1
|
Abdalla SE, Bester LA, Abia ALK, Allam M, Ismail A, Essack SY, Amoako DG. Genomic Insights of Antibiotic-Resistant Escherichia coli Isolated from Intensive Pig Farming in South Africa Using 'Farm-to-Fork' Approach. Antibiotics (Basel) 2025; 14:446. [PMID: 40426513 PMCID: PMC12108210 DOI: 10.3390/antibiotics14050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Intensive pig farming is a critical component of food security and economic activity in South Africa; however, it also presents a risk of amplifying antimicrobial resistance (AMR). This study provides genomic insights into antibiotic-resistant Escherichia coli (E. coli) circulating across the pork production chain, using a 'farm-to-fork' approach. Methods: A total of 417 samples were collected from various points along the production continuum, including the farm (n = 144), transport (n = 60), and abattoir (n = 213). E. coli isolates were identified using the Colilert-18 system, and their phenotypic resistance was tested against 20 antibiotics. Thirty-one isolates were selected for further characterization based on their resistance profiles and sampling sources, utilizing whole-genome sequencing and bioinformatic analysis. Results: The isolates exhibited varying resistance to critical antibiotics used in both human and animal health, including ampicillin (31/31, 100%), tetracycline (31/31, 100%), amoxicillin-clavulanate (29/31, 94%), chloramphenicol (25/31, 81%), and sulfamethoxazole-trimethoprim (10/31, 33%). Genetic analysis revealed the presence of resistance genes for β-lactams (blaEC, blaTEM), trimethoprim/sulfonamides (dfrA1, dfrA5, dfrA12, sul2, sul3), tetracyclines (tetA, tetB, tetR, tet34), aminoglycosides (aadA, strA, aph variants), and phenicols (catB4, floR, cmlA1), most of which were plasmid-borne. Virulome analysis identified 24 genes, including toxins and adhesion factors. Mobile genetic elements included 24 plasmid replicons, 43 prophages, 19 insertion sequence families, and 7 class 1 integrons. The E. coli isolates belonged to a diverse range of sequence types, demonstrating significant genetic variability. Further phylogenomic analysis revealed eight major clades, with isolate clustering by sequence type alongside South African environmental and clinical E. coli strains, regardless of their sampling source. Conclusions: The genetic complexity observed across the pork production continuum threatens food safety and may impact human health. These findings underscore the need for enhanced AMR monitoring in livestock systems and support the integration of AMR surveillance into food safety policy frameworks.
Collapse
Affiliation(s)
- Shima E. Abdalla
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.A.); (A.L.K.A.); (S.Y.E.)
| | - Linda A. Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Akebe L. K. Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.A.); (A.L.K.A.); (S.Y.E.)
- Environmental Research Foundation, Westville 3630, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa;
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa;
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.A.); (A.L.K.A.); (S.Y.E.)
| | - Daniel G. Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.A.); (A.L.K.A.); (S.Y.E.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Ugbo EN, Effendi MH, Ugbo AI, Tyasningsih W, Agumah BN, Raharjo HM, Khairullah AR, Ogba RC, Ekawasti F, Yanestria SM, Moses IB, Riwu KHP. Molecular identification of tetracycline resistance genes in Escherichia coli isolates from internal organs of swine sold on Abakaliki, Nigeria. Open Vet J 2025; 15:171-178. [PMID: 40092188 PMCID: PMC11910291 DOI: 10.5455/ovj.2024.v15.i1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 03/19/2025] Open
Abstract
Background Swine is one of the major sources of protein to humans worldwide; antimicrobial-resistant Escherichia coli has become a global public health challenge affecting both humans and livestock due to the presence of tetracycline resistance genes. Aim This study focused on molecular identification of tetracycline resistance genes (tet A and B) in E. coli isolates from internal organs of swine sold in a slaughterhouse at Abakaliki, Ebonyi State, Nigeria. Methods A total of 75 internal organs of swine samples were collected from slaughterhouses. Standard microbiological procedures were employed to evaluate the samples bacteriologically. Using the disk diffusion method, antibiotic susceptibility testing was conducted on E. coli against specific classes of antibiotics, and the multiple antibiotic resistance index was calculated. The polymerase chain reaction was utilized for the molecular identification of the tetracycline resistance genes, specifically tet A and B. Results Out of the 75 samples analyzed, 24 of 75 were positive for E. coli with an overall prevalence of 24/75 (32.0%). The small intestine and colon had higher percentages of E. coli isolates 6/15 (40.0%). However, E. coli isolates were resistant to erythromycin, tetracycline, and ampicillin which ranged from 20.0% to 75.0%, and susceptible to gentamycin and ciprofloxacin at a range of 75.0%-100.0%. Exactly, 8 (33.3%) isolates were both multidrug and tetracycline-resistant. The presence of tet A 6/8 (75.0%), tet B 5/8 (62.5%), and tet A and B 4/8 (50.0%) was reported. Conclusion Multidrug and tetracycline resistance genes have been observed in E. coli isolated from internal organs of swine and are of public health concern.
Collapse
Affiliation(s)
- Emmanuel Nnabuike Ugbo
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Agatha Ifunanya Ugbo
- Department of Microbiology and Parasitology, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State, Nigeria
| | - Wiwiek Tyasningsih
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bernard Nnabuife Agumah
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Hartanto Mulyo Raharjo
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Rebecca Chinenye Ogba
- Department of Science Laboratory Technology, Federal Polytechnic Ohodo, Enugu State, Nigeria
| | - Fitrine Ekawasti
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
3
|
Ugbo EN, Effendi MH, Ugbo AI, Tyasningsih W, Agumah BN, Raharjo HM, Khairullah AR, Ogba RC, Ekawasti F, Yanestria SM, Moses IB, Riwu KHP. Molecular identification of tetracycline resistance genes in Escherichia coli isolates from internal organs of swine sold on Abakaliki, Nigeria. Open Vet J 2025; 15:171-178. [PMID: 40092188 PMCID: PMC11910291 DOI: 10.5455/ovj.2025.v15.i1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 04/11/2025] Open
Abstract
Background Swine is one of the major sources of protein to humans worldwide; antimicrobial-resistant Escherichia coli has become a global public health challenge affecting both humans and livestock due to the presence of tetracycline resistance genes. Aim This study focused on molecular identification of tetracycline resistance genes (tet A and B) in E. coli isolates from internal organs of swine sold in a slaughterhouse at Abakaliki, Ebonyi State, Nigeria. Methods A total of 75 internal organs of swine samples were collected from slaughterhouses. Standard microbiological procedures were employed to evaluate the samples bacteriologically. Using the disk diffusion method, antibiotic susceptibility testing was conducted on E. coli against specific classes of antibiotics, and the multiple antibiotic resistance index was calculated. The polymerase chain reaction was utilized for the molecular identification of the tetracycline resistance genes, specifically tet A and B. Results Out of the 75 samples analyzed, 24 of 75 were positive for E. coli with an overall prevalence of 24/75 (32.0%). The small intestine and colon had higher percentages of E. coli isolates 6/15 (40.0%). However, E. coli isolates were resistant to erythromycin, tetracycline, and ampicillin which ranged from 20.0% to 75.0%, and susceptible to gentamycin and ciprofloxacin at a range of 75.0%-100.0%. Exactly, 8 (33.3%) isolates were both multidrug and tetracycline-resistant. The presence of tet A 6/8 (75.0%), tet B 5/8 (62.5%), and tet A and B 4/8 (50.0%) was reported. Conclusion Multidrug and tetracycline resistance genes have been observed in E. coli isolated from internal organs of swine and are of public health concern.
Collapse
Affiliation(s)
- Emmanuel Nnabuike Ugbo
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Agatha Ifunanya Ugbo
- Department of Microbiology and Parasitology, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State, Nigeria
| | - Wiwiek Tyasningsih
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bernard Nnabuife Agumah
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Hartanto Mulyo Raharjo
- Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Rebecca Chinenye Ogba
- Department of Science Laboratory Technology, Federal Polytechnic Ohodo, Enugu State, Nigeria
| | - Fitrine Ekawasti
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
4
|
Agusi ER, Kabantiyok D, Mkpuma N, Atai RB, Okongwu-Ejike C, Bakare EL, Budaye J, Sule KG, Rindaps RJ, James GK, Audu BJ, Agada GO, Adegboye O, Meseko CA. Prevalence of multidrug-resistant Escherichia coli isolates and virulence gene expression in poultry farms in Jos, Nigeria. Front Microbiol 2024; 15:1298582. [PMID: 38933030 PMCID: PMC11199394 DOI: 10.3389/fmicb.2024.1298582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Antimicrobial resistance is increasingly becoming a global health concern. This study aimed to investigate and report MDR Escherichia coli (E. coli) prevalence, resistance, and virulence genes from poultry in Jos, Plateau State, Nigeria. Methods The samples were analyzed using microbiological standard methods and polymerase chain reactions (PCRs). Results A total of 179 cloacal swabs were collected from bothlocal and exotic poultry breeds, of which 99.4% (178/179) tested positive for E. coli. Among these culturally identified samples, 99.4% (177/178) were furtherconfirmed Escherichia coli with a molecular weight of 401 bp. Multidrugresistance of 45% (80/178) was observed from the confirmed isolates. PCR assays were conducted to detect genes associated with resistance to antibiotics, specifically, tetracycline (tetA gene), sulfonamide (sul1 gene), ampicillin (ampC gene), and quinolone (gyrA gene). Antimicrobial susceptibility test (AST) results revealed substantial antibiotic resistance, with 81.9% (145/177) of the isolates being resistant to tetracycline, 80.2% (142/177) to quinolone, 69.5% (123/177) to sulfonamide, and 66.1% (117/177) to ampicillin. Further analysis on 18 isolates that showed resistance to up to four different antibiotics was carried out using multiplex PCR to detect eae, hlyA, rfbE, fliC, and fstx virulence genes. The study found that 44.4% (15/18) of the isolates were positive for the eae gene, 27.7% (5/18) for stx, 22.2% (4/18) for rfbe gene, and 5.5% (1) for hlya gene, and none tested positive for fliC gene. Conclusion These results showed high antibiotic resistance, virulent genes, and significant levels of MDR in E. coli from poultry. This study highlights the urgent need for antimicrobial stewardship practices within the poultry industry due to their profound implications for food safety and public health. This issue is particularly critical in Nigeria, where poultry farming constitutes a significant portion of smallholder farming practices.
Collapse
Affiliation(s)
| | - Dennis Kabantiyok
- Fleming Laboratory Microbiology Department, National Veterinary Research Institute, Jos, Nigeria
| | - Nicodemus Mkpuma
- Fleming Laboratory Microbiology Department, National Veterinary Research Institute, Jos, Nigeria
| | - Rebecca Bitiyong Atai
- Fleming Laboratory Microbiology Department, National Veterinary Research Institute, Jos, Nigeria
| | - Chidinma Okongwu-Ejike
- Fleming Laboratory Microbiology Department, National Veterinary Research Institute, Jos, Nigeria
| | - Ebun Lydia Bakare
- Fleming Laboratory Microbiology Department, National Veterinary Research Institute, Jos, Nigeria
| | - James Budaye
- Fleming Laboratory Microbiology Department, National Veterinary Research Institute, Jos, Nigeria
| | - Kabiru Garba Sule
- Fleming Laboratory Microbiology Department, National Veterinary Research Institute, Jos, Nigeria
| | - Rindah Joy Rindaps
- Fleming Laboratory Microbiology Department, National Veterinary Research Institute, Jos, Nigeria
| | - Gyallak Kingsley James
- Fleming Laboratory Microbiology Department, National Veterinary Research Institute, Jos, Nigeria
| | - Benshak John Audu
- Biotechnology Centre, National Veterinary Research Institute, Jos, Nigeria
| | | | - Oyelola Adegboye
- Menzies School of Public Health, Charles Darwin University, Darwin, NT, Australia
| | - Clement Adebajo Meseko
- Regional Laboratory for Animal Influenza & Transboundary Animal Diseases, National Veterinary Research Institute, Jos, Nigeria
| |
Collapse
|
5
|
Tusiime M, Mwiine FN, Afayoa M, Arojjo S, Erume J. Molecular characterization of Escherichia coli virulence markers in neonatal and postweaning piglets from major pig-producing districts of Uganda. BMC Vet Res 2024; 20:230. [PMID: 38802876 PMCID: PMC11129443 DOI: 10.1186/s12917-024-04092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Piggery production is highly constrained by diseases, with diarrhoea in piglets being a major cause of economic losses to smallholder farmers in Uganda. Enterotoxigenic Escherichia coli (ETEC) is thought to be one of the major etiologies of this diarrhoea. A cross-sectional study was carried out in two high pig-producing districts of Uganda with the aim of determining the significance of piglet diarrhoea and the pathogenic determinants of causative E. coli. METHODOLOGY A total of 40 households with piglets were visited in each district for a questionnaire survey and faecal sample collection. The questionnaire-based data collected included; demographic data and pig management practices. E. coli were isolated from diarrheic (43) and non-diarrheic (172) piglets and were subjected to antimicrobial susceptibility testing against nine commonly used antimicrobial agents. The E. coli isolates were further screened for the presence of 11 enterotoxin and fimbrial virulence gene markers using multiplex polymerase chain reaction. Data entry, cleaning, verification and descriptive statistics were performed using Microsoft Excel. Statistical analysis to determine any association between the presence of virulence markers and diarrhea in piglets was done using SPSS software (Version 23), with a p value of less than 0.05 taken as a statistically significant association. RESULTS Escherichia coli were recovered from 81.4% (175/215) of the faecal samples. All the isolates were resistant to erythromycin, and most showed high resistance to tetracycline (71%), ampicillin (49%), and trimethoprim sulfamethoxazole (45%). More than half of the isolates (58.3%) carried at least one of the 11 virulence gene markers tested. EAST1 was the most prevalent virulence marker detected (35.4%), followed by STb (14.8%). Expression of more than one virulence gene marker was observed in 6.2% of the isolates, with the EAST1/STa combination being the most prevalent. Three adhesins; F17 (0.6%), F18 (6.3%) and AIDA-I (0.6%) were detected, with F18 being the most encountered. There was a statistically significant association between the occurrence of piglet diarrhoea and the presence of the AIDA-1 (p value = 0.037) or EAST1 (p value = 0.011) gene marker among the isolates. CONCLUSION AND RECOMMENDATION The level of antimicrobial resistance among E. coli isolates expressing virulence markers were high in the sampled districts. The study established a significant association between presence of EAST1 and AIDA-I virulence markers and piglet diarrhea. Further studies should be carried out to elucidate the main adhesins borne by these organisms in Uganda and the actual role played by EAST1 in the pathogenesis of the infection since most isolates expressed this gene.
Collapse
Affiliation(s)
- Margaret Tusiime
- Department of Biosecurity, Ecosystems and Veterinary Public Health, College of Veterinary Medicine, Animal Resource and Biosecurity, Makerere University, Kampala, Uganda.
| | - Frank N Mwiine
- Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine, Animal Resource and Biosecurity, Makerere University, Kampala, Uganda
| | - Mathias Afayoa
- Department of Veterinary Pharmacy, Clinical and Comparative Medicine, College of Veterinary Medicine, Animal Resource and Biosecurity, Makerere University, Kampala, Uganda
| | - Steven Arojjo
- Department of Sociology and Anthropology, College of Humanities and Social Sciences, Makerere University, Kampala, Uganda
| | - Joseph Erume
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resource and Biosecurity, Makerere University, Kampala, Uganda
| |
Collapse
|
6
|
Xu X, Mo K, Cui C, Lan Y, Ling L, Xu J, Li L, Huang X. Microencapsulated essential oils alleviate diarrhea in weaned piglets by modulating the intestinal microbial barrier as well as not inducing antibiotic resistance: a field research. Front Vet Sci 2024; 11:1396051. [PMID: 38799727 PMCID: PMC11117338 DOI: 10.3389/fvets.2024.1396051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Microencapsulated essential oils (MEO)have been used as antibiotic alternatives that can be applied to alleviate diarrhea in weaning piglet. We examined a large group of weaned piglets and incorporated essential oil containing thymol (2%), carvacrol (5%) and cinnamaldehyde (3%) in the feed of weaned piglets on an intensive production farm. The piglets were divided into four groups; Control (no additions) and chlortetracycline (Chl), essential oil (EO) and microencapsulated essential oil (MEO) were fed ad libitum over a 28-day trial period. We found MEO significantly reduced the incidence of diarrhea in the piglets that was also accompanied by increased average daily weight gains from days 14-28 (p < 0.05). MEO enhanced the antioxidant capacity in the piglets and serum total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-px) levels were significantly increased (p < 0.05). MEO also significantly reduced expression of genes related to ileal inflammation (IL-6, TNF-α and TGF-β1) (p < 0.05) and significantly (p < 0.05) increased in sIgA antibody levels. MEO influenced the composition of the intestinal microbiome and reduced Bacteroidota (p < 0.05) and thus altered the Firmicutes/Bacteroidota ratio. However, none of the treatments produced significant changes in the most common tetracycline resistance genes (p > 0.05). Metagenomic analysis indicated that MEO impacted DNA expression, virulence factors, antioxidant activity and antimicrobial activity. Metabolomic analysis of the intestinal content also indicated that MEO impacted tyrosine metabolism and primary bile acid biosynthesis suggesting improved intestinal health and nutrient absorption. This study paves the way for further research into the development and optimization of MEO-based interventions aimed at improving piglet health and performance while also providing a reference for reducing reliance on antibiotics in animal agriculture.
Collapse
Affiliation(s)
- Xianbin Xu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaibin Mo
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Can Cui
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanhua Lan
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lifang Ling
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinxia Xu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xianhui Huang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Silva A, Silva V, Dapkevicius MDLE, Azevedo M, Cordeiro R, Pereira JE, Valentão P, Falco V, Igrejas G, Caniça M, Poeta P. Unveiling Antibiotic Resistance, Clonal Diversity, and Biofilm Formation in E. coli Isolated from Healthy Swine in Portugal. Pathogens 2024; 13:305. [PMID: 38668260 PMCID: PMC11054063 DOI: 10.3390/pathogens13040305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Escherichia coli, a commensal microorganism found in the gastrointestinal tract of human and animal hosts, plays a central role in agriculture and public health. Global demand for animal products has promoted increased pig farming, leading to growing concerns about the prevalence of antibiotic-resistant E. coli strains in swine populations. It should be noted that a significant portion of antibiotics deployed in swine management belong to the critically important antibiotics (CIA) class, which should be reserved for human therapeutic applications. This study aimed to characterize the prevalence of antibiotic resistance, genetic diversity, virulence characteristics, and biofilm formation of E. coli strains in healthy pigs from various farms across central Portugal. Our study revealed high levels of antibiotic resistance, with resistance to tetracycline, ampicillin, tobramycin, and trimethoprim-sulfamethoxazole. Multidrug resistance is widespread, with some strains resistant to seven different antibiotics. The ampC gene, responsible for broad-spectrum resistance to cephalosporins and ampicillin, was widespread, as were genes associated with resistance to sulfonamide and beta-lactam antibiotics. The presence of high-risk clones, such as ST10, ST101, and ST48, are a concern due to their increased virulence and multidrug resistance profiles. Regarding biofilm formation, it was observed that biofilm-forming capacity varied significantly across different compartments within pig farming environments. In conclusion, our study highlights the urgent need for surveillance and implementation of antibiotic management measures in the swine sector. These measures are essential to protect public health, ensure animal welfare, and support the swine industry in the face of the growing global demand for animal products.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Maria de Lurdes Enes Dapkevicius
- IITAA—Institute of Agricultural and Environmental Research and Technology, University of the Azores (UAc), 9700-042 Angra do Heroísmo, Portugal
| | - Mónica Azevedo
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4049-021 Porto, Portugal; (M.A.)
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Rui Cordeiro
- Intergados, SA, Av. de Olivença, S/N, 2870-108 Montijo, Portugal;
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Patrícia Valentão
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto, 2829-516 Caparica, Portugal; (P.V.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Virgílio Falco
- Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Universidade do Porto, 2829-516 Caparica, Portugal; (P.V.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Universidade of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Manuela Caniça
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4049-021 Porto, Portugal; (M.A.)
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
8
|
Pazra DF, Latif H, Basri C, Wibawan IWT, Rahayu P. Detection of tetracycline resistance genes and their diversity in Escherichia coli isolated from pig farm waste in Banten province, Indonesia. Vet World 2023; 16:1907-1916. [PMID: 37859956 PMCID: PMC10583874 DOI: 10.14202/vetworld.2023.1907-1916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Livestock waste in the form of feces and liquid represents an important reservoir of antibiotic resistance genes (ARGs). Because many ARGs can be horizontally transferred to other pathogens, livestock waste plays an essential role in the emergence and transmission of various ARGs in the environment. Therefore, this study aimed to detect and assess the diversity of tet genes in Escherichia coli isolated from pig farm waste in Banten province, Indonesia. Materials and Methods Solid waste (feces) and wastewater were collected from 44 pig farms in Banten province. The isolation and identification of E. coli referred to the Global Tricycle Surveillance extended-spectrum beta-lactamase E. coli World Health Organization (2021) guidelines. tet genes were detected using quantitative real-time polymerase chain reaction after dividing pig farms in the province into four clusters based on their adjacent areas and characteristics. Results tetA, tetB, tetC, tetM, tetO, and tetX were detected in solid waste and wastewater from pig farms, whereas tetE was not detected in either sample type. tetX (100%) and tetO (75%) were the most dominant genes in solid waste, whereas wastewater samples were dominated by tetA, tetM, tetO, and tetX (prevalence of 50% each). Furthermore, eight tet gene patterns were found in pig farm waste (prevalence of 12.5% each). Conclusion The results showed a high prevalence of tetO and tetX in solid waste and wastewater from pig farms in Banten province. This significant prevalence and diversity indicated the transmission of tet genes from pigs to the environment, posing a serious threat to public health.
Collapse
Affiliation(s)
- Debby Fadhilah Pazra
- Animal Biomedical Science Study Program, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
- Bogor Agricultural Development Polytechnic, Bogor, Indonesia
| | - Hadri Latif
- Division of Veterinary Public Health and Epidemiology, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
| | - Chaerul Basri
- Division of Veterinary Public Health and Epidemiology, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
| | - I. Wayan Teguh Wibawan
- Division of Medical Microbiology, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
| | - Puji Rahayu
- Quality Control Laboratory and Certification of Animal Products, Bogor, Indonesia
| |
Collapse
|
9
|
Effendi MH, Hartadi EB, Witaningrum AM, Permatasari DA, Ugbo EN. Molecular identification of blaTEM gene of extended-spectrum beta-lactamase-producing Escherichia coli from healthy pigs in Malang district, East Java, Indonesia. J Adv Vet Anim Res 2022; 9:447-452. [PMID: 36382042 PMCID: PMC9597926 DOI: 10.5455/javar.2022.i613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVE The increase and prevalence of multidrug-resistant bacteria in livestock animals are serious public health concerns. This study aimed to identify the presence of the blaTEM gene in extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from rectal swabs of apparently healthy pigs in Malang District, East Java, Indonesia. MATERIALS AND METHODS A total of 120 rectal swab samples were collected from the pigs. The rectal swabs were screened for the presence of E. coli using standard microbiological identification procedures. The Kirby-Bauer disk diffusion method identified multidrug-resistant E. coli. Five different classes of antibiotics were used to identify multidrug-resistant isolates, including Ciprofloxacin, Trimethoprim, Tetracycline, Streptomycin, and Aztreonam. Multidrug-resistant E. coli isolates were characterized for the presence of ESBL using double-disk synergy test methods. The presence of blaTEM genes was determined using polymerase chain reaction methods. RESULTS The results of this study indicated that 107 (89.2%) out of 120 samples analyzed were positive for E. coli isolates. A total of 32 (29.9%) E. coli isolates were identified to be multidrug-resistant and further subjected to molecular testing. The molecular analysis revealed (5; 15.6%) E. coli isolates to harbor the blaTEM gene. CONCLUSION The results of this study revealed that pigs and products of pork origin must be considered a source of transmission of ESBL-producing E. coli to public health important under the food chain.
Collapse
Affiliation(s)
- Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Erwan Budi Hartadi
- Postgraduate Student of Veterinary Public Health Program, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adiana Mutamsari Witaningrum
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dian Ayu Permatasari
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
10
|
Nguyet LTY, Keeratikunakorn K, Kaeoket K, Ngamwongsatit N. Antibiotic resistant Escherichia coli from diarrheic piglets from pig farms in Thailand that harbor colistin-resistant mcr genes. Sci Rep 2022; 12:9083. [PMID: 35641591 PMCID: PMC9156692 DOI: 10.1038/s41598-022-13192-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Antibiotic-resistant Escherichia coli is one of the most serious problems in pig production. This study aimed to determine the antibiotic susceptibility and genotypes profiles of diarrhoeagenic E. coli that causes diarrhea in piglets. Thirty-seven pathogenic E. coli strains were used in this study. These were isolated from rectal swabs of diarrheic piglets from farms in Thailand from 2018 to 2019. Escherichia coli isolates were highly resistant to amoxicillin (100%), followed by oxytetracycline (91.9%), enrofloxacin (89.2%), trimethoprim/sulfamethoxazole (86.5%), amoxicillin: clavulanic acid (81.1%), colistin and gentamicin (75.7%), ceftriaxone and ceftiofur (64.9%), ceftazidime (35.1%) and 97.3% showed multidrug-resistance (MDR). There were 8 (21.6%) mcr-1 carriers, 10 (27.0%) mcr-3 carriers and 10 (27.0%) co-occurrent mcr-1 and mcr-3 isolates. The phenotype-genotype correlation of colistin resistance was statistically significant (performed using Cohen's kappa coefficient (κ = 0.853; p < 0.001)). In addition, PCR results determined that 28 of 37 (75.7%) isolates carried the int1 gene, and 85.7% int1-positive isolates also carried the mcr gene. Genetic profiling of E. coli isolates performed by ERIC-PCR showed diverse genetics, differentiated into thirteen groups with 65% similarity. Knowledge of the molecular origins of multidrug-resistant E. coli should be helpful for when attempting to utilize antibiotics in the pig industry. In terms of public health awareness, the possibility of transmitting antibiotic-resistant E. coli from diarrheic piglets to other bacteria in pigs and humans should be of concern.
Collapse
Affiliation(s)
- Luong Thi Yen Nguyet
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Krittika Keeratikunakorn
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
11
|
Prevalence and Antimicrobial Resistance of Escherichia coli, Salmonella and Vibrio Derived from Farm-Raised Red Hybrid Tilapia (Oreochromis spp.) and Asian Sea Bass (Lates calcarifer, Bloch 1970) on the West Coast of Peninsular Malaysia. Antibiotics (Basel) 2022; 11:antibiotics11020136. [PMID: 35203739 PMCID: PMC8868497 DOI: 10.3390/antibiotics11020136] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Antibiotics are widely used in intensive fish farming, which in turn increases the emergence of antimicrobial-resistant (AMR) bacteria in the aquatic environment. The current study investigates the prevalence and determines the antimicrobial susceptibility of E. coli, Salmonella, and Vibrio in farmed fishes on the west coast of Peninsular Malaysia. Over a period of 12 months, 32 aquaculture farms from the Malaysian states of Selangor, Negeri Sembilan, Melaka, and Perak were sampled. Both E. coli and Salmonella were highly resistant to erythromycin, ampicillin, tetracycline, and trimethoprim, while Vibrio was highly resistant to ampicillin and streptomycin. Resistance to the antibiotics listed as the highest priority and critically important for human therapy, such as colistin in E. coli (18.1%) and Salmonella (20%) in fish, is a growing public health concern. The multi-drug resistance (MDR) levels of E. coli and Salmonella in tilapia were 46.5% and 77.8%, respectively. Meanwhile, the MDR levels of E. coli, Salmonella, V. parahaemolyticus, V. vulnificus and V. cholerae in Asian seabass were 34%, 100%, 21.6%, 8.3% and 16.7%, respectively. Our findings provide much-needed information on AMR in aquaculture settings that can be used to tailor better strategies for the use of antibiotics in aquaculture production at the local and regional levels.
Collapse
|
12
|
Abdalla SE, Abia ALK, Amoako DG, Perrett K, Bester LA, Essack SY. Food animals as reservoirs and potential sources of multidrug-resistant diarrheagenic E. coli pathotypes: Focus on intensive pig farming in South Africa. Onderstepoort J Vet Res 2022; 89:e1-e13. [PMID: 35144444 PMCID: PMC8832000 DOI: 10.4102/ojvr.v89i1.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Background Diarrheagenic E. coli (DEC) strains are a major cause of diarrheal diseases in both developed and developing countries. Healthy asymptomatic animals may be reservoirs of zoonotic DEC, which may enter the food chain via the weak points in hygiene practices. Aim We investigated the prevalence of DEC along the pig production continuum from farm-to-fork. Methods A total of 417 samples were collected from specific points along the pig production system, that is, farm, transport, abattoir and food. E. coli was isolated and enumerated using Colilert. Ten isolates from each Quanti-tray were selected randomly and phenotypically identified using eosin methylene blue agar selective media. Real-time polymerase chain reaction (PCR) was used to confirm the species and to classify them into the various diarrheagenic pathotypes. Antimicrobial susceptibility was determined against a panel of 20 antibiotics using the Kirby-Bauer disk diffusion method and EUCAST guideline. Results The final sample size consisted of 1044 isolates, of which 45.40% (474/1044) were DEC and 73% (762/1044) were multidrug-resistant. Enteroinvasive E. coli (EIEC) was the most predominant DEC at all the sampling sites. Conclusion The presence of DEC in food animal production environments and food of animal origin could serve as reservoirs for transmitting these bacteria to humans, especially in occupationally exposed workers and via food. Adherence to good hygienic practices along the pig production continuum is essential for mitigating the risk of transmission and infection, and ensuring food safety.
Collapse
Affiliation(s)
- Shima E Abdalla
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban.
| | | | | | | | | | | |
Collapse
|
13
|
Huy HL, Koizumi N, Nuradji H, Susanti, Noor SM, Dharmayanti NI, Haga T, Hirayama K, Miura K. Antimicrobial resistance in Escherichia coli isolated from brown rats and house shrews in markets, Bogor, Indonesia. J Vet Med Sci 2021; 83:531-534. [PMID: 33473051 PMCID: PMC8025418 DOI: 10.1292/jvms.20-0558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The prevalence of antimicrobial resistance (AMR) in small mammals dwelling in the city was used as an indicator of AMR bacteria in the environment. We captured
87 small mammals (79 brown rats and 8 house shrews) in four markets, Bogor, Indonesia in October 2019, and we obtained 20 AMR Escherichia coli
(E. coil) from 18 brown rats and two house shrews. Of these, eight isolates were determined to be multi-drug resistant (MDR) E.
coli, suggesting the potential contamination of AMR E. coli in the markets in Bogor, Indonesia, and that mammals, including humans,
are at risk of infection with AMR E. coli from environment.
Collapse
Affiliation(s)
- Hoang Le Huy
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Harimurti Nuradji
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Susanti
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Susan M Noor
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Nlp Indi Dharmayanti
- Indonesian Research Center for Veterinary Science (BB Litvet), JI. RE Martadinata No. 30, Bogor, West Java, Indonesia 16114
| | - Takeshi Haga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhiro Hirayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kozue Miura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Pakki E, Tayeb R, Usmar U, Ridwan IA, Muslimin L. Effect of orally administered combination of Caulerpa racemosa and Eleutherine americana (Aubl) Merr extracts on phagocytic activity of macrophage. Res Pharm Sci 2020; 15:401-409. [PMID: 33312218 PMCID: PMC7714016 DOI: 10.4103/1735-5362.293518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/25/2020] [Accepted: 07/11/2020] [Indexed: 11/13/2022] Open
Abstract
Background and purpose: Polysaccharide sulfate is a major active phytochemical constituent of Caulerpa racemosa, whereas the Eleutherine americana (Aubl) Merr has antioxidant properties. The aim of this research was to investigate the combined effect of polysaccharide sulfate that was isolated from C. racemosa and E. americana on the macrophage activity. Experimental approach: The phenolic contents and antioxidant activities of E. americana extracts in water and various ethanol concentrations were studied using the Folin-Ciocalteu and 2,2-diphenyl-1-picryl-hydrazyl- hydrate (DPPH) methods, respectively. Polysaccharide sulfate was isolated from C. racemosa by precipitation method. To assess the macrophage activity, mice were treated orally for 14 days with either a combination of polysaccharide sulfate and E. americana 96% ethanol extract at a specific ratio or with each extract alone. Macrophages were isolated and the phagocytic activity was measured by assessing the ability of the macrophages to phagocytose latex particles and nitric oxide (NO) levels were assessed using a colorimetric assay. Findings / Results: The E. americana crude extract in water exhibited the highest yield (13.04%), compared with the extract in 96% ethanol, which had the highest phenolic content (6.37 ± 0.16 mg/g gallic acid equivalent) and the strongest antioxidant activity (IC50, 22.63 ± 1.09 μg/mL). The combination of extracts, when both extracts were administered at 65:65 mg/kg BW, resulted in the highest increases in phagocytosis activity (62.73 ± 5.77%) and NO levels (16.43 ± 1.37 μmol/L). Conclusion and implications: The results of this study confirmed the non-specific immunostimulant properties of the combination of polysaccharide sulfate and E. americana and justified their use in traditional medicine. The observed increase in macrophage activity appeared to be correlated with the increased ability of mice to fight infection.
Collapse
Affiliation(s)
- Ermina Pakki
- Faculty of Pharmacy, Hasanuddin University, Perintis Kemerdekaan KM 10, Makassar, Indonesia, 90245
| | - Rosany Tayeb
- Faculty of Pharmacy, Hasanuddin University, Perintis Kemerdekaan KM 10, Makassar, Indonesia, 90245
| | - Usmar Usmar
- Faculty of Pharmacy, Hasanuddin University, Perintis Kemerdekaan KM 10, Makassar, Indonesia, 90245
| | - Ismul Azham Ridwan
- Faculty of Pharmacy, Hasanuddin University, Perintis Kemerdekaan KM 10, Makassar, Indonesia, 90245
| | - Lukman Muslimin
- Department of Pharmaceutical Chemistry, Sekolah Tinggi Ilmu Farmasi Makassar, Makassar, Indonesia 90241
| |
Collapse
|
15
|
Abd El-Baky RM, Ibrahim RA, Mohamed DS, Ahmed EF, Hashem ZS. Prevalence of Virulence Genes and Their Association with Antimicrobial Resistance Among Pathogenic E. coli Isolated from Egyptian Patients with Different Clinical Infections. Infect Drug Resist 2020; 13:1221-1236. [PMID: 32425560 PMCID: PMC7196243 DOI: 10.2147/idr.s241073] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Escherichia (E.) coli can cause intestinal and extra-intestinal infections which ranged from mild to life-threatening infections. The severity of infection is a product of many factors including virulence properties and antimicrobial resistance. Objectives To determine the antibiotic resistance pattern, the distribution of virulence factors and their association with one another and with some selected resistance genes. Methods Virulence properties were analyzed phenotypically while antimicrobial susceptibility was tested by Kirby-Bauer agar disc diffusion method. In addition, 64 E. coli isolates were tested for 6 colicin genes, fimH, hlyA, traT, csgA, crl virulence genes and bla−CTX-M-15, bla−oxa-2, and bla−oxa-10 resistance genes by polymerase chain reaction (PCR). Results Extra-intestinal pathogenic E. coli isolated from urine and blood samples represented a battery of virulence factors and resistance genes with a great ability to produce biofilm. Also, a significant association (P<0.05) among most of the tested colicin, virulence and resistance genes was observed. The observed associations indicate the importance and contribution of the tested factors in the establishment and the progress of infection especially with Extra-intestinal E. coli (ExPEC) which is considered a great challenging health problem. Conclusion There is a need for studying how to control these factors to decrease the rate and the severity of infections. The relationship between virulence factors and resistance genes is complex and needs more studies that should be specific for each area.
Collapse
Affiliation(s)
- Rehab Mahmoud Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Reham Ali Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Doaa Safwat Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Eman Farouk Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Zeinab Shawky Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|