1
|
Moszak M, Marcickiewicz J, Pelczyńska M, Bogdański P. The Interplay Between Psychological and Neurobiological Predictors of Weight Regain: A Narrative Review. Nutrients 2025; 17:1662. [PMID: 40431402 DOI: 10.3390/nu17101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction: Obesity is a global health problem requiring effective interventions to achieve weight loss and maintain it in the long term. A major challenge for clinicians is weight regain (WR), defined as progressive weight gain following successful weight loss. WR is affected by multiple factors, including psychological traits linked to specific brain alterations. Understanding these mechanisms is crucial in developing strategies to prevent WR and to ensure effective weight control. Objectives: This narrative review aims to gather current findings on the psychological and neurobiological determinants of WR and to discuss the interplay between these factors. Methods: A literature search was conducted on PubMed, Medline, and Web of Science for English-language studies published between December 1990 and November 2024. Results: WR is driven by interconnected psychological and neurobiological factors that influence eating behavior and the regulation of body weight. Certain personality traits and emotional patterns are associated with specific changes in brain activity, which together affect vulnerability to WR. Although distinct mechanisms can be identified, the complexity of homeostatic and nonhomeostatic appetite control suggests that no single factor predominates. Conclusions: This review highlights the dynamic interplay between psychological and neurobiological predictors of WR. However, due to the narrative nature of this review, the focus on selected determinants, and the limited quality and size of the available studies, further research is needed to comprehensively understand causality and to improve relapse prevention strategies.
Collapse
Affiliation(s)
- Małgorzata Moszak
- Department of Obesity and Metabolic Disorder Treatment and Clinical Dietetics, Poznań University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
| | - Justyna Marcickiewicz
- Faculty of Medicine, Poznań University of Medical Sciences, 70 Bukowska Street, 60-812 Poznan, Poland
| | - Marta Pelczyńska
- Department of Obesity and Metabolic Disorder Treatment and Clinical Dietetics, Poznań University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
| | - Paweł Bogdański
- Department of Obesity and Metabolic Disorder Treatment and Clinical Dietetics, Poznań University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
| |
Collapse
|
2
|
Xu T, Liu JJ, Liu ZQ, Qi XG, Zhang HW, Liu L, Ban XY, Li Q, Han XD, Zheng H, Huang XY, Di JZ. Altered asymmetry of amygdala volume mediates food addiction and weight gain. J Behav Addict 2025; 14:522-533. [PMID: 39841154 PMCID: PMC11974441 DOI: 10.1556/2006.2024.00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 10/11/2024] [Accepted: 12/07/2024] [Indexed: 01/23/2025] Open
Abstract
Background Food addiction and an impulsive personality can increase overeating, which can lead to weight gain. The amygdala and nucleus accumbens (NAcc) are critical for regulating obesogenic behaviour. However, whether the amygdala or the NAcc acts as the neural basis for the regulation of food addiction, impulsive personality, and body weight remains unclear. Methods We examined the differences in the volume of the amygdala and NAcc, especially the lateralization index (LI), between 33 obese participants and 39 age- and sex-matched healthy controls. The associations of the LI of each brain region with clinical variables and body mass index (BMI) were identified using network analysis. Finally, we explored the relationships among the LIs of brain regions, impulsive personality, food addiction, and BMI through a multiple chain mediation model. Results We observed a significant decrease in the LI of the amygdala in the obese group compared with the healthy group (F = 20.276, p < 0.001), which indicates that the right amygdala was larger than the left amygdala in the obese group. Network analysis revealed that the LI of the amygdala was very closely associated with nonplanning impulsivity, food addiction and BMI. The results of the mediation analysis indicated that increased nonplanning impulsiveness could lead to weight gain through increased food addiction (β = 0.069, SE = 0.043, 95% CI [0.014, 0.184]). Moreover, in this symptom chain, the LI of the amygdala can mediate the relationship between food addiction and BMI (β = 0.018, SE = 0.014, 95% CI [0.002, 0.061]). Conclusion Our observations indicate a substantial reduction in the LI of the amygdala among individuals with obesity, suggesting a structural predisposition. The findings reveal a potential neural mechanism that can help explain the interplay between impulsivity, food addiction, and obesity.
Collapse
Affiliation(s)
- Ting Xu
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jing-Jing Liu
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zi-Qi Liu
- Department of Psychology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, National Children’s Regional Medical Center, Hefei 230051, China
| | - Xu-Ge Qi
- Department of Psychology, Zhejiang Normal University, Jinhua 321004, China
| | - Hong-Wei Zhang
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lin Liu
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xu-Yan Ban
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qing Li
- MR Collaborations, Siemens Healthcare Ltd., Shanghai, China
| | - Xiao-Dong Han
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hui Zheng
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Centre for Mental Disorders, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xin-Yu Huang
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jian-Zhong Di
- Department of Metabolic & Bariatric Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
3
|
Radhakrishna U, Kuracha MR, Hamzavi I, Saiyed N, Prajapati J, Rawal RM, Uppala LV, Damiani G, Ratnamala U, Nath SK. Impaired Molecular Mechanisms Contributing to Chronic Pain in Patients with Hidradenitis Suppurativa: Exploring Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2025; 26:1039. [PMID: 39940809 PMCID: PMC11817842 DOI: 10.3390/ijms26031039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic skin condition that primarily affects areas with dense hair follicles and apocrine sweat glands, such as the underarms, groin, buttocks, and lower breasts. Intense pain and discomfort in HS have been commonly noted, primarily due to the lesions' effects on nearby tissues. Pain is a factor that can influence DNA methylation patterns, though its exact role in HS is not fully understood. We aim to identify molecular markers of chronic pain in HS patients. We performed DNA methylome of peripheral blood DNA derived from a group of 24 patients with HS and 24 healthy controls, using Illumina methylation array chips. We identified 253 significantly differentially methylated CpG sites across 253 distinct genes regulating pain sensitization in HS, including 224 hypomethylated and 29 hypermethylated sites. Several genes with pleiotropic roles include transporters (ABCC2, SLC39A8, SLC39A9), wound healing (MIR132, FGF2, PDGFC), ion channel regulators (CACNA1C, SCN1A), oxidative stress mediators (SCN8A, DRD2, DNMT1), cytochromes (CYP19A, CYP1A2), cytokines (TGFB1, IL4), telomere regulators (CSNK1D, SMAD3, MTA1), circadian rhythm (IL1R2, ABCG1, RORA), ultradian rhythms (PHACTR1, TSC2, ULK1), hormonal regulation (PPARA, NR3C1, ESR2), and the serotonin system (HTR1D, HTR1E, HTR3C, HTR4, TPH2). They also play roles in glucose metabolism (POMC, IRS1, GNAS) and obesity (DRD2, FAAH, MMP2). Gene ontology and pathway enrichment analysis identified 43 pathways, including calcium signaling, cocaine addiction, and nicotine addiction. This study identified multiple differentially methylated genes involved in chronic pain in HS, which may serve as biomarkers and therapeutic targets. Understanding their epigenetic regulation is crucial for personalized pain management and could enhance the identification of high-risk patients, leading to better preventative therapies and improved maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Murali R. Kuracha
- Department of Internal Medicine, University of Nebraska Medicine, Omaha, NE 68198, USA;
| | - Iltefat Hamzavi
- Department of Dermatology, Henry Ford Hospital, Detroit, MI 48202, USA;
| | - Nazia Saiyed
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA;
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Sciences, Gujarat University, Ahmedabad 380009, India;
| | - Rakesh M. Rawal
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad 380006, India;
| | - Lavanya V. Uppala
- Peter Kiewit Institute, College of Information Science & Technology, The University of Nebraska at Omaha, Omaha, NE 68182, USA;
| | - Giovanni Damiani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy;
- Italian Center of Precision Medicine and Chronic Inflammation, University of Milan, 20122 Milan, Italy
| | - Uppala Ratnamala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad 380009, India;
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| |
Collapse
|
4
|
Garutti M, Sirico M, Noto C, Foffano L, Hopkins M, Puglisi F. Hallmarks of Appetite: A Comprehensive Review of Hunger, Appetite, Satiation, and Satiety. Curr Obes Rep 2025; 14:12. [PMID: 39849268 DOI: 10.1007/s13679-024-00604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/25/2025]
Abstract
PURPOSE OF REVIEW The present review describes the available literature on the physiologic mechanisms that modulate hunger, appetite, satiation, and satiety with a particular focus on well-established and emerging factors involved in the classic satiety cascade model. RECENT FINDING Obesity is a significant risk factor for numerous chronic conditions like cancer, cardiovascular diseases, and diabetes. As excess energy intake is considered by some to be the primary driver of weight gain, tremendous collective effort should be directed toward reducing excessive feeding at the individual and population levels. From this perspective, detailed understanding of physiologic mechanisms that control appetite, and in turn, the design of effective interventions to manage appetite, may represent key strategies in controlling the obesity epidemic. With the obesity's prevalence on the rise worldwide, research on hunger, appetite, satiation and satiety is more relevant than ever. This research aims to provide practical insights for medical practitioners, nutrition professionals, and the broader scientific community in the fight against this global health challenge.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy.
| | - Marianna Sirico
- Medical Oncology and Breast Unit, IRCCS Istituto Romagnolo Per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Forli-Cesena, Italy
| | - Claudia Noto
- Medical Oncology, Azienda Sanitaria Universitaria Integrata Di Trieste, Ospedale Maggiore, Piazza Dell'Ospitale 1, 34125, Trieste, Italy
| | - Lorenzo Foffano
- CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Mark Hopkins
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Fabio Puglisi
- CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, 33100, Udine, Italy
| |
Collapse
|
5
|
Pais ML, Crisóstomo J, Abrunhosa A, Castelo-Branco M. Central dopamine receptors: Radiotracers unveiling the Role of dopaminergic tone in obesity. J Mol Med (Berl) 2025; 103:21-32. [PMID: 39630278 PMCID: PMC11739276 DOI: 10.1007/s00109-024-02501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025]
Abstract
Brain dopamine type 2 and 3 receptors (D2/3R) have been postulated to play a role in obesity. However, results from molecular neuroimaging studies exploring these receptors in obesity are not consensual. These inconsistencies may be due to the distinct characteristics of radiotracers that confound the interpretation of D2/3R assessment. Only three meta-analyses reported their results across radiotracers. Although all agree that obesity severity influences D2/3R availability, results vary for [11C]raclopride. Further, D2/3R assessment has been commonly interpreted as reflecting receptor density or availability. An alternative interpretation could be related to changes in endogenous central dopaminergic tone. The main question is whether the hypothesis of a quadratic relationship between dopaminergic tone and degree of obesity is suitable for the distinct characteristics of radiotracers. To answer this question and clarify the role of dopaminergic tone in obesity, we systematically reviewed this issue across radiotracers. Out of 514 articles, 15 articles were selected for review. Besides obesity severity, this study highlights the influence of radiotracer characteristics when assessing D2/3R. The tested hypothesis proved to be more suitable for radiotracers more susceptible to endogenous dopamine or with a lower affinity to D2/3R, supporting the quadratic relationship between dopaminergic tone and degree of obesity. While the role of D2/3R density in obesity may be relevant, dopaminergic tone seems to have a greater impact on the obesity-related differences found in these receptors. Finally, neuropsychological factors should be tested in addition to body mass index, as they may better reflect altered brain dopaminergic function.
Collapse
Affiliation(s)
- Marta Lapo Pais
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Antero Abrunhosa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
6
|
Júnior REM, Pedersen ASB, Ferreira RM, de Asevedo GH, Mendes GL, Ribeiro K, Maioli TU, de Faria AMC, Brunialti-Godard AL. Behavioral changes and transcriptional regulation of mesolimbic dopaminergic genes in a mouse model of binge eating disorder by diet intermittent access. J Nutr Biochem 2025; 135:109784. [PMID: 39426552 DOI: 10.1016/j.jnutbio.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Binge Eating Disorder (BED) is among the most prevalent eating disorders worldwide. It is characterized by recurrent episodes of excessive consumption of palatable foods in short periods, accompanied by a sense of loss of control and distress around the episode, which tends to worsen over time. The mesolimbic dopaminergic system influences on reinforcement and reward-seeking behaviors is implicated in the disorder's pathogenesis. Animal models that replicate the clinical conditions observed in humans, including the disorder progression, are essential for understanding the underlying physiological mechanisms of BED. This study aimed to evaluate binge eating behavior induced by intermittent High Sugar and Butter (HSB) diet access in mice, their phenotypes, transcriptional regulation of mesolimbic dopaminergic system genes, and behavior. Thus, mice were subdivided into three groups: CHOW (maintenance diet only), HSB-i (maintenance diet with thrice-weekly access to HSB), and HSB (continuous access to HSB). Animals were subjected to marble-burying and light-dark box behavioral tests, and transcriptional regulation was evaluated by RT-qPCR. The results indicated that the HSB-i group established a feeding pattern of significantly more kilocalories on days when HSB was available and reduced intake on non-HSB days similar to human binge eating. Over time, binge episodes intensified, potentially indicating a tolerance effect. Additionally, these animals behave differently towards preferring the HSB diet and exhibited altered transcriptional regulation of the Drd1, Slc6a3, and Lrrk2 genes. Our study provides a mouse model that reflects human BED, showing a progression in binge episodes and mesolimbic dopamine pathway involvement, suggesting targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Renato Elias Moreira Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Agatha Sondertoft Braga Pedersen
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel Mary Ferreira
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Henrique de Asevedo
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grazielle Laudares Mendes
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karine Ribeiro
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano de Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Meyers AM, Gnazzo FG, Barrera ED, Nabatian T, Chan L, Beeler JA. Dietary regulation of silent synapses in the dorsolateral striatum. Neuroscience 2024; 563:43-50. [PMID: 39510440 PMCID: PMC11616716 DOI: 10.1016/j.neuroscience.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Obesity and drugs of abuse share overlapping neural circuits and behaviors. Silent synapses are transient synapses that are important for remodeling brain circuits. They are prevalent during early development but largely disappear by adulthood. Drugs of abuse increase silent synapses during adulthood and may facilitate reorganizing brain circuits around drug-related experience, facilitating addiction and contributing to relapse during treatment and abstinence. Whether obesity causes alterations in the expression of silent synapses in a manner similar to drugs of abuse has not been examined. Using a dietary-induced obesity paradigm, mice that chronically consumed high fat diet (HFD) exhibited increased silent synapses in both direct and indirect pathway medium spiny neurons in the dorsolateral striatum. Both the time of onset of increased silent synapses and their normalization upon discontinuation of HFD occurs on an extended time scale compared to drugs of abuse. These data demonstrate that chronic consumption of HFD, like drugs of abuse, can alter mechanisms of circuit plasticity likely facilitating neural reorganization analogous to drugs of abuse.
Collapse
Affiliation(s)
- Allison M Meyers
- Psychology Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Federico G Gnazzo
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Eddy D Barrera
- Biology Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Tikva Nabatian
- Cognitive Neuroscience MS Program, Graduate Center, City University of New York, New York, NY, USA
| | - Larry Chan
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA; Psychology Program, The Graduate Center, City University of New York, New York, NY, USA; Biology Program, The Graduate Center, City University of New York, New York, NY, USA; Cognitive Neuroscience MS Program, Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
8
|
Meyers AM, Gnazzo FG, Barrera ED, Nabatian T, Chan L, Beeler JA. DIETARY REGULATION OF SILENT SYNAPSES IN THE DORSOLATERAL STRIATUM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586457. [PMID: 38585967 PMCID: PMC10996560 DOI: 10.1101/2024.03.24.586457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Obesity and drugs of abuse share overlapping neural circuits and behaviors. Silent synapses are transient synapses that are important for remodeling brain circuits. They are prevalent during early development but largely disappear by adulthood. Drugs of abuse increase silent synapses during adulthood and may facilitate reorganizing brain circuits around drug-related experience, facilitating addiction and contributing to relapse during treatment and abstinence. Whether obesity causes alterations in the expression of silent synapses in a manner similar to drugs of abuse has not been examined. Using a dietary-induced obesity paradigm, mice that chronically consumed high fat diet (HFD) exhibited increased silent synapses in both direct and indirect pathway medium spiny neurons in the dorsolateral striatum. Both the time of onset of increased silent synapses and their normalization upon discontinuation of HFD occurs on an extended time scale compared to drugs of abuse. These data demonstrate that chronic consumption of HFD, like drugs of abuse, can alter mechanisms of circuit plasticity likely facilitating neural reorganization analogous to drugs of abuse.
Collapse
Affiliation(s)
- Allison M Meyers
- Psychology Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Federico G Gnazzo
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Eddy D Barrera
- Biology Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Tikva Nabatian
- Cognitive Neuroscience MS program, Graduate Center, City University of New York, New York, NY, USA
| | - Larry Chan
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
- Psychology Program, The Graduate Center, City University of New York, New York, NY, USA
- Biology Program, The Graduate Center, City University of New York, New York, NY, USA
- Cognitive Neuroscience MS program, Graduate Center, City University of New York, New York, NY, USA
| |
Collapse
|
9
|
Li Z, Zheng L, Wang J, Wang L, Qi Y, Amin B, Zhu J, Zhang N. Dopamine in the regulation of glucose and lipid metabolism: a narrative review. Obesity (Silver Spring) 2024; 32:1632-1645. [PMID: 39081007 DOI: 10.1002/oby.24068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Owing to the global obesity epidemic, understanding the regulatory mechanisms of glucose and lipid metabolism has become increasingly important. The dopaminergic system, including dopamine, dopamine receptors, dopamine transporters, and other components, is involved in numerous physiological and pathological processes. However, the mechanism of action of the dopaminergic system in glucose and lipid metabolism is poorly understood. In this review, we examine the role of the dopaminergic system in glucose and lipid metabolism. RESULTS The dopaminergic system regulates glucose and lipid metabolism through several mechanisms. It regulates various activities at the central level, including appetite control and decision-making, which contribute to regulating body weight and energy metabolism. In the pituitary gland, dopamine inhibits prolactin production and promotes insulin secretion through dopamine receptor 2. Furthermore, it can influence various physiological components in the peripheral system, such as pancreatic β cells, glucagon-like peptide-1, adipocytes, hepatocytes, and muscle, by regulating insulin and glucagon secretion, glucose uptake and use, and fatty acid metabolism. CONCLUSIONS The role of dopamine in regulating glucose and lipid metabolism has significant implications for the physiology and pathogenesis of disease. The potential therapeutic value of dopamine lies in its effects on metabolic disorders.
Collapse
Affiliation(s)
- Zhehong Li
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Sardari M, Mohammadpourmir F, Hosseinzadeh Sahafi O, Rezayof A. Neuronal biomarkers as potential therapeutic targets for drug addiction related to sex differences in the brain: Opportunities for personalized treatment approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111068. [PMID: 38944334 DOI: 10.1016/j.pnpbp.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Biological sex disparities manifest at various stages of drug addiction, including craving, substance abuse, abstinence, and relapse. These discrepancies are underpinned by notable distinctions in neurobiological substrates, encompassing brain structures, functions, and neurotransmitter systems implicated in drug addiction. Neuronal biomarkers, such as neurotransmitters, signaling proteins, and genes may be associated with the diagnosis, prognosis, and treatment outcomes in both biological sexes afflicted by drug abuse. Sex differences in the neural reward system, mainly through dopaminergic transmission during drug abuse, can be attributed to modifications in neurotransmitter systems and signaling pathways. This results in distinct patterns of neural activation and responsiveness to addictive substances in males and females. Sex hormones, the estrus/menstrual cycle, and cerebral neurochemistry contribute to the progression of psychological and physiological dependence in both male and female individuals grappling with addiction. Moreover, the alteration of sex hormone balance and neurotransmitter release plays a pivotal role in substance use disorders, subsequently modulating cognitive functions pertinent to reward, including memory formation, decision-making, and locomotor activity. Comparative investigations reveal distinctions in brain region volume, gene expression, neuronal firing, and circuitry in substance use disorders affecting individuals of both biological sexes. This review examines prevalent substance use disorders to elucidate the impact of sex hormones as therapeutic biomarkers on the mesocorticolimbic neurotransmitter systems via diverse mechanisms within the addicted brain. We underscore the imperative necessity of considering these variations to gain a deeper comprehension of addiction mechanisms and potentially discern sex-specific neuronal biomarkers for tailored therapeutic interventions.
Collapse
Affiliation(s)
- Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farina Mohammadpourmir
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Singh N, Nandy SK, Jyoti A, Saxena J, Sharma A, Siddiqui AJ, Sharma L. Protein Kinase C (PKC) in Neurological Health: Implications for Alzheimer's Disease and Chronic Alcohol Consumption. Brain Sci 2024; 14:554. [PMID: 38928554 PMCID: PMC11201589 DOI: 10.3390/brainsci14060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C (PKC) is a diverse enzyme family crucial for cell signalling in various organs. Its dysregulation is linked to numerous diseases, including cancer, cardiovascular disorders, and neurological problems. In the brain, PKC plays pivotal roles in synaptic plasticity, learning, memory, and neuronal survival. Specifically, PKC's involvement in Alzheimer's Disease (AD) pathogenesis is of significant interest. The dysregulation of PKC signalling has been linked to neurological disorders, including AD. This review elucidates PKC's pivotal role in neurological health, particularly its implications in AD pathogenesis and chronic alcohol addiction. AD, characterised by neurodegeneration, implicates PKC dysregulation in synaptic dysfunction and cognitive decline. Conversely, chronic alcohol consumption elicits neural adaptations intertwined with PKC signalling, exacerbating addictive behaviours. By unravelling PKC's involvement in these afflictions, potential therapeutic avenues emerge, offering promise for ameliorating their debilitating effects. This review navigates the complex interplay between PKC, AD pathology, and alcohol addiction, illuminating pathways for future neurotherapeutic interventions.
Collapse
Affiliation(s)
- Nishtha Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Shouvik Kumar Nandy
- School of Pharmacy, Techno India University, Sector-V, Kolkata 700091, West Bengal, India;
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| |
Collapse
|
12
|
Lauretani F, Giallauria F, Testa C, Zinni C, Lorenzi B, Zucchini I, Salvi M, Napoli R, Maggio MG. Dopamine Pharmacodynamics: New Insights. Int J Mol Sci 2024; 25:5293. [PMID: 38791331 PMCID: PMC11121567 DOI: 10.3390/ijms25105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Dopamine is a key neurotransmitter involved in physiological processes such as motor control, motivation, reward, cognitive function, and maternal and reproductive behaviors. Therefore, dysfunctions of the dopaminergic system are related to a plethora of human diseases. Dopamine, via different circuitries implicated in compulsive behavior, reward, and habit formation, also represents a key player in substance use disorder and the formation and perpetuation of mechanisms leading to addiction. Here, we propose dopamine as a model not only of neurotransmission but also of neuromodulation capable of modifying neuronal architecture. Abuse of substances like methamphetamine, cocaine, and alcohol and their consumption over time can induce changes in neuronal activities. These modifications lead to synaptic plasticity and finally to morphological and functional changes, starting from maladaptive neuro-modulation and ending in neurodegeneration.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, “Federico II” University of Naples, via S. Pansini 5, 80131 Naples, Italy; (F.G.); (R.N.)
| | - Crescenzo Testa
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Claudia Zinni
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Beatrice Lorenzi
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Irene Zucchini
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Marco Salvi
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
| | - Raffaele Napoli
- Department of Translational Medical Sciences, “Federico II” University of Naples, via S. Pansini 5, 80131 Naples, Italy; (F.G.); (R.N.)
| | - Marcello Giuseppe Maggio
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy; (C.T.); (C.Z.); (B.L.); (I.Z.); (M.S.); (M.G.M.)
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
13
|
Chiu CH, Ma KH, Huang EYK, Chang HW, Weng SJ, Yu TH, Farn SS, Kuo YY, Huang WS, Cheng CY, Tao PL, Yeh SHH. Dextromethorphan moderates reward deficiency associated with central serotonin transporter availability in 3,4-methylenedioxy-methamphetamine-treated animals. J Chin Med Assoc 2024; 87:538-549. [PMID: 38587377 DOI: 10.1097/jcma.0000000000001087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The neurotoxicity of 3,4-methylenedioxy-methamphetamine (MDMA) to the serotonergic system is well-documented. Dextromethorphan (DM), an antitussive drug, decreased morphine- or methamphetamine (MA)-induced reward in rats and may prevent MDMA-induced serotonergic deficiency in primates, as indicated by increased serotonin transporter (SERT) availability. We aimed to investigate the effects of DM on reward, behavioral sensitization, and neurotoxicity associated with loss of SERT induced by chronic MDMA administration in rats. METHODS Conditioned place preference (CPP) and locomotor activity tests were used to evaluate drug-induced reward and behavioral sensitization; 4-[ 18 F]-ADAM/animal-PET and immunohistochemistry were used to explore the effects of DM on MDMA-induced loss of SERT. RESULTS MDMA significantly reduced SERT binding in the rat brain; however, co-administration of DM significantly restored SERT, enhancing the recovery rate at day 14 by an average of ~23% compared to the MDMA group. In confirmation of the PET findings, immunochemistry revealed MDMA reduced SERT immunoactivity in all brain regions, whereas DM markedly increased the serotonergic fiber density after MDMA induction. CONCLUSION Behavioral tests and in vivo longitudinal PET imaging demonstrated the CPP indexes and locomotor activities of the reward system correlate negatively with PET 4-[ 18 F]ADAM SERT activity in the reward system. Our findings suggest MDMA induces functional abnormalities in a network of brain regions important to decision-making processes and the motivation circuit. DM may exert neuroprotective effects to reverse MDMA-induced neurotoxicity.
Collapse
Affiliation(s)
- Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | - Hsien-Wen Chang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tsung-Hsun Yu
- Brain Research Center, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shiou-Shiow Farn
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC
| | - Yu-Yeh Kuo
- Department of Nursing, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan, ROC
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Skye Hsin-Hsien Yeh
- Brain Research Center, School of Medicine, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Girmaw F. Review on allosteric modulators of dopamine receptors so far. Health Sci Rep 2024; 7:e1984. [PMID: 38505681 PMCID: PMC10948587 DOI: 10.1002/hsr2.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Background Contemporary research is predominantly directed towards allosteric modulators, a class of compounds designed to interact with specific sites distinct from the orthosteric site on G protein-coupled receptors. These allosteric modulators play a pivotal role in influencing diverse pharmacological effects, such as agonism/inverse agonism, efficacy modulation, and affinity modulation. One particularly intriguing aspect is the demonstrated capacity of allosteric modulation to enhance drug selectivity for therapeutic purposes, potentially leading to a reduction in serious side effects associated with traditional approaches. Allosteric ligands, a majority of which fall into the categories of negative allosteric modulators or positive allosteric modulators, exhibit the unique ability to either diminish or enhance the effects of endogenous ligands. Negative allosteric modulators weaken the response, while positive allosteric modulators intensify it. Additionally, silent allosteric modulators represent a distinct class that neither activates nor blocks the effects of endogenous ligands, adding complexity to the spectrum of allosteric modulation. In the broader context of central nervous system disorders, allosteric modulation takes center stage, particularly in the realm of dopamine receptors specifically, D1, D2, and D3 receptors. These receptors hold immense therapeutic potential for a range of conditions spanning neurodegenerative disorders to neurobehavioral and psychiatric disorders. The intricate modulation of dopamine receptors through allosteric mechanisms offers a nuanced and versatile approach to drug development. As research endeavors continue to unfold, the exploration of allosteric modulation stands as a promising frontier, holding the potential to reshape the landscape of drug discovery and therapeutic interventions in the field of neurology and psychiatry.
Collapse
Affiliation(s)
- Fentaw Girmaw
- Department of Pharmacy, College of Health ScienceWoldia UniversityWoldiaEthiopia
| |
Collapse
|
15
|
Rasmi Y, Shokati A, Hatamkhani S, Farnamian Y, Naderi R, Jalali L. Assessment of the relationship between the dopaminergic pathway and severe acute respiratory syndrome coronavirus 2 infection, with related neuropathological features, and potential therapeutic approaches in COVID-19 infection. Rev Med Virol 2024; 34:e2506. [PMID: 38282395 DOI: 10.1002/rmv.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 07/06/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Dopamine is a known catecholamine neurotransmitter involved in several physiological processes, including motor control, motivation, reward, cognition, and immune function. Dopamine receptors are widely distributed throughout the nervous system and in immune cells. Several viruses, including human immunodeficiency virus and Japanese encephalitis virus, can use dopaminergic receptors to replicate in the nervous system and are involved in viral neuropathogenesis. In addition, studies suggest that dopaminergic receptors may play a role in the progression and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. When SARS-CoV-2 binds to angiotensin-converting enzyme 2 receptors on the surface of neuronal cells, the spike protein of the virus can bind to dopaminergic receptors on neighbouring cells to accelerate its life cycle and exacerbate neurological symptoms. In addition, recent research has shown that dopamine is an important regulator of the immune-neuroendocrine system. Most immune cells express dopamine receptors and other dopamine-related proteins, indicating the importance of dopaminergic immune regulation. The increase in dopamine concentration during SARS-CoV2 infection may reduce immunity (innate and adaptive) that promotes viral spread, which could lead to neuronal damage. In addition, dopaminergic signalling in the nervous system may be affected by SARS-CoV-2 infection. COVID -19 can cause various neurological symptoms as it interacts with the immune system. One possible treatment strategy for COVID -19 patients could be the use of dopamine antagonists. To fully understand how to protect the neurological system and immune cells from the virus, we need to study the pathophysiology of the dopamine system in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
16
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
17
|
Zhang L, Zeng Z, Lu X, Li M, Yao J, Zou G, Chen Z, Li Q, Li C, Li F. CNTN1 in the Nucleus Accumbens is Involved in Methamphetamine-Induced Conditioned Place Preference in Mice. Neurotox Res 2023; 41:324-337. [PMID: 37014368 DOI: 10.1007/s12640-023-00640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Methamphetamine (Meth), a commonly used central nervous system stimulant, is highly addictive. Currently, there is no effective treatment for Meth dependence and abuse, although cell adhesion molecules (CAMs) have been shown to play an important role in the formation and remodeling of synapses in the nervous system while also being involved in addictive behavior. Contactin 1 (CNTN1) is a CAM that is widely expressed in the brain; nevertheless, its role in Meth addiction remains unclear. Therefore, in the present study, we established mouse models of single and repeated Meth exposure and subsequently determined that CNTN1 expression in the nucleus accumbens (NAc) was upregulated in mice following single or repeated Meth exposure, whereas CNTN1 expression in the hippocampus was not significantly altered. Intraperitoneal injection of the dopamine receptor 2 antagonist haloperidol reversed Meth-induced hyperlocomotion and upregulation of CNTN1 expression in the NAc. Additionally, repeated Meth exposure also induced conditioned place preference (CPP) in mice and upregulated the expression levels of CNTN1, NR2A, NR2B, and PSD95 in the NAc. Using an AAV-shRNA-based approach to specifically silence CNTN1 expression in the NAc via brain stereotaxis reversed Meth-induced CPP and decreased the expression levels of NR2A, NR2B, and PSD95 in the NAc. These findings suggest that CNTN1 expression in the NAc plays an important role in Meth-induced addiction, and the underlying mechanism may be related to the expression of synapse-associated proteins in the NAc. The results of this study improved our understanding of the role of cell adhesion molecules in Meth addiction.
Collapse
Affiliation(s)
- Linxuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China
| | - Zehao Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China
| | - Xiaoyu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China
| | - Mengqing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China
| | - Jiayu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China
| | - Guangjing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China
| | - Zhaorong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China
| | - Qian Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China
| | - Changqi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
18
|
Jayanti S, Dalla Verde C, Tiribelli C, Gazzin S. Inflammation, Dopaminergic Brain and Bilirubin. Int J Mol Sci 2023; 24:11478. [PMID: 37511235 PMCID: PMC10380707 DOI: 10.3390/ijms241411478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a well-known neurotransmitter due to its involvement in Parkinson's disease (PD). Dopamine is not only involved in PD but also controls multiple mental and physical activities, such as the pleasure of food, friends and loved ones, music, art, mood, cognition, motivation, fear, affective disorders, addiction, attention deficit disorder, depression, and schizophrenia. Dopaminergic neurons (DOPAn) are susceptible to stressors, and inflammation is a recognized risk for neuronal malfunctioning and cell death in major neurodegenerative diseases. Less is known for non-neurodegenerative conditions. Among the endogenous defenses, bilirubin, a heme metabolite, has been shown to possess important anti-inflammatory activity and, most importantly, to prevent DOPAn demise in an ex vivo model of PD by acting on the tumor necrosis factor-alpha (TNFα). This review summarizes the evidence linking DOPAn, inflammation (when possible, specifically TNFα), and bilirubin as an anti-inflammatory in order to understand what is known, the gaps that need filling, and the hypotheses of anti-inflammatory strategies to preserve dopamine homeostasis with bilirubin included.
Collapse
Affiliation(s)
- Sri Jayanti
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Camilla Dalla Verde
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Claudio Tiribelli
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Silvia Gazzin
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| |
Collapse
|
19
|
Ayuso P, Jiménez-Jiménez FJ, Gómez-Tabales J, Alonso-Navarro H, García-Martín E, Agúndez JAG. An update on the pharmacogenetic considerations when prescribing dopamine receptor agonists for Parkinson's disease. Expert Opin Drug Metab Toxicol 2023; 19:447-460. [PMID: 37599424 DOI: 10.1080/17425255.2023.2249404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Parkinson's disease is a chronic neurodegenerative multisystemic disorder that affects approximately 2% of the population over 65 years old. This disorder is characterized by motor symptoms which are frequently accompanied by non-motor symptoms such as cognitive disorders. Current drug therapies aim to reduce the symptoms and increase the patient's life expectancy. Nevertheless, there is heterogeneity in therapy response in terms of efficacy and adverse effects. This wide range in response may be linked to genetic variability. Thus, it has been suggested that pharmacogenomics may help to tailor and personalize drug therapy for Parkinson's disease. AREAS COVERED This review describes and updates the clinical impact of genetic factors associated with the efficacy and adverse drug reactions related to common medications used to treat Parkinson's disease. Additionally, we highlight current informative recommendations for the drug treatment of Parkinson's disease. EXPERT OPINION The pharmacokinetic, pharmacodynamic, and safety profiles of Parkinson's disease drugs do not favor the development of pharmacogenetic tests with a high probability of success. The chances of obtaining ground-breaking pharmacogenetics biomarkers for Parkinson's disease therapy are limited. Nevertheless, additional information on the metabolism of certain drugs, and an analysis of the potential of pharmacogenetics in novel drugs could be of interest.
Collapse
Affiliation(s)
- Pedro Ayuso
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | | | - Javier Gómez-Tabales
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | | | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - José A G Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| |
Collapse
|
20
|
Valeri J, Gisabella B, Pantazopoulos H. Dynamic regulation of the extracellular matrix in reward memory processes: a question of time. Front Cell Neurosci 2023; 17:1208974. [PMID: 37396928 PMCID: PMC10311570 DOI: 10.3389/fncel.2023.1208974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Substance use disorders are a global health problem with increasing prevalence resulting in significant socioeconomic burden and increased mortality. Converging lines of evidence point to a critical role of brain extracellular matrix (ECM) molecules in the pathophysiology of substance use disorders. An increasing number of preclinical studies highlight the ECM as a promising target for development of novel cessation pharmacotherapies. The brain ECM is dynamically regulated during learning and memory processes, thus the time course of ECM alterations in substance use disorders is a critical factor that may impact interpretation of the current studies and development of pharmacological therapies. This review highlights the evidence for the involvement of ECM molecules in reward learning, including drug reward and natural reward such as food, as well as evidence regarding the pathophysiological state of the brain's ECM in substance use disorders and metabolic disorders. We focus on the information regarding time-course and substance specific changes in ECM molecules and how this information can be leveraged for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
21
|
Cervetto C, Maura G, Guidolin D, Amato S, Ceccoli C, Agnati LF, Marcoli M. Striatal astrocytic A2A-D2 receptor-receptor interactions and their role in neuropsychiatric disorders. Neuropharmacology 2023:109636. [PMID: 37321323 DOI: 10.1016/j.neuropharm.2023.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
It is now generally accepted that astrocytes are active players in synaptic transmission, so that a neurocentric perspective of the integrative signal communication in the central nervous system is shifting towards a neuro-astrocentric perspective. Astrocytes respond to synaptic activity, release chemical signals (gliotransmitters) and express neurotransmitter receptors (G protein-coupled and ionotropic receptors), thus behaving as co-actors with neurons in signal communication in the central nervous system. The ability of G protein-coupled receptors to physically interact through heteromerization, forming heteromers and receptor mosaics with new distinct signal recognition and transduction pathways, has been intensively studied at neuronal plasma membrane, and has changed the view of the integrative signal communication in the central nervous system. One of the best-known examples of receptor-receptor interaction through heteromerization, with relevant consequences for both the physiological and the pharmacological points of view, is given by adenosine A2A and dopamine D2 receptors on the plasma membrane of striatal neurons. Here we review evidence that native A2A and D2 receptors can interact through heteromerization at the plasma membrane of astrocytes as well. Astrocytic A2A-D2 heteromers were found able to control the release of glutamate from the striatal astrocyte processes. A2A-D2 heteromers on striatal astrocytes and astrocyte processes are discussed as far as their potential relevance in the control of glutamatergic transmission in striatum is concerned, including potential roles in glutamatergic transmission dysregulation in pathological conditions including schizophrenia or the Parkinson's disease.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Italy.
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Cristina Ceccoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Luigi F Agnati
- Department of Biochemical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy; Center of Excellence for Biomedical Research, University of Genova, Italy.
| |
Collapse
|
22
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Bastings JJAJ, Venema K, Blaak EE, Adam TC. Influence of the gut microbiota on satiety signaling. Trends Endocrinol Metab 2023; 34:243-255. [PMID: 36870872 DOI: 10.1016/j.tem.2023.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023]
Abstract
Recent studies show a link between the gut microbiota and the regulation of satiety and energy intake, processes that contribute to the development and pathophysiology of metabolic diseases. However, this link is predominantly established in animal and in vitro studies, whereas human intervention studies are scarce. In this review we focus on recent evidence linking satiety and the gut microbiome, with specific emphasis on gut microbial short-chain fatty acids (SCFAs). Based on a systematic search we provide an overview of human studies linking the intake of prebiotics with gut microbial alterations and satiety signaling. Our outcomes highlight the importance of in-depth examination of the gut microbiota in relation to satiety and provide insights into recent and future studies in this field.
Collapse
Affiliation(s)
- Jacco J A J Bastings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Koen Venema
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; Centre for Healthy Eating and Food Innovation, Maastricht University, Campus Venlo, Venlo, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
24
|
Kumari S, Dhiman P, Kumar R, Rahmatkar SN, Singh D. Chemo-kindling in adult zebrafish alters spatial cognition but not social novelty recognition. Behav Brain Res 2023; 438:114158. [PMID: 36243243 DOI: 10.1016/j.bbr.2022.114158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
In the past decades, zebrafish have gathered immense attention and importance in the field of neurological sciences. In the case of epilepsy, zebrafish have appeared as a promising acute animal model for the screening and identification of potential antiepileptic molecules. However, the necessity for establishing competent chronic models of epilepsy in zebrafish is apparent. In this regard, recently we developed a chemo-kindling zebrafish model with a better clinical resemblance. In the present study, an attempt to examine the effect of pentylenetetrazole (PTZ)-induced kindling on the cognitive functions of zebrafish was made. In brief, adult zebrafish were repetitively given a sub-effective concentration of PTZ, till the onset of clonic-tonic seizures, entitled as kindled. Thereafter, T-maze test and social recognition memory test were conducted to evaluate spatial memory and social novelty recognition memory of the fish. At the end, both the groups were sacrificed and the brains were isolated to estimate neurotransmitter and gene expression levels. It was observed that PTZ kindling induced spatial cognition deficits and lower social exploration in zebrafish. However, it didn't change the novelty recognition memory of kindled zebrafish. The results of genes and neurotransmitters estimations in the brain also supported the behavioural findings. The results concluded that PTZ kindling alters spatial cognitive functions in adult zebrafish without affecting the social novelty recognition memory.
Collapse
Affiliation(s)
- Savita Kumari
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Poonam Dhiman
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajneesh Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubham Nilkanth Rahmatkar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
25
|
Navarro L, Gómez-Carballa A, Pischedda S, Montoto-Louzao J, Viz-Lasheras S, Camino-Mera A, Hinault T, Martinón-Torres F, Salas A. Sensogenomics of music and Alzheimer's disease: An interdisciplinary view from neuroscience, transcriptomics, and epigenomics. Front Aging Neurosci 2023; 15:1063536. [PMID: 36819725 PMCID: PMC9935844 DOI: 10.3389/fnagi.2023.1063536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The relationship between music and Alzheimer's disease (AD) has been approached by different disciplines, but most of our outstanding comes from neuroscience. Methods First, we systematically reviewed the state-of-the-art of neuroscience and cognitive sciences research on music and AD (>100 studies), and the progress made on the therapeutic impact of music stimuli in memory. Next, we meta-analyzed transcriptomic and epigenomic data of AD patients to search for commonalities with genes and pathways previously connected to music in genome association, epigenetic, and gene expression studies. Results Our findings indicate that >93% of the neuroscience/ cognitive sciences studies indicate at least one beneficial effect of music on patients with neurodegenerative diseases, being improvements on memory and cognition the most frequent outcomes; other common benefits were on social behavior, mood and emotion, anxiety and agitation, quality of life, and depression. Out of the 334 music-related genes, 127 (38%) were found to be linked to epigenome/transcriptome analysis in AD (vs. healthy controls); some of them (SNCA, SLC6A4, ASCC2, FTH1, PLAUR and ARHGAP26) have been reported to be associated e.g. with musical aptitude and music effect on the transcriptome. Other music-related genes (GMPR, SELENBP1 and ADIPOR1) associated to neuropsychiatric, neurodegenerative diseases and music performance, emerged as hub genes in consensus co-expression modules detected between AD and music estimulated transcriptomes. In addition, we found connections between music, AD and dopamine related genes, with SCNA being the most remarkable - a gene previously associated with learning and memory, and neurodegenerative disorders (e.g., Parkinson's disease and AD). Discussion The present study indicate that the vast majority of neuroscientific studies unambiguously show that music has a beneficial effect on health, being the most common benefits relevant to Alzheimer's disease. These findings illuminate a new roadmap for genetic research in neurosciences, and musical interventions in AD and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Navarro
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain,Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain,Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Sara Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain,Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Julián Montoto-Louzao
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain,Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Sandra Viz-Lasheras
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain,Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Alba Camino-Mera
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain,Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Thomas Hinault
- Normandie Université, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain,Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain,Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain,*Correspondence: Antonio Salas, ✉
| |
Collapse
|
26
|
Okahara K, Ohsawa M, Haruta-Tsukamoto A, Miyoshi R, Funahashi H, Fukutani Y, Makita S, Matsuo H, Ishida Y. Frailty Improvement by Multicomponent Drug, Ninjin'Yoeito, in Mild Cognitive Impairment and Mild Alzheimer's Disease Patients: An Open-Label Exploratory Study (FRAMINGO). J Alzheimers Dis Rep 2023; 7:107-117. [PMID: 36891253 PMCID: PMC9986705 DOI: 10.3233/adr-220074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023] Open
Abstract
Background Alzheimer's disease (AD) and dementia have increasingly been conceived of as "complex diseases of aging", determined by multiple, simultaneous, interacting pathophysiological processes. The condition known as frailty is a phenotype of aging and its comprehensive pathophysiology is thought to be closely related to the incidence of mild cognitive impairment (MCI) and the exacerbation of dementia. Objective This study aimed to investigate the effect of the multicomponent drug, ninjin'yoeito (NYT), on frailty in MCI and mild AD patients. Methods This study was an open-label trial. A total of 14 patients, including 9 with MCI and 5 with mild AD, were enrolled. Among them, 11 were frail while 3 were prefrail. NYT (6-9 g/day) was administered orally for 24 weeks, and assessments were carried out at baseline (week 0), and at 4, 8, 16, and 24 weeks. Results In the primary endpoint, significant early improvements were observed in the anorexia scores according to the Neuropsychiatric Inventory after four weeks of treatment with NYT. The Cardiovascular Health Study score was significantly improved, and no frailty was observed after 24 weeks. The fatigue visual analog scale scores also significantly improved. The Clinical Dementia Rating and the Montreal Cognitive Assessment scores remained at baseline levels during the NYT treatment period. Conclusion The results suggest that NYT may be effective in the treatment of frailty, especially for anorexia and fatigue, in both MCI and mild AD patients, which would be beneficial for the prognosis of dementia.
Collapse
Affiliation(s)
| | | | - Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan
| | - Ryoei Miyoshi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan.,Heartopia Miyoshi Clinic, Miyazaki-city, Miyazaki, Japan
| | - Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan
| | | | | | - Hisae Matsuo
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan.,Center for Health Sciences and Counseling, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki-city, Miyazaki, Japan
| |
Collapse
|
27
|
Alizadeh S, Djafarian K, Mofidi Nejad M, Yekaninejad MS, Javanbakht MH. The effect of β-caryophyllene on food addiction and its related behaviors: A randomized, double-blind, placebo-controlled trial. Appetite 2022; 178:106160. [PMID: 35809704 DOI: 10.1016/j.appet.2022.106160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
Food addiction (FA) is a psychological construct that may be involved in the etiology of obesity. The cannabinoid system is involved in the addictive-like food preferences by acting on the dopaminergic pathway of the brain. β-caryophyllene is a dietary cannabinoid that is a cannabinoid type 2 (CB2) receptor agonist. This study explored the impacts of β-caryophyllene supplementation on eating behavior, appetite, mental health, anthropometric parameters, body composition, and some hormones related to appetite in women with obesity diagnosed with FA. Women with obesity and FA, diagnosed by the Yale Food Addiction Scale Score (YFAS-S) ≥3, were randomly allocated to receive a β-caryophyllene softgel (n = 26) (100 mg/daily with meal) or placebo (n = 26) for 8 weeks. Anthropometric measurements, body composition, eating behavior, biochemical markers, dietary intake, appetite, stress, anxiety, and depression were evaluated during the study period. β-caryophyllene administration significantly reduced YFAS-S compared to the placebo group (changes in FA score: 1.5 ± 0.9 vs. - 0.7 ± 1.4; corrected P = 0.05). Serum levels of orexin-A significantly decreased in the β-caryophyllene group (p = 0.02); however, no significant difference was observed compared to the placebo group (corrected P = 0.09). β-caryophyllene supplementation had no significant effect on body composition, anthropometric indices, appetite, eating behavior, dietary intake, physical activity level, mental health, and levels of oxytocin and neuropeptide Y (NPY), compared to the placebo. β-caryophyllene supplementation may have beneficial effects on improving YFAS-S in women with obesity diagnosed with FA. TRIAL REGISTRATION: Iranian Registry of Clinical Trials identifier: IRCT20200914048712N1.
Collapse
Affiliation(s)
- Shahab Alizadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mofidi Nejad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Ning C, Jiao Y, Wang J, Li W, Zhou J, Lee YC, Ma DL, Leung CH, Zhu R, David Wang HM. Recent advances in the managements of type 2 diabetes mellitus and natural hypoglycemic substances. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Guleken Z, Uzbay T. Neurobiological and neuropharmacological aspects of food addiction. Neurosci Biobehav Rev 2022; 139:104760. [PMID: 35780976 DOI: 10.1016/j.neubiorev.2022.104760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
This review aims to draw attention to current studies on syndromes related to food eating behavior, including food addiction, and to highlight the neurobiological and neuropharmacological aspects of food addiction toward the development of new therapies. Food addiction and eating disorders are influenced by several neurobiological factors. Changes in feeding behavior, food addiction, and its pharmacological therapy are related to complex neurobiological processes in the brain. Thus, it is not surprising that there is inconsistency among various individual studies. In this review, we assessed literature including both experimental and clinical studies regarding food addiction as a feeding disorder. We selected articles from animal studies, randomized clinical trials, meta-analyses, narrative, and systemic reviews given that, crucial quantitative data with a measure of neurobiological, neuropharmacological aspects and current therapies of food addiction as an outcome. Thus, the main goal to outline here is to investigate and discuss the association between the brain reward system and feeding behavior in the frame of food addiction in the light of current literature.
Collapse
Affiliation(s)
- Zozan Guleken
- Uskudar University Faculty of Medicine, Department of Physiology, İstanbul, Turkey
| | - Tayfun Uzbay
- Uskudar University, Faculty of Medicine, Department of Medical Pharmacology, İstanbul, Turkey; Üsküdar University, Neuropsychopharmacology Application, and Research Center (NPARC), İstanbul, Turkey.
| |
Collapse
|
30
|
Hahn M, Lindemann V, Behrens M, Mulac D, Langer K, Esselen M, Humpf HU. Permeability of dopamine D2 receptor agonist hordenine across the intestinal and blood-brain barrier in vitro. PLoS One 2022; 17:e0269486. [PMID: 35709159 PMCID: PMC9202863 DOI: 10.1371/journal.pone.0269486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Hordenine, a bioactive food compound, has several pharmacological properties and has recently been identified as a dopamine D2 receptor (D2R) agonist. Since the pharmacokinetic profile of hordenine has been described to a limited extent, the present study focused on the transfer and transport of hordenine across the intestinal epithelium and the blood-brain barrier (BBB) in vitro. Hordenine was quickly transferred through the Caco-2 monolayer in only a few hours, indicating a rapid oral uptake. However, the high bioavailability may be reduced by the observed efflux transport of hordenine from the bloodstream back into the intestinal lumen and by first pass metabolism in intestinal epithelial cells. To determine the biotransformation rate of hordenine, the metabolite hordenine sulfate was synthesized as reference standard for analytical purposes. In addition, transfer studies using primary porcine brain capillary endothelial cells (PBCEC) showed that hordenine is able to rapidly penetrate the BBB and potentially accumulate in the brain. Thus, a D2R interaction of hordenine and activation of dopaminergic signaling is conceivable, assuming that the intestinal barrier can be circumvented by a route of administration alternative to oral uptake.
Collapse
Affiliation(s)
- Maria Hahn
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Viktoria Lindemann
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
31
|
Zeinalian R, Ahmadikhatir S, Esfahani EN, Namazi N, Larijani B. The roles of personalized nutrition in obesity and diabetes management: a review. J Diabetes Metab Disord 2022; 21:1119-1127. [PMID: 35673489 PMCID: PMC9167367 DOI: 10.1007/s40200-022-01016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
Abstract
Background & Aims Nutrition is one of main environmental factor affecting obesity and its related complications such as diabetes and dyslipidemia. Due to growing prevalence of obesity across the world, it seems that nutritional advice alone is not able to combat this health problem. The present overview aimed to summarize the roles of personalized nutrition (PN) in obesity and diabetes management. Methods Scopus, PubMed and Google scholar were searched up to February 2021 to find relevant studies with English language in which the roles of PN in obesity and diabetes management were examined. Results Recent evidence revealed the importance of gene-environment interactions for management of diabetes mellitus and obesity. Moreover, microbiome research showed that personalized diet based on a combination of clinical and microbial features is likely to improve responses to therapeutic interventions. Epigenetics as well as genetic and environmental factors can also contribute to the treatment. In addition, articles showed significant roles of epigenetics and gut microbiome on providing an individualized diet for obese and diabetic patients. Conclusion PN compare to conventional diet can better improve metabolic status in obese and diabetic patients. Considering genetic differences and microbiome patterns along with environmental factors and their interactions are recommended for obesity and diabetes management. This approach can increase success in promoting health and preventing complications related to diabetes and obesity.
Collapse
Affiliation(s)
- Reihaneh Zeinalian
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shonaz Ahmadikhatir
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensieh Nasli Esfahani
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Cai J, Tong Q. Anatomy and Function of Ventral Tegmental Area Glutamate Neurons. Front Neural Circuits 2022; 16:867053. [PMID: 35669454 PMCID: PMC9164627 DOI: 10.3389/fncir.2022.867053] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
The ventral tegmental area (VTA) is well known for regulating reward consumption, learning, memory, and addiction behaviors through mediating dopamine (DA) release in downstream regions. Other than DA neurons, the VTA is known to be heterogeneous and contains other types of neurons, including glutamate neurons. In contrast to the well-studied and established functions of DA neurons, the role of VTA glutamate neurons is understudied, presumably due to their relatively small quantity and a lack of effective means to study them. Yet, emerging studies have begun to reveal the importance of glutamate release from VTA neurons in regulating diverse behavioral repertoire through a complex intra-VTA and long-range neuronal network. In this review, we summarize the features of VTA glutamate neurons from three perspectives, namely, cellular properties, neural connections, and behavioral functions. Delineation of VTA glutamatergic pathways and their interactions with VTA DA neurons in regulating behaviors may reveal previously unappreciated functions of the VTA in other physiological processes.
Collapse
Affiliation(s)
- Jing Cai
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, Houston, TX, United States
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, UTHealth McGovern Medical School, Houston, TX, United States
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
33
|
Wang D, Huang K, Schulte E, Zhou W, Li H, Hu Y, Fu J. The Association Between Food Addiction and Weight Status in School-Age Children and Adolescents. Front Psychiatry 2022; 13:824234. [PMID: 35615452 PMCID: PMC9125319 DOI: 10.3389/fpsyt.2022.824234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background The association between food addiction (FA) and weight status in children and adolescents remains poorly understood. This study aimed to elucidate the association between FA and weight status using the validated Chinese version of the dimensional Yale Food Addiction Scale for Children 2.0 (dYFAS-C 2.0). Methods Participants were enrolled from clinic visitors for regular physical check in a children's hospital. The dYFAS-C 2.0 was translated into Chinese and validated using reliability and validity tests. The participants' body mass index Z score (BMIZ) and waist-to-height ratio (WHtR) were used to characterize weight status. The FA severity was assessed using the translated dYFAS-C 2.0. Results Among the 903 children and adolescents enrolled, 426 (47.2%) completed the survey [277 (65%) females and 149 (35%) males]. The Cronbach α of translated dYFAS-C 2.0 was 0.934, and confirmatory factor analysis indicated an acceptable model fit. FA correlated positively with BMIZ and WHtR in the whole sample after adjusting for the effect of gender (p < 0.001). Further analyses showed that the correlation remained significant in participants with BMIZ > 1 (p = 0.006) but not in those with BMIZ ≤ 1 (p = 0.220). However, the correlations between FA and WHtR were statistically significant in both participants with or without abdominal obesity (p < 0.05). The FA could explain 12.1 and 15.8% of variance in BMIZ and WHtR, respectively. The corresponding cutoff points of FA for excessive weight risk were 0.7 (BMIZ) and 0.4 (WHtR). Conclusion The dYFAS-C 2.0 has good reliability and validity in the Chinese population. FA is associated with weight status characterized by BMIZ and WHtR, especially in participants with BMIZ > 1 and in those with abdominal obesity. Clinical Trial Registration [www.chictr.org.cn], identifier [ChiCTR2100052239].
Collapse
Affiliation(s)
- Dan Wang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Huang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Erica Schulte
- Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, PA, United States
| | - Wanying Zhou
- Faculty of Education, University of Cambridge, Cambridge, United Kingdom
| | - Huiwen Li
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Junfen Fu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
34
|
Vasileva SS, Tucker J, Siskind D, Eyles D. Does the gut microbiome mediate antipsychotic-induced metabolic side effects in schizophrenia? Expert Opin Drug Saf 2022; 21:625-639. [PMID: 35189774 DOI: 10.1080/14740338.2022.2042251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Second-generation antipsychotics (SGAs) are the most effective treatment for people with schizophrenia. Despite their effectiveness in treating psychotic symptoms, they have been linked to metabolic, cardiovascular and gastrointestinal side-effects. The gut microbiome has been implicated in potentiating symptoms of schizophrenia, response to treatment and medication-induced side effects and thus presents a novel target mediating second-generation antipsychotic-induced side effects in patients. AREAS COVERED This narrative review presents evidence from clinical and pre-clinical studies exploring the relationship between the gut microbiome, schizophrenia, second-generation antipsychotics and antipsychotic-induced side-effects. It also covers evidence for psychobiotic treatment as a potential supplementary therapy for people with schizophrenia. EXPERT OPINION The gut microbiome has the potential to mediate antipsychotic-induced side-effects in people with schizophrenia. Microbiome-focused treatments should be considered in combination with standard therapy in order to ameliorate debilitating drug-induced side effects, increase quality of life and potentially improve psychotic symptoms. Future studies should aim to collect not only microbiome data, but also metabolomic measures, dietary information and behavioral data.
Collapse
Affiliation(s)
| | - Jack Tucker
- Metro South Addiction and Mental Health Service, Metro South Health, Brisbane, Australia.,University of Queensland School of Clinical Medicine, Brisbane, Australia
| | - Dan Siskind
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Metro South Addiction and Mental Health Service, Metro South Health, Brisbane, Australia.,University of Queensland School of Clinical Medicine, Brisbane, Australia.,Queensland Centre for Mental Health Research, Brisbane, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, Brisbane, Australia
| |
Collapse
|
35
|
Psychomotor Symptoms in Chronic Cocaine Users: An Interpretative Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031897. [PMID: 35162918 PMCID: PMC8835199 DOI: 10.3390/ijerph19031897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
According to the latest estimates, there are around 24.6 million cocaine users worldwide, and it is estimated that around a quarter of the population worldwide has used cocaine at some point in their lifetime. It follows that such widespread consumption represents a major risk for public health. Long-term use of cocaine, in addition to being related to many cerebral and cardiovascular diseases, is increasingly associated with a higher incidence of psychomotor symptoms and neurodegenerative disorders. In recent years, numerous studies have shown an increased risk of antipsychotic-induced extrapyramidal symptoms (EPSs) in patients with psychotic spectrum disorders comorbid with psychostimulant misuse, particularly of cocaine. In the present paper, we describe the case of a young patient on his first entry into a psychiatric setting with previous cocaine misuse who rapidly presented psychomotor symptoms and was poorly responsive to symptomatic therapy consisting of benzodiazepines and anticholinergics, in relation to the introduction of various antipsychotics (first, second, and third generation). Furthermore, we propose neurobiological mechanisms underlying the hypothesized increased vulnerability to psychomotor symptoms in chronic cocaine abusers. Specifically, we supposed that the chronic administration of cocaine produces important neurobiological changes, causing a complex dysregulation of various neurotransmitter systems, mainly affecting subcortical structures and the dopaminergic and glutamatergic pathways. We believe that a better understanding of these neurochemical and neurobiological processes could have useful clinical and therapeutic implications by providing important indications to increase the risk–benefit ratio in pharmacological choice in patients with psychotic spectrum disorders comorbid with a substance use disorder.
Collapse
|
36
|
Barnes CN, Wallace CW, Jacobowitz BS, Fordahl SC. Reduced phasic dopamine release and slowed dopamine uptake occur in the nucleus accumbens after a diet high in saturated but not unsaturated fat. Nutr Neurosci 2022; 25:33-45. [PMID: 31914869 PMCID: PMC7343597 DOI: 10.1080/1028415x.2019.1707421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High-fat diets are linked with obesity and changes in dopamine neurotransmission. Mounting evidence shows that saturated fat impacts dopamine neurons and their terminal fields, but little is known about the effect a diet high in unsaturated fat has on the dopamine system. This study sought to determine whether fat type, saturated vs. unsaturated, differentially affected body weight, blood glucose regulation, locomotor behavior, and control of dopamine release and uptake at dopamine neuron terminals in the nucleus accumbens (NAc). C57BL/6 mice were fed a control diet or a nutrient-matched diet high in saturated fat (SF), unsaturated flaxseed oil (Flax) or a blend of the two fats. After 6-weeks, mice from each high-fat diet group gained significantly more weight than Controls, but the group fed Flax gained less weight than the SF group and had fasting blood glucose levels similar to Controls. Ex-vivo fast scan cyclic voltammetry revealed the SF group also had significantly slower synaptic dopamine clearance and a reduced capacity for phasic dopamine release in the nucleus accumbens (NAc), but the Flax and Blend groups resembled Controls. These data show that different types of dietary fat have substantially different effects on metabolic phenotype and influence how dopamine terminals in the NAc regulate dopamine neurotransmission. Our data also suggests that a diet high in unsaturated fat may preserve normal metabolic and behavioral parameters as well as dopamine signaling in the NAc.
Collapse
Affiliation(s)
| | | | | | - Steve C Fordahl
- Corresponding Author: Steve C. Fordahl, Ph.D., Department of Nutrition, UNC Greensboro, 319 College Ave.; 338 Stone Bldg., Greensboro, NC 27402, Tel: 336.334.5313, Fax: 336.334.4129,
| |
Collapse
|
37
|
Synthesis, spectroscopic characterization, molecular docking studies and DFT calculation of novel Mannich base 1-((4-ethylpiperazin-1-yl)(2-hydroxyphenyl)methyl)naphthalen-2-ol. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Totten MS, Wallace CW, Pierce DM, Fordahl SC, Erikson KM. The impact of a high-fat diet on physical activity and dopamine neurochemistry in the striatum is sex and strain dependent in C57BL/6J and DBA/2J mice. Nutr Neurosci 2021; 25:2601-2615. [PMID: 34693894 DOI: 10.1080/1028415x.2021.1992082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Obesity has been linked to behavioral and biochemical changes, such as reduced physical activity, dysregulated dopamine metabolism, and gene expression alterations in the brain. The impact of a continuous high-fat diet and resulting state of obesity may vary depending on sex and genetics. OBJECTIVE The aim of this study was to investigate the impact of a high-fat diet on physical activity, gene expression in the striatum, and dopamine neurochemistry using male and female mice from different strains as a model to examine sex and strain influences on dopamine-mediated behavior and neurobiology. METHODS Male and female mice from the C57BL/6J (B6J) and DBA/2J (D2J) strains were randomly assigned a control low-fat diet with 10% kcal fat or a high-fat diet with 60% kcal fat for 16 weeks. We assessed ambulation and habituation using the open field test; dopamine release and reuptake using ex-vivo fast scan cyclic voltammetry; and striatal mRNA expression of dopamine receptor D2, alpha synuclein, and tyrosine hydroxylase. RESULTS Mice fed a high-fat diet exhibited reduced motor activity, but only obese B6J male mice displayed reduced habituation. Dopamine clearance in the dorsal striatum was reduced only in obese D2J mice, while dopamine clearance in the nucleus accumbens core was reduced only in male obese D2J mice. Striatal dopamine receptor D2 gene expression was upregulated exclusively in obese male B6J mice. CONCLUSION Our study provides evidence for important sex and strain influences on the impact of a high-fat diet and obesity-induced behavior alterations and neurobiology dysregulation in the striatum.
Collapse
Affiliation(s)
- Melissa S Totten
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Conner W Wallace
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Derek M Pierce
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Steve C Fordahl
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Keith M Erikson
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
39
|
Miyazaki S, Omiya Y, Mizoguchi K. Ninjin'yoeito, a traditional Japanese medicine, increases dopamine content in PC12 cells. Biosci Biotechnol Biochem 2021; 85:2274-2280. [PMID: 34529031 DOI: 10.1093/bbb/zbab162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/08/2021] [Indexed: 11/14/2022]
Abstract
Dementia is exacerbated by loss of appetite and amotivation, and recent studies have indicated that ninjin'yoeito improves anorexia and amotivation. Previous studies suggest that ninjin'yoeito inhibits dopamine-metabolizing enzymes and enhances dopamine signaling. However, whether ninjin'yoeito increases dopamine content in living cells remains unclear. Here, PC12 cells were used to examine whether ninjin'yoeito affects the dopamine metabolic pathway. Dopamine content significantly increased 3 h after treatment ninjin'yoeito extract. Concomitantly, the levels of 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid were significantly reduced. The effects of components of ninjin'yoeito on the dopamine metabolic pathway were also assessed. Treatment with onjisaponin B, nobiletin, and schisandrin, and the ingredients of Polygalae Radix, Citri Unshiu Pericarpium, and Schisandrae Fructus increased dopamine content and decreased its metabolite content in the culture media. Our findings suggest that ninjin'yoeito improves anorexia and amotivation by inhibiting metabolic enzyme and increasing the dopamine content in cells.
Collapse
Affiliation(s)
- Shinji Miyazaki
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Yuji Omiya
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | |
Collapse
|
40
|
Zhou H, Hou T, Gao Z, Guo X, Wang C, Wang J, Liu Y, Liang X. Discovery of eight alkaloids with D1 and D2 antagonist activity in leaves of Nelumbo nucifera Gaertn. Using FLIPR assays. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114335. [PMID: 34139281 DOI: 10.1016/j.jep.2021.114335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dopamine receptors are long-standing primary targets in the treatment of mental diseases and there is growing evidence that suggests relationships between obesity and the dopamine system, especially dopamine D1 and D2 receptors. Leaves of Nelumbo nucifera Gaertn. (lotus leaves) have been medically used for helping long-term maintenance of weight loss. Whether and how components of lotus leaves function through the dopamine receptors remains unclear. AIM OF THE STUDY This work aimed to discover dopamine receptor-active alkaloids isolated from the lotus leaves, to evaluate their potencies and to analyze their structure activity relationship. MATERIALS AND METHODS Dried lotus leaves were prepared and total extract was divided into alkaloids and flavones. Eight alkaloids were separated and characterized by a combination of high-performance liquid chromatography, quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance, and assayed by a fluorometric imaging plate reader platform. Human embryonic kidney 239 cell lines expressing dopamine D1, D2 and serotonin 2A (5-HT2A) receptors, respectively, were cultured and used in the assay. RESULTS Alkaloids in the lotus leaves were the bioactive phytochemicals and inhibited dopamine from accessing the D1 and D2 receptors. All eight compounds functioned as D1-receptor antagonists and except N-nornuciferine, seven alkaloids functioned as D2-receptor antagonists. (S)-coclaurine and (R)-coclaurine are optical isomers and antagonized both D1 and D2 with equivalent potencies, suggesting that the optical rotation of the methylene linker in the monobenzyl isoquinoline backbone did not influence their activity. Among the eight alkaloids, O-nornuciferine was the potent antagonist to both receptors (the lowest IC50 values, D1: 2.09 ± 0.65 μM and D2: 1.14 ± 0.10 μM) while N-nornuciferine was found to be the least potent as it moderately antagonized D1 and was inactive on D2. O-nornuciferine was also a 5-HT2A antagonist (IC50~20 μM) while N-nornuciferine had no activity. These hinted the importance of a methyl group attached to the nitrogen atom in the aporphine backbone. Armepavine showed a nearly 10-fold selectivity to D2. CONCLUSIONS In this work, eight alkaloids were isolated from the leaves of Nelumbo nucifera Gaertn. and assayed on the D1 and D2 receptors. They were D1/D2 antagonists with IC50 values in the mid- to low-micromolar range and O-nornuciferine was the most potent alkaloid among the eight. This family of alkaloids was biochemically evaluated on the dopamine receptors by the same platform for the first time.
Collapse
Affiliation(s)
- Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Zhenhua Gao
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Xiujie Guo
- DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; DICP-CMC Innovation Institute of Medicine, Taizhou, 225300, China.
| | - Jixia Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
41
|
Aliasghari F, Mahdavi R, Barati M, Nazm SA, Yasari S, Bonyadi M, Jabbari M. Genotypes of ANKK1 and DRD2 genes and risk of metabolic syndrome and its components: A cross-sectional study on Iranian women. Obes Res Clin Pract 2021; 15:449-454. [PMID: 34420901 DOI: 10.1016/j.orcp.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
We aimed to investigate the association between polymorphism of DRD2/ANKK1 gene with MetS and its components. Women (n = 531, aged 19-50 years) from the North-west of Iran were included by cluster sampling method. Polymorphisms of ANKK1 and DRD2 genes were defined in the study population. D/D (OR: 3.16; 95%CI: 1.31-7.60) and I/D (OR: 1.76; 95%CI: 1.12-2.78) genotypes of DRD2 (rs1799732) increased risk of MetS compared to I/I genotype. The D/D genotype of DRD2 (rs1799732) increased odds of hypertriglyceridemia in the study population. T/T (OR: 6.72; 95%CI: 1.99-22.71) and C/T (OR: 4.42; 95%CI: 2.79-7.01) genotypes of ANKK1 (rs1800497) increased risk of MetS compared to C/C genotype. Also, C/T genotype increased the odds of HTN, high FBS, high TG and low HDL-C levels compared to C/C genotype. These polymorphisms can affect the MetS components via their relation to the signaling of dopaminergic pathways and eating behaviors.
Collapse
Affiliation(s)
- Fereshteh Aliasghari
- Department of Nutrition, Sepidan Bagherololoom Health Higher Education College, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Meisam Barati
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saba A Nazm
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Sepideh Yasari
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mortaza Bonyadi
- Animal Biology Dept., Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Masoumeh Jabbari
- Faculty of Nutrition Sciences and Food Industry, Department of Community Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Park M, Kim KH, Jaiswal V, Choi J, Chun JL, Seo KM, Lee MJ, Lee HJ. Effect of black ginseng and silkworm supplementation on obesity, the transcriptome, and the gut microbiome of diet-induced overweight dogs. Sci Rep 2021; 11:16334. [PMID: 34381138 PMCID: PMC8358025 DOI: 10.1038/s41598-021-95789-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/23/2021] [Indexed: 01/04/2023] Open
Abstract
Like humans, weight control in overweight dogs is associated with a longer life expectancy and a healthier life. Dietary supplements are one of the best strategies for controlling obesity and obesity-associated diseases. This study was conducted to assess the potential of black ginseng (BG) and silkworm (SW) as supplements for weight control in diet-induced overweight beagle dogs. To investigate the changes that occur in dogs administered the supplements, different obesity-related parameters, such as body condition score (BCS), blood fatty acid profile, transcriptome, and microbiome, were assessed in high energy diet (HD) and HD with BG + SW supplementation (HDT) groups of test animals. After 12 weeks of BG + SW supplementation, total cholesterol and triglyceride levels were reduced in the HDT group. In the transcriptome analysis, nine genes (NUGGC, EFR3B, RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) that are known to be associated with obesity were found to be differentially expressed between the ND (normal diet) and HD groups as well as the HD and HDT groups. Significant changes in some taxa were observed between the HD and ND groups. These data suggest that the BG + SW supplement could be developed as dietary interventions against diet-induced obesity, and obesity-related differential genes could be important candidates in the mechanism of the anti-obesity effects of the BG + SW supplement.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Jihee Choi
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Kang Min Seo
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Mi-Jin Lee
- Clinical Nutritional Medicine, Veterinary Medical Teaching Hospital, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea.
| |
Collapse
|
43
|
Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr Res Rev 2021; 35:236-251. [PMID: 34184629 DOI: 10.1017/s0954422421000196] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc) dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked diet-induced obesity and HFD with reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeostatic needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by disrupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacerbated by the hypothalamic-pituitary-adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and hinder weight loss. Understanding links between HFD and dopamine neurotransmission will inform treatment strategies for diet-induced obesity and identify molecular candidates for targeted therapeutics.
Collapse
|
44
|
Hassanlou AA, Jamali S, RayatSanati K, Mousavi Z, Haghparast A. Cannabidiol modulates the METH-induced conditioned place preference through D2-like dopamine receptors in the hippocampal CA1 region. Brain Res Bull 2021; 172:43-51. [PMID: 33862125 DOI: 10.1016/j.brainresbull.2021.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/21/2022]
Abstract
The main problem with addiction is a relapse with a high rate in methamphetamine (METH) abusers. Using addictive drugs repetitively will cause the reward. METH reward is due to an increase in dopamine levels, and the endocannabinoid system (ECS) has a modulatory role in reward through CB1 receptors. On the other hand, the hippocampus plays an important role in learning and memory, so it is involved in the neuroplasticity caused by METH abuse. Cannabidiol (CBD) has been shown to reduce the effects of METH through different mechanisms such as increasing the ECS activity, regulating emotional memory in the ventral hippocampus through D2-like dopamine receptors, and decreasing the mesolimbic dopaminergic activity. The present study tried to find out the role of hippocampal CA1 D2-like dopamine receptors (D2R) in the effects of cannabidiol on the acquisition and expression of METH-induced conditioned place preference (METH-CPP) in rats by using microinjection of sulpiride as a D2R antagonist. For this purpose, different groups of animals received different doses of sulpiride (0.25, 1, and 4 μg/0.5 μL DMSO; CA1), once prior to the injection of CBD (10 μg/5 μL for acquisition and 50 μg/5 μL for expression; ICV) and once in the absence of CBD. Control groups were also considered. In brief, findings showed that cannabidiol decreases METH-induced CPP. Intra-CA1 administration of sulpiride reversed the decreasing effects of cannabidiol on METH-induced CPP in both acquisition and expression phases but more prominent in the expression phase. The results showed that sulpiride did not affect the METH-induced CPP in the absence of cannabidiol. In conclusion, this study demonstrated that cannabidiol decreased METH-induced CPP in part through interaction with hippocampal CA1 D2-dopamine receptors.
Collapse
Affiliation(s)
- Amir Arash Hassanlou
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shole Jamali
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia RayatSanati
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Sze KYP, Lee EKP, Chan RHW, Kim JH. Prevalence of negative emotional eating and its associated psychosocial factors among urban Chinese undergraduates in Hong Kong: a cross-sectional study. BMC Public Health 2021; 21:583. [PMID: 33761930 PMCID: PMC7988990 DOI: 10.1186/s12889-021-10531-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Emotional eating (EE), defined as eating in response to a range of emotions, has been previously associated with poor diet and obesity. Since there are limited data from non-Western populations, this study aims to examine the prevalence and factors associated with EE among urban Chinese university students. Methods A cross-sectional study was conducted on 424 university students (aged 18–24 years) from two large universities in Hong Kong in 2019. Respondents completed an anonymous online questionnaire that contained background questions, an emotional eating subscale of the Dutch Eating Behaviour Questionnaire (DEBQ), and Depression Anxiety and Stress Scales (DASS-21). Two-sample independent t-test and multiple regression analyses were conducted to test the association of study variables with negative emotional eating. Results There was over a three-fold higher likelihood of negative EE among females (14.8%) when compared with their male counterparts (4.5%) (OR = 3.7, p < 0.05). Having at least mild depressive symptoms was the only independent factor associated with negative EE among males (OR = 10.1) while for females, negative EE was independently associated with not having a romantic partner (OR = 3.45), having depressive symptoms (OR = 44.5), and having at least mild stress (OR = 5.65). Anxiety levels were not independently associated with negative EE for either gender. Both male and female students with negative EE had significantly lower self-perceived health scores, higher body mass index, and lower life satisfaction scores. Conclusions This study revealed that negative EE is prevalent among female Chinese university students and not uncommon among male students. Management of negative EE should be included as a component of university mental health promotion programmes in the region.
Collapse
Affiliation(s)
- Katherine Y P Sze
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Eric K P Lee
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Rufina H W Chan
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Jean H Kim
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR.
| |
Collapse
|
46
|
Late effects of early weaning on food preference and the dopaminergic and endocannabinoid systems in male and female rats. J Dev Orig Health Dis 2021; 13:90-100. [PMID: 33650480 DOI: 10.1017/s2040174421000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early weaning (EW) is associated with obesity later in life. Here, using an EW model in rats, we investigated changes in feeding behavior and the dopaminergic and endocannabinoid systems (ECS) in the adult offspring. Lactating Wistar rats were divided into two groups: EW, dams were wrapped with a bandage to interrupt suckling during the last 3 days of breastfeeding; CONT; dams fed the pups throughout the period without hindrances. EW animals were compared with CONT animals of the same sex. At PN175, male and female offspring of both groups could freely self-select between high-fat and high-sugar diets (food challenge test). EW males preferred the high-fat diet at 30 min and more of the high-sugar diet after 12 h compared to CONT males. EW females did not show differences in their preference for the palatable diets compared to CONT females. Total intake of standard diet from PN30-PN180 was higher in both male and female EW animals, indicating hyperphagia. At PN180, EW males showed lower type 2 dopamine receptor (D2r) in the nucleus accumbens (NAc) and dorsal striatum, while EW females had lower tyrosine hydroxylase in the ventral tegmental area and NAc, D1r in the NAc, and D2r in the prefrontal cortex. In the lateral hypothalamus, EW males had lower fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, whereas EW females showed lower N-arachidonoyl-phosphatidylethanolamine phospholipase-D and increased FAAH. Early weaning altered both the dopaminergic and ECS parameters at adulthood, contributing to the eating behavior changes of the progeny in a sex-dependent manner.
Collapse
|
47
|
Noye Tuplin EW, Chleilat F, Alukic E, Reimer RA. The Effects of Human Milk Oligosaccharide Supplementation During Critical Periods of Development on the Mesolimbic Dopamine System. Neuroscience 2021; 459:166-178. [PMID: 33588004 DOI: 10.1016/j.neuroscience.2021.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Human milk oligosaccharides (HMO)s are a key component in human milk and represent an important dietary modulator of infant gut microbiota composition and associated gut-brain axis development and homeostasis. The brain reward system, specifically the mesolimbic dopamine (DA) projections from the ventral tegmental area (VTA) to nucleus accumbens (NAc) is involved in the motivation and preference for food. The objective of the present study was to determine if HMO fortified diets given during the critical period of reward system development (p21) could affect the structure of the reward system. At weaning (p21), Sprague-Dawley rats were randomized to one of four fortified diet groups: Control, 3'sialyllactose (3'FL), 2'-fucosyllactose (2'FL), or a combination of 3'SL and 2'FL (3'SL + 2'FL). Messenger RNA (mRNA) expression was quantified for DA and appetite associated markers in the VTA and NAc and western blots measured the immediate early gene FosB and its isoform ΔFosB. Females fed the 3'SL + 2'FL fortified diet displayed a decrease in DAT expression in the VTA and an increase in leptin expression in the NAc. Females displayed an overall lower expression of NAc D2, VTA ghrelinR, and VTA leptin. In males, VTA DAT and FosB were negatively correlated with body weight and systemic leptin. Sex differences in the expression of DA markers underscore the need to investigate this phenomenon and understand the functional significance in preventing or treating obesity. This study highlights sex differences in response to HMO supplementation and the need for further investigations into the functional significance of nutritional interventions during DA system development.
Collapse
Affiliation(s)
- Erin W Noye Tuplin
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Faye Chleilat
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Erna Alukic
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
48
|
Do children with overweight respond faster to food-related words? Appetite 2021; 161:105134. [PMID: 33484788 DOI: 10.1016/j.appet.2021.105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022]
Abstract
Overweight in childhood is a risk factor in developing obesity as an adult, thus having severe consequences on the individuals' physical health and psychological well-being. Therefore, studying the cognitive and emotional processes that sustain overweight is essential not only at a theoretical level but also to develop effective interventions. In the present experiment, we examined whether children with overweight respond faster to food-related than non-food-related words in a word recognition task: lexical decision. The participants were 24 children diagnosed with exogenous overweight and 24 children with a healthy weight. The stimulus list included positively valenced food-related words and positively valenced non-food-related words matched in a number of psycholinguistic variables-we also included negatively valenced non-food words. While children with a healthy weight showed similar response times to positively valenced food-related and non-food-related words, children with overweight showed much faster response times to food-related words than to non-food-related words. Furthermore, both children with overweight and children with a healthy weight responded faster to positive than to negative words. These findings suggest a complex interplay of cognitive and emotional factors during word processing that can be used to implement more effective treatments for childhood overweight.
Collapse
|
49
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
50
|
Food Addiction and Tobacco Use Disorder: Common Liability and Shared Mechanisms. Nutrients 2020; 12:nu12123834. [PMID: 33334010 PMCID: PMC7765398 DOI: 10.3390/nu12123834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
As food addiction is being more commonly recognized within the scientific community, parallels can be drawn between it and other addictive substance use disorders, including tobacco use disorder. Given that both unhealthy diets and smoking are leading risk factors for disability and death, a greater understanding of how food addiction and tobacco use disorder overlap with one another is necessary. This narrative review aimed to highlight literature that investigated prevalence, biology, psychology, and treatment options of food addiction and tobacco use disorder. Published studies up to August 2020 and written in English were included. Using a biopsychosocial lens, each disorder was assessed together and separately, as there is emerging evidence that the two disorders can develop concurrently or sequentially within individuals. Commonalities include but are not limited to the dopaminergic neurocircuitry, gut microbiota, childhood adversity, and attachment insecurity. In addition, the authors conducted a feasibility study with the purpose of examining the association between food addiction symptoms and tobacco use disorder among individuals seeking tobacco use disorder treatment. To inform future treatment approaches, more research is necessary to identify and understand the overlap between the two disorders.
Collapse
|