1
|
Datta D, Ghosh S. Analyzing the Molecular Signature Genes and Pathways of Dengue Fever, Dengue Hemorrhagic Fever and Dengue Shock Syndrome Caused by Dengue Virus in India. Mol Biotechnol 2025:10.1007/s12033-025-01407-7. [PMID: 39987330 DOI: 10.1007/s12033-025-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Dengue fever, dengue hemorrhagic dengue fever and dengue shock syndrome were caused by Dengue mosquito bites. Common signs such as fever and headache, are connected to distinctive medical disorders. From the previous and ongoing studies, it is far unknown what genes or protein signaling pathway mechanism underlies the association between DF, DHF and DSS in Indian context. In our study, the gene expression dataset was retrieved from the GEO database with accession number GSE94892. Here, mRNA sequence analysis done of each DF, DHF and DSS patients from peripheral blood mononuclear cells sample. GEO2R became used to carry out differential gene expression analysis using a dengue data set. Protein-protein interaction networks have been built, gene set GO enrichment and KEGG Pathway enrichment done in SR plot, and cluster analyses have been performed in STRING and MCODE. During this study, we diagnosed 10 hub genes in all 3 condition. The gene set of showed that the ten hub genes diagnosed in each condition constituted the best range of common hub genes discovered beneath all 3 conditions in India. The conclusion of this study can be beneficial for treating DF, DHF and DSS conditions within the context of handling DEV in India.
Collapse
Affiliation(s)
- Debojyati Datta
- Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, West Bengal, 700121, India
| | - Semanti Ghosh
- Department of Biotechnology, School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, West Bengal, 700121, India.
| |
Collapse
|
2
|
Monogenic Autoinflammatory Diseases: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:ijms22126360. [PMID: 34198614 PMCID: PMC8232320 DOI: 10.3390/ijms22126360] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous family of disorders characterized by a dysregulation of the innate immune system, in which sterile inflammation primarily develops through antigen-independent hyperactivation of immune pathways. In most cases, they have a strong genetic background, with mutations in single genes involved in inflammation. Therefore, they can derive from different pathogenic mechanisms at any level, such as dysregulated inflammasome-mediated production of cytokines, intracellular stress, defective regulatory pathways, altered protein folding, enhanced NF-kappaB signalling, ubiquitination disorders, interferon pathway upregulation and complement activation. Since the discover of pathogenic mutations of the pyrin-encoding gene MEFV in Familial Mediterranean Fever, more than 50 monogenic autoinflammatory diseases have been discovered thanks to the advances in genetic sequencing: the advent of new genetic analysis techniques and the discovery of genes involved in autoinflammatory diseases have allowed a better understanding of the underlying innate immunologic pathways and pathogenetic mechanisms, thus opening new perspectives in targeted therapies. Moreover, this field of research has become of great interest, since more than a hundred clinical trials for autoinflammatory diseases are currently active or recently concluded, allowing us to hope for considerable acquisitions for the next few years. General paediatricians need to be aware of the importance of this group of diseases and they should consider autoinflammatory diseases in patients with clinical hallmarks, in order to guide further examinations and refer the patient to a specialist rheumatologist. Here we resume the pathogenesis, clinical aspects and diagnosis of the most important autoinflammatory diseases in children.
Collapse
|
3
|
d'Angelo DM, Di Filippo P, Breda L, Chiarelli F. Type I Interferonopathies in Children: An Overview. Front Pediatr 2021; 9:631329. [PMID: 33869112 PMCID: PMC8044321 DOI: 10.3389/fped.2021.631329] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Notable advances in gene sequencing methods in recent years have permitted enormous progress in the phenotypic and genotypic characterization of autoinflammatory syndromes. Interferonopathies are a recent group of inherited autoinflammatory diseases, characterized by a dysregulation of the interferon pathway, leading to constitutive upregulation of its activation mechanisms or downregulation of negative regulatory systems. They are clinically heterogeneous, but some peculiar clinical features may lead to suspicion: a familial "idiopathic" juvenile arthritis resistant to conventional treatments, an early necrotizing vasculitis, a non-infectious interstitial lung disease, and a panniculitis associated or not with a lipodystrophy may represent the "interferon alarm bells." The awareness of this group of diseases represents a challenge for pediatricians because, despite being rare, a differential diagnosis with the most common childhood rheumatological and immunological disorders is mandatory. Furthermore, the characterization of interferonopathy molecular pathogenetic mechanisms is allowing important steps forward in other immune dysregulation diseases, such as systemic lupus erythematosus and inflammatory myositis, implementing the opportunity of a more effective target therapy.
Collapse
Affiliation(s)
| | | | - Luciana Breda
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy
- Center of Excellence on Aging, University of Chieti, Chieti, Italy
| |
Collapse
|
4
|
Garcia-del-Barco D, Risco-Acevedo D, Berlanga-Acosta J, Martos-Benítez FD, Guillén-Nieto G. Revisiting Pleiotropic Effects of Type I Interferons: Rationale for Its Prophylactic and Therapeutic Use Against SARS-CoV-2. Front Immunol 2021; 12:655528. [PMID: 33841439 PMCID: PMC8033157 DOI: 10.3389/fimmu.2021.655528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The pandemic distribution of SARS-CoV-2 together with its particular feature of inactivating the interferon-based endogenous response and accordingly, impairing the innate immunity, has become a challenge for the international scientific and medical community. Fortunately, recombinant interferons as therapeutic products have accumulated a long history of beneficial therapeutic results in the treatment of chronic and acute viral diseases and also in the therapy of some types of cancer. One of the first antiviral treatments during the onset of COVID-19 in China was based on the use of recombinant interferon alfa 2b, so many clinicians began to use it, not only as therapy but also as a prophylactic approach, mainly in medical personnel. At the same time, basic research on interferons provided new insights that have contributed to a much better understanding of how treatment with interferons, initially considered as antivirals, actually has a much broader pharmacological scope. In this review, we briefly describe interferons, how they are induced in the event of a viral infection, and how they elicit signaling after contact with their specific receptor on target cells. Additionally, some of the genes stimulated by type I interferons are described, as well as the way interferon-mediated signaling is torpedoed by coronaviruses and in particular by SARS-CoV-2. Angiotensin converting enzyme 2 (ACE2) gene is one of the interferon response genes. Although for many scientists this fact could result in an adverse effect of interferon treatment in COVID-19 patients, ACE2 expression contributes to the balance of the renin-angiotensin system, which is greatly affected by SARS-CoV-2 in its internalization into the cell. This manuscript also includes the relationship between type I interferons and neutrophils, NETosis, and interleukin 17. Finally, under the subtitle of "take-home messages", we discuss the rationale behind a timely treatment with interferons in the context of COVID-19 is emphasized.
Collapse
Affiliation(s)
- Diana Garcia-del-Barco
- Neuroprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | - Daniela Risco-Acevedo
- Neuroprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | - Jorge Berlanga-Acosta
- Cytoprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | | | - Gerardo Guillén-Nieto
- Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
5
|
Peng Y, Chen B, Sheng X, Qian Y. Polymorphisms in IRF5 and TYK2 Genes Are Associated with Rheumatoid Arthritis in a Chinese Han Population. Med Sci Monit 2021; 27:e928455. [PMID: 33583939 PMCID: PMC7893827 DOI: 10.12659/msm.928455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The IRF5 and TYK2 gene polymorphisms are associated with autoimmune diseases. However, the relationship between the IRF5 and TYK2 gene polymorphisms and RA risk in the Chinese Han population was inconsistent. MATERIAL AND METHODS A total of 578 RA patients (case group) and 578 healthy controls (control group) were assessed in a case-control study. Genotyping of IRF5 (Exon 6 insertion/deletion (in/de), rs2004640, rs2070197, rs10954213) and TYK2 (rs280500, rs280519, rs280521, rs8108236, rs12720253) was performed by direct sequencing method. Data analysis was performed by SHEsis. RESULTS The rs2004640T allele (P=0.0003) and the dominant (P=0.001) and recessive (P=0.01) models of rs2004640 were associated with RA risk after stringent Bonferroni correction (0.05/4). The IRF5 exon 6 (in), rs2070197 and rs10954213 were not associated with RA (P>0.05). Two haplotypes of IRF5 (DTAT and DTGG) were associated with RA susceptibility (P<0.05). In addition, the frequencies of TYK2 rs280500A, rs280521A, and rs8108236A were significantly higher in the RA group compared with the control group (P<0.05). TYK2 rs280500, rs280521, and rs8108236 were associated with RA susceptibility in the dominant model, but the same was not observed for rs280519 and rs12720253 (P<0.05). Furthermore, 3 risk haplotypes (AAAGT, AGGAT, and GAAAT) and a protective haplotype (GAGGT) of TYK2 gene were associated with RA susceptibility (P<0.05). CONCLUSIONS Our results suggest that IRF5 rs2004640, TYK2 rs280500, rs280521, rs8108236, and haplotypes IRF5 (DTAT and DTGG) and TYK2 (AAAGT, AGGAT, GAAAT, and GAGGT) are susceptible factors for RA in a Chinese Han population.
Collapse
|
6
|
Takino T, Okamura T, Ando T, Hagiwara K. Change in the responsiveness of interferon-stimulated genes during early pregnancy in cows with Borna virus-1 infection. BMC Vet Res 2016; 12:253. [PMID: 27842550 PMCID: PMC5109691 DOI: 10.1186/s12917-016-0883-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/09/2016] [Indexed: 12/24/2022] Open
Abstract
Background Borna disease virus is a neurotropic pathogen and infects the central nervous system. This virus infected a variety of animal species including cows. The most of cows infected with Borna disease virus 1 (BoDV-1) exhibit subclinical infection without any neurological symptoms throughout their lifetime. We previously reported on the low conception rates in-seropositive cows. Interferon-τ (IFN-τ) plays an important role in stable fertilization, and is produced from the fetal side following embryo growth at 15–40 days of pregnancy. IFN-τ induces the expression of interferon-stimulated gene (ISG) 15 and Mx2 in peripheral blood mononuclear cells (PBMCs). To understand the embryo growth and maternal reaction during early pregnancy in cows with BoDV-1 infection, we aimed to assess the gene expression of ISG15 and Mx2 from PBMCs in BoDV-1-seropositive cows. Results None of the cows showed any clinical and neurological symptoms. Among the cows that conceived, the expressions of the ISG15 and Mx2 genes were greater in the BoDV-1-seropositive cows than in the BoDV-1-seronegative cows; the difference was significant between the cows that conceived and those that did not (P < 0.05). Conclusions The expression of ISG15 and Mx2 genes during early pregnancy significantly increased in the BoDV-1-seropositive cows and may be important for the maintenance of stable pregnancy in BoDV-1-infected cows. In contrast, the gene expression levels of ISG15 and Mx2 did not significantly increase during early pregnancy in BoDV-1-seronegative cows. Thus, BoDV-1 infection may lead to instability in the maintenance of early pregnancy by interfering with INF-τ production.
Collapse
Affiliation(s)
- Tadashi Takino
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.,Scientific Feed Laboratory Co., Ltd., 3-5 Miyahara, Takasaki, Gunma, Japan
| | - Taku Okamura
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Tatsuya Ando
- Veterinary Clinical Center, NOSAI Hokkaido, Ishikari district, Japan
| | - Katsuro Hagiwara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| |
Collapse
|
7
|
Galani V, Kastamoulas M, Varouktsi A, Lampri E, Mitselou A, Arvanitis DL. IFNs-signaling effects on lung cancer: an up-to-date pathways-specific review. Clin Exp Med 2016; 17:281-289. [PMID: 27416926 DOI: 10.1007/s10238-016-0432-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
IFNs have found important applications in clinical medicine, including the treatment of lung malignancies. The biological effect of the IFN-receptor signaling is regulated essentially by three factors: the expression profile of the IFN itself, the profile of the receptor, and the expression of target genes. IFNs initiate their signaling by binding to specific receptors. The activated IFNs can directly induce gene transcription and/or multiple downstream signaling that both induce diverse cellular responses including the cell cycle arrest and the apoptosis in tumor cells. We provided evidence that IFN-γ enhances the pro cell death effects of Fas/CD95 in human neoplastic alveolar epithelial cell line, A549. We also found that p27 protein plays a pivotal role in the inducing cell death of IFNγ-CH-11-treated A549 cells, since it is involved in the Ras/Raf signaling pathway. This article discusses recent insights into these possible additional functions of IFNs in lung cancer treatment.
Collapse
Affiliation(s)
- Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| | - Michalis Kastamoulas
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | | | - Evangeli Lampri
- Department of Cancer Biobank Center, University of Ioannina, Ioannina, Greece
| | - Antigoni Mitselou
- Department of Forensic Pathology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios L Arvanitis
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
8
|
Vasuthasawat A, Yoo EM, Trinh KR, Lichtenstein A, Timmerman JM, Morrison SL. Targeted immunotherapy using anti-CD138-interferon α fusion proteins and bortezomib results in synergistic protection against multiple myeloma. MAbs 2016; 8:1386-1397. [PMID: 27362935 DOI: 10.1080/19420862.2016.1207030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although recent advances have substantially improved the management of multiple myeloma, it remains an incurable malignancy. We now demonstrate that anti-CD138 molecules genetically fused to type I interferons (IFN) synergize with the approved therapeutic bortezomib in arresting the proliferation of human multiple myeloma cell lines both in vitro and in vivo. The anti-CD138-IFNα14 fusion protein was active in inducing increased expression of signal transducer and activator of transcription 1 (STAT1) and its phosphorylation while the cell death pathway induced by bortezomib included generation of reactive oxygen species. Interferon regulatory factor 4 (IRF4), an important survival factor for myeloma cells, was down regulated following combination treatment. Induction of cell death appeared to be caspase-independent because treatment with inhibitors of caspase activation did not decrease the level of cell death. The observed caspase-independent synergistic cell death involved mitochondrial membrane depolarization, and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and resulted in enhanced induction of apoptosis. Importantly, using 2 different in vivo xenograft models, we found that combination therapy of anti-CD138-IFNα14 and bortezomib was able to cure animals with established tumors (7 of 8 using OCI-My5 or 8 of 8 using NCI-H929). Thus, the combination of anti-CD138-IFNα with bortezomib shows great promise as a novel therapeutic approach for the treatment of multiple myeloma, a malignancy for which there are currently no cures.
Collapse
Affiliation(s)
- Alex Vasuthasawat
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| | - Esther M Yoo
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| | - Kham R Trinh
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| | - Alan Lichtenstein
- c Greater Los Angeles Veterans Administration Healthcare Center , Los Angeles , CA , USA.,d Jonsson Comprehensive Cancer Center , Los Angeles , CA , USA.,e Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - John M Timmerman
- d Jonsson Comprehensive Cancer Center , Los Angeles , CA , USA.,e Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - Sherie L Morrison
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| |
Collapse
|
9
|
Mostafavi S, Yoshida H, Moodley D, LeBoité H, Rothamel K, Raj T, Ye CJ, Chevrier N, Zhang SY, Feng T, Lee M, Casanova JL, Clark JD, Hegen M, Telliez JB, Hacohen N, De Jager PL, Regev A, Mathis D, Benoist C. Parsing the Interferon Transcriptional Network and Its Disease Associations. Cell 2016; 164:564-78. [PMID: 26824662 DOI: 10.1016/j.cell.2015.12.032] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/22/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022]
Abstract
Type 1 interferon (IFN) is a key mediator of organismal responses to pathogens, eliciting prototypical "interferon signature genes" that encode antiviral and inflammatory mediators. For a global view of IFN signatures and regulatory pathways, we performed gene expression and chromatin analyses of the IFN-induced response across a range of immunocyte lineages. These distinguished ISGs by cell-type specificity, kinetics, and sensitivity to tonic IFN and revealed underlying changes in chromatin configuration. We combined 1,398 human and mouse datasets to computationally infer ISG modules and their regulators, validated by genetic analysis in both species. Some ISGs are controlled by Stat1/2 and Irf9 and the ISRE DNA motif, but others appeared dependent on non-canonical factors. This regulatory framework helped to interpret JAK1 blockade pharmacology, different clusters being affected under tonic or IFN-stimulated conditions, and the IFN signatures previously associated with human diseases, revealing unrecognized subtleties in disease footprints, as affected by human ancestry.
Collapse
Affiliation(s)
- Sara Mostafavi
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Statistics and Department Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Hideyuki Yoshida
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Devapregasan Moodley
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hugo LeBoité
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Rothamel
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Towfique Raj
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Translational NeuroPsychiatric Genomics, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Chun Jimmie Ye
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicolas Chevrier
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ting Feng
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Philip L De Jager
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Translational NeuroPsychiatric Genomics, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Arshanapalli A, Shah M, Veerula V, Somani AK. The role of type I interferons and other cytokines in dermatomyositis. Cytokine 2014; 73:319-25. [PMID: 25541432 DOI: 10.1016/j.cyto.2014.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/24/2022]
Abstract
Much work has been done to unveil the mechanisms behind the pathogenesis of dermatomyositis (DM) - mainly those involving certain pathogenic cytokines, termed "pathokines" as the principal cytokines involved. Recently, it has become clear that a group of cytokines known as type I interferons (IFN-Is) play a significant role in the development of DM. We review the literature published between 1946 and 2014 using an Ovid Medline database search to provide an update on the role of IFN-Is and other cytokines in the pathogenesis of DM. We provide information about the genes and proteins induced by IFN-Is and potential mechanisms by which these downstream products relate to clinical disease activity. We also explore findings of other autoimmune phenomena that may contribute to disease onset and activity including T-helper 17 (Th17) cells and associated interleukins, as well as autoantibodies. Finally, we provide a brief update on current treatment options for DM as well as some new immunomodulatory treatment modalities in development.
Collapse
Affiliation(s)
- Ashish Arshanapalli
- Department of Dermatology, Indiana University School of Medicine, 545 Barnhill Dr., Indianapolis, IN 46202, USA
| | - Mihir Shah
- Northeast Ohio Medical University, 4209 SR 44, Rootstown, OH 44272, USA
| | - Vindhya Veerula
- Department of Dermatology, Indiana University School of Medicine, 545 Barnhill Dr., Indianapolis, IN 46202, USA
| | - Ally-Khan Somani
- Department of Dermatology, Indiana University School of Medicine, 545 Barnhill Dr., Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Mollo SB, Ingram JT, Kress RL, Zajac AJ, Harrington LE. Virus-specific CD4 and CD8 T cell responses in the absence of Th1-associated transcription factors. J Leukoc Biol 2013; 95:705-713. [PMID: 24231259 DOI: 10.1189/jlb.0813429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/25/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022] Open
Abstract
Effector and memory CD4 and CD8 T cell responses are critical for the control of many intracellular pathogens. The development of these populations is governed by transcription factors that molecularly control their differentiation, function, and maintenance. Two transcription factors known to be involved in these processes are Tbet and STAT4. Although Tbet has been shown to regulate CD8 T cell fate decisions and effector CD4 T cell choices, the contribution of STAT4 is less well understood. To address this, we examined the impact of STAT4 on T cell responses in the presence or absence of Tbet, following LCMV infection by using mice lacking Tbet, STAT4, or both transcription factors. STAT4 was not required for Tbet or Eomes expression; however, virus-specific effector CD8 T cells are skewed toward a memory-precursor phenotype in the absence of STAT4. This altered proportion of memory precursors did not result in an increase in memory CD8 T cells after the resolution of the infection. We also demonstrate that virus-specific effector and memory CD4 T cells formed independently of Tbet and STAT4, although a slight reduction in the number of antigen-specific CD4 T cells was apparent in mice lacking both transcription factors. Collectively, we have discovered distinct roles for Tbet and STAT4 in shaping the phenotype and function of virus-specific T cell responses.
Collapse
Affiliation(s)
- Sarah B Mollo
- Departments of Cell, Developmental, and Integrative Biology
| | - Jennifer T Ingram
- Biology, and.,Microbiology, University of Alabama at Birmingham, Alabama, USA
| | - Robert L Kress
- Departments of Cell, Developmental, and Integrative Biology
| | - Allan J Zajac
- Microbiology, University of Alabama at Birmingham, Alabama, USA
| | | |
Collapse
|
12
|
Pan H, Ma Y, Wang D, Wang J, Jiang H, Pan S, Zhao B, Wu Y, Xu D, Sun X, Liu L, Xu Z. Effect of IFN-α on KC and LIX expression: role of STAT1 and its effect on neutrophil recruitment to the spleen after lipopolysaccharide stimulation. Mol Immunol 2013; 56:12-22. [PMID: 23644631 DOI: 10.1016/j.molimm.2013.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 01/11/2023]
Abstract
The spleen is a crucial lymphoid organ. It is involved in the recruitment of various immunocytes to their correct locations using specific chemokines, but little is known concerning the role of type-I interferon (IFN) in the regulation of chemokines. In this study, we first used protein microarrays to assess the expression of keratinocyte-derived chemokine (KC) and lipopolysaccharide-induced CXC chemokine (LIX) in murine spleens. Both expressions were smoothly enhanced by IFN-α pretreatment after LPS injection. Then, we focused on the IFN-α regulation of KC, LIX, and their target cells, neutrophils, using an IFN-α neutralizing antibody and fludarabine (specific signal transducers and activators of transcription 1 - STAT1 inhibitor). Next, LPS was found to attenuate the production of KC and LIX in spleen. Even the elevated production of chemokines caused by exogenous IFN-α was found to be attenuated by fludarabine pretreatment. We later determined that the marginal zone and red pulp are the main sites of KC and LIX production. Last, we determined that the number of neutrophils was slightly increased by IFN-α treatment and diminished by IFN-α neutralization or fludarabine treatment. Further, the elevated neutrophils due to exogenous IFN-α were partially reversed by fludarabine pretreatment. In this way, these results indicate that IFN-α facilitates KC and LIX expression in mouse spleens after an LPS challenge. This effect was found to be mainly dependent upon the activation of STAT1, it may be involved in the recruitment of neutrophils to the spleen for the clearance of pathogens.
Collapse
Affiliation(s)
- Huayang Pan
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bekisz J, Sato Y, Johnson C, Husain SR, Puri RK, Zoon KC. Immunomodulatory effects of interferons in malignancies. J Interferon Cytokine Res 2013; 33:154-61. [PMID: 23570381 DOI: 10.1089/jir.2012.0167] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Investigation of the antitumor and immunomodulatory activities of interferon (IFN) began shortly after the cytokine was discovered in 1957. Early work showed a direct correlation between administration of IFN and inhibition of symptoms associated with virally induced leukemia in mice as well as an increase in their survival time. Subsequent studies with purified IFNs confirmed the direct and indirect stimulation of immune cells, resulting in antitumor activities of IFN. Clinically, IFN-alphas (αs) have been shown to have activity against a variety of tumors. Initially, the U.S. Food and Drug Administration licensed 2 recombinant IFN-αs for the treatment of hairy-cell leukemia and then later for several other cancers. The success rate seen with IFNs and certain tumors has been varied. Unfortunately, some neoplasms show no response to IFN. Monocytes/macrophages play an important role in cancer progression. Monocytes in combination with IFN may be an important therapy for several cancers. This article focuses on the role of IFN and monocytes alone or in combination in affecting malignancies.
Collapse
Affiliation(s)
- Joseph Bekisz
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
14
|
A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase. Exp Cell Res 2013; 319:1471-81. [PMID: 23562842 DOI: 10.1016/j.yexcr.2013.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells.
Collapse
|
15
|
Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, Nikolsky Y, Bessarabova M. Drug target prediction and repositioning using an integrated network-based approach. PLoS One 2013; 8:e60618. [PMID: 23593264 PMCID: PMC3617101 DOI: 10.1371/journal.pone.0060618] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/28/2013] [Indexed: 11/18/2022] Open
Abstract
The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example.
Collapse
Affiliation(s)
- Dorothea Emig
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Alexander Ivliev
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Olga Pustovalova
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Lee Lancashire
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Svetlana Bureeva
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Yuri Nikolsky
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
| | - Marina Bessarabova
- IP & Science, Thomson Reuters, Carlsbad, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Tanaka MH, Giro EMA, Cavalcante LB, Pires JR, Apponi LH, Valentini SR, Spolidório DMP, Capela MV, Rossa C, Scarel-Caminaga RM. Expression of interferon-γ, interferon-α and related genes in individuals with Down syndrome and periodontitis. Cytokine 2012; 60:875-81. [PMID: 22995210 DOI: 10.1016/j.cyto.2012.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/18/2012] [Accepted: 08/18/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Recently, attenuation of anti-inflammatory and increase of pro-inflammatory mediators was demonstrated in individuals with Down syndrome (DS) in comparison with euploid patients during periodontal disease (PD), suggesting a shift to a more aggressive inflammation in DS. AIM To determine the influence of DS in the modulation of interferons (IFNs) signaling pathway in PD. MATERIALS AND METHODS Clinical periodontal assessment was performed and gingival tissue samples obtained from a total of 51 subjects, including 19 DS individuals with PD, 20 euploid individuals with PD and 12 euploid individuals without PD. Expression levels of interferon-gamma (IFNG) and interferon-alpha (IFNA), and their receptors IFNGR1, IFNGR2, IFNAR1 and IFNAR2, the signaling intermediates Janus kinase 1 (JAK1), signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1) were determined using real time quantitative polymerase chain reaction (qPCR). RESULTS Clinical signs of periodontal disease were markedly more severe in DS and euploid patients with PD in comparison to euploid and periodontally healthy patients. There was no difference on mRNA levels of IFNA, IFNG, INFGR2, IFNAR1 and IFNAR2 between DS and euploid individuals, even though some of these genes are located on chromosome 21. STAT1 and IRF1 mRNA levels were significantly lower in DS patients in comparison with euploid individuals with PD. In euploid individuals, PD was associated with an increased expression of IFNGR1, IFNGR2, IFNAR1, STAT1 and IRF1. CONCLUSIONS Reduced expression of STAT1 and IRF1 genes indicate an impaired activation of IFNs signaling in individuals with DS and PD. Expression of IFNA, IFNG and IFN receptors was not altered in DS patients, indicating that indirect mechanisms are involved in the reduced activation of IFN signaling.
Collapse
Affiliation(s)
- Marcia H Tanaka
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, UNESP - Univ. Estadual Paulista, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Palmer AM. Immunomodulatory medicines for multiple sclerosis: Progress and prospects. Drug Dev Res 2011. [DOI: 10.1002/ddr.20476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Testoni B, Völlenkle C, Guerrieri F, Gerbal-Chaloin S, Blandino G, Levrero M. Chromatin dynamics of gene activation and repression in response to interferon alpha (IFN(alpha)) reveal new roles for phosphorylated and unphosphorylated forms of the transcription factor STAT2. J Biol Chem 2011; 286:20217-27. [PMID: 21498520 PMCID: PMC3121502 DOI: 10.1074/jbc.m111.231068] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/06/2011] [Indexed: 01/01/2023] Open
Abstract
Signal transducer and activator of transcription 2 (STAT2), the critical component of type I interferons signaling, is a prototype latent cytoplasmic signal-dependent transcription factor. Activated tyrosine-phosphorylated STAT2 associates with STAT1 and IRF9 to bind the ISRE elements in the promoters of a subset of IFN-inducible genes (ISGs). In addition to activate hundreds of ISGs, IFNα also represses numerous target genes but the mechanistic basis for this dual effect and transcriptional repression is largely unknown. We investigated by ChIP-chip the binding dynamics of STAT2 and "active" phospho(P)-STAT2 on 113 putative IFNα direct target promoters before and after IFNα induction in Huh7 cells and primary human hepatocytes (PHH). STAT2 is already bound to 62% of our target promoters, including most "classical" ISGs, before IFNα treatment. 31% of STAT2 basally bound promoters also show P-STAT2 positivity. By correlating in vivo promoter occupancy with gene expression and changes in histone methylation marks we found that: 1) STAT2 plays a role in regulating ISGs expression, independently from its phosphorylation; 2) P-STAT2 is involved in ISGs repression; 3) "activated" ISGs are marked by H3K4me1 and H3K4me3 before IFNα; 4) "repressed" genes are marked by H3K27me3 and histone methylation plays a dominant role in driving IFNα-mediated ISGs repression.
Collapse
Affiliation(s)
- Barbara Testoni
- From the Laboratory of Gene Expression, Fondazione A. Cesalpino, 00161 Rome, Italy
- the Rome Oncogenomic Center, Regina Elena Cancer Institute, 00144 Rome, Italy
| | - Christine Völlenkle
- From the Laboratory of Gene Expression, Fondazione A. Cesalpino, 00161 Rome, Italy
- the Rome Oncogenomic Center, Regina Elena Cancer Institute, 00144 Rome, Italy
| | - Francesca Guerrieri
- From the Laboratory of Gene Expression, Fondazione A. Cesalpino, 00161 Rome, Italy
- the LEA INSERM U785 and Sapienza University, 00161 Rome, Italy
| | | | - Giovanni Blandino
- the Rome Oncogenomic Center, Regina Elena Cancer Institute, 00144 Rome, Italy
- the Regina Elena Cancer Institute, Translational Oncogenomic Unit, 00144 Rome, Italy, and
| | - Massimo Levrero
- From the Laboratory of Gene Expression, Fondazione A. Cesalpino, 00161 Rome, Italy
- the Rome Oncogenomic Center, Regina Elena Cancer Institute, 00144 Rome, Italy
- the LEA INSERM U785 and Sapienza University, 00161 Rome, Italy
- the DMISM, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
19
|
Testoni B, Schinzari V, Guerrieri F, Gerbal-Chaloin S, Blandino G, Levrero M. p53-paralog DNp73 oncogene is repressed by IFNα/STAT2 through the recruitment of the Ezh2 polycomb group transcriptional repressor. Oncogene 2011; 30:2670-8. [PMID: 21399658 PMCID: PMC3114186 DOI: 10.1038/onc.2010.635] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/02/2010] [Accepted: 12/14/2010] [Indexed: 01/05/2023]
Abstract
The DNp73 proteins act as trans-repressors of p53 and p73-dependent transcription and exert both anti-apoptotic activity and pro-proliferative activity. DNp73s are frequently up-regulated in a variety of human cancers, including human hepatocellular carcinomas (HCCs). Increased levels of DNp73 proteins confer to HCC cells resistance to apoptosis and, irrespective to p53 status, a chemoresistant phenotype. Here, we show that interferon (IFN)α down-regulates DNp73 expression in primary human hepatocytes (PHHs) and HCC cell lines. IFNα has been used as pro-apoptotic agent in the treatment of malignancies and there is increasing evidence of IFNα effectiveness in HCC treatment and prevention of recurrence. The precise mechanisms by which class I IFNs exert their anti-proliferative and anti-tumor activity remain unclear. IFNα binding to its receptor activates multiple intracellular signaling cascades regulating the transcription of numerous direct target genes through the recruitment of a complex comprising of STAT1, STAT2 and IFN regulatory factor (IRF)9 to their promoters. We found that, in response to IFNα, the P2p73 promoter undergoes substantial chromatin remodeling. Histone deacetylases (HDACs) replace histone acetyl transferases. STAT2 is recruited onto the endogenous P2p73 promoter together with the polycomb group protein Ezh2, leading to increased H3K27 methylation and transcriptional repression. The reduction of DNp73 levels by IFNα is paralleled by an increased susceptibility to IFNα-triggered apoptosis of Huh7 hepatoma cells. Our results show, for the first time, that IFN-stimulated gene factor 3 recruitment may serve both in activating and repressing gene expression and identify the down-regulation of DNp73 as an additional mechanism to counteract the chemoresistance of liver cancer cells.
Collapse
Affiliation(s)
- B Testoni
- Laboratory of Gene Expression, Fondazione A. Cesalpino, Rome, Italy
- Rome Oncogenomic Center, IRE, Rome, Italy
- Department of Internal Medicine, University La Sapienza, Rome, Italy
| | - V Schinzari
- Laboratory of Gene Expression, Fondazione A. Cesalpino, Rome, Italy
- LEA INSERM U785, Villejuif, France
- Sapienza University, Rome, Italy
| | - F Guerrieri
- Laboratory of Gene Expression, Fondazione A. Cesalpino, Rome, Italy
- LEA INSERM U785, Villejuif, France
- Sapienza University, Rome, Italy
| | - S Gerbal-Chaloin
- INSERM U632, Institut de Recherche en Biothérapie, Montpellier, France
| | - G Blandino
- Rome Oncogenomic Center, IRE, Rome, Italy
| | - M Levrero
- Laboratory of Gene Expression, Fondazione A. Cesalpino, Rome, Italy
- Rome Oncogenomic Center, IRE, Rome, Italy
- Department of Internal Medicine, University La Sapienza, Rome, Italy
- LEA INSERM U785, Villejuif, France
- Sapienza University, Rome, Italy
| |
Collapse
|
20
|
Burnette B, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, Fu YX, Auh SL. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 2011; 71:2488-96. [PMID: 21300764 PMCID: PMC3070872 DOI: 10.1158/0008-5472.can-10-2820] [Citation(s) in RCA: 690] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The most widely held explanation for the efficacy of local radiotherapy (RT) is based on direct cytotoxicity to cancer cells through the induction of lethal DNA damage. Recent studies have shown that local ablative radiation of established tumors can lead to increased T-cell priming and T-cell-dependent tumor regression, but the underlying mechanism remains unclear. Here, we describe an essential role for type I IFN in local RT-mediated tumor control. We show that ablative RT increases intratumoral production of IFN-β and, more surprisingly, the antitumor effect of RT is abolished in type I IFN nonresponsive hosts. Furthermore, the major target of RT-induced type I IFN is the hematopoietic compartment. RT drastically enhances the cross-priming capacity of tumor-infiltrating dendritic cells (TIDC) from wild-type mice but not type I IFN receptor-deficient mice. The enhanced cross-priming ability of TIDCs after RT was dependent on autocrine production of type I IFNs. By using adenoviral-mediated expression of IFN-β, we show that delivery of exogenous IFN-β into the tumor tissue in the absence of RT is also sufficient to selectively expand antigen-specific T cells leading to complete tumor regression. Our study reveals that local high-dose RT can trigger production of type I IFN that initiates a cascading innate and adaptive immune attack on the tumor.
Collapse
Affiliation(s)
- Byron Burnette
- Department of Pathology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637
| | - Hua Liang
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637
| | - Youjin Lee
- Department of Pathology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637
| | - Lukasz Chlewicki
- Department of Pathology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637
| | - Nikolai N. Khodarev
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637
| | - Yang-Xin Fu
- Department of Pathology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637
| | - Sogyong L. Auh
- Department of Pathology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637
| |
Collapse
|
21
|
Danesh A, Cameron CM, León AJ, Ran L, Xu L, Fang Y, Kelvin AA, Rowe T, Chen H, Guan Y, Jonsson CB, Cameron MJ, Kelvin DJ. Early gene expression events in ferrets in response to SARS coronavirus infection versus direct interferon-alpha2b stimulation. Virology 2011; 409:102-12. [PMID: 21035159 PMCID: PMC7111932 DOI: 10.1016/j.virol.2010.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 08/23/2010] [Accepted: 10/01/2010] [Indexed: 11/17/2022]
Abstract
Type I interferons (IFNs) are essential to the clearance of viral diseases, however, a clear distinction between genes upregulated by direct virus-cell interactions and genes upregulated by secondary IFN production has not been made. Here, we investigated differential gene regulation in ferrets upon subcutaneous administration of IFN-α2b and during SARS-CoV infection. In vivo experiments revealed that IFN-α2b causes STAT1 phosphorylation and upregulation of abundant IFN response genes (IRGs), chemokine receptors, and other genes that participate in phagocytosis and leukocyte transendothelial migration. During infection with SARS-CoV not only a variety of IRGs were upregulated, but also a significantly broader range of genes involved in cell migration and inflammation. This work allowed dissection of several molecular signatures present during SARS-CoV which are part of a robust IFN antiviral response. These signatures can be useful markers to evaluate the status of IFN responses during a viral infection and specific features of different viruses.
Collapse
Affiliation(s)
- Ali Danesh
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gao B, Wang Y, Xu W, Duan Z, Xiong S. A 5′ Extended IFN-Stimulating Response Element Is Crucial for IFN-γ–Induced Tripartite Motif 22 Expression via Interaction with IFN Regulatory Factor-1. THE JOURNAL OF IMMUNOLOGY 2010; 185:2314-23. [DOI: 10.4049/jimmunol.1001053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Wei X, Ni H, Wang Q, Xiang R, Wang Y. Impact of STAT4 gene silencing on the expression profile of proteins in EL-4 cells. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0468-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Burdick LM, Somani N, Somani AK. Type I IFNs and their role in the development of autoimmune diseases. Expert Opin Drug Saf 2009; 8:459-72. [PMID: 19548860 DOI: 10.1517/14740330903066726] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Since their initial use in the 1980s, IFNs have become an essential component of the therapy for many diseases such as hepatitis and multiple sclerosis. Although they have been extremely useful in conditions that pose therapeutic challenges, complications associated with their use have been widely reported including emerging reports of several autoimmune diseases. Many of these reports have shed light on the pathogenesis of autoimmune disorders and helped to highlight not only the critical role of type I IFNs in defense against viral infections but also the pivotal role they occupy in the interface between innate and adaptive immunity. Many patients with autoimmune disease have increased responsiveness to type I IFNs (alpha/beta), and therapy with these cytokines has induced or unmasked autoimmune disease in many additional patients. OBJECTIVE The objective of this paper is to discuss the role of type I IFNs in autoimmunity. METHODS The literature regarding type I IFNs and autoimmunity was reviewed using the Medline database from 1950 to 2009. Search terms included 'interferon alpha' and 'autoimmune disease' and 'interferon beta' and 'autoimmune disease'. Case reports, case series, reviews and prospective studies were included in the analysis. RESULTS/CONCLUSIONS In the literature a variety of autoimmune disorders have reportedly been induced by the use of type I IFNs, being used, although these are primarily in the form of case reports and case series. Nevertheless, there is a growing body of molecular evidence to support the clinical association. The role of IFNs in the induction of autoimmunity is complex with interplay of many genetic and environmental factors that influence the balance between normal and aberrant immune responsiveness, ultimately leading to the observed clinical manifestations.
Collapse
Affiliation(s)
- Laura M Burdick
- Dermatology & Plastic Surgery Institute, Cleveland Clinic Health System, Department of Dermatology, 9500 Euclid Avenue, Desk A61, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
25
|
de Lang A, Baas T, Smits SL, Katze MG, Osterhaus AD, Haagmans BL. Unraveling the complexities of the interferon response during SARS-CoV infection. Future Virol 2009; 4:71-78. [PMID: 19885368 DOI: 10.2217/17460794.4.1.71] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Viruses employ different strategies to circumvent the antiviral actions of the innate immune response. SARS coronavirus (SARS-CoV), a virus that causes severe lung damage, encodes an array of proteins able to inhibit induction and signaling of type-I interferons. However, recent studies have demonstrated that interferons are produced during SARS-CoV infection in humans and macaques. Furthermore, nuclear translocation of activated STAT1 and a range of interferon-stimulated genes could be demonstrated in the lungs of SARS-CoV-infected macaques. In line with these observations, plasmacytoid dendritic cells have been shown to produce interferons upon SARS-CoV infection in vitro. Given the pivotal role of interferons during viral infections, (differential) induction of interferons may affect the outcome of the infection. Therefore, the functional implication of interferon production during SARS-CoV infection remains to be re-investigated.
Collapse
Affiliation(s)
- Anna de Lang
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Jørgensen SM, Afanasyev S, Krasnov A. Gene expression analyses in Atlantic salmon challenged with infectious salmon anemia virus reveal differences between individuals with early, intermediate and late mortality. BMC Genomics 2008; 9:179. [PMID: 18423000 PMCID: PMC2387173 DOI: 10.1186/1471-2164-9-179] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/18/2008] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Infectious salmon anemia virus (ISAV) causes a multisystemic disease responsible for severe losses in salmon aquaculture. Better understanding of factors that explain variations in resistance between individuals and families is essential for development of strategies for disease control. To approach this, we compared global gene expression using microarrays in fish dying early and late in the time course following infection from a highly pathogenic ISAV. RESULTS Tissues (gill, heart, liver and spleen) from infected Atlantic salmon (cohabitation, ISAV Glesvaer 2/90 isolate) were collected from three stages over the time course of the experiment; early (EM, 0-10% cumulative mortality (CM), 21-25 days post-infection (DPI)), intermediate (IM, 35-55% CM, 28-31 DPI) and late (LM, 75-85% CM, 37-48 DPI) mortality. Viral loads were equal in EM and IM but dropped markedly in LM fish. Gene expression analyses using a 1.8 K salmonid fish cDNA microarray (SFA2.0) and real-time qPCR revealed a large group of genes highly up-regulated across tissues in EM, which were mainly implicated in innate antiviral responses and cellular stress. Despite equal levels of MHC class I in EM and LM, increase of splenic and cardiac expression of immunoglobulin-like genes was found only in LM while a suite of adaptive immunity markers were activated already in IM. The hepatic responses to ISAV were characterized by difference between EM and LM in expression of chaperones and genes involved in eicosanoid metabolism. To develop classification of high and low resistance phenotypes based on a small number of genes, we processed results from qPCR analyses of liver using a linear discriminant analysis. Four genes (5-lipoxygenase activating protein, cytochrome P450 2K4-1, galectin-9 and annexin A1) were sufficient for correct assignment of individuals to EM, LM and uninfected groups, while IM was inseparable from EM. Three of four prognostic markers are involved in metabolism of inflammatory regulators. CONCLUSION This study adds to the understanding of molecular determinants for resistance to acute ISAV infection. The most susceptible individuals were characterized by high viral replication and dramatic activation of innate immune responses, which did not provide protection. The ability to endure high levels of infection for sustained periods could be associated with lower inflammatory responses while subsequent protection and viral clearance was most likely conferred by activation of adaptive immunity.
Collapse
|
27
|
Pentón-Rol G, Cervantes-Llanos M, Cabrera-Gómez JA, Alonso-Ramírez R, Valenzuela-Silva C, Rodríguez-Lara R, Montero-Casimiro E, Bello-Rivero I, López-Saura P. Treatment with type I interferons induces a regulatory T cell subset in peripheral blood mononuclear cells from multiple sclerosis patients. Int Immunopharmacol 2008; 8:881-6. [PMID: 18442793 DOI: 10.1016/j.intimp.2008.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 02/07/2008] [Accepted: 02/07/2008] [Indexed: 11/30/2022]
Abstract
Type I Interferon (IFN-alpha/beta) therapy has altered the natural course of multiple sclerosis. In this paper we evaluate the possible molecular mechanisms involved in the in vitro effects of IFN-alpha/beta on peripheral blood mononuclear cells from patients with clinically definite Relapsing-Remitting Multiple Sclerosis. The total RNA from IFN-alpha, IFN-beta treated cells and untreated cells was extracted and amplified for CD86, CD28, CTLA-4, TNF-alpha, IFN-gamma, CCL2, CCR5, IL-13, MMP-9, TIMP-1, CD25, TGF-beta, IL-10 and the transcriptional factor Foxp3 by Reverse Transcription-Polymerase Chain Reaction and the CD4+CD25high subset was evaluated using flow cytometry. In general, there were no significant differences concerning the modulation of the genes studied in the response to IFN-alpha and IFN-beta treatments, which suggest a similar mechanism of action for both interferons. However, we found a significant increment in IFN-gamma expression after IFN-alpha but not after IFN-beta treatments. The in vitro treatment of mononuclear cells from multiple sclerosis patients with both interferons significantly increased the CD25 mRNA. Furthermore, we observed a CD25/Foxp3 correlation and an increment of the CD4+CD25high subset, indicating that the induction of regulatory T cells could be a crucial mechanism involved in the type I interferon effects.
Collapse
Affiliation(s)
- G Pentón-Rol
- Clinical Trials Division, Center for Biological Research, PO. Box: 6332, Havana 10 600, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
S-glutathionylation of IRF3 regulates IRF3-CBP interaction and activation of the IFN beta pathway. EMBO J 2008; 27:865-75. [PMID: 18309294 DOI: 10.1038/emboj.2008.28] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 02/07/2008] [Indexed: 01/08/2023] Open
Abstract
Interferon regulatory factor 3 (IRF3) is an essential transcriptional regulator of the interferon genes. IRF3 is constitutively present in a latent conformation in the cell cytoplasm. In cells infected by Sendai virus, IRF3 becomes phosphorylated, homodimerizes, translocates to the nucleus, binds to target genes and activates transcription by interacting with CBP/p300 co-activators. In this study, we report that in non-infected cells IRF3 is post-translationally modified by S-glutathionylation. Upon viral-infection, it undergoes a deglutathionylation step that is controlled by the cytoplasmic enzyme glutaredoxin-1 (GRX-1). In virus-infected GRX-1 knockdown cells, phosphorylation, homodimerization and nuclear translocation of IRF3 were not affected, but the transcriptional activity of IRF3 and the expression of interferon-beta (IFNbeta), were severely reduced. We show that deglutathionylation of IRF3 is necessary for efficient interaction of IRF3 with CBP, an event essential for transcriptional activation of the interferon genes. Taken together, these findings reveal a crucial role for S-glutathionylation and GRX-1 in controlling the activation of IRF3 and IFNbeta gene expression.
Collapse
|
29
|
Ananko EA, Kondrakhin YV, Merkulova TI, Kolchanov NA. Recognition of interferon-inducible sites, promoters, and enhancers. BMC Bioinformatics 2007; 8:56. [PMID: 17309789 PMCID: PMC1810324 DOI: 10.1186/1471-2105-8-56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 02/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Computational analysis of gene regulatory regions is important for prediction of functions of many uncharacterized genes. With this in mind, search of the target genes for interferon (IFN) induction appears of interest. IFNs are multi-functional cytokines. Their effects are immunomodulatory, antiviral, antibacterial, and antitumor. The interaction of the IFNs with their cell surface receptors produces an activation of several transcription factors. Four regulatory factors, ISGF3, STAT1, IRF1, and NF-kappaB, are essential for the function of the IFN system. The aim of this work is the development of computational approaches for the recognition of DNA binding sites for these factors and computer programs for the prediction of the IFN-inducible regions. RESULTS We developed computational approaches to the recognition of the binding sites for ISGF3, STAT1, IRF1, and NF-kappaB. Analysis of the distribution of these binding sites demonstrated that the regions -500 upstream of the transcription start site in IFN-inducible genes are enriched in putative binding sites for these transcription factors. Based on selected combinations of the sites whose frequencies were significantly higher than in the other functional gene groups, we developed methods for the prediction of the IFN-inducible promoters and enhancers. We analyzed 1004 sequences of the IFN-inducible genes compiled using microarray data analyses and also about 10,000 human gene sequences from the EPD and RefSeq databases; 74 of 1,664 human genes annotated in EPD were significantly IFN-inducible. CONCLUSION Analyses of several control datasets demonstrated that the developed methods have a high accuracy of prediction of the IFN-inducible genes. Application of these methods to several datasets suggested that the number of the IFN-inducible genes is approximately 1500-2000 in the human genome.
Collapse
Affiliation(s)
- Elena A Ananko
- Institute of Cytology and Genetics SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia
| | - Yury V Kondrakhin
- Institute of Cytology and Genetics SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia
- Institute of Systems Biology, Novosibirsk, Russia
- Design Technological Institute of Digital Techniques SB RAS, Novosibirsk, Russia
| | - Tatiana I Merkulova
- Institute of Cytology and Genetics SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics SB RAS, Lavrentiev av., 10, 630090 Novosibirsk, Russia
| |
Collapse
|
30
|
Du Z, Wei L, Murti A, Pfeffer SR, Fan M, Yang CH, Pfeffer LM. Non-conventional signal transduction by type 1 interferons: The NF-κB pathway. J Cell Biochem 2007; 102:1087-94. [PMID: 17910035 DOI: 10.1002/jcb.21535] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type I interferons (IFNs) regulate diverse cellular functions by modulating the expression of IFN-stimulated genes (ISGs) through the activation of the well established signal transduction pathway of the Janus Kinase (JAK) and signal transducers and activators of transcription (STAT) proteins. Although the JAK-STAT signal transduction pathway is critical in mediating IFN's antiviral and antiproliferative activities, other signaling pathways are activated by IFNs and regulate cellular response to IFN. The NF-kappaB transcription factor regulates the expression of genes involved in cell survival and immune responses. We have identified a novel IFN mediated signal pathway that leads to NF-kappaB activation and demonstrate that a subset of ISGs that play key roles in cellular response to IFN is regulated by NF-kappaB. This review focuses on the IFN-induced NF-kappaB activation pathway and the role of NF-kappaB in ISG expression, antiviral activity and apoptosis, and the therapeutic application of IFN in cancer and infectious disease.
Collapse
Affiliation(s)
- Ziyun Du
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, University of Tennessee Cancer Institute, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Brierley MM, Marchington KL, Jurisica I, Fish EN. Identification of GAS-dependent interferon-sensitive target genes whose transcription is STAT2-dependent but ISGF3-independent. FEBS J 2006; 273:1569-81. [PMID: 16689942 DOI: 10.1111/j.1742-4658.2006.05176.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signal transducer and activator of transcription 2 (STAT2) is best known as a critical transactivator component of the interferon-stimulated gene factor 3 (ISGF3) complex that drives the expression of many interferon (IFN)-inducible genes. However, STAT2 is also involved in DNA binding in non-ISGF3 transcriptional complexes. We used a DNA microarray to survey the expression of genes regulated by IFN-inducible, STAT2-dependent DNA binding, and compared the cDNAs of IFN-treated cells overexpressing intact STAT2 to those of IFN-treated cells overexpressing mutated STAT2 lacking the DNA binding domain. The IFN-inducible expression of genes known to be regulated by ISGF3 was similar in both cases. However, a subset of IFN-inducible genes was identified whose expression was decreased in cells expressing the mutated STAT2. Importantly, these genes all contained gamma-activated sequence (GAS)-like elements in their 5' flanking sequences. Our data reveal the existence of a collection of GAS-regulated target genes whose expression is IFN-inducible and independent of ISGF3 but highly dependent on the STAT2 DNA binding domain. This report is the first analysis of the contribution of the STAT2 DNA binding domain to IFN responses on a global basis, and shows that STAT2 is required for the IFN-inducible activation of the full spectrum of GAS target genes.
Collapse
Affiliation(s)
- Melissa M Brierley
- Department of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
32
|
Hahn AM, Huye LE, Ning S, Webster-Cyriaque J, Pagano JS. Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J Virol 2005; 79:10040-52. [PMID: 16014964 PMCID: PMC1181586 DOI: 10.1128/jvi.79.15.10040-10052.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection stimulates potent antiviral responses; specifically, Epstein-Barr virus (EBV) infection induces and activates interferon regulatory factor 7 (IRF-7), which is essential for production of alpha/beta interferons (IFN-alpha/beta) and upregulates expression of Tap-2. Here we present evidence that during cytolytic viral replication the immediate-early EBV protein BZLF-1 counteracts effects of IRF-7 that are central to host antiviral responses. We initiated these studies by examining IRF-7 protein expression in vivo in lesions of hairy leukoplakia (HLP) in which there is abundant EBV replication but the expected inflammatory infiltrate is absent. This absence might predict that factors involved in the antiviral response are absent or inactive. First, we detected significant levels of IRF-7 in the nucleus, as well as in the cytoplasm, of cells in HLP lesions. IRF-7 activity in cell lines during cytolytic viral replication was examined by assay of the IRF-7-responsive promoters, IFN-alpha4, IFN-beta, and Tap-2, as well as of an IFN-stimulated response element (ISRE)-containing reporter construct. These reporter constructs showed consistent reduction of activity during lytic replication. Both endogenous and transiently expressed IRF-7 and EBV BZLF-1 proteins physically associate in cell culture, although BZLF-1 had no effect on the nuclear localization of IRF-7. However, IRF-7-dependent activity of the IFN-alpha4, IFN-beta, and Tap-2 promoters, as well as an ISRE promoter construct, was inhibited by BZLF-1. This inhibition occurred in the absence of other EBV proteins and was independent of IFN signaling. Expression of BZLF-1 also inhibited activation of IRF-7 by double-stranded RNA, as well as the activity of a constitutively active mutant form of IRF-7. Negative regulation of IRF-7 by BZLF-1 required the activation domain but not the DNA-binding domain of BZLF-1. Thus, EBV may subvert cellular antiviral responses and immune detection by blocking the activation of IFN-alpha4, IFN-beta, and Tap-2 by IRF-7 through the medium of BZLF-1 as a negative regulator.
Collapse
Affiliation(s)
- Angela M Hahn
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | | | |
Collapse
|