1
|
Kim NH, Lee YA. The Effects of Nanoplastics on the Dopamine System of Cerebrocortical Neurons. Int J Toxicol 2025; 44:29-38. [PMID: 39486087 DOI: 10.1177/10915818241293993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Nanoplastics (NPx) can enter living organisms, including humans, through ecosystems, inhalation, and dermal contact and can be found from the intestine to the brain. However, it is unclear whether NPx accumulates and affects the dopamine system. In this study, we investigated the effects of NPx on the dopamine system in cultured murine cerebral cortex neurons. Cultured cerebrocortical neurons were treated with 100 nm NPx at the following concentrations for 24 h: 1.896 × 105, 3.791 × 106, 7.583 × 107, 1.571 × 109, 3.033 × 1010, and 3.033 × 1011 particles/mL. Dopamine-associated proteins were analyzed using immunofluorescence staining. NPx treatment induced its accumulation in neurons in a dose-dependent manner and increased the levels of dopamine receptors D1 and D2 and their co-expression. However, NPx treatment did not affect the levels of other dopamine receptors, dopamine transporters, tyrosine hydroxylase, and microtubule-associated protein 2, or synaptophysin in neuronal structures. This study demonstrated that NPx is a potential modulator of the dopamine system via its receptors rather than its synthesis and reuptake in neurons and may be associated with dopamine-based psychiatric disorders.
Collapse
Affiliation(s)
- Na-Hyun Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
Niu Y, Pan Y, Wang Y, Fu Y, Zhao Z, Kang L. Lead specifically declines tyrosine hydroxylase activity to induce the onset of Parkinson's disease through disrupting dopamine biosynthesis in fly models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124383. [PMID: 38897282 DOI: 10.1016/j.envpol.2024.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) is one of the fastest-growing neurodegenerative diseases and has been linked to the exposure to numerous environmental neurotoxins. Although lead (Pb) exposure has been related to the development of PD, the molecular target of Pb to cause the onset of PD is insufficiently investigated. Herein, we explored the effects of Pb exposure on behavior, pathophysiology, and gene expression of wild-type (WT) fly (Drosophila melanogaster) by comparison with its PD model. After exposure to Pb, the WT flies showed PD-like locomotor impairments and selective loss of dopaminergic (DAergic) neurons, displaying similar phenotypes to fly PD model (PINK1). Transcriptomic analysis showed the similarity in gene expression profiles between Pb treatment WT flies and PINK1 mutant flies. Moreover, Pb exposure resulted in endogenous dopamine deficits in WT flies. Analyses of gene expression and enzyme activity confirmed that Pb exposure reduced tyrosine hydroxylase (TH) activity and led to failure of dopamine synthesis. Furthermore, molecular dynamics simulation confirmed that Pb was adsorbed by TH and subsequently inhibited the enzymatic activity. Exogenous injection of L-dopa and melatonin could partially rescue the pathological phenotypes of Pb-exposed flies and PD fly model. Antagonist injection of microRNA-133, which negatively regulated the expression of TH gene, ultimately rescued in the manifestation of PD phenotypes in flies. Involvement of TH overexpression mutants of fly strongly promoted the resistance to Pb exposure and rescued both behavior and the number of DAergic neurons. Therefore, our study elucidates the Pb molecular target in dopamine pathway and mechanism underlying the risks of Pb exposure on the occurrence of PD at environmentally-relevant concentrations.
Collapse
Affiliation(s)
- Yue Niu
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yifan Pan
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yaqi Wang
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yongqi Fu
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhangwu Zhao
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China
| | - Le Kang
- Institute of Life Science and Green Development/College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Kim YK, Jo D, Arjunan A, Ryu Y, Lim YH, Choi SY, Kim HK, Song J. Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer's Disease Mice via Transcriptomic and Cellular Analysis. Int J Mol Sci 2024; 25:2567. [PMID: 38473814 DOI: 10.3390/ijms25052567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer's disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer's disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer's disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeongseo Ryu
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeong-Hwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Seo Yoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Hee Kyung Kim
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| |
Collapse
|
4
|
Zhao Y, Ray A, Portengen L, Vermeulen R, Peters S. Metal Exposure and Risk of Parkinson Disease: A Systematic Review and Meta-Analysis. Am J Epidemiol 2023; 192:1207-1223. [PMID: 37022311 PMCID: PMC10326611 DOI: 10.1093/aje/kwad082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/29/2022] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Metal exposure has been suggested as a possible environmental risk factor for Parkinson disease (PD). We searched the PubMed, EMBASE, and Cochrane databases to systematically review the literature on the relationship between metal exposure and PD risk and to examine the overall quality of each study and the exposure assessment method. A total of 83 case-control studies and 5 cohort studies published during the period 1963-July 2021 were included, of which 73 were graded as being of low or moderate overall quality. Investigators in 69 studies adopted self-reported exposure and biomonitoring after disease diagnosis for exposure assessment approaches. The meta-analyses showed that concentrations of copper and iron in serum and concentrations of zinc in either serum or plasma were lower, while concentrations of magnesium in CSF and zinc in hair were higher, among PD cases as compared with controls. Cumulative lead levels in bone were found to be associated with increased risk of PD. We did not find associations between other metals and PD. The current level of evidence for associations between metals and PD risk is limited, as biases from methodological limitations cannot be ruled out. High-quality studies assessing metal levels before disease onset are needed to improve our understanding of the role of metals in the etiology of PD.
Collapse
Affiliation(s)
| | | | | | | | - Susan Peters
- Correspondence to Dr. Susan Peters, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands (e-mail: )
| |
Collapse
|
5
|
Jeyabalan S, Bala L, Subramanian K, Jabaris SL, Sekar M, Wong LS, Subramaniyan V, Chidambaram K, Gan SH, Mat Rani NNI, Begum MY, Safi SZ, Selvaraj S, Al Fatease A, Alamri A, Vijeepallam K, Fuloria S, Fuloria NK, Djearamane S. Potential effects of noni ( Morinda citrifolia L.) fruits extract against obsessive-compulsive disorder in marble burying and nestlet shredding behavior mice models. Front Pharmacol 2022; 13:993927. [PMID: 36188588 PMCID: PMC9523247 DOI: 10.3389/fphar.2022.993927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and complex psychiatric disorder that usually includes both obsessions and compulsions. Morinda citrifolia L. (Noni) is a functional food and it is a well-known plant due to its potential therapeutic effects on human health in many disorders including neurological and neurodegenerative diseases. The purpose of this study was to evaluate the potential effect of M. citrifolia fruits extract (MCFE) against obsessive-compulsive disorder using the marble burying and nestlet shredding behavior mice models. In addition, brain neurotransmitters such as dopamine (DA), serotonin and noradrenaline (NA) were also assessed. Five mice were placed in each of the different groups, and the treatment was given to the animals for a period of 15 days. The marble burying test was evaluated for 30 min on days 1, 7, and 14 while the nestlet shredding test was evaluated for 60 min on days 2, 8, and 15. Treatments with MCFE (100 and 200 mg/kg, p.o.) significantly improved in both behavior tasks when compared to the control group. In addition, diazepam (2 mg/kg, i.p.) and fluoxetine (15 mg/kg, p.o.) were also significantly improved in both tasks when compared with the control mice. Further locomotor activity study revealed that MCFE and fluoxetine did not affect the locomotor functions when compared to vehicle treated mice. In contrast, diazepam significantly decreased locomotion when compared to the control group. The significant amelioration of biogenic amines were observed in the MCFE-treated animals with increased serotonin levels. The histopathology of the brain, liver, and kidney tissues after MCFE administration revealed normal morphological structure with no signs of toxicity or abnormalities. All these results together suggest that MCFE can be a potential drug candidate for the treatment of OCD. Future research should focus on theidentification and the anti-compulsive activity of the constituents from M. citrifolia.
Collapse
Affiliation(s)
- Srikanth Jeyabalan
- Department of Pharmacology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Logeshwari Bala
- Department of Pharmacology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Kavimani Subramanian
- Department of Pharmacology, College of Pharmacy, Mother Theresa Post Graduate and Research Institute of Health Sciences, Chennai, Tamil Nadu, India
| | - Sugin Lal Jabaris
- Department of Pharmacology, Siddha Central Research Institute, Central Council for Research in Siddha, Anna Govt. Hospital Campus, Chennai, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom, Selangor, Malaysia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom, Selangor, Malaysia
| | | | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| |
Collapse
|
6
|
Reversal of genetic brain iron accumulation by N,N'-bis(2-mercaptoethyl)isophthalamide, a lipophilic metal chelator, in mice. Arch Toxicol 2022; 96:1951-1962. [PMID: 35445828 DOI: 10.1007/s00204-022-03287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 12/31/2022]
Abstract
N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) is a novel lipophilic metal chelator and antioxidant used in mercury poisoning. Recent studies have suggested that NBMI may also bind to other metals such as lead and iron. Since NBMI can enter the brain, we evaluated if NBMI removes excess iron from the iron-loaded brain and ameliorates iron-induced oxidative stress. First, NBMI exhibited preferential binding to ferrous (Fe2+) iron with a negligible binding affinity to ferric (Fe3+) iron, indicating a selective chelation of labile iron. Second, NBMI protected SH-SY5Y human neuroblastoma cells from the cytotoxic effects of high iron. NBMI also decreased cellular labile iron and lessened the production of iron-induced reactive oxygen species in these cells. Deferiprone (DFP), a commonly used oral iron chelator, failed to prevent iron-induced cytotoxicity or labile iron accumulation. Next, we validated the efficacy of NBMI in Hfe H67D mutant mice, a mouse model of brain iron accumulation (BIA). Oral gavage of NBMI for 6 weeks decreased iron accumulation in the brain as well as liver, whereas DFP showed iron chelation only in the liver, but not in the brain. Notably, depletion of brain copper and anemia were observed in BIA mice treated with DFP, but not with NBMI, suggesting a superior safety profile of NBMI over DFP for long-term use. Collectively, our study demonstrates that NBMI provides a neuroprotective effect against BIA and has therapeutic potential for neurodegenerative diseases associated with BIA.
Collapse
|
7
|
Han M, Böhlke M, Maher T, Kim J. Alcohol exposure increases manganese accumulation in the brain and exacerbates manganese-induced neurotoxicity in mice. Arch Toxicol 2021; 95:3665-3679. [PMID: 34590183 DOI: 10.1007/s00204-021-03166-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Environmental and occupational exposure to heavy metals remains one of the major concerns in public health. Increased levels of manganese (Mn) pollution are associated with profound neurotoxic effects, including neurobehavioral deficits and disturbances resembling Parkinson's disease. While Mn absorption is in part mediated by iron transporters, recent studies have shown that the levels of iron transporters are modified by alcohol and that chronic alcohol consumption increases body iron stores. However, it is largely unexplored whether alcohol exposure influences the transport and neurotoxicity of Mn. To address this question, we exposed mice to ethanol (10%; v/v) by drinking water for 4 weeks, during which period MnCl2 (5 mg/kg) or saline solutions were administered daily by intranasal instillation. Ethanol consumption in mice increased brain Mn levels in a dose-dependent manner after Mn instillation, determined by inductively-coupled plasma mass spectrometry, which was accompanied by up-regulation of iron transporters, as assessed by western blotting and qPCR. In addition, alcohol drinking increased hypoxic response and decreased hepcidin expression, providing the molecular mechanism of increased iron transporters and Mn uptake upon alcohol consumption. Moreover, brain dopamine levels, analyzed by HPLC, were decreased after intranasal Mn instillation, which was worsened by alcohol. Likewise, alcohol-Mn co-exposure synergistically altered dopaminergic protein expression. Finally, alcohol binge-drinking, which resembles alcohol drinking manner in humans, increased brain Mn content along with upregulation of iron transporters. Our study suggests that individuals who consume alcohol may have a higher risk of Mn neurotoxicity upon Mn exposure.
Collapse
Affiliation(s)
- Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Timothy Maher
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA. .,Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA, 01854, USA.
| |
Collapse
|
8
|
L M, Mitra P, Goyal T, Abhilasha, Sharma S, Purohit P, Sharma P. Association of blood lead level with neurobehavior and neurotransmitter expressions in Indian children. Toxicol Rep 2021; 8:971-976. [PMID: 34026560 PMCID: PMC8122146 DOI: 10.1016/j.toxrep.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/15/2022] Open
Abstract
BLL had a significant direct correlation with abnormal neurobehavior. Serum serotonin levels were significantly lower in children with high blood lead levels (BLL). Serum serotonin and dopamine receptor expression were upregulated in children with high BLL. Serum serotonin levels had significant negative association with adverse neurobehavior. Dopamine receptor expression had significant positive association with adverse neurobehavior.
Present study aimed to assess the alterations in neurotransmitter expression and its association with Blood Lead Level (BLL) and neurobehavioral pattern in children. 72 school going children were recruited. Blood lead levels were determined by Atomic Absorption Spectrophotometer. Neurobehavioral state was assessed by means of population specific scale i.e. CPMS (Childhood Psychopathological measurement Schedule). Serum serotonin and dopamine were estimated by ELISA, receptor and transporter gene expressions were assessed by quantitative real time PCR. Significant positive correlation was observed between Total CPMS score (i.e. adverse neurobehaviour) and BLL. Further, serum serotonin levels and dopamine receptor expression showed a negative and positive association with BLL, respectively. In similarity, serum serotonin levels showed a negative correlation and dopamine receptor expression had a significant positive correlation with total CPMS score. Environmental exposure to Lead (Pb) may result in significant alterations in the neurotransmitter levels which may be associated with neurobehavioral changes in the children exposed to Pb.
Collapse
Affiliation(s)
- Malavika L
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhilasha
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
9
|
Zeng X, Xu C, Xu X, Zhang Y, Huang Y, Huo X. Elevated lead levels in relation to low serum neuropeptide Y and adverse behavioral effects in preschool children with e-waste exposure. CHEMOSPHERE 2021; 269:129380. [PMID: 33383249 DOI: 10.1016/j.chemosphere.2020.129380] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023]
Abstract
As a neurotoxicant, lead (Pb) primarily affects central nervous system, and particularly impacts developing brain. This study explores the associations of blood Pb level and children's behavioral health. A total of 213 preschool children aged 3-7 years old were recruited from Guiyu (the e-waste-exposed area) and Haojiang (the reference area). The behavioral health of children was assessed using the 'behavioral symptoms' subscale of the Strengths and Difficulties Questionnaire (SDQ). Results showed that there was a significant difference in percent of children categorized as "at risk" between Guiyu (48.2%) and Haojiang (13.9%) (p < 0.001). The blood Pb level of children in Guiyu was significantly higher than those in Haojiang (median: 5.19 μg/dL vs. 3.42 μg/dL, p < 0.001). The serum Neuropeptide Y (NPY) was significantly lower in Guiyu children than those in Haojiang. Spearman correlation analyses demonstrated that blood Pb levels was negatively correlated with NPY (rs = -0.25, p < 0.001), but positively correlated with behavioral symptom scores; while serum NPY levels were negatively associated with behavioral symptom scores. Behavioral symptom scores were higher in children with blood Pb level ≥5.00 μg/dL (high) than those with blood Pb level < 5.00 μg/dL (low). After adjusting for confounding factors, children with lower NPY levels were at higher risk of having behavioral difficulties. In conclusion, Pb exposure in e-waste-exposed areas may lead to decrease in serum NPY and increase in the risk of children's behavioral problems. In addition, NPY may mediate the association between Pb exposure and behavioral difficulties.
Collapse
Affiliation(s)
- Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, And Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, And Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, And Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9713, GZ, the Netherlands
| | - Yu Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, And Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
10
|
Nanegrungsunk D, Ragozzino ME, Xu HL, Haselton KJ, Paisansathan C. Subarachnoid hemorrhage in C57BL/6J mice increases motor stereotypies and compulsive-like behaviors. Neurol Res 2020; 43:239-251. [PMID: 33135605 DOI: 10.1080/01616412.2020.1841481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Long-term behavioral, mood, and cognitive deficits affect over 30% of patients with subarachnoid hemorrhage (SAH). The aim of the present study was to examine the neurobehavioral outcomes following endovascular perforation induced SAH in mice. METHODS C57BL/6 J (B6) mice were exposed to endovascular perforation induced SAH or control surgery. Three weeks later, mice received a series of behavioral tests, e.g. motor function, stereotypy, learning, memory, behavioral flexibility, depression and anxiety. The immunohistologic experiment examined neuronalloss in the cortex following SAH. RESULTS SAH mice exhibited increased marble burying and nestlet shredding compared to that of control mice. Although SAH did not affect memory, learning or reversal learning,mice displayed greater overall object exploration in the novel object recognition test, as well as elevated perseveration during probabilistic reversal learning.In the forced swim and open field tests, SAH mice performed comparably to that of control mice. However, SAH mice exhibited an increased frequency in 'jumping' behavior in the open field test. Histological analyses revealed reduced neuron density in the parietal-entorhinal cortices of SAH mice on the injured side compared to that of control mice. DISCUSSION The findings suggest that parietal-entorhinal damage from SAH increases stereotyped motor behaviors and 'compulsive-like' behaviors without affecting cognition (learning and memory) or mood (anxiety and depression). This model can be used to better understand the neuropathophysiology following SAH that contributes to behavioral impairments in survivors with no gross sensory-motor deficits.
Collapse
Affiliation(s)
- Danop Nanegrungsunk
- Department of Anesthesiology, University of Illinois College of Medicine at Chicago , Chicago, IL, USA.,Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| | - Michael E Ragozzino
- Department of Psychologyat the University of Illinois at Chicago , Chicago, IL, USA
| | - Hao-Liang Xu
- Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| | - Kyle J Haselton
- Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| | - Chanannait Paisansathan
- Department of Anesthesiology, University of Illinois College of Medicine at Chicago , Chicago, IL, USA.,Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| |
Collapse
|
11
|
Wu LL, Mao SS, Lin X, Yang RW, Zhu ZW. Evaluation of Whole Blood Trace Element Levels in Chinese Children with Autism Spectrum Disorder. Biol Trace Elem Res 2019; 191:269-275. [PMID: 30600499 DOI: 10.1007/s12011-018-1615-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which has increased markedly during the last decades. Essential trace elements play an important role in neurological function and their imbalances are common in children with ASD. The objective of the present study was to investigate whole blood levels of trace elements including zinc (Zn), copper (Cu), iron (Fe), and magnesium (Mg) in Chinese children with ASD. In total, 113 children diagnosed with ASD and 141 age-matched and gender-matched neurotypical children, divided into two gender and age groups of preschool age (2-5 years old) and school (6-10 years old) age, were examined. The quantitative analyses of whole blood trace element contents were performed by using flame atomic absorption spectroscopy. In the present study, the children with ASD generally had lower whole blood levels of Zn than the neurotypical controls. No significant differences in the whole blood Cu, Zn/Cu ratio, Fe, or Mg was detected between the ASD group and the control group. It is notable that whole blood Fe level in boys with ASD was significantly higher than in girls with ASD, and was nearly significant when compared with the control level of boys. After stratification for age, a significant 6% decrease in whole blood Zn levels was detected in preschool-aged children with ASD as compared to the control values. However, this significant ASD-related change was not detected in school-aged children. The whole blood Zn level and Zn/Cu ratio were significantly increased in school-aged children than in preschool-aged children in both ASD and control group. In addition, school-aged children with ASD had a significantly higher level of whole blood Fe than preschool-aged children with ASD. The results of the present study suggest an association between whole blood levels of Zn in Chinese children with ASD.
Collapse
Affiliation(s)
- Ling-Ling Wu
- Department of Developmental and Behavioral Pediatrics, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China
| | - Shan-Shan Mao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China
| | - Xu Lin
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China
| | - Rong-Wang Yang
- Department of Psychology, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China
| | - Zhi-Wei Zhu
- Department of Developmental and Behavioral Pediatrics, Children's Hospital, Zhejiang University School of Medicine, 3333# Bin sheng Road, City of Hangzhou, Zhejiang Province, China.
| |
Collapse
|
12
|
Akinyemi AJ, Miah MR, Ijomone OM, Tsatsakis A, Soares FAA, Tinkov AA, Skalny AV, Venkataramani V, Aschner M. Lead (Pb) exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans: Involvement of the dopamine transporter. Toxicol Rep 2019; 6:833-840. [PMID: 31463204 PMCID: PMC6709386 DOI: 10.1016/j.toxrep.2019.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Lead (Pb) is an environmental neurotoxicant, and has been implicated in several neurological disorders of dopaminergic dysfunction; however, the molecular mechanism of its toxicity has yet to be fully understood. This study investigated the effect of Pb exposure on dopaminergic neurodegeneration and function, as well as expression level of several dopaminergic signaling genes in wild type (N2) and protein kinase C (pkc) mutant Caenorhabditis elegans. Both N2 and pkc mutant worms were exposed to Pb2+ for 1 h. Thereafter, dopaminergic (DAergic) neurodegeneration, behavior and gene expression levels were assessed. The results revealed that Pb2+ treatment affects dopaminergic cell morphology and structure in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. Also, there was a significant impairment in dopaminergic neuronal function as tested by basal slowing response (BSR) in wild-type, N2 worms, but no effect was observed in pkc mutant worms. Furthermore, Pb2+ exposure increased dat-1 gene expression level when compared with N2 worms, but no alteration was observed in the pkc mutant strains. LC–MS analysis revealed a significant decrease in dopamine content in worms treated with Pb2+ when compared with controls. In summary, our results revealed that Pb2+ exposure induced dopaminergic dysfunction in C. elegans by altering dat-1 gene levels, but pkc mutants showed significant resistance to Pb2+ toxicity. We conclude that PKC activation is directly involved in the neurotoxicity of Pb.
Collapse
Affiliation(s)
- Ayodele Jacob Akinyemi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Omamuyovwi M Ijomone
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States.,Department of Anatomy, School of Health and Health Technology, Federal University of Technology Akure (FUTA), Nigeria
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Félix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States.,Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| | | | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation.,I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany.,Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| |
Collapse
|
13
|
Perez-Fernandez C, Flores P, Sánchez-Santed F. A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front Behav Neurosci 2019; 13:139. [PMID: 31333425 PMCID: PMC6620897 DOI: 10.3389/fnbeh.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Impulsive and compulsive traits represent a variety of maladaptive behaviors defined by the difficulties to stop an improper response and the control of a repeated behavioral pattern without sensitivity to changing contingencies, respectively. Otherwise, human beings are continuously exposed to plenty neurotoxicological agents which have been systematically linked to attentional, learning, and memory dysfunctions, both preclinical and clinical studies. Interestingly, the link between both impulsive and compulsive behaviors and the exposure to the most important xenobiotic compounds have been extensively developed; although the information has been rarely summarized. For this, the present systematic review schedule and analyze in depth the most important works relating different subtypes of the above-mentioned behaviors with 4 of the most important xenobiotic compounds: Lead (Pb), Methylmercury (MeHg), Polychlorinated biphenyls (PCB), and Organophosphates (OP) in both preclinical and clinical models. Methods: Systematic search strategy on PubMed databases was developed, and the most important information was structured both in text and in separate tables based on rigorous methodological quality assessment. Results: For Lead, Methylmercury, Polychlorinated biphenyls and organophosphates, a total of 44 (31 preclinical), 34 (21), 38 (23), and 30 (17) studies were accepted for systematic synthesis, respectively. All the compounds showed an important empirical support on their role in the modulation of impulsive and, in lesser degree, compulsive traits, stronger and more solid in animal models with inconclusive results in humans in some cases (i.e., MeHg). However, preclinical and clinical studies have systematically focused on different subtypes of the above-mentioned behaviors, as well as impulsive choice or habit conformations have been rarely studied. Discussion: The strong empirical support in preclinical studies contrasts with the lack of connection between preclinical and clinical models, as well as the different methodologies used. Further research should be focused on dissipate these differences as well as deeply study impulsive choice, decision making, risk taking, and cognitive flexibility, both in experimental animals and humans.
Collapse
Affiliation(s)
| | - Pilar Flores
- Department of Psychology and Health Research Center, University of Almería, Almería, Spain
| | | |
Collapse
|
14
|
Ye Q, Trivedi M, Zhang Y, Böhlke M, Alsulimani H, Chang J, Maher T, Deth R, Kim J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice. FASEB J 2019; 33:2460-2471. [PMID: 30277817 PMCID: PMC6338660 DOI: 10.1096/fj.201801116rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Iron deficiency is closely associated with altered GABA metabolism and affective behavior. While mutation in the hemochromatosis ( HFE) gene disrupts iron homeostasis and promotes oxidative stress that increases the risk of neurodegeneration, it is largely unknown whether HFE mutation modifies GABAergic homeostasis and emotional behavior. The goal of our study was to investigate the impact of HFE on GABAergic neurochemistry and redox-epigenetic regulation in the brain using H67D HFE-mutant mice that recapitulates the H63D-HFE mutation in humans. H67D mice displayed elevated redox-active iron levels in the brain by 32% compared to age-matched wild-type mice. Moreover, the H67D brain had increased isoprostane and decreased glutathione, indicating elevated oxidative stress. Additionally, the H67D brain had decreased global methylation and attenuated DNA methyltransferase (DNMT) activity. Direct addition of iron to purified DNMT in vitro decreased enzyme activity in a concentration-dependent manner. Last, H67D mice exhibited decreased anxiety-like behavior, which was associated with increased expression of the GABAA receptor α2 subunits by 93%, and these changes were also observed in H67D mice fed a low-iron diet. Taken together, our results suggest a putative role of HFE in regulating labile iron status in the brain, and mutation in H67D perturbs redox-methylation status, contributing to GABAergic dysfunction.-Ye, Q., Trivedi, M., Zhang, Y., Böhlke, M., Alsulimani, H., Chang, J., Maher, T., Deth, R., Kim, J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Yiting Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Helal Alsulimani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Timothy Maher
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Richard Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Wessling-Resnick M. Excess iron: considerations related to development and early growth. Am J Clin Nutr 2017; 106:1600S-1605S. [PMID: 29070548 PMCID: PMC5701720 DOI: 10.3945/ajcn.117.155879] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
What effects might arise from early life exposures to high iron? This review considers the specific effects of high iron on the brain, stem cells, and the process of erythropoiesis and identifies gaps in our knowledge of what molecular damage may be incurred by oxidative stress that is imparted by high iron status in early life. Specific areas to enhance research on this topic include the following: longitudinal behavioral studies of children to test associations between iron exposures and mood, emotion, cognition, and memory; animal studies to determine epigenetic changes that reprogram brain development and metabolic changes in early life that could be followed through the life course; and the establishment of human epigenetic markers of iron exposures and oxidative stress that could be monitored for early origins of adult chronic diseases. In addition, efforts to understand how iron exposure influences stem cell biology could be enhanced by establishing platforms to collect biological specimens, including umbilical cord blood and amniotic fluid, to be made available to the research community. At the molecular level, there is a need to better understand stress erythropoiesis and changes in iron metabolism during pregnancy and development, especially with respect to regulatory control under high iron conditions that might promote ineffective erythropoiesis and iron-loading anemia. These investigations should focus not only on factors such as hepcidin and erythroferrone but should also include newly identified interactions between transferrin receptor-2 and the erythropoietin receptor. Finally, despite our understanding that several key micronutrients (e.g., vitamin A, copper, manganese, and zinc) support iron's function in erythropoiesis, how these nutrients interact remains, to our knowledge, unknown. It is necessary to consider many factors when formulating recommendations on iron supplementation.
Collapse
|
16
|
Ye Q, Kim J. Mutation in HFE gene decreases manganese accumulation and oxidative stress in the brain after olfactory manganese exposure. Metallomics 2017; 8:618-27. [PMID: 27295312 DOI: 10.1039/c6mt00080k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Increased accumulation of manganese (Mn) in the brain is significantly associated with neurobehavioral deficits and impaired brain function. Airborne Mn has a high systemic bioavailability and can be directly taken up into the brain, making it highly neurotoxic. While Mn transport is in part mediated by several iron transporters, the expression of these transporters is altered by the iron regulatory gene, HFE. Mutations in the HFE gene are the major cause of the iron overload disorder, hereditary hemochromatosis, one of the prevalent genetic diseases in humans. However, whether or not HFE mutation modifies Mn-induced neurotoxicity has not been evaluated. Therefore, our goal was to define the role of HFE mutation in Mn deposition in the brain and the resultant neurotoxic effects after olfactory Mn exposure. Mice carrying the H67D HFE mutation, which is homologous to the H63D mutation in humans, and their control, wild-type mice, were intranasally instilled with MnCl2 with different doses (0, 0.2, 1.0 and 5.0 mg kg(-1)) daily for 3 days. Mn levels in the blood, liver and brain were determined using inductively-coupled plasma mass spectrometry (ICP-MS). H67D mutant mice showed significantly lower Mn levels in the blood, liver, and most brain regions, especially in the striatum, while mice fed an iron-overload diet did not. Moreover, mRNA expression of ferroportin, an essential exporter of iron and Mn, was up-regulated in the striatum. In addition, the levels of isoprostane, a marker of lipid peroxidation, were increased in the striatum after Mn exposure in wild-type mice, but were unchanged in H67D mice. Together, our results suggest that the H67D mutation provides decreased susceptibility to Mn accumulation in the brain and neurotoxicity induced by inhaled Mn.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue 148TF, Boston, MA 02115, USA.
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue 148TF, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Li Q, Zhang P, Yu X, Zhao Y, Li Q, Zhang Y, Yang Z, Xie Y, Xue P, Sun S, Jia X, Zhou Z, He M, Zhang Y. Lead Transiently Promotes Granulocyte-Macrophage Progenitor Differentiation and Subsequently Suppresses Common Myeloid Progenitor Differentiation. Toxicol Sci 2017; 160:268-283. [DOI: 10.1093/toxsci/kfx176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Qian Li
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Zhejiang 313000, China
| | - Xinchun Yu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Putuo District Center for Disease Control and Prevention, Shanghai 200062, China
| | - Yandong Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Zhengli Yang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yunli Xie
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Shuhui Sun
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaodong Jia
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Sukumaran A, Chang J, Han M, Mintri S, Khaw BA, Kim J. Iron overload exacerbates age-associated cardiac hypertrophy in a mouse model of hemochromatosis. Sci Rep 2017; 7:5756. [PMID: 28720890 PMCID: PMC5516030 DOI: 10.1038/s41598-017-05810-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac damage associated with iron overload is the most common cause of morbidity and mortality in patients with hereditary hemochromatosis, but the precise mechanisms leading to disease progression are largely unexplored. Here we investigated the effects of iron overload and age on cardiac hypertrophy using 1-, 5- and 12-month old Hfe-deficient mice, an animal model of hemochromatosis in humans. Cardiac iron levels increased progressively with age, which was exacerbated in Hfe-deficient mice. The heart/body weight ratios were greater in Hfe-deficient mice at 5- and 12-month old, compared with their age-matched wild-type controls. Cardiac hypertrophy in 12-month old Hfe-deficient mice was consistent with decreased alpha myosin and increased beta myosin heavy chains, suggesting an alpha-to-beta conversion with age. This was accompanied by cardiac fibrosis and up-regulation of NFAT-c2, reflecting increased calcineurin/NFAT signaling in myocyte hypertrophy. Moreover, there was an age-dependent increase in the cardiac isoprostane levels in Hfe-deficient mice, indicating elevated oxidative stress. Also, rats fed high-iron diet demonstrated increased heart-to-body weight ratios, alpha myosin heavy chain and cardiac isoprostane levels, suggesting that iron overload promotes oxidative stress and cardiac hypertrophy. Our findings provide a molecular basis for the progression of age-dependent cardiac stress exacerbated by iron overload hemochromatosis.
Collapse
Affiliation(s)
- Abitha Sukumaran
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Shrutika Mintri
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ban-An Khaw
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
19
|
Attarwala H, Han M, Kim J, Amiji M. Oral nucleic acid therapy using multicompartmental delivery systems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544521 DOI: 10.1002/wnan.1478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/12/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid-based therapeutics has the potential for treating numerous diseases by correcting abnormal expression of specific genes. Lack of safe and efficacious delivery strategies poses a major obstacle limiting clinical advancement of nucleic acid therapeutics. Oral route of drug administration has greater delivery challenges, because the administered genes or oligonucleotides have to bypass degrading environment of the gastrointestinal (GI) tract in addition to overcoming other cellular barriers preventing nucleic acid delivery. For efficient oral nucleic acid delivery, vector should be such that it can protect encapsulated material during transit through the GI tract, facilitate efficient uptake and intracellular trafficking at desired target sites, along with being safe and well tolerated. In this review, we have discussed multicompartmental systems for overcoming extracellular and intracellular barriers to oral delivery of nucleic acids. A nanoparticles-in-microsphere oral system-based multicompartmental system was developed and tested for in vivo gene and small interfering RNA delivery for treating colitis in mice. This system has shown efficient transgene expression or gene silencing when delivered orally along with favorable downstream anti-inflammatory effects, when tested in a mouse model of intestinal bowel disease. WIREs Nanomed Nanobiotechnol 2018, 10:e1478. doi: 10.1002/wnan.1478 This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Husain Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Saputra D, Chang J, Lee BJ, Yoon JH, Kim J, Lee K. Short-term manganese inhalation decreases brain dopamine transporter levels without disrupting motor skills in rats. J Toxicol Sci 2017; 41:391-402. [PMID: 27193731 DOI: 10.2131/jts.41.391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Manganese (Mn) is used in industrial metal alloys and can be released into the atmosphere during methylcyclopentadienyl manganese tricarbonyl combustion. Increased Mn deposition in the brain after long-term exposure to the metal by inhalation is associated with altered dopamine metabolism and neurobehavioral problems, including impaired motor skills. However, neurotoxic effects of short-term exposure to inhaled Mn are not completely characterized. The purpose of this study is to define the neurobehavioral and neurochemical effects of short-term inhalation exposure to Mn at a high concentration using rats. Male Sprague-Dawley rats were exposed to MnCl2 aerosol in a nose-only inhalation chamber for 3 weeks (1.2 µm, 39 mg/m(3)). Motor coordination was tested on the day after the last exposure using a rotarod device at a fixed speed of 10 rpm for 2 min. Also, dopamine transporter and dopamine receptor protein expression levels in the striatum region of the brain were determined by Western blot analysis. At a rotarod speed of 10 rpm, there were no significant differences in the time on the bar before the first fall or the number of falls during the two-minute test observed in the exposed rats, as compared with controls. The Mn-exposed group had significantly higher Mn levels in the lung, blood, olfactory bulb, prefrontal cortex, striatum, and cerebellum compared with the control group. A Mn concentration gradient was observed from the olfactory bulb to the striatum, supporting the idea that Mn is transported via the olfactory pathway. Our results demonstrated that inhalation exposure to 39 mg/m(3) Mn for 3 weeks induced mild lung injury and modulation of dopamine transporter expression in the brain, without altering motor activity.
Collapse
Affiliation(s)
- Devina Saputra
- Inhalation Toxicology Center, Korea Institute of Toxicology, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Fan G, Zhou F, Feng C. Toxic effects of combined exposure to four heavy metals at low doses. JOURNAL OF HAZARDOUS MATERIALS 2017; 323:737-738. [PMID: 27825742 DOI: 10.1016/j.jhazmat.2016.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang 330006, China.
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang 330006, China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang 330006, China
| |
Collapse
|
22
|
Zhou F, Feng C, Fan G. Combined exposure of low dose lead, cadmium, arsenic, and mercury in mice. CHEMOSPHERE 2016; 165:564-565. [PMID: 27638383 DOI: 10.1016/j.chemosphere.2016.08.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/12/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang 330006, China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang 330006, China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, BaYi Road 461, Nanchang 330006, China.
| |
Collapse
|
23
|
Nan A, Zhou X, Chen L, Liu M, Zhang N, Zhang L, Luo Y, Liu Z, Dai L, Jiang Y. A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis. Oncotarget 2016; 7:112-24. [PMID: 26683706 PMCID: PMC4807986 DOI: 10.18632/oncotarget.6590] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023] Open
Abstract
As a common toxic metal, lead has significant neurotoxicity to brain development. Long non-coding RNAs (lncRNAs) function in multiple biological processes. However, whether lncRNAs are involved in lead-induced neurotoxicity remains unclear. Uc.173 is a lncRNA from a transcribed ultra-conservative region (T-UCR) of human, mouse and rat genomes. We established a lead-induced nerve injury mouse model. It showed the levels of Uc.173 decreased significantly in hippocampus tissue and serum of the model. We further tested the expression of Uc.173 in serum of lead-exposed children, which also showed a tendency to decrease. To explore the effects of Uc.173 on lead-induced nerve injury, we overexpressed Uc.173 in an N2a mouse nerve cell line and found Uc.173 had an inhibitory effect on lead-induced apoptosis of N2a. To investigate the molecular mechanisms of Uc.173 in apoptosis associated with lead-induced nerve injury, we predicted the target microRNAs of Uc.173 by using miRanda, TargetScan and RegRNA. After performing quantitative real-time PCR and bioinformatics analysis, we showed Uc.173 might inter-regulate with miR-291a-3p in lead-induced apoptosis and regulate apoptosis-associated genes. Our study suggests Uc.173 significantly inhibits the apoptosis of nerve cells, which may be mediated by inter-regulation with miRNAs in lead-induced nerve injury.
Collapse
Affiliation(s)
- Aruo Nan
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Xinke Zhou
- Institute for Chemical Carcinogenesis, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Lijian Chen
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Meiling Liu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Nan Zhang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Li Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yuanwei Luo
- Institute for Chemical Carcinogenesis, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Zhenzhong Liu
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| | - Lijun Dai
- Laboratory Animal Center, Guangzhou Medical University, Guangzhou, PR China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
24
|
Park JH, Seo JH, Hong YS, Kim YM, Kang JW, Yoo JH, Chueh HW, Lee JH, Kwak MJ, Kim J, Woo HD, Kim DW, Bang YR, Choe BM. Blood lead concentrations and attention deficit hyperactivity disorder in Korean children: a hospital-based case control study. BMC Pediatr 2016; 16:156. [PMID: 27659349 PMCID: PMC5034496 DOI: 10.1186/s12887-016-0696-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Background Because the developing brain of a child is vulnerable to environmental toxins, even very low concentration of neurotoxin can affect children’s neurodevelopment. Lead is a neurotoxic heavy metal which has the harmful effect on the striatal-frontal circuit of brain. This area of the brain is known to be closely related to attention deficit hyperactivity disorder (ADHD) pathophysiology. The primary objective of the present study was to investigate whether elevated blood lead concentration is a risk factor for ADHD. The secondary objective was to examine the association between blood lead concentration and symptom severity. Methods We conducted a frequency-matched, hospital-based case-control study with 114 medically diagnosed ADHD cases and 114 controls. The participants were matched for age and sex. The diagnoses of ADHD were assessed with semi-structured diagnostic interviews. The participants completed the continuous performance test (CPT), and their parents completed the ADHD-rating scale (ADHD-RS). Blood lead concentrations were measured by using graphite furnace atomic absorption spectrometry featuring Zeeman background correction. Results Children with ADHD exhibited blood lead concentrations that were significantly higher than those of the controls ( 1.90 ± 086 μg/dℓ vs. 1.59 ± 0.68 μg/dℓ, p = 0.003). The log transformed total blood lead concentration was associated with a higher risk of ADHD (OR: 1.60, 95 % CI: 1.04–2.45, p < 0.05). The analysis also revealed that the children with blood lead concentrations above 2.30 μg/dℓ were at a 2.5–fold (95 % CI: 1.09–5.87, p < 0.05) greater risk of having ADHD. After adjusting for covariates, our multivariate regression models indicated that blood lead concentrations were not significantly associated with ADHD-RS or CPT profiles among the ADHD cases. Conclusion Even low blood lead concentrations are a risk factor for ADHD in children. This study warrants primary prevention policies to reduce the environmental lead burden. Future studies may be required to ascertain the effects of lead on symptom severity in ADHD.
Collapse
Affiliation(s)
- Jae Hong Park
- Department of Psychiatry, College of Medicine, Dong-A University, Dong-A University Hospital, 26 Daesingongwon-ro, Seo-gu, Busan, 602-715, Republic of Korea
| | - Ju-Hee Seo
- Heavy Metal Exposure Environmental Health Center, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 602-714, Republic of Korea
| | - Young-Seoub Hong
- Heavy Metal Exposure Environmental Health Center, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 602-714, Republic of Korea.,Department of Preventive Medicine, College of Medicine, Dong-A University, Dong-A University Hospital, 26, Daesingongwon-ro, Seo-gu, Busan, 602-715, Republic of Korea
| | - Yu-Mi Kim
- Heavy Metal Exposure Environmental Health Center, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 602-714, Republic of Korea.,Department of Preventive Medicine, College of Medicine, Dong-A University, Dong-A University Hospital, 26, Daesingongwon-ro, Seo-gu, Busan, 602-715, Republic of Korea
| | - Je-Wook Kang
- Department of Child and Adolescent Psychiatry, College of Medicine, Inje University Busan Paik Hospital, 75 Bokji-ro, Busanjin-gu, Busan, 614-735, Republic of Korea
| | - Jae-Ho Yoo
- Department of Pediatrics, College of Medicine, Dong-A University, Dong-A University Hospital, 26 Daesingongwon-ro, Seo-gu, Busan, 602-715, Republic of Korea
| | - Hee Won Chueh
- Department of Pediatrics, College of Medicine, Dong-A University, Dong-A University Hospital, 26 Daesingongwon-ro, Seo-gu, Busan, 602-715, Republic of Korea
| | - Jung Hyun Lee
- Department of Pediatrics, Kosin University Gospel Hospital, 262, Gamcheon-ro, Seo-gu, Busan, 602-702, Republic of Korea
| | - Min Jung Kwak
- Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine, 179, Gudeok-ro, Seo-gu, Busan, 602-739, Republic of Korea
| | - Jeongseon Kim
- Molecular Epidemiology Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-769, Republic of Korea
| | - Hae Dong Woo
- Molecular Epidemiology Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-769, Republic of Korea
| | - Dong Woo Kim
- Department of Home Economics, College of Natural Science, Korea National Open University, 86, Daehak-ro, Jongno-gu, Seoul, 110-791, Republic of Korea
| | - Young Rong Bang
- Department of Psychiatry, College of Medicine, Dong-A University, Dong-A University Hospital, 26 Daesingongwon-ro, Seo-gu, Busan, 602-715, Republic of Korea
| | - Byeong Moo Choe
- Department of Psychiatry, College of Medicine, Dong-A University, Dong-A University Hospital, 26 Daesingongwon-ro, Seo-gu, Busan, 602-715, Republic of Korea.
| |
Collapse
|
25
|
Han M, Chang J, Kim J. Loss of divalent metal transporter 1 function promotes brain copper accumulation and increases impulsivity. J Neurochem 2016; 138:918-28. [PMID: 27331785 DOI: 10.1111/jnc.13717] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
The divalent metal transporter 1 (DMT1) is a major iron transporter required for iron absorption and erythropoiesis. Loss of DMT1 function results in microcytic anemia. While iron plays an important role in neural function, the behavioral consequences of DMT1 deficiency are largely unexplored. The goal of this study was to define the neurobehavioral and neurochemical phenotypes of homozygous Belgrade (b/b) rats that carry DMT1 mutation and explore potential mechanisms of these phenotypes. The b/b rats (11-12 weeks old) and their healthy littermate heterozygous (+/b) Belgrade rats were subject to elevated plus maze tasks. The b/b rats spent more time in open arms, entered open arms more frequently and traveled more distance in the maze than +/b controls, suggesting increased impulsivity. Impaired emotional behavior was associated with down-regulation of GABA in the hippocampus in b/b rats. Also, b/b rats showed increased GABAA receptor α1 and GABA transporter, indicating altered GABAergic function. Furthermore, metal analysis revealed that b/b rats have decreased total iron, but normal non-heme iron, in the brain. Interestingly, b/b rats exhibited unusually high copper levels in most brain regions, including striatum and hippocampus. Quantitative PCR analysis showed that both copper importer copper transporter 1 and exporter copper-transporting ATPase 1 were up-regulated in the hippocampus from b/b rats. Finally, b/b rats exhibited increased 8-isoprostane levels and decreased glutathione/glutathione disulfide ratio in the hippocampus, reflecting elevated oxidative stress. Combined, our results suggest that copper loading in DMT1 deficiency could induce oxidative stress and impair GABA metabolism, which promote impulsivity-like behavior. Iron-copper model: Mutations in the divalent metal transporter 1 (DMT1) decrease body iron status and up-regulate copper absorption, which leads to copper loading in the brain and consequently increases metal-induced oxidative stress. This event disrupts GABAergic neurotransmission and promotes impulsivity-like behavior. Our model provides better understanding of physiological risks associated with imbalanced metal metabolism in mental function and, more specifically, the interactions with GABA and redox control in the treatment of emotional disorders.
Collapse
Affiliation(s)
- Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
26
|
Keil KP, Lein PJ. DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders? ENVIRONMENTAL EPIGENETICS 2016; 2:dvv012. [PMID: 27158529 PMCID: PMC4856164 DOI: 10.1093/eep/dvv012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals, suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the developing brain. In this review, we describe epidemiological and experimental evidence implicating altered DNA methylation as a potential mechanism by which environmental chemicals confer risk for ASD, using polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as examples. Understanding how environmental chemical exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential intervention strategies for these and potentially other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kimberly P. Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- *Correspondence address. Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA. Tel:
(530) 752-1970
; Fax:
(530) 752-7690
; E-mail:
| |
Collapse
|
27
|
Alsulimani HH, Ye Q, Kim J. Effect of Hfe Deficiency on Memory Capacity and Motor Coordination after Manganese Exposure by Drinking Water in Mice. Toxicol Res 2016; 31:347-54. [PMID: 26877837 PMCID: PMC4751444 DOI: 10.5487/tr.2015.31.4.347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Excess manganese (Mn) is neurotoxic. Increased manganese stores in the brain are associated with a number of behavioral problems, including motor dysfunction, memory loss and psychiatric disorders. We previously showed that the transport and neurotoxicity of manganese after intranasal instillation of the metal are altered in Hfe-deficient mice, a mouse model of the iron overload disorder hereditary hemochromatosis (HH). However, it is not fully understood whether loss of Hfe function modifies Mn neurotoxicity after ingestion. To investigate the role of Hfe in oral Mn toxicity, we exposed Hfe-knockout (Hfe (-/-)) and their control wild-type (Hfe (+/+)) mice to MnCl2 in drinking water (5 mg/mL) for 5 weeks. Motor coordination and spatial memory capacity were determined by the rotarod test and the Barnes maze test, respectively. Brain and liver metal levels were analyzed by inductively coupled plasma mass spectrometry. Compared with the water-drinking group, mice drinking Mn significantly increased Mn concentrations in the liver and brain of both genotypes. Mn exposure decreased iron levels in the liver, but not in the brain. Neither Mn nor Hfe deficiency altered tissue concentrations of copper or zinc. The rotarod test showed that Mn exposure decreased motor skills in Hfe (+/+) mice, but not in Hfe (-/-) mice (p = 0.023). In the Barns maze test, latency to find the target hole was not altered in Mn-exposed Hfe (+/+) compared with water-drinking Hfe (+/+) mice. However, Mn-exposed Hfe (-/-) mice spent more time to find the target hole than Mn-drinking Hfe (+/+) mice (p = 0.028). These data indicate that loss of Hfe function impairs spatial memory upon Mn exposure in drinking water. Our results suggest that individuals with hemochromatosis could be more vulnerable to memory deficits induced by Mn ingestion from our environment. The pathophysiological role of HFE in manganese neurotoxicity should be carefully examined in patients with HFE-associated hemochromatosis and other iron overload disorders.
Collapse
Affiliation(s)
| | - Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
28
|
Arima Y, Shiraishi H, Saito A, Yoshimoto K, Namera A, Makita R, Murata K, Imaizumi K, Nagao M. The sarin-like organophosphorus agent bis(isopropyl methyl)phosphonate induces ER stress in human astrocytoma cells. J Toxicol Sci 2016; 41:617-25. [DOI: 10.2131/jts.41.617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yosuke Arima
- Department of Forensic Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Hiroaki Shiraishi
- Department of Forensic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University
| | - Kanji Yoshimoto
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology
| | - Akira Namera
- Department of Forensic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University
| | - Ryosuke Makita
- Department of Rehabilitation, Faculty of Health Sciences, Hiroshima Cosmopolitan University
| | - Kazuhiro Murata
- Department of Forensic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University
| | - Masataka Nagao
- Department of Forensic Medicine, Institute of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
29
|
Chang J, Lee CW, Alsulimani HH, Choi JE, Lee JK, Kim A, Park BH, Kim J, Lee H. Role of fatty acid composites in the toxicity of titanium dioxide nanoparticles used in cosmetic products. J Toxicol Sci 2016; 41:533-42. [DOI: 10.2131/jts.41.533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, USA
| | | | | | - Jee Eun Choi
- Department of Pharmaceutical Sciences, Northeastern University, USA
| | - Joo-Kyung Lee
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, South Korea
| | - AhYoung Kim
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, South Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, South Korea
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, USA
| | - HeaYeon Lee
- Department of Pharmaceutical Sciences, Northeastern University, USA
- Department of Nano-integrated Cogno-Mechatronics Engineering, Pusan National University, South Korea
| |
Collapse
|
30
|
Menon AV, Chang J, Kim J. Mechanisms of divalent metal toxicity in affective disorders. Toxicology 2015; 339:58-72. [PMID: 26551072 DOI: 10.1016/j.tox.2015.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
Metals are required for proper brain development and play an important role in a number of neurobiological functions. The divalent metal transporter 1 (DMT1) is a major metal transporter involved in the absorption and metabolism of several essential metals like iron and manganese. However, non-essential divalent metals are also transported through this transporter. Therefore, altered expression of DMT1 can modify the absorption of toxic metals and metal-induced toxicity. An accumulating body of evidence has suggested that increased metal stores in the brain are associated with elevated oxidative stress promoted by the ability of metals to catalyze redox reactions, resulting in abnormal neurobehavioral function and the progression of neurodegenerative diseases. Metal overload has also been implicated in impaired emotional behavior, although the underlying mechanisms are not well understood with limited information. The current review focuses on psychiatric dysfunction associated with imbalanced metabolism of metals that are transported by DMT1. The investigations with respect to the toxic effects of metal overload on behavior and their underlying mechanisms of toxicity could provide several new therapeutic targets to treat metal-associated affective disorders.
Collapse
Affiliation(s)
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Ye Q, Kim J. Loss of hfe function reverses impaired recognition memory caused by olfactory manganese exposure in mice. Toxicol Res 2015; 31:17-23. [PMID: 25874029 PMCID: PMC4395651 DOI: 10.5487/tr.2015.31.1.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson’s disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout (Hfe−/−) and wild-type (Hfe+/+) mice mice were intranasally-instilled with manganese chloride (MnCl2 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in Hfe+/+ mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, Hfe−/− mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in Hfe+/+ mice, but not in Hfe−/− mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of anti-oxidant enzymes in the PFC.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
32
|
Pascual R, Valencia M, Bustamante C. Antenatal betamethasone produces protracted changes in anxiety‐like behaviors and in the expression of microtubule‐associated protein 2, brain‐derived neurotrophic factor and the tyrosine kinase B receptor in the rat cerebellar cortex. Int J Dev Neurosci 2015; 43:78-85. [DOI: 10.1016/j.ijdevneu.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rodrigo Pascual
- Laboratorio de Neurociencias, Escuela de Kinesiología, Facultad de CienciasPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Martina Valencia
- Laboratorio de Neurociencias, Escuela de Kinesiología, Facultad de CienciasPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Carlos Bustamante
- Laboratorio de Neurociencias, Escuela de Kinesiología, Facultad de CienciasPontificia Universidad Católica de ValparaísoValparaísoChile
| |
Collapse
|