Biological Basis of Treatments of Acute Muscle Injuries: A Short Review. Semin Musculoskelet Radiol 2020; 24:256-261. [PMID: 32987424 DOI: 10.1055/s-0040-1708087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Muscle strains occur frequently in recreational and professional sports. This article considers various treatment options in a biological context and reviews evidence of their efficacy. Treatments reviewed include the PRICE principle (P: rotection, R: est, I: ce, C: ompression, E: levation), early mobilization, physical therapy, hematoma aspiration, platelet-rich plasma injections, use of nonsteroidal anti-inflammatory drugs, corticosteroids, and local anesthetics, cellular therapies, and surgery.
Collapse
Affiliation(s)
- Ian Beggs
- Analytic Imaging, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Alcazar CA, Hu C, Rando TA, Huang NF, Nakayama KH. Transplantation of insulin-like growth factor-1 laden scaffolds combined with exercise promotes neuroregeneration and angiogenesis in a preclinical muscle injury model. Biomater Sci 2020; 8:5376-5389. [PMID: 32996916 DOI: 10.1039/d0bm00990c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regeneration of skeletal muscle can be permanently impaired by traumatic injuries, despite the high regenerative capacity of native muscle. An attractive therapeutic approach for treating severe muscle inuries is the implantation of off-the-shelf engineered biomimetic scaffolds into the site of tissue damage to enhance muscle regeneration. Anisotropic nanofibrillar scaffolds provide spatial patterning cues to create organized myofibers, and growth factors such as insulin-like growth factor-1 (IGF-1) are potent inducers of both muscle regeneration as well as angiogenesis. The aim of this study was to test the therapeutic efficacy of anisotropic IGF-1-releasing collagen scaffolds combined with voluntary exercise for the treatment of acute volumetric muscle loss, with a focus on histomorphological effects. To enhance the angiogenic and regenerative potential of injured murine skeletal muscle, IGF-1-laden nanofibrillar scaffolds with aligned topography were fabricated using a shear-mediated extrusion approach, followed by growth factor adsorption. Individual scaffolds released a cumulative total of 1244 ng ± 153 ng of IGF-1 over the course of 21 days in vitro. To test the bioactivity of IGF-1-releasing scaffolds, the myotube formation capacity of murine myoblasts was quantified. On IGF-1-releasing scaffolds seeded with myoblasts, the resulting myotubes formed were 1.5-fold longer in length and contained 2-fold greater nuclei per myotube, when compared to scaffolds without IGF-1. When implanted into the ablated murine tibialis anterior muscle, the IGF-1-laden scaffolds, in conjunction with voluntary wheel running, significantly increased the density of perfused microvessels by greater than 3-fold, in comparison to treatment with scaffolds without IGF-1. Enhanced myogenesis was also observed in animals treated with the IGF-1-laden scaffolds combined with exercise, compared to control scaffolds transplanted into mice that did not receive exercise. Furthermore, the abundance of mature neuromuscular junctions was greater by approximately 2-fold in muscles treated with IGF-1-laden scaffolds, when paired with exercise, in comparison to the same treatment without exercise. These findings demonstrate that voluntary exercise improves the regenerative effect of growth factor-laden scaffolds by augmenting neurovascular regeneration, and have important translational implications in the design of off-the-shelf therapeutics for the treatment of traumatic muscle injury.
Collapse
Affiliation(s)
- Cynthia A Alcazar
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | |
Collapse
|
38
|
Improvement of Skeletal Muscle Regeneration by Platelet-Rich Plasma in Rats with Experimental Chronic Hyperglycemia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6980607. [PMID: 32766312 PMCID: PMC7374220 DOI: 10.1155/2020/6980607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Herein, the structural effect of autologous platelet-rich plasma (PRP) on posttraumatic skeletal muscle regeneration in rats with chronic hyperglycemia (CH) was tested. 130 white laboratory male rats divided into four groups (I—control; II—rats with CH; III—rats with CH and PRP treatment; and IV—rats for CH confirmation) were used for the experiment. CH was simulated by streptozotocin and nicotinic acid administration. Triceps surae muscle injury was reproduced by transverse linear incision. Autologous PRP was used in order to correct the possible negative CH effect on skeletal muscle recovery. On the 28th day after the injury, the regenerating muscle fiber and blood vessel number in the CH+PRP group were higher than those in the CH rats. However, the connective tissue area in the CH group was larger than that in the CH+PRP animals. The amount of agranulocytes in the regenerating muscle of the CH rats was lower compared to that of the CH+PRP group. The histological analysis of skeletal muscle recovery in CH+PRP animals revealed more intensive neoangiogenesis compared to that in the CH group. Herewith, the massive connective tissue development and inflammation signs were observed within the skeletal muscle of CH rats. Obtained results suggest that streptozotocin-induced CH has a negative effect on posttraumatic skeletal muscle regeneration, contributing to massive connective tissue development. The autologous PRP injection promotes muscle recovery process in rats with CH, shifting it away from fibrosis toward the complete muscular organ repair.
Collapse
|
39
|
Reed C, Saatchi R, Burke D, Ramlakhan S. Infrared thermal imaging as a screening tool for paediatric wrist fractures. Med Biol Eng Comput 2020; 58:1549-1563. [PMID: 32409935 DOI: 10.1007/s11517-020-02167-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/18/2020] [Indexed: 01/03/2023]
Abstract
Wrist injuries are common in paediatric trauma; however, only half of children evaluated with an x-ray for possible fractures will have one. Thermal imaging offers a possible non-ionising method of screening for fractures and thus reducing negative x-ray rates. One hundred five children attending the Emergency Department for wrist injuries were recruited. Two 30-s thermal videos were recorded from injured and uninjured wrists-in flat and 45° elevated positions. A region of interest (ROI) was defined on each wrist. Cases in which the ROI was covered or had ice applied were excluded, leaving 40 patients for analysis. Comparisons of ROI included (i) injured and uninjured wrists-flat and elevated positions; (ii) as in (i) with a reference region on the proximal forearm subtracted; (iii) injured wrist ROI-flat and elevated positions. Fractures and sprains increased the mean skin surface temperature by 1.519% (p = 0.008) and 0.971% (p = 0.055) respectively compared with the uninjured wrist. The mean temperature difference between flat and elevated positions for fractures was 0.268% and - 0.1291% for sprains. This difference was statistically significant for fracture (p = 0.004) but not sprain (p = 0.500). The temperature differences recorded by thermal imaging between fractured and sprained wrists may assist in differentiation of these injuries. Graphical abstract Operational stages involved from thermal video recording to generation of results.
Collapse
Affiliation(s)
| | | | - Derek Burke
- Emergency Department, Sheffield Children's Hospital, Sheffield, S10 2TH, UK.,Gibraltar Health Authority, Gibraltar, UK
| | - Shammi Ramlakhan
- Emergency Department, Sheffield Children's Hospital, Sheffield, S10 2TH, UK.
| |
Collapse
|
40
|
Centeno CJ, Pastoriza SM. PAST, CURRENT AND FUTURE INTERVENTIONAL ORTHOBIOLOGICS TECHNIQUES AND HOW THEY RELATE TO REGENERATIVE REHABILITATION: A CLINICAL COMMENTARY. Int J Sports Phys Ther 2020; 15:301-325. [PMID: 32269863 PMCID: PMC7134348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Interventional orthobiologics is changing the landscape of orthopedic medicine. Various methods exist for treatment of many different musculoskeletal pathologies. Candidacy for such injections remains a debated topic, and current research is underway for stratifying the patients that would be most successful for certain techniques. Described in this commentary are the various methods of interventional orthobiologic techniques available such as: prolotherapy, platelet rich plasma (PRP), mesenchymal stromal cells (MSCs), culture-expanded MSCs and amniotic-based products. Here we review the healing cascade and how this relates to the application of the various injectates and rehabilitation protocols. In conclusion, there exists orthobiologic techniques for the healing of a multitude of musculoskeletal ailments, from ligamentous instabilities/tears, tendon derangements and osteoarthritis, however candidacy grades continue to be an area for discussion as to which type of treatment is the most beneficial, and which rehabilitation protocols are required. More randomized controlled trials and comparative analyses are needed for direct correlative conclusions for which interventional orthobiologic treatment and rehabilitation protocol is best after each respective treatment. LEVEL OF EVIDENCE 5.
Collapse
|
41
|
Correlating clinical assessment and MRI findings in diagnosing calf injuries in elite male Australian rules footballers. Skeletal Radiol 2020; 49:563-570. [PMID: 31642974 DOI: 10.1007/s00256-019-03318-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/02/2019] [Accepted: 09/20/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Calf complex injuries represent a significant injury burden among Australian Rules athletes. To date, there has been limited research correlating clinical and radiological findings of pathology within the calf. The objective of this study is to determine how accurately magnetic resonance imaging (MRI) findings correlate with clinical measures of calf muscle complex pathology in elite male athletes. MATERIALS AND METHODS A prospective cohort study was conducted on Australian rules elite athletes. A cohort of 45 athletes underwent a high-load training session of approximately 10 km of running. Athletes were then assessed by a sports physiotherapist who made a diagnosis of no pathology, delayed onset muscle soreness, strain or other. Subsequently, the athletes underwent MRI of their bilateral calf complexes. Radiologists interpreted the MRI findings and radiological diagnosis were correlated with clinical diagnosis. RESULTS A total of 90 calf MRIs were performed. Correlation of clinical and radiological diagnosis occurred in 57 cases. Of the 33 cases which did not correlate, there were 4 radiologically significant acute calf strains in clinically asymptomatic athletes, 3 of which involved old scar tissue. CONCLUSION MRI may detect clinically insignificant injuries within the calf complex. If an athlete does not have any clinically relevant symptoms, abnormal signal on MRI may represent a different diagnosis to muscle strain. Signal change on MRI proximal to scar tissue may represent reactive oedema. Clinical history and examination should be correlated with radiological findings is recommended when diagnosing calf injury in elite athletes.
Collapse
|
42
|
Chiu CH, Chang TH, Chang SS, Chang GJ, Chen ACY, Cheng CY, Chen SC, Fu JF, Wen CJ, Chan YS. Application of Bone Marrow-Derived Mesenchymal Stem Cells for Muscle Healing After Contusion Injury in Mice. Am J Sports Med 2020; 48:1226-1235. [PMID: 32134689 DOI: 10.1177/0363546520905853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Skeletal muscle injuries are very common in sports medicine. Conventional therapies have limited clinical efficacy. New treatment methods should be developed to allow athletes to return to play with better function. PURPOSE To evaluate the in vitro differentiation potential of bone marrow-derived mesenchymal stem cells and the in vivo histologic and physiologic effects of mesenchymal stem cell therapy on muscle healing after contusion injury. STUDY DESIGN Controlled laboratory study. METHODS Bone marrow cells were flushed from both femurs of 5-week-old C57BL/6 mice to establish immortalized mesenchymal stem cell lines. A total of 36 mice aged 8 to 10 weeks were used to develop a muscle contusion model and were divided into 6 groups (6 mice/group) on the basis of the different dosages of IM2 cells to be injected (0, 1.25 × 105, and 2.5 × 105 cells with/without F-127 in 100 μL of phosphate-buffered saline). Histological analysis of muscle regeneration was performed, and the fast-twitch and tetanus strength of the muscle contractions was measured 28 days after muscle contusion injury, after injections of different doses of mesenchymal stem cells with or without the F-127 scaffold beginning 14 days after contusion injury. RESULTS The mesenchymal stem cell-treated muscles exhibited numerous regenerating myofibers. All the groups treated with mesenchymal stem cells (1.25 × 105 cells, 2.5 × 105 cells, 1.25 × 105 cells plus F-127, and 2.5 × 105 cells plus F-127) exhibited a significantly higher number of regenerating myofibers (mean ± SD: 111.6 ± 14.77, 133.4 ± 21.44, 221.89 ± 32.65, and 241.5 ± 25.95, respectively) as compared with the control group and the control with F-127 (69 ± 18.79 and 63.2 ± 18.98). The physiologic evaluation of fast-twitch and tetanus strength did not reveal differences between the age-matched uninjured group and the groups treated with various doses of mesenchymal stem cells 28 days after contusion. Significant differences were found between the control group and the groups treated with various doses of mesenchymal stem cells after muscle contusion. CONCLUSION Mesenchymal stem cell therapy increased the number of regenerating myofibers and improved fast-twitch and tetanus muscle strength in a mouse model of muscle contusion. However, the rapid decay of transplanted mesenchymal stem cells suggests a paracrine effect of this action. Treatment with mesenchymal stem cells at various doses combined with the F-127 scaffold is a potential therapy for a muscle contusion. CLINICAL RELEVANCE Mesenchymal stem cell therapy has an effect on sports medicine because of its effects on myofiber regeneration and muscle strength after contusion injury.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
| | - Tsan-Hsuan Chang
- Department of General Medicine, Tri-service General Hospital, Taipei
| | - Shih-Sheng Chang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical and Medicinal Sciences, College of Medicine, Chang Gung University, Taoyuan
| | - Alvin Chao-Yu Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
| | - Chun-Ying Cheng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
| | - Su-Ching Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
| | - Jen-Fen Fu
- Department of Medical Research, Chang Gung Memorial Hospital, Linkou
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan
| | - Chih-Jen Wen
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Linkou
- College of Medicine, Chang Gung University, Taoyuan
| | - Yi-Sheng Chan
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou
| |
Collapse
|
43
|
Effects of vibratory platform training on the histomorphometric parameters of the soleus muscle in obese Wistar rats. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00632-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Gupta A, El-Amin SF, Levy HJ, Sze-Tu R, Ibim SE, Maffulli N. Umbilical cord-derived Wharton's jelly for regenerative medicine applications. J Orthop Surg Res 2020; 15:49. [PMID: 32054483 PMCID: PMC7017504 DOI: 10.1186/s13018-020-1553-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The last decade has seen an explosion in the interest in using biologics for regenerative medicine applications, including umbilical cord-derived Wharton's Jelly. There is insufficient literature assessing the amount of growth factors, cytokines, hyaluronic acid, and extracellular vesicles including exosomes in these products. The present study reports the development of a novel Wharton's jelly formulation and evaluates the presence of growth factors, cytokines, hyaluronic acid, and extracellular vesicles including exosomes. METHODS Human umbilical cords were obtained from consenting caesarian section donors. The Wharton's jelly was then isolated from the procured umbilical cord and formulated into an injectable form. Randomly selected samples from different batches were analyzed for sterility testing and to quantify the presence of growth factors, cytokines, hyaluronic acid, and extracellular vesicles. RESULTS All samples passed the sterility test. Growth factors including IGFBP 1, 2, 3, 4, and 6, TGF-α, and PDGF-AA were detected. Several immunomodulatory cytokines, such as RANTES, IL-6R, and IL-16, were also detected. Pro-inflammatory cytokines MCSFR, MIP-1a; anti-inflammatory cytokines TNF-RI, TNF-RII, and IL-1RA; and homeostatic cytokines TIMP-1 and TIMP-2 were observed. Cytokines associated with wound healing, ICAM-1, G-CSF, GDF-15, and regenerative properties, GH, were also expressed. High concentrations of hyaluronic acid were observed. Particles in the extracellular vesicle size range were also detected and were enclosed by the membrane, indicative of true extracellular vesicles. CONCLUSION There are numerous growth factors, cytokines, hyaluronic acid, and extracellular vesicles present in the Wharton's jelly formulation analyzed. The amount of these factors in Wharton's jelly is higher compared with other biologics and may play a role in reducing inflammation and pain and augment healing of musculoskeletal injuries.
Collapse
Affiliation(s)
- Ashim Gupta
- BioIntegrate, New York, NY USA
- South Texas Orthopaedic Research Institute, Laredo, TX USA
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL USA
- Future Biologics, Lawrenceville, GA USA
| | - Saadiq F. El-Amin
- BioIntegrate, New York, NY USA
- El-Amin Orthopaedic and Sports Medicine Institute, Duluth, GA USA
| | - Howard J. Levy
- BioIntegrate, New York, NY USA
- Department of Orthopaedic Surgery, Lenox Hill Hospital, Northwell Health, New York, NY USA
| | - Rebecca Sze-Tu
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | | | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Fisciano, Italy
- Queen Mary University of London Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, London, England
- Keele University Faculty of Medicine, School of Pharmacy and Bioengineering, Stoke on Trent, England
| |
Collapse
|
45
|
Whitmore C, Pratt EPS, Anderson L, Bradley K, Latour SM, Hashmi MN, Urazaev AK, Weilbaecher R, Davie JK, Wang WH, Hockerman GH, Pond AL. The ERG1a potassium channel increases basal intracellular calcium concentration and calpain activity in skeletal muscle cells. Skelet Muscle 2020; 10:1. [PMID: 31948476 PMCID: PMC6966811 DOI: 10.1186/s13395-019-0220-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/18/2019] [Indexed: 02/04/2023] Open
Abstract
Background Skeletal muscle atrophy is the net loss of muscle mass that results from an imbalance in protein synthesis and protein degradation. It occurs in response to several stimuli including disease, injury, starvation, and normal aging. Currently, there is no truly effective pharmacological therapy for atrophy; therefore, exploration of the mechanisms contributing to atrophy is essential because it will eventually lead to discovery of an effective therapeutic target. The ether-a-go-go related gene (ERG1A) K+ channel has been shown to contribute to atrophy by upregulating ubiquitin proteasome proteolysis in cachectic and unweighted mice and has also been implicated in calcium modulation in cancer cells. Methods We transduced C2C12 myotubes with either a human ERG1A encoded adenovirus or an appropriate control virus. We used fura-2 calcium indicator to measure intracellular calcium concentration and Calpain-Glo assay kits (ProMega) to measure calpain activity. Quantitative PCR was used to monitor gene expression and immunoblot evaluated protein abundances in cell lysates. Data were analyzed using either a Student’s t test or two-way ANOVAs and SAS software as indicated. Results Expression of human ERG1A in C2C12 myotubes increased basal intracellular calcium concentration 51.7% (p < 0.0001; n = 177). Further, it increased the combined activity of the calcium-activated cysteine proteases, calpain 1 and 2, by 31.9% (p < 0.08; n = 24); these are known to contribute to degradation of myofilaments. The increased calcium levels are likely a contributor to the increased calpain activity; however, the change in calpain activity may also be attributable to increased calpain protein abundance and/or a decrease in levels of the native calpain inhibitor, calpastatin. To explore the enhanced calpain activity further, we evaluated expression of calpain and calpastatin genes and observed no significant differences. There was no change in calpain 1 protein abundance; however, calpain 2 protein abundance decreased 40.7% (p < 0.05; n = 6). These changes do not contribute to an increase in calpain activity; however, we detected a 31.7% decrease (p < 0.05; n = 6) in calpastatin which could contribute to enhanced calpain activity. Conclusions Human ERG1A expression increases both intracellular calcium concentration and combined calpain 1 and 2 activity. The increased calpain activity is likely a result of the increased calcium levels and decreased calpastatin abundance.
Collapse
Affiliation(s)
- Clayton Whitmore
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL, 62902, USA
| | - Evan P S Pratt
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47906, USA
| | - Luke Anderson
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL, 62902, USA
| | - Kevin Bradley
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL, 62902, USA
| | - Sawyer M Latour
- Doisey College of Health Sciences, Saint Louis University, St. Louis, MO, 63103, USA
| | - Mariam N Hashmi
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL, 62902, USA
| | - Albert K Urazaev
- School of Liberal Arts, Sciences and Education, Ivy Tech State college, Lafayette, IN, 47905, USA
| | - Rod Weilbaecher
- Biochemistry Department, Southern Illinois University School of Medicine, Carbondale, IL, 62902, USA
| | - Judith K Davie
- Biochemistry Department, Southern Illinois University School of Medicine, Carbondale, IL, 62902, USA
| | - Wen-Horng Wang
- Gene Editing Core Facility, Purdue University, West Lafayette, IN, 47906, USA
| | - Gregory H Hockerman
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47906, USA
| | - Amber L Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL, 62902, USA. .,Southern Illinois University, 1135 Lincoln Drive, Carbondale, IL, 62902, USA.
| |
Collapse
|
46
|
Zhao G, Zhu R, Jiang S, Xu N, Bao H, Wang Y. Using the anterior capsule of the hip joint to protect the tensor fascia lata muscle during direct anterior total hip arthroplasty: a randomized prospective trial. BMC Musculoskelet Disord 2020; 21:21. [PMID: 31926554 PMCID: PMC6955089 DOI: 10.1186/s12891-019-3035-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The direct anterior approach for total hip arthroplasty (THA) has specific advantages, but injury to the tensor fasciae lata muscle (TFLM) remains a concern. This injury in part negates some of the advantages of the intermuscular approach, because injury of the muscle fibers of the TFLM can lead to less satisfactory clinical results. Thus, in this study, we propose an intraoperative method to protect the TFLM and demonstrate its feasibility. METHODS Fifty-six patients undergoing THA by the direct anterior approach were divided randomly into two groups. In group A, the TFLM was protected by an autogenous tissue "pad" created from the anterior capsule of the joint which protect the TFLM from direct contact with the retractors. In group B, the operation was carried out with no protection of the TFLM except the attempt by the surgeons to consciously avoid injury of the TFLM. We evaluated magnitude of changes in the muscle cross-sectional area (MSCA) and fatty atrophy (FA) by magnetic resonance imaging. The differences in blood hemoglobin and serum levels of myoglobin, lactate dehydrogenase (LDH), and creatine phosphokinase (CPK) were compared at different time, postoperatively. The Harris hip score, postoperative drainage volume and visual analogue scores (VAS) were compared between the two groups. RESULTS LDH, CPK and myoglobin in group B were significantly higher than group A at 8, 24, and 48 h after the surgery. (p < 0.05) Compared to the group A, the decrease of hemoglobin in group B displayed significantly at 24 and 48 h after surgery. (P < 0.05) The significantly increased MSCA and FA of TFLM were demonstrated in group B. The PDV and VAS in group B were significantly higher than group A. (P < 0.05) The Harris score in group A was significantly higher than group B (P < 0.05) one month after surgery, but there was no significant difference six months later. CONCLUSIONS Using the anterior capsule of the hip joint as an autogenous, protective capsular tissue pad to limit the trauma to the TFLM during a direct anterior approach to THA is an effective method to protect the TFLM and improve the clinical effect. TRIAL REGISTRATION ChiCTR: ChiCTR1900025173. Retrospectively registered August 15, 2019.
Collapse
Affiliation(s)
- Gongyin Zhao
- Department of Orthopedics, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Ruixia Zhu
- Department of Orthopedics, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Shijie Jiang
- Department of Orthopedics, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Nanwei Xu
- Department of Orthopedics, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Hongwei Bao
- Department of Orthopedics, Jingjiang People's Hospital, 28, Zhongzhou East road, Taizhou, China
| | - Yuji Wang
- Department of Orthopedics, Changzhou No.2 People's Hospital, the Affiliated Hospital of Nanjing Medical University, Changzhou, China. .,Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA. .,Department of Orthopedics, the Third Affiliated Hospital of Gansu University of Chinese Medicine, 222 Silong Road, Baiyin, 730900, China.
| |
Collapse
|
47
|
Tawfik VL, Quarta M, Paine P, Forman TE, Pajarinen J, Takemura Y, Goodman SB, Rando TA, Clark JD. Angiotensin receptor blockade mimics the effect of exercise on recovery after orthopaedic trauma by decreasing pain and improving muscle regeneration. J Physiol 2019; 598:317-329. [PMID: 31784993 DOI: 10.1113/jp278991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Our tibial fracture orthopaedic injury model in mice recapitulates the major manifestations of complex trauma, including nociceptive sensitization, bone fracture, muscle fibrosis and muscle fibre loss. Delayed exercise after complex orthopaedic trauma results in decreased muscle fibrosis and improved pain Losartan, an angiotensin-receptor blocker with anti-fibrotic abilities, recapitulates the effect of exercise on post-injury recovery and may provide an enhanced recovery option for those who are unable to exercise after injury ABSTRACT: Chronic pain and disability after limb injury are major public health problems. Early mobilization after injury improves functional outcomes for patients, although when and how to implement rehabilitation strategies remains a clinical challenge. Additionally, whether the beneficial effects of exercise can be reproduced using pharmacological tools remains unknown and may benefit patients who are unable to exercise as a result of immobilization. We developed a murine model of orthopaedic trauma combining tibia fracture and pin fixation with muscle damage. Behavioural measures included mechanical nociceptive thresholds and distances run on exercise wheels. Bone healing was quantified using microcomputed tomagraphic scanning, and muscle fibre size distribution and fibrosis were followed using immunohistochemistry. We found that the model provided robust mechanical allodynia, fibrosis and a shift to smaller average muscle fibre size lasting up to 5 weeks from injury. We also observed that allowing 'late' (weeks 1-2) rather than 'early' (weeks 0-1) exercise after injury resulted in greater overall running activity and greater reversal of allodynia. In parallel, the late running paradigm was associated with reduced muscle fibrosis, earlier increase in muscle fibre diameter and a short-term benefit in reducing callus volume. Providing the anti-fibrotic angiotensin receptor blocker losartan to mice in drinking water reduced both allodynia and muscle fibrosis. Combining losartan and late exercise provided no additional benefit. We conclude that early healing after orthopaedic trauma must be allowed prior to the initiation of exercise to achieve optimal pain, functional and physiological outcomes and that losartan is a viable candidate for translational studies.
Collapse
Affiliation(s)
- Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Marco Quarta
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Paine
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas E Forman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yoshinori Takemura
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA.,Department of Anesthesiology, University of Toyama, Toyama, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| |
Collapse
|
48
|
Platelet-rich plasma for sports-related muscle, tendon and ligament injuries: an umbrella review. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:465-478. [PMID: 31846610 DOI: 10.2450/2019.0274-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Platelet-rich plasma (PRP) has been used in different non-transfusion indications due to its role in tissue regeneration and healing. The aim of this overview of systematic reviews (umbrella review) is to provide a summary of the existing research syntheses related to PRP use for sports-related muscle, tendon and ligament injuries. MATERIALS AND METHODS Literature searches were performed in MEDLINE, Embase, and Cochrane Library to identify systematic reviews focusing on PRP use for sports-related muscle, tendon and ligament injuries. The methodological quality of included studies was assessed using the checklist for systematic reviews and research syntheses developed by the Joanna Briggs Institute and the GRADE assessment. RESULTS Twenty-two studies met the inclusion criteria. Five studies evaluated PRP use for acute muscle injury, and 17 evaluated PRP use for tendon and ligament injury. Studies were heterogeneous in terms of the dose and number of PRP injections, and the control groups. Three of the 5 reviews evaluating acute muscle injury concluded that PRP had no effect on the outcomes considered. One review shows superior efficacy of rehabilitation exercise compared to PRP. One review shows that PRP may result in an earlier return to sport for acute grade I-II injury. Eight out of the 17 reviews evaluating PRP for tendon and ligament injuries show a statistically significant (p<0.05) difference in pain and/or function outcome measures favouring PRP compared to controls, although most of the observed differences were small. Adverse events data and quality of life outcomes were rarely analysed or reported in the included studies and were considered clinically insignificant. DISCUSSION In most of the included reviews, the available evidence was judged to be of low/very low quality due to risk of bias, inconsistency and imprecision, thus making the level of certainty of these findings low and not adequate to support the general use of PRP in this setting.
Collapse
|
49
|
Ruff AN, Cornelson SM, Panter AS, Kettner NW. Rectus abdominis muscle tear diagnosed with sonography and its conservative management. J Ultrasound 2019; 23:401-406. [PMID: 31721108 DOI: 10.1007/s40477-019-00416-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/02/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE This is a rare case of a post-traumatic rectus abdominis muscle tear in an adolescent female diagnosed by ultrasonography (US). Conservative management is also described. METHODS A 14-year-old female presented to a chiropractic clinic with extreme pain and tenderness in the right lower quadrant (RLQ) after post-plyometric power kneel box jumps. Movement aggravated her pain and she demonstrated active abdominal guarding with RLQ palpation. Ultrasonography revealed a subacute Grade 2 right rectus abdominis muscle tear, without evidence of hyperemia or a hematoma. Following the diagnosis of a right rectus abdominis muscle tear, she was treated with spinal manipulation and a course of musculoskeletal rehabilitation directed at truncal stabilization. RESULTS After treatment, the patient was able to return to play 5 week post-injury without any pain or discomfort. A follow-up US at 3 months provided evidence of muscle healing without complications. CONCLUSION This case demonstrates the diagnosis of a rare rectus abdominis muscle tear managed conservatively. To our knowledge, less than a dozen cases are reported using US in the evaluation and diagnosis of a rectus abdominis tear.
Collapse
Affiliation(s)
- Ashley N Ruff
- Department of Radiology, Logan University, 1851 Schoettler Rd, Chesterfield, MO, 63017, USA.
| | - Stacey M Cornelson
- Department of Radiology, Logan University, 1851 Schoettler Rd, Chesterfield, MO, 63017, USA
| | | | - Norman W Kettner
- Department of Radiology, Logan University, 1851 Schoettler Rd, Chesterfield, MO, 63017, USA
| |
Collapse
|
50
|
Liao CH, Lin LP, Yu TY, Hsu CC, Pang JHS, Tsai WC. Ibuprofen inhibited migration of skeletal muscle cells in association with downregulation of p130cas and CrkII expressions. Skelet Muscle 2019; 9:23. [PMID: 31464636 PMCID: PMC6714350 DOI: 10.1186/s13395-019-0208-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 08/13/2019] [Indexed: 11/28/2022] Open
Abstract
Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat sports-related muscle injuries. However, NSAIDs were recently shown to impede the muscle healing process after acute injury. Migration of skeletal muscle cells is a crucial step during the muscle healing process. The present study was performed to investigate the effect and molecular mechanisms of action of ibuprofen, a commonly used NSAID, on the migration of skeletal muscle cells. Methods Skeletal muscle cells isolated from the gastrocnemius muscle of Sprague-Dawley rats were treated with ibuprofen. MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was used to evaluate cell viability, and cell apoptosis was evaluated by TUNEL assay, after ibuprofen treatment. Skeletal muscle cell migration and spreading were evaluated using the transwell filter migration assay and F-actin staining, respectively. The protein expression of p130cas and CrkII, which are cell migration facilitating genes, was determined by western blot analysis. The overexpression of p130cas of muscle cells was achieved by p130cas vector transfection. Results The results demonstrated that ibuprofen did not have a significant negative effect on cell viability and apoptosis. Ibuprofen inhibited the migration and spreading of skeletal muscle cells in a dose-dependent manner. Ibuprofen also dose-dependently decreased the protein expression of p130cas and CrkII. Furthermore, overexpression of p130cas resulted in the promotion of cell migration and spreading and counteracted ibuprofen-mediated inhibition. Conclusion This study suggested that ibuprofen exerts a potentially adverse effect on the migration of skeletal muscle cells by downregulating protein expression of p130cas and CrkII. These results indicate a possible mechanism underlying the possible negative effect of NSAIDs on muscle regeneration.
Collapse
Affiliation(s)
- Chih-Hao Liao
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan
| | - Chih-Chin Hsu
- College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Jong-Hwei S Pang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, No.123, Dinghu Rd., Guishan Dist, Taoyuan City, 333, Taiwan. .,College of Medicine, Chang Gung University, Taoyuan City, Taiwan.
| |
Collapse
|