1
|
Dos Santos IR, de Souza MB, da Silva Alves DP, Dos Santos DGT, da Silva INM, Fernandes AS, Camilo-Cotrim CF, de Almeida LM, Chen-Chen L, Ferreira ME, Caramori SS, Bailão EFLC. Integrative approach for monitoring the toxicity of effluents, surface water, and soil in the Cerrado biome. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:465. [PMID: 40131563 DOI: 10.1007/s10661-025-13928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Monitoring the quality of water resources is essential to determine environmental impacts and seek sustainable management solutions. In this work, we demonstrated the toxicity of effluents and surface water of an important river in Central Brazil, the Meia Ponte River, using not just physicochemical parameters but also ecotoxicological bioindicators, such as Aliivibrio fischeri, Allium cepa, Lactuca sativa, and Salmonella typhimurium. To complement this data, we analyzed soil toxicity and quality along the river bank using A. fischeri and microbial enzymes. The data was associated with the land use pattern to discuss the environmental impacts caused by the land use and cover in the Cerrado biome. Although most physicochemical parameters were within the values allowed by Brazilian legislation, the A. fischeri bioluminescence inhibition assay indicated sample toxicity mainly in the non-treated effluent and near the river mouth (both water and soil samples). The germination indexes for L. sativa and A. cepa were reduced in most samples. Mutagenicity was observed in a surface water sample of one collection point during the dry season. The current data suggest the toxic potential of the surface water and soil along the Meia Ponte River and the non-treated effluent. The effluent treatment decreased the toxic potential of the samples but did not always eliminate the toxicity. The toxicity of the Meia Ponte River was most observed in urban and agricultural areas. Finally, our work demonstrated the need to monitor the environmental health of the Meia Ponte River basin, also used for public water supply.
Collapse
Affiliation(s)
- Igor Romeiro Dos Santos
- Laboratório de Biotecnologia, Universidade Estadual de Goiás, Câmpus Central, Anápolis, Goiás, Brazil
| | | | | | | | | | - Amanda Silva Fernandes
- Laboratório de Radiobiologia E Mutagênese, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | - Lee Chen-Chen
- Laboratório de Radiobiologia E Mutagênese, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Manuel Eduardo Ferreira
- Laboratório de Sensoriamento Remoto E Geoprocessamento (Lapig), Instituto de Estudos Socioambientais, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Samantha Salomão Caramori
- Laboratório de Biotecnologia, Universidade Estadual de Goiás, Câmpus Central, Anápolis, Goiás, Brazil
| | | |
Collapse
|
2
|
Brew DW, Stevens ME, Langer AM, Paustenbach DJ. A risk assessment of mechanics who changed chrysotile asbestos containing brakes and other vehicle components in the 1950s-early 2000s era: an update on the 2004 evaluation. Crit Rev Toxicol 2025:1-50. [PMID: 40009063 DOI: 10.1080/10408444.2024.2427222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 02/27/2025]
Abstract
For the past 50 years, there has been an ongoing interest in understanding the potential health hazards, if any, to vehicle mechanics who worked with asbestos-containing brakes in the 1950s-early 2000s era. Two reviews have been published on this topic, one by Langer (2003) ("Reduction of the biological potential of chrysotile asbestos arising from conditions of service on brake pads") and another by Paustenbach, et al. (2004) ("Environmental and occupational health hazards associated with the presence of asbestos in brake linings and pads (1900 to present): a 'state-of-the-art' review"). This analysis is an update on those papers since a considerable amount of research has been published over the past 20 years on this topic. The following important aspects are addressed in this review: new information on the toxicology of chrysotile, toxicology studies of brake dust associated with grinding, additional epidemiology studies and meta-analyses published on auto mechanics of the era, previously unfound data on how brakes (during the era when chrysotile was used) were manufactured, and new work describing the transformation of chrysotile to various degradation products during vehicle braking. This update also addresses questions about the health hazards associated with asbestos in vehicle clutches, transmissions, and gaskets. The exposure data indicate that the airborne concentrations of chrysotile fibers associated with vehicle mechanic work when asbestos was in auto brakes were, on average, less than 0.04 f/cm3 (8-h TWA) and the average lifetime cumulative dose was in the vicinity of 0.5-3 f/cm3-year for mechanics of that era. Although many of these fibers may have no toxicity due to thermal degradation and the conversion to degradation products, 31 epidemiology studies have evaluated the risks of mesothelioma for vehicle mechanics of this era and all but one indicate that there was no increased incidence of this disease in these workers. The weight of evidence continues to indicate that the asbestos-related health risks to vehicle mechanics from asbestos-containing components were de minimis. The risks associated with take-home and bystander exposure of a mechanic were also addressed and they were found to pose a de minimis or zero health risk to those potentially exposed. Based on our evaluation, there is no indication that asbestos from asbestiform tremolite was present at detectable concentrations in bulk samples of brakes or in the air during brake work. The recent U.S. Environmental Protection Agency (EPA) risk assessment of 2024 on chrysotile and their views of the hazards of asbestos-containing brakes were discussed. Their analyses did not alter our views that exposures to mechanics posed no increased risk of asbestos related disease. The latest knowledge about the role of genetic susceptibility on the development of mesothelioma is also addressed.
Collapse
Affiliation(s)
| | | | - Arthur M Langer
- Graduate School, The City University of New York, New York, NY, USA
| | | |
Collapse
|
3
|
Ferreira Azevedo L, de Souza Rocha CC, Souza MCO, Machado ART, Devóz PP, Rocha BA, Antunes LMG, Uribe-Romo FJ, Campiglia AD, Barbosa F. High molecular weight polycyclic aromatic hydrocarbon (HMW-PAH) isomers: unveiling distinct toxic effects from cytotoxicity to oxidative stress-induced DNA damage. Arch Toxicol 2025; 99:679-687. [PMID: 39611947 DOI: 10.1007/s00204-024-03917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent one of the most extensive classes of known carcinogenic and genotoxic compounds widely distributed across the globe. Particularly relevant to ecotoxicological studies is the possible presence of PAHs with molecular weight (MW) 302 Da. Since the toxicity of 302 Da PAHs differs significantly from isomer to isomer, understanding their relative toxicity is essential for assessing their potential risks to human health. This study investigates the toxic effects of micromolar concentrations of four HMW-PAHs isomers of MW = 302 Da, namely dibenzo(b,l)fluoranthene (DB(b,l)F), dibenzo(a,j)fluoranthene (DB(a,j)F), dibenzo(a,l)fluoranthene (DB(a,l)F) and naphtho(1-2j)fluoranthene (N(1-2j)F), upon exposure and metabolic activation in HepG2 cells. Appropriate assays were selected to investigate their potential to disrupt cellular viability and to induce cytotoxicity, apoptosis/necrosis, genotoxicity, and oxidative stress with DNA damage. After 48 h of exposure time, DB(a,l)F was the only isomer to reduce cellular viability in a concentration-dependent manner. In all cases, apoptosis was the main mechanism of HepG2 cell death, which could be induced by the significant DNA damage and an increase in 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct level formation. The highest concentrations of DB(a,l)F tested exhibited the greatest potential to induce HepG2 DNA damage and 8-OHdG formation. Altogether, these facts demonstrate that the distinct arrangements of the atoms in HMW-PAHs isomers can impact on their toxic potential and that DB(a,l)F was the most toxic isomer evaluated in this study. These results shed light on the importance to thoroughly characterize MW302 PAHs to substantiate their human and environmental risk assessments.
Collapse
Affiliation(s)
- Lara Ferreira Azevedo
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Cecilia Cristina de Souza Rocha
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marília Cristina Oliveira Souza
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Biomolecular Sciences, University of Sao Paulo, Av. do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Ana Rita Thomazela Machado
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Paula Pícoli Devóz
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Bruno Alves Rocha
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Lusania Maria Greggi Antunes
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | | | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| | - Fernando Barbosa
- School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, University of Sao Paulo, Av. Do Café S/nº, Ribeirao Preto, Sao Paulo, 14040-903, Brazil.
| |
Collapse
|
4
|
Dekant W. Review of the genotoxicity of "Arvin compounds", drinking water contaminants formed by the degradation of antoxidants in polyolefin pipes. Toxicol Lett 2024; 402:81-90. [PMID: 39581512 DOI: 10.1016/j.toxlet.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Polyolefin pipes used in drinking water distribution systems require a number of functional additives to ensure stability and durability. Some of these additives and/or their degradation products may migrate from the pipes into the drinking water. Previously, a number of branched chain alkylphenol degradants have been identified in drinking water; these were termed "Arvin substances" and numbered Arvin 1-10. As potential genotoxicity is a human health safety concern, the genotoxicity of Arvin substances is reviewed based on comprehensive in vitro and in vivo data available. Results obtained from genotoxicity studies addressing mutagenicity and clastogenicity are available for nine of the ten Arvin substances. These nine Arvin substances were consistently negative in bacterial mutagenicity studies. Divergent results were obtained in clastogenicity assays with some positive responses induced by the branched chain alkylphenols Arvin 1, 2, and 4, often accompanied by significant cytotoxicity. However, Arvin 1, 2, and 4 did not induce micronuclei or genotoxicity in vivo during follow-up testing. The other Arvin compounds did not show genotoxic activity in vitro. In conclusion, regarding human health risk characterization, the Arvin compounds are not considered genotoxic agents based on the available data.
Collapse
Affiliation(s)
- Wolfgang Dekant
- Department of Pharmacology and Toxicology, University of Würzburg, Versbacherstr. 9, Würzburg 97078, Germany.
| |
Collapse
|
5
|
Arora R. Glucosinolate Hydrolytic Products-A Multi-Arm Warrior. J AOAC Int 2024; 107:876-883. [PMID: 38964347 DOI: 10.1093/jaoacint/qsae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Glucosinolates (GSLs) are the most controversial yet ignored class of phytochemicals. These are the middleman phytochemicals that have low bioactivity. But once there is any injury in the plant-manmade, insect caused, or natural-magic happens. The compound is broken down into smaller phytochemicals referred to as glucosinolate hydrolytic products (GHPs; nitriles, isothiocyanates [ITCs], and thiocyanates). These hydrolytic products are like a showstopper of the fashion industry. These compounds have some of the highest bioactivity in nature. They have been associated with a varied range of bioactivities (anticancer, antioxidant, insecticidal, weedicide, etc.) by researchers across the globe. OBJECTIVE The objective of the current article is to provide a critical review to highlight some of the important bioactivities of these ignored compounds and for promoting researchers to at least give these compounds a chance-to glow in the dark. METHODS This review has been written from analysis of accessible literature, mostly from the last 5 years (2018-2023), with some critically essential exceptions. RESULTS The review highlighted a brief background of GSLs and its hydrolysis. Efforts were made to include most of the biological properties of the compound. Special emphasis has been given to the anticancer activities of the compound with details of the involved mechanism. CONCLUSIONS Considering the wide array of bioactivities of GHPs, it is essential to consider it as a prospective medicinal compound. More GHPs-in a similar manner as sulforaphane-can be proceeded to phase trials. HIGHLIGHTS The mechanistic pathway for production of GHPs and related biological activities have been discussed in detail. The bioactivities have been further explained using the involved mechanism.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada
| |
Collapse
|
6
|
Kang DW, Kim JH, Choi GW, Cho SJ, Cho HY. PBPK model-based gender-specific risk assessment of N-nitrosodimethylamine (NDMA) using human biomonitoring data. Arch Toxicol 2024; 98:3269-3288. [PMID: 39096368 DOI: 10.1007/s00204-024-03828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Despite several screening levels for NDMA reported in water, soil, air, and drugs, the human risk assessment using biomonitoring concentrations has not been performed. In this study, gender-specific exposure guidance values were determined in humans, then biomonitoring measurements in healthy Korean subjects (32 men and 40 women) were compared to the exposure guidance values to evaluate the current exposure level to NDMA. For the human risk assessment of NDMA, the gender-specific physiologically based pharmacokinetic (PBPK) model was developed in humans using proper physiological parameters, partition coefficients, and biochemical parameters. Using the PBPK model, a Monte Carlo simulation was performed to describe the magnitudes of inter-individual variability and uncertainty on the single model predictions. The PBPK modeling and Monte Carlo simulation allowed the estimation of the relationship between external dose and blood concentration for the risk assessment. The procedure for the human risk assessment was summarized as follows: (1) estimating a steady-state blood concentration (Cavg) corresponding to the daily no observed adverse effect level (NOAEL) administration in rats; (2) applying uncertainty factors (UFs) for deriving the human Cavg; (3) determining the exposure guidance values as screening criteria; (4) interpreting the human biomonitoring measurements by forward and reverse dosimetry approaches. Using the biomonitoring concentrations, current daily exposures to NDMA were estimated to be 3.95 μg/day/kg for men and 10.60 μg/day/kg for women, respectively. The result of the study could be used as a basis for implementing further risk management and regulatory decision-making for NDMA.
Collapse
Affiliation(s)
- Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seok-Jin Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
7
|
Gi M, Suzuki S, Kanki M, Yokohira M, Tsukamoto T, Fujioka M, Vachiraarunwong A, Qiu G, Guo R, Wanibuchi H. A novel support vector machine-based 1-day, single-dose prediction model of genotoxic hepatocarcinogenicity in rats. Arch Toxicol 2024; 98:2711-2730. [PMID: 38762666 DOI: 10.1007/s00204-024-03755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 05/20/2024]
Abstract
The development of a rapid and accurate model for determining the genotoxicity and carcinogenicity of chemicals is crucial for effective cancer risk assessment. This study aims to develop a 1-day, single-dose model for identifying genotoxic hepatocarcinogens (GHCs) in rats. Microarray gene expression data from the livers of rats administered a single dose of 58 compounds, including 5 GHCs, was obtained from the Open TG-GATEs database and used for the identification of marker genes and the construction of a predictive classifier to identify GHCs in rats. We identified 10 gene markers commonly responsive to all 5 GHCs and used them to construct a support vector machine-based predictive classifier. In the silico validation using the expression data of the Open TG-GATEs database indicates that this classifier distinguishes GHCs from other compounds with high accuracy. To further assess the model's effectiveness and reliability, we conducted multi-institutional 1-day single oral administration studies on rats. These studies examined 64 compounds, including 23 GHCs, with gene expression data of the marker genes obtained via quantitative PCR 24 h after a single oral administration. Our results demonstrate that qPCR analysis is an effective alternative to microarray analysis. The GHC predictive model showed high accuracy and reliability, achieving a sensitivity of 91% (21/23) and a specificity of 93% (38/41) across multiple validation studies in three institutions. In conclusion, the present 1-day single oral administration model proves to be a reliable and highly sensitive tool for identifying GHCs and is anticipated to be a valuable tool in identifying and screening potential GHCs.
Collapse
Affiliation(s)
- Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Masayuki Kanki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Masanao Yokohira
- Department of Medical Education, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
- Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Arpamas Vachiraarunwong
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Guiyu Qiu
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Runjie Guo
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan.
| |
Collapse
|
8
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
9
|
Ahmad I, Kaur M, Tyagi D, Singh TB, Kaur G, Afzal SM, Jauhar M. Exploring novel insights into the molecular mechanisms underlying Bisphenol A-induced toxicity: A persistent threat to human health. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104467. [PMID: 38763439 DOI: 10.1016/j.etap.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of polycarbonate plastics and epoxy resins, found in numerous consumer products. Despite its widespread use, its potential adverse health effects have raised significant concerns. This review explores the molecular mechanisms and evidence-based literature underlying BPA-induced toxicities and its implications for human health. BPA is an endocrine-disrupting chemical (EDC) which exhibits carcinogenic properties by influencing various receptors, such as ER, AhR, PPARs, LXRs, and RARs. It induces oxidative stress and contributes to cellular dysfunction, inflammation, and DNA damage, ultimately leading to various toxicities including but not limited to reproductive, cardiotoxicity, neurotoxicity, and endocrine toxicity. Moreover, BPA can modify DNA methylation patterns, histone modifications, and non-coding RNA expression, leading to epigenetic changes and contribute to carcinogenesis. Overall, understanding molecular mechanisms of BPA-induced toxicity is crucial for developing effective strategies and policies to mitigate its adverse effects on human health.
Collapse
Affiliation(s)
- Israel Ahmad
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Mandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Devansh Tyagi
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Tejinder Bir Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Gurpreet Kaur
- School of Business Studies, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Shaikh Mohammad Afzal
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| | - Mohsin Jauhar
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, India.
| |
Collapse
|
10
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Sanz-Serrano J, Callewaert E, De Boever S, Drees A, Verhoeven A, Vinken M. Chemical-induced liver cancer: an adverse outcome pathway perspective. Expert Opin Drug Saf 2024; 23:425-438. [PMID: 38430529 DOI: 10.1080/14740338.2024.2326479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 03/04/2024]
Abstract
INTRODUCTION The evaluation of the potential carcinogenicity is a key consideration in the risk assessment of chemicals. Predictive toxicology is currently switching toward non-animal approaches that rely on the mechanistic understanding of toxicity. AREAS COVERED Adverse outcome pathways (AOPs) present toxicological processes, including chemical-induced carcinogenicity, in a visual and comprehensive manner, which serve as the conceptual backbone for the development of non-animal approaches eligible for hazard identification. The current review provides an overview of the available AOPs leading to liver cancer and discusses their use in advanced testing of liver carcinogenic chemicals. Moreover, the challenges related to their use in risk assessment are outlined, including the exploitation of available data, the need for semantic ontologies, and the development of quantitative AOPs. EXPERT OPINION To exploit the potential of liver cancer AOPs in the field of risk assessment, 3 immediate prerequisites need to be fulfilled. These include developing human relevant AOPs for chemical-induced liver cancer, increasing the number of AOPs integrating quantitative toxicodynamic and toxicokinetic data, and developing a liver cancer AOP network. As AOPs and other areas in the field continue to evolve, liver cancer AOPs will progress into a reliable and robust tool serving future risk assessment and management.
Collapse
Affiliation(s)
- Julen Sanz-Serrano
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sybren De Boever
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annika Drees
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anouk Verhoeven
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Ohno M, Takano N, Hidaka K, Sasaki F, Yamauchi K, Aoki Y, Nohmi T, Nakabeppu Y, Nakatsu Y, Tsuzuki T. Oxidative stress accelerates intestinal tumorigenesis by enhancing 8-oxoguanine-mediated mutagenesis in MUTYH-deficient mice. Genome Res 2024; 34:47-56. [PMID: 38290979 PMCID: PMC10904009 DOI: 10.1101/gr.278326.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Oxidative stress-induced DNA damage and its repair systems are related to cancer etiology; however, the molecular basis triggering tumorigenesis is not well understood. Here, we aimed to explore the causal relationship between oxidative stress, somatic mutations in pre-tumor-initiated normal tissues, and tumor incidence in the small intestines of MUTYH-proficient and MUTYH-deficient mice. MUTYH is a base excision repair enzyme associated with human colorectal cancer. Mice were administered different concentrations of potassium bromate (KBrO3; an oxidizing agent)-containing water for 4 wk for mutagenesis studies or 16 wk for tumorigenesis studies. All Mutyh -/- mice treated with >0.1% KBrO3 developed multiple tumors, and the average tumor number increased dose dependently. Somatic mutation analysis of Mutyh -/-/rpsL transgenic mice revealed that G:C > T:A transversion was the only mutation type correlated positively with KBrO3 dose and tumor incidence. These mutations preferentially occurred at 5'G in GG and GAA sequences in rpsL This characteristic mutation pattern was also observed in the genomic region of Mutyh -/- tumors using whole-exome sequencing. It closely corresponded to signature 18 and SBS36, typically caused by 8-oxo-guanine (8-oxoG). 8-oxoG-induced mutations were sequence context dependent, yielding a biased amino acid change leading to missense and stop-gain mutations. These mutations frequently occurred in critical amino acid codons of known cancer drivers, Apc or Ctnnb1, known for activating Wnt signal pathway. Our results indicate that oxidative stress contributes to increased tumor incidence by elevating the likelihood of gaining driver mutations by increasing 8-oxoG-mediated mutagenesis, particularly under MUTYH-deficient conditions.
Collapse
Affiliation(s)
- Mizuki Ohno
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan;
| | - Noriko Takano
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kyoko Hidaka
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Center for Fundamental Education, The University of Kitakyushu, Kitakyushu, Fukuoka 802-8577, Japan
| | - Fumiko Sasaki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Kazumi Yamauchi
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Department of Radiobiology, Institute for Environmental Sciences, Kamikita, Aomori 039-3212, Japan
| | - Yasunobu Aoki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Japan Society for the Promotion of Science, San Francisco Office, Berkeley, California 94704, USA
| | - Yoshimichi Nakatsu
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Teruhisa Tsuzuki
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
13
|
Frydrych A, Jurowski K. The comprehensive prediction of carcinogenic potency and tumorigenic dose (TD 50) for two problematic N-nitrosamines in food: NMAMPA and NMAMBA using toxicology in silico methods. Chem Biol Interact 2024; 389:110864. [PMID: 38199258 DOI: 10.1016/j.cbi.2024.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
The identification and toxicological assessment of potential carcinogens is of paramount importance for public health and safety. This study aimed to predict the carcinogenic potency and tumorigenic dose (TD50) for two problematic N-nitrosamines (N-NAs) commonly found in food: N-2-methylpropyl-N-1-methylacetonylnitrosamine (NMAMPA, CAS: 93755-83-0) and N-3-Methylbutyl-N-1-methylacetonylnitrosamine (NMAMBA, CAS: 71016-15-4). To achieve this goal, in silico toxicology methods were employed due to their practical applications and potential in risk assessment. The justification for conducting these studies was incoherent results published by the European Food Safety Authority (EFSA). For this purpose, we applied various in silico tools, including qualitative methods (ToxTree, ProTox II and CarcinoPred-EL) and quantitative methods (QSAR Toolbox and LAZAR) were applied to predict the carcinogenic potency. These tools leverage computational approaches to analyze chemical structures for finding toxicophores and generating predictions, making them efficient alternatives to traditional in vivo experiments. The results obtained indicated that N-NAs are carcinogenic compounds, and quantitative data was obtained in the form of estimated doses of TD50 for the compounds tested.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszów, Poland; Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205, Łódź, Poland.
| |
Collapse
|
14
|
Rubio-Vargas DA, Morais TPD, Randi MAF, Filipak Neto F, Martins CDC, Oliveira AP, Nazário MG, Ferreira FCADS, Opuskevitch I, Penner D, Esquivel-Muelbert J, Prodocimo MM, Choueri RB, Oliveira Ribeiro CAD. Pollutant bioaccumulation in sentinel fish chronically exposed in Iguaçu river reservoirs (Southern Brazil) and human health risk of fish consumption. CHEMOSPHERE 2024; 349:140812. [PMID: 38036225 DOI: 10.1016/j.chemosphere.2023.140812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Bioaccumulation studies in fish mark the initial phase of assessing the risk of chemical exposure to biota and human populations. The Iguaçu River boasting a diverse endemic ichthyofauna, is grappling with the repercussions of human activities. This study delved into the bioaccumulation of micropollutants, the early-warning effects on Rhamdia quelen and Oreochomis niloticus in the Segredo Reservoir (HRS) and the potential risk of human exposure. Two groups of caged fish in three sites of the reservoir were exposed during the autumn-winter and spring-summer, while a third group (O. niloticus) underwent a twelve-month exposure, and inorganic and organic chemicals analysis in water, sediment, and biota. Additionally, metallothionein expression and genotoxicity were employed as biomarkers. PAHs, PCBs, Al, Cu, Fe, and As in water and DDTs, Cu, Zn, and As in sediment surpassed the thresholds set by Brazilian regulations, where DDT exhibited bioaccumulation in muscle, alongside metals in liver, kidney, gills, and muscle tissues. R. quelen showed metallothionein expression whereas DNA damage and NMA frequencies were elevated in target organs and in brain and erythrocytes of O. niloticus during summer. In this species the DNA damage in liver was remarkable after twelve months. Target Hazard Quotients and Cancer Risk values shedding light on the vulnerability of both children and adults. The reservoir's conditions led to heightened sensitivity to micropollutants for R. quelen species. The data presented herein provides decision-makers with pertinent insights to facilitate effective management and conservation initiatives within the Iguaçu Basin.
Collapse
Affiliation(s)
- Dámaso Angel Rubio-Vargas
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Tobias Pereira de Morais
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Marco Antônio Ferreira Randi
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - César de Castro Martins
- Instituto Oceanográfico, Universidade de São Paulo, Praça Do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil
| | - Andrea Pinto Oliveira
- Departamento de Química, Universidade Federal Do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Mariana Gallucci Nazário
- Laboratório de Análises Ambientais, Setor Litoral, Universidade Federal Do Paraná, CEP 83260-000, Matinhos, Paraná, Brazil
| | | | - Iracema Opuskevitch
- Copel GeT-SOS/DNGT - Rua José Izidoro Biazetto, N(o). 18. Bloco A, CEP 81200-240, Curitiba, PR, Brazil
| | - Dieter Penner
- Copel GeT-SOS/DNGT - Rua José Izidoro Biazetto, N(o). 18. Bloco A, CEP 81200-240, Curitiba, PR, Brazil
| | - Juan Esquivel-Muelbert
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, CEP 88490-000, Paulo Lopes, Santa Catarina, Brazil; School of Natural Sciences, Macquarie University, NSW, 2109, Australia
| | - Maritana Mela Prodocimo
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil
| | - Rodrigo Brasil Choueri
- Universidade Federal de São Paulo, Instituto Do Mar, Departamento de Ciências Do Mar, MarineTox_Lab, Rua Maria Máximo 168, CEP 11030-100, Santos, São Paulo, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal Do Paraná, CEP 81531-980, Curitiba, Paraná, Brazil.
| |
Collapse
|
15
|
Kobets T, Hickey C, Johnson G, Duan JD, Etter S, Smith B, Williams GM. Assessment of no-observed-effect-levels for DNA adducts formation by genotoxic carcinogens in fetal turkey livers. Toxicology 2024; 501:153714. [PMID: 38141718 DOI: 10.1016/j.tox.2023.153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
For genotoxic carcinogens, covalent binding to DNA is a critical initiating event in tumorigenesis. The present research investigated dose-effect relationships of three genotoxic carcinogens representing different structural classes, 2-acetylaminofluorene (2-AAF), benzo[a]pyrene (B[a]P) and quinoline (QUI), to assess the existence of no-observed-effect-levels (NOELs) for the formation of DNA adducts. Carcinogens were administered into the air sac of fertilized turkey eggs over wide dose ranges in three daily injections on days 22 to 24 of incubation. DNA adducts were measured in the fetal turkey livers by the 32P-nucleotide postlabeling (NPL) assay. B[a]P and QUI produced DNA adducts in a dosage-related manner and exhibited NOELs at 0.65 and 0.35 mg/kg bw/day, respectively. In contrast, 2-AAF formed DNA adducts at all tested dosages down to 0.005 mg/kg bw/day. Benchmark dose (BMD) analysis identified the potencies of 2-AAF and QUI to be similar, while B[a]P was the least potent compound. Overall, findings in fetal turkey livers demonstrated that exposure levels to genotoxic compounds that do not result in DNA adducts can exist but are not evident with all carcinogens of this type. The use of mechanistic dose-effect studies for genotoxic endpoints can provide critical information for prioritization of concerns for risk assessment.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | - Jian-Dong Duan
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | | | - Benjamin Smith
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Gary M Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
16
|
Hendriks G, Adriaens E, Allemang A, Clements J, Cole G, Derr R, Engel M, Hamel A, Kidd D, Kellum S, Kiyota T, Myhre A, Naëssens V, Pfuhler S, Roy M, Settivari R, Schuler M, Zeller A, van Benthem J, Vanparys P, Kirkland D. Interlaboratory validation of the ToxTracker assay: An in vitro reporter assay for mechanistic genotoxicity assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:4-24. [PMID: 38545858 DOI: 10.1002/em.22592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
ToxTracker is a mammalian cell reporter assay that predicts the genotoxic properties of compounds with high accuracy. By evaluating induction of various reporter genes that play a key role in relevant cellular pathways, it provides insight into chemical mode-of-action (MoA), thereby supporting discrimination of direct-acting genotoxicants and cytotoxic chemicals. A comprehensive interlaboratory validation trial was conducted, in which the principles outlined in OECD Guidance Document 34 were followed, with the primary objectives of establishing transferability and reproducibility of the assay and confirming the ability of ToxTracker to correctly classify genotoxic and non-genotoxic compounds. Reproducibility of the assay to predict genotoxic MoA was confirmed across participating laboratories and data were evaluated in terms of concordance with in vivo genotoxicity outcomes. Seven laboratories tested a total of 64 genotoxic and non-genotoxic chemicals that together cover a broad chemical space. The within-laboratory reproducibility (WLR) was up to 98% (73%-98% across participants) and the overall between-laboratory reproducibility (BLR) was 83%. This trial confirmed the accuracy of ToxTracker to predict in vivo genotoxicants with a sensitivity of 84.4% and a specificity of 91.2%. We concluded that ToxTracker is a robust in vitro assay for the accurate prediction of in vivo genotoxicity. Considering ToxTracker's robust standalone accuracy and that it can provide important information on the MoA of chemicals, it is seen as a valuable addition to the regulatory in vitro genotoxicity battery that may even have the potential to replace certain currently used in vitro battery assays.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jan van Benthem
- National Institute for Public Health and the Environment, The Netherlands
| | | | | |
Collapse
|
17
|
Regulska K, Kolenda T, Michalak M, Stanisz B. Impact of ramipril nitroso-metabolites on cancer incidence - in silico and in vitro safety evaluation. Rep Pract Oncol Radiother 2023; 28:612-622. [PMID: 38179284 PMCID: PMC10764049 DOI: 10.5603/rpor.97433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/05/2023] [Indexed: 01/06/2024] Open
Abstract
Background Angiotensin-converting enzyme inhibitors (ACE-I) and their pharmacologically related sartans have been associated with an increased cancer incidence in several clinical observations. In 2018, sartans were revealed as being significantly contaminated with nitrosamines. Nitrosamines are potent human mutagens that can be formed ex vivo and, more concerningly, also in vivo from nitrosatable drug precursors. Their formation in sartans may justify the reported cancer risk and, by analogy, this may also apply to ACE-Is. Materials and methods We investigated a commonly used ACE-I, ramipril (RAM). We checked its susceptibility to in vivo interaction with nitrite, potentially resulting in the generation of mutagenic N-nitrosamines. To that end, in silico simulation of mutagenicity of RAM nitroso-derivatives was performed using VEGA-GUI software. Then, the Nitrosation Assay Procedure was conducted which served as a model of endogenous reaction. The resulting post-nitrosation mixtures were subjected to a bacterial reverse mutation test employing Salmonella typhimurium strains TA98 and TA100 with and without metabolic activation. Results Our results showed that studied samples did not induce point mutations in the test bacteria, regardless of the catalytic cytochrome activity. Conclusion We concluded that RAM endogenous nitrosation is not the reason for increased cancer incidence. However, other ACE-Is must be verified in a similar manner.
Collapse
Affiliation(s)
- Katarzyna Regulska
- Pharmacy, Greater Poland Cancer Centre, Poznan, Poland
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, Poznan, Poland, Collegium Pharmaceuticum, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
| | - Tomasz Kolenda
- Research and Implementation Unit, Greater Poland Cancer Center, Poznan, Poland
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Marcin Michalak
- Surgical, Oncological and Endoscopic Gynaecology Department, Greater Poland Cancer Center, Poznan, Poland
| | - Beata Stanisz
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
18
|
Bloch D, Diel P, Epe B, Hellwig M, Lampen A, Mally A, Marko D, Villar Fernández MA, Guth S, Roth A, Marchan R, Ghallab A, Cadenas C, Nell P, Vartak N, van Thriel C, Luch A, Schmeisser S, Herzler M, Landsiedel R, Leist M, Marx-Stoelting P, Tralau T, Hengstler JG. Basic concepts of mixture toxicity and relevance for risk evaluation and regulation. Arch Toxicol 2023; 97:3005-3017. [PMID: 37615677 PMCID: PMC10504116 DOI: 10.1007/s00204-023-03565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic "mixture assessment/allocation factors" (MAF) should be introduced to increase public health protection. Here, we explore concepts of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additivity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, dioxin-like substances. In a second concept, an "enhancer substance" may act by increasing the target site concentration and aggravating the adverse effect of a "driver substance". For both concepts, adequate risk management of individual substances can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commentary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, at which adverse effects can be expected.
Collapse
Affiliation(s)
- Denise Bloch
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Mainz, Germany
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technical University Dresden, Dresden, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - María A Villar Fernández
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Sabine Guth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Angelika Roth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Rosemarie Marchan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Cristina Cadenas
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Patrick Nell
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Nachiket Vartak
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Christoph van Thriel
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Matthias Herzler
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, Berlin, Germany
| | - Marcel Leist
- Department of In Vitro Toxicology and Biomedicine, Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| |
Collapse
|
19
|
Caruso G, Nanni A, Curcio A, Lombardi G, Somma T, Minutoli L, Caffo M. Impact of Heavy Metals on Glioma Tumorigenesis. Int J Mol Sci 2023; 24:15432. [PMID: 37895109 PMCID: PMC10607278 DOI: 10.3390/ijms242015432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, an increase in the incidence of brain tumors has been observed in the most industrialized countries. This event triggered considerable interest in the study of heavy metals and their presence in the environment (air, water, soil, and food). It is probable that their accumulation in the body could lead to a high risk of the onset of numerous pathologies, including brain tumors, in humans. Heavy metals are capable of generating reactive oxygen, which plays a key role in various pathological mechanisms. Alteration of the homeostasis of heavy metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and the alteration of proteins. A large number of studies have shown that iron, cadmium, lead, nickel, chromium, and mercury levels were significantly elevated in patients affected by gliomas. In this study, we try to highlight a possible correlation between the most frequently encountered heavy metals, their presence in the environment, their sources, and glioma tumorigenesis. We also report on the review of the relevant literature.
Collapse
Affiliation(s)
- Gerardo Caruso
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Aristide Nanni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Antonello Curcio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurological Sciences, Università degli Studi di Napoli Federico II, 80125 Naples, Italy;
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, Università degli Studi di Messina, 98125 Messina, Italy;
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, Università degli Studi di Messina, 98125 Messina, Italy; (A.N.); (A.C.); (M.C.)
| |
Collapse
|
20
|
Delor L, Louzon M, Pelosi C, Michel E, Maillet G, Carronnier H. Ecotoxicity of single and mixture of perfluoroalkyl substances (PFOS and PFOA) in soils to the earthworm Aporrectodea caliginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122221. [PMID: 37543076 DOI: 10.1016/j.envpol.2023.122221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/07/2023]
Abstract
Per and polyfluoroalkyl substances (PFAS) are persistent compounds that are massively used in industry, consumer goods and fire-fighting foams. Soil contamination by PFAS is a major environmental concern, and there is a lack of knowledge on both their ecotoxicological mechanisms and the concentrations that induce adverse effects especially to non-target organisms, particularly in the case of PFAS mixtures. This study contributes to filling these gaps by assessing and modelling the effects of PFAS (in single and in mixtures for PFOS and PFOA at different environmental doses) on juvenile endogeic earthworms of a common species in European soils (Aporrectodea caliginosa) at different levels of biological organization (sub-individual and individual). The results showed for the first time combined strong ecotoxicological effects of PFAS on earthworm survival, integumental integrity, growth, sexual maturity and on genomic stability notably with the induction of DNA breaks associated with no abnormal oxidative DNA-lesion levels. Our results demonstrated significant effects at 0.3 mg kg-1 and additive effects in case of mixtures.
Collapse
Affiliation(s)
- L Delor
- VALGO, 47 Rue de Ponthieu, 75008, Paris, France
| | - M Louzon
- Ecosystem Department, ENVISOL, 2 Rue Hector Berlioz, 38110, La Tour Du Pin, France
| | - C Pelosi
- UMR INRAE/Avignon Université EMMAH (Environnement Méditerranéen et Modélisation des Agrohydrosystèmes), 228 Route de l'Aérodrome, 84000, Avignon, France
| | - E Michel
- UMR INRAE/Avignon Université EMMAH (Environnement Méditerranéen et Modélisation des Agrohydrosystèmes), 228 Route de l'Aérodrome, 84000, Avignon, France
| | - G Maillet
- TOXEM, 12 Rue des Quatre Saisons, 76290, Montivilliers, France
| | - H Carronnier
- VALGO, 47 Rue de Ponthieu, 75008, Paris, France.
| |
Collapse
|
21
|
Zarcone G, Lenski M, Martinez T, Talahari S, Simonin O, Garçon G, Allorge D, Nesslany F, Lo-Guidice JM, Platel A, Anthérieu S. Impact of Electronic Cigarettes, Heated Tobacco Products and Conventional Cigarettes on the Generation of Oxidative Stress and Genetic and Epigenetic Lesions in Human Bronchial Epithelial BEAS-2B Cells. TOXICS 2023; 11:847. [PMID: 37888697 PMCID: PMC10611330 DOI: 10.3390/toxics11100847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Electronic cigarettes (e-cig) and heated tobacco products (HTP) are often used as smoking cessation aids, while the harm reduction effects of these alternatives to cigarettes are still the subject of controversial debate, in particular regarding their carcinogenic potential. The objective of this study is to compare the effects of e-cig, HTP and conventional cigarette emissions on the generation of oxidative stress and genetic and epigenetic lesions in human bronchial epithelial BEAS-2B cells. Our results show that HTP were less cytotoxic than conventional cigarettes while e-cig were not substantially cytotoxic in BEAS-2B cells. E-cig had no significant effect on the Nrf2 pathway, whereas HTP and cigarettes increased the binding activity of Nrf2 to antioxidant response elements and the expression of its downstream targets HMOX1 and NQO1. Concordantly, only HTP and cigarettes induced oxidative DNA damage and significantly increased DNA strand breaks and chromosomal aberrations. Neither histone modulations nor global DNA methylation changes were found after acute exposure, regardless of the type of emissions. In conclusion, this study reveals that HTP, unlike e-cig, elicit a biological response very similar to that of cigarettes, but only after a more intensive exposure: both tobacco products induce cytotoxicity, Nrf2-dependent oxidative stress and genetic lesions in human epithelial pulmonary cells. Therefore, the health risk of HTP should not be underestimated and animal studies are required in order to determine the tumorigenic potential of these emerging products.
Collapse
|
22
|
Pandiri AR, Auerbach SS, Stevens JL, Blomme EAG. Toxicogenomics Approaches to Address Toxicity and Carcinogenicity in the Liver. Toxicol Pathol 2023; 51:470-481. [PMID: 38288963 PMCID: PMC11014763 DOI: 10.1177/01926233241227942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Toxicogenomic technologies query the genome, transcriptome, proteome, and the epigenome in a variety of toxicological conditions. Due to practical considerations related to the dynamic range of the assays, sensitivity, cost, and technological limitations, transcriptomic approaches are predominantly used in toxicogenomics. Toxicogenomics is being used to understand the mechanisms of toxicity and carcinogenicity, evaluate the translational relevance of toxicological responses from in vivo and in vitro models, and identify predictive biomarkers of disease and exposure. In this session, a brief overview of various transcriptomic technologies and practical considerations related to experimental design was provided. The advantages of gene network analyses to define mechanisms were also discussed. An assessment of the utility of toxicogenomic technologies in the environmental and pharmaceutical space showed that these technologies are being increasingly used to gain mechanistic insights and determining the translational relevance of adverse findings. Within the environmental toxicology area, there is a broader regulatory consideration of benchmark doses derived from toxicogenomics data. In contrast, these approaches are mainly used for internal decision-making in pharmaceutical development. Finally, the development and application of toxicogenomic signatures for prediction of apical endpoints of regulatory concern continues to be area of intense research.
Collapse
Affiliation(s)
- Arun R Pandiri
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Scott S Auerbach
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | | |
Collapse
|
23
|
Gooderham NJ, Cohen SM, Eisenbrand G, Fukushima S, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Davidsen JM, Harman CL, Kelly SE, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Sage oil, Orris Root Extract and Tagetes Oil and related flavoring ingredients. Food Chem Toxicol 2023; 179:113940. [PMID: 37487858 DOI: 10.1016/j.fct.2023.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
In recent years, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) has conducted a program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavor ingredients. This publication, twelfth in the series, details the re-evaluation of NFCs whose constituent profiles are characterized by alicyclic or linear ketones. In its re-evaluation, the Expert Panel applies a scientific constituent-based procedure for the safety evaluation of NFCs in commerce using a congeneric group approach. Estimated intakes of each congeneric group of the NFC are evaluated using the well-established and conservative Threshold of Toxicological Concern (TTC) approach. In addition, studies on the toxicity and genotoxicity of members of the congeneric groups and the NFCs under evaluation are reviewed. The scope of the safety evaluation of the NFCs contained herein does not include added use in dietary supplements or any products other than food. Thirteen (13) NFCs derived from the Boronia, Cinnamomum, Thuja, Ruta, Salvia, Tagetes, Hyssopus, Iris, Perilla and Artemisia genera are affirmed as generally recognized as safe (GRAS) under conditions of their intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University f Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - F Peter Guengerich
- Tadashi Inagami Professor of Biochemistry, Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Wallin Professor of Cancer Prevention, Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St., S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Shannen E Kelly
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA.
| |
Collapse
|
24
|
Bini M, Rajesh B, Babu TD. Chronic exposure of industrial grade calcium carbide and ethylene glycol exert genotoxic effect in Wistar albino rats. J Basic Clin Physiol Pharmacol 2023; 34:617-623. [PMID: 34233444 DOI: 10.1515/jbcpp-2020-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/26/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Calcium carbide (CaC2) and ethylene glycol (EG) are the two commonly used fruit ripening agents. The toxic effects of these chemicals on internal organs were reported in experimental animals. Even though the adverse effects of these compounds have been investigated for many years, there are no sufficient data available with regard to genotoxic effects. The present study evaluates the genotoxic effect of chronic exposures of CaC2 and EG in Wistar albino rats. METHODS CaC2 and EG were administered to the rats orally for 180 days. Chromosomal aberrations and micronuclei formation were analysed in bone marrow and peripheral blood cells. Comet assay was performed to analyse the DNA strand break. The toxic effects of the chemicals were analysed by MTT assay with normal human intestinal epithelial (IEC-6) cells. RESULTS Upon chronic exposure, CaC2 and EG caused chromosomal aberrations, micronuclei formation and DNA strand breaks extensively in bone marrow and peripheral blood cells. In MTT assay, the chemicals were found to be toxic to IEC-6 cells with IC50 values at 160 and 200 μg/mL for CaC2 and EG, respectively. CONCLUSIONS The results show that these chemicals have a potential to cause genomic level of toxicity which may lead to carcinogenic event at a chronic level exposure. The study warns to reinforce the administrative measures against the use of CaC2 and EG for fruit ripening process.
Collapse
Affiliation(s)
- Markose Bini
- Department of Anatomy, Bharath Institute of Higher Education and Research, Chennai, India
- Department of Anatomy, Amala Institute of Medical Sciences, Thrissur, India
| | - Bhargavan Rajesh
- Department of Anatomy, Sri Lakshmi Narayana Institute of Medical Sciences, Puducherry, India
| | | |
Collapse
|
25
|
Dourson ML. Probabilistic methods for non-cancer health effects. Regul Toxicol Pharmacol 2023:105411. [PMID: 37295488 DOI: 10.1016/j.yrtph.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Noncancer risk assessment methods and harmonization with cancer assessment methods have advanced from the simple divide a No Observed Adverse Effect Level (NOAEL) by a default safety factor or a linear extrapolation to background of the early 1980's. This advance is due in part due to groups such as the American Industrial Health Council, the National Institute of Environmental Health Sciences, the Society for Risk Analysis, the Society of Toxicology, and the U.S. Environmental Protection Agency (Bogdanffy et al., 2001), the National Academy of Sciences (1983 and 2009), the International Programme on Chemical Safety (2005, 2009), and to many independent researchers outside of and within a workshop series sponsored by the Alliance for Risk Assessment (ARA, 2023) prompted by the NAS (2009). Several of the case studies from this workshop series, and earlier work such as Bogdanffy et al. (2001), demonstrate that the dose response assessment of non-cancer toxicity and the harmonization of cancer and non-cancer methods are more than just a simple reflection of treating all non-cancer toxicity as if it has a threshold, or all cancer toxicity as if it did not. Moreover, one recommendation of NAS (2009) was to develop a problem formulation with risk managers prior to conducting any risk assessment. If the development of this problem formulation only necessitates the determination of a safe, or virtually safe dose, then the estimation of a Reference Dose (RfD) or virtually safe dose (VSD) or similar constructs should be encouraged. Not all of our environmental problems need a precise quantitative solution.
Collapse
Affiliation(s)
- Michael L Dourson
- Toxicology Excellence for Risk Assessment, 4303 Kirby Avenue, Cincinnati, OH, 45223, USA.
| |
Collapse
|
26
|
Dogan D, Erdem U, Bozer BM, Turkoz MB, Yıldırım G, Metin AU. Resorbable membrane design: In vitro characterization of silver doped-hydroxyapatite-reinforced XG/PEI semi-IPN composite. J Mech Behav Biomed Mater 2023; 142:105887. [PMID: 37141744 DOI: 10.1016/j.jmbbm.2023.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
In this study, the production and characterization of silver-doped hydroxyapatite (AgHA) reinforced Xanthan gum (XG) and Polyethyleneimine (PEI) reinforced semi-interpenetrating polymer network (IPN) biocomposite, known to be used as bone cover material for therapeutic purposes in bone tissue, were performed. XG/PEI IPN films containing 2AgHA nanoparticles were produced by simultaneous condensation and ionic gelation. Characteristics of 2AgHA-XG/PEI nanocomposite film were evaluated by structural, morphological (SEM, XRD, FT-IR, TGA, TM, and Raman) and biological activity analysis (degradation, MTT, genotoxicity, and antimicrobial activity) techniques. In the physicochemical characterization, it was determined that 2AgHA nanoparticles were homogeneously dispersed in the XG/PEI-IPN membrane at high concentration and the thermal and mechanical stability of the formed film were high. The nanocomposites showed high antibacterial activity against Acinetobacter Baumannii (A.Baumannii), Staphylococcus aureus (S.aureus), and Streptococcus mutans (S.mutans). L929 exhibited good biocompatibility for fibroblast cells and was determined to support the formation of MCC cells. It was shown that a resorbable 2AgHA-XG/PEI composite material was obtained with a high degradation rate and 64% loss of mass at the end of the 7th day. Physico-chemically developed biocompatible and biodegradable XG-2AgHA/PEI nanocomposite semi-IPN films possessed an important potential for the treatment of defects in bone tissue as an easily applicable bone cover. Besides, it was noted that 2AgHA-XG/PEI biocomposite could increase cell viability, especially in dental-bone treatments for coating, filling, and occlusion.
Collapse
Affiliation(s)
- Deniz Dogan
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| | - Umit Erdem
- Kirikkale University, Scientific and Tech. Research Center, Kirikkale, 71450, Turkey.
| | - Busra M Bozer
- Hitit University, Scientific Technical App. and Research Center, Corum, 19030, Turkey
| | - Mustafa B Turkoz
- Karabuk University, Faculty of Engineering, Electric and Electronics Engineering, Karabuk, 78050, Turkey
| | - Gurcan Yıldırım
- Abant Izzet Baysal University, Faculty of Engineering, Mechanical Engineering, Bolu, 14280, Turkey
| | - Aysegul U Metin
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| |
Collapse
|
27
|
Snodin DJ. Mutagenic impurities in pharmaceuticals: A critical assessment of the cohort of concern with a focus on N-nitrosamines. Regul Toxicol Pharmacol 2023; 141:105403. [PMID: 37116739 DOI: 10.1016/j.yrtph.2023.105403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
The TTC (Threshold of Toxicological Concern; set at 1.5 μg/day for pharmaceuticals) defines an acceptable patient intake for any unstudied chemical posing a negligible risk of carcinogenicity or other toxic effects. A group of high potency mutagenic carcinogens, defined solely by the presence of particular structural alerts, are referred to as the "cohort of concern" (CoC); aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds are considered to pose a significant carcinogenic risk at intakes below the TTC. Kroes et al.2004, derived values for the TTC and CoC in the context of food components, employing a non-transparent dataset never placed in the public domain. Using a reconstructed all-carcinogen dataset from relevant publications, it is now clear that there are exceptions for all three CoC structural classes. N-Nitrosamines represent 62% of the N-nitroso class in the reconstructed dataset. Employing a contemporary dataset, 20% are negative in rodent carcinogenicity bioassays with less than 50% of N-nitrosamines estimated to fall into the highest risk category. It is recommended that CoC nitrosamines are identified by compound-specific data rather than structural alerts. Thus, it should be possible to distinguish CoC from non-CoC N-nitrosamines in the context of mutagenic impurities described in ICH M7 (R1).
Collapse
Affiliation(s)
- David J Snodin
- Xiphora Biopharma Consulting, 9 Richmond Apartments, Redland Court Road, Bristol, BS6 7BG, UK.
| |
Collapse
|
28
|
FEMA GRAS assessment of natural flavor complexes: Allspice, anise, fennel-derived and related flavoring ingredients. Food Chem Toxicol 2023; 174:113643. [PMID: 36739890 DOI: 10.1016/j.fct.2023.113643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
The FEMA Expert Panel program to re-evaluate the safety of natural flavor complexes (NFCs) used as flavoring ingredients in food has resulted in the publication of an updated constituent-based procedure as well as publications on the safety evaluation of many botanical-derived NFCs. This publication, ninth in the series and related to the ninth publication, describes the affirmation of the generally recognized as safe (GRAS) status for NFCs with propenylhydroxybenzene and allylalkoxybenzene constituents under their conditions of intended use as flavoring ingredients added to food. The Panel's procedure applies the threshold of toxicological concern (TTC) concept and evaluates relevant data on absorption, metabolism, genotoxic potential and toxicology for the NFCs themselves and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s) with suspected genotoxic potential, the estimated intake of the individual constituent is compared to the TTC for compounds with structural alerts for genotoxicity and if exceeded, a margin of exposure is calculated using BMDL10 values derived from benchmark dose analyses using Bayesian model averaging, as presented in the tenth article of the series. Safety evaluations for NFCs derived from allspice, anise seed, star anise, sweet fennel seed and pimento leaves were conducted and their GRAS status was affirmed for use as flavoring ingredients. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food.
Collapse
|
29
|
Dos Santos Rodrigues B, Leroy K, Mihajlovic M, De Boever S, Vanbellingen S, Cogliati B, Aerts JL, Vinken M. Evaluation of functional candidate biomarkers of non-genotoxic hepatocarcinogenicity in human liver spheroid co-cultures. Arch Toxicol 2023; 97:1739-1751. [PMID: 36941454 DOI: 10.1007/s00204-023-03486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 03/22/2023]
Abstract
Validated in vitro assays for testing non-genotoxic carcinogenic potential of chemicals are currently not available. Consequently, the two-year rodent bioassay remains the gold standard method for the identification of these chemicals. Transcriptomic and proteomic analyses have provided a comprehensive understanding of the non-genotoxic carcinogenic processes, however, functional changes induced by effects at transcriptional and translational levels have not been addressed. The present study was set up to test a number of proposed in vitro biomarkers of non-genotoxic hepatocarcinogenicity at the functional level using a translational 3-dimensional model. Spheroid cultures of human hepatocytes and stellate cells were exposed to 5 genotoxic carcinogenic, 5 non-genotoxic carcinogenic, and 5 non-carcinogenic chemical compounds and assessed for oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, apoptosis, and inflammation. The spheroid model could capture many of these events triggered by the genotoxic carcinogenic chemicals, particularly aflatoxin B1 and hydroquinone. Nonetheless, no clear distinction could be made between genotoxic and non-genotoxic hepatocarcinogenicity. Therefore, spheroid cultures of human liver cells may be appropriate in vitro tools for mechanistic investigation of chemical-induced hepatocarcinogenicity, however, these mechanisms and their read-outs do not seem to be eligible biomarkers for detecting non-genotoxic carcinogenic chemicals.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Milos Mihajlovic
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sybren De Boever
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Sarah Vanbellingen
- Entity of Neuro-Aging and Viro-Immunotherapy, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Joeri L Aerts
- Entity of Neuro-Aging and Viro-Immunotherapy, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
30
|
Hong S, Song JM. High-Resolution In Situ High-Content Imaging of 3D-Bioprinted Single Breast Cancer Spheroids for Advanced Quantification of Benzo( a)pyrene Carcinogen-Induced Breast Cancer Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11416-11430. [PMID: 36812369 DOI: 10.1021/acsami.2c17877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are critically correlated with carcinogenesis and are strongly affected by the environmental factors. Environmental carcinogens, such as benzo(a)pyrene (BaP), are associated with the overproduction of CSCs in various types of cancers, including breast cancer. In this report, we present a sophisticated 3D breast cancer spheroid model for the direct identification and quantitative determination of CSCs induced by carcinogens within intact 3D spheroids. To this end, hydrogel microconstructs containing MCF-7 breast cancer cells were bioprinted within direct-made diminutive multi-well chambers, which were utilized for the mass cultivation of spheroids and in situ detection of CSCs. We found that the breast CSCs caused by BaP-induced mutations were higher in the biomimetic MCF-7 breast cancer spheroids than that in standard 2D monolayer cultures. Precisely controlled MCF-7 cancer spheroids could be generated by serially cultivating MCF-7 cells within the printed hydrogel microconstructs, which could be further utilized for high-resolution in situ high-content 3D imaging analysis to spatially identify the emergence of CSCs at the single spheroid level. Additionally, potential therapeutic agents specific to breast CSCs were successfully evaluated to verify the effectiveness of this model. This bioengineered 3D cancer spheroid system provides a novel approach to investigating the emergence of CSC induced by a carcinogen for environmental hazard assessment in a reproducible and scalable format.
Collapse
Affiliation(s)
- Sera Hong
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
31
|
Pagano C, Navarra G, Coppola L, Savarese B, Avilia G, Giarra A, Pagano G, Marano A, Trifuoggi M, Bifulco M, Laezza C. Impacts of Environmental Pollution on Brain Tumorigenesis. Int J Mol Sci 2023; 24:5045. [PMID: 36902485 PMCID: PMC10002587 DOI: 10.3390/ijms24055045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Pollutants consist of several components, known as direct or indirect mutagens, that can be associated with the risk of tumorigenesis. The increased incidence of brain tumors, observed more frequently in industrialized countries, has generated a deeper interest in examining different pollutants that could be found in food, air, or water supply. These compounds, due to their chemical nature, alter the activity of biological molecules naturally found in the body. The bioaccumulation leads to harmful effects for humans, increasing the risk of the onset of several pathologies, including cancer. Environmental components often combine with other risk factors, such as the individual genetic component, which increases the chance of developing cancer. The objective of this review is to discuss the impact of environmental carcinogens on modulating the risk of brain tumorigenesis, focusing our attention on certain categories of pollutants and their sources.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Beatrice Savarese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Giovanni Pagano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
32
|
Rosol TJ, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Davidsen JM, Harman CL, Kelly S, Ramanan D, Taylor SV. FEMA GRAS assessment of natural flavor complexes: Lemongrass oil, chamomile oils, citronella oil and related flavoring ingredients. Food Chem Toxicol 2023; 175:113697. [PMID: 36870670 DOI: 10.1016/j.fct.2023.113697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavor ingredients. This publication, eleventh in the series, evaluates the safety of NFCs characterized by primary alcohol, aldehyde, carboxylic acid, ester and lactone constituents derived from terpenoid biosynthetic pathways and/or lipid metabolism. The Expert Panel uses the scientific-based evaluation procedure published in 2005 and updated in 2018 that relies on a complete constituent characterization of the NFC intended for commerce and organization of the constituents of each NFC into well-defined congeneric groups. The safety of the NFCs is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on estimated intake, metabolism and toxicology of members of the congeneric groups and for the NFC under evaluation. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Twenty-three NFCs, derived from the Hibiscus, Melissa, Ricinus, Anthemis, Matricaria, Cymbopogon, Saussurea, Spartium, Pelargonium, Levisticum, Rosa, Santalum, Viola, Cryptocarya and Litsea genera were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Tadashi Inagami Professor of Biochemistry, Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Wallin Professor of Cancer Prevention, Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St., S.E., Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Professor of Toxicology, Division of Toxicology, Wageningen University, Stippeneng 4 6708, WE, Wageningen, the Netherlands
| | - Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Shannen Kelly
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Danarubini Ramanan
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C., 20036, USA.
| |
Collapse
|
33
|
Davidsen JM, Cohen SM, Eisenbrand G, Fukushima S, Gooderham NJ, Guengerich FP, Hecht SS, Rietjens IMCM, Rosol TJ, Harman CL, Taylor SV. FEMA GRAS assessment of derivatives of basil, nutmeg, parsley, tarragon and related allylalkoxybenzene-containing natural flavor complexes. Food Chem Toxicol 2023; 175:113646. [PMID: 36804339 DOI: 10.1016/j.fct.2023.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a program for the re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients in food. In this publication, tenth in the series, NFCs containing a high percentage of at least one naturally occurring allylalkoxybenzene constituent with a suspected concern for genotoxicity and/or carcinogenicity are evaluated. In a related paper, ninth in the series, NFCs containing anethole and/or eugenol and relatively low percentages of these allylalkoxybenzenes are evaluated. The Panel applies the threshold of toxicological concern (TTC) concept and evaluates relevant toxicology data on the NFCs and their respective constituent congeneric groups. For NFCs containing allylalkoxybenzene constituent(s), the estimated intake of the constituent is compared to the TTC for compounds with structural alerts for genotoxicity and when exceeded, a margin of exposure (MOE) is calculated. BMDL10 values are derived from benchmark dose analyses using Bayesian model averaging for safrole, estragole and methyl eugenol using EPA's BMDS software version 3.2. BMDL10 values for myristicin, elemicin and parsley apiole were estimated by read-across using relative potency factors. Margins of safety for each constituent congeneric group and MOEs for each allylalkoxybenzene constituent for each NFC were determined that indicate no safety concern. The scope of the safety evaluation contained herein does not include added use in dietary supplements or any products other than food. Ten NFCs, derived from basil, estragon (tarragon), mace, nutmeg, parsley and Canadian snakeroot were determined or affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavor ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
Affiliation(s)
- Jeanne M Davidsen
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198-3135, USA
| | - Gerhard Eisenbrand
- University of Kaiserslautern, Germany (Retired), Kühler Grund 48/1, 69126, Heidelberg, Germany
| | - Shoji Fukushima
- Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan
| | - Nigel J Gooderham
- Dept. of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | - F Peter Guengerich
- Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Stephen S Hecht
- Masonic Cancer Center and Dept. of Laboratory Medicine and Pathology, Cancer and Cardiovascular Research Building, 2231 6th St, S.E, Minneapolis, MN, 55455, USA
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 6708 WE, Wageningen, the Netherlands
| | - Thomas J Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 1 Ohio University, Athens, OH, 45701, USA
| | - Christie L Harman
- Flavor and Extract Manufacturers Association, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA
| | - Sean V Taylor
- Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, N.W., Suite 700, Washington, D.C, 20036, USA.
| |
Collapse
|
34
|
In Vivo and In Silico Analgesic Activity of Ficus populifolia Extract Containing 2-O-β-D-(3',4',6'-Tri-acetyl)-glucopyranosyl-3-methyl Pentanoic Acid. Int J Mol Sci 2023; 24:ijms24032270. [PMID: 36768593 PMCID: PMC9916429 DOI: 10.3390/ijms24032270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Natural product-based structural templates have immensely shaped small molecule drug discovery, and new biogenic natural products have randomly provided the leads and molecular targets in anti-analgesic activity spheres. Pain relief achieved through opiates and non-steroidal anti-inflammatory drugs (NSAIDs) has been under constant scrutiny owing to their tolerance, dependency, and other organs toxicities and tissue damage, including harm to the gastrointestinal tract (GIT) and renal tissues. A new, 3',4',6'-triacetylated-glucoside, 2-O-β-D-(3',4',6'-tri-acetyl)-glucopyranosyl-3-methyl pentanoic acid was obtained from Ficus populifolia, and characterized through a detailed NMR spectroscopic analysis, i.e., 1H-NMR, 13C-DEPT-135, and the 2D nuclear magnetic resonance (NMR) correlations. The product was in silico investigated for its analgesic prowess, COX-2 binding feasibility and scores, drug likeliness, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, possible biosystem's toxicity using the Discovery Studio®, and other molecular studies computational software programs. The glycosidic product showed strong potential as an analgesic agent. However, an in vivo evaluation, though at strong levels of pain-relieving action, was estimated on the compound's extract owing to the quantity and yield issues of the glycosidic product. Nonetheless, the F. populifolia extract showed the analgesic potency in eight-week-old male mice on day seven of the administration of the extract's dose in acetic acid-induced writhing and hot-plate methods. Acetic acid-induced abdominal writhing for all the treated groups decreased significantly (p < 0.0001), as compared to the control group (n = 6) by 62.9%, 67.9%, and 70.9% of a dose of 100 mg/kg (n = 6), 200 mg/kg (n = 6), and 400 mg/kg (n = 6), respectively. Similarly, using the analgesia meter, the reaction time to pain sensation increased significantly (p < 0.0001), as compared to the control (n = 6). The findings indicated peripheral and central-nervous-system-mediated analgesic action of the product obtained from the corresponding extract.
Collapse
|
35
|
Erdem U, Dogan D, Bozer BM, Turkoz MB, Yıldırım G, Metin AU. Fabrication of mechanically advanced polydopamine decorated hydroxyapatite/polyvinyl alcohol bio-composite for biomedical applications: In-vitro physicochemical and biological evaluation. J Mech Behav Biomed Mater 2022; 136:105517. [PMID: 36270152 DOI: 10.1016/j.jmbbm.2022.105517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
In this study, polydopamine (PDA) coated hydroxyapatite (HA) reinforced polyvinyl alcohol (PVA) films were produced to be used in biomedical applications such as bone tissue regeneration. pDA is coated not only to prevent the agglomeration of HA when encountering interstitial fluids but also to strongly bind the PVA for the interaction between materials so that the mechanical performance becomes more stabilized. pDA was coated on the hydroxyapatite surface using a radical polymerization technique, and the reinforced PVA were produced with pDA-coated HA (pDA-HA/PVA) nanoparticles. Fundamental characteristic properties of pDA-HA/PVA nanocomposite films were examined by morphological/chemical (SEM-EDS), microstructural (XRD, Ft-IR, and Raman), thermodynamic (TGA and TM), mechanical performance (Vickers microhardness) and biological activity analysis (MTT, genotoxicity and antimicrobial efficacy investigations). Physicochemical analysis showed that all the samples studied exhibited homogeneous mineral distributions through the main structures. According to TGA, TMA and hardness tests, the new composite structure possessed higher mechanical properties than neat PVA. Further, pDA-HA/PVA nanocomposites exhibited high antibacterial capacities against Acinetobacter Baumannii (A.Baumannii), Staphylococcus aureus (S. aureus), and Streptococcus mutans (S.mutans). Moreover, the new nanocomposites were noted to present good biocompatibility for fibroblast (L929) cells and to support remarkably MCS cells. All in all, this comprehensive work shows that the thermo-mechanically improved pDA-HA/PVA films will increase the application fields of PVA in biomedical fields especially tooth-bone treatments for coating, filling, or occlusion purposes.
Collapse
Affiliation(s)
- Umit Erdem
- Kirikkale University, Scientific and Tech. Research Center, Kirikkale, Turkey, 71450.
| | - Deniz Dogan
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| | - Busra M Bozer
- Hitit University, Scientific Technical App. and Research Center, Corum, Turkey, 19030
| | - Mustafa B Turkoz
- Karabuk University, Faculty of Engineering, Electric and Electronics Engineering, Karabuk, Turkey, 78050
| | - Gurcan Yıldırım
- Abant Izzet Baysal University, Faculty of Engineering, Mechanical Engineering, Bolu, Turkey, 14280
| | - Aysegul U Metin
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| |
Collapse
|
36
|
Ginsberg G, Chen Y, Vasiliou V. Mechanistic Considerations in 1,4-Dioxane Cancer Risk Assessment. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 30:100407. [PMID: 37091947 PMCID: PMC10120849 DOI: 10.1016/j.coesh.2022.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The risk assessment of many carcinogens involves extrapolation across large exposure differences between the dose levels used in animal studies and the much lower human exposures. This is true for 1,4-dioxane which has a consistent liver carcinogenic effect in both genders of rats and mice. These data have been applied to risk assessment assuming a linear low dose extrapolation in some cases but non-linear or threshold models have been used in others. This choice hinges on our understanding of the 1,4-dioxane cancer mechanism. While 1,4-dioxane is not genotoxic in standard test batteries and has non-linear toxicokinetics, the mechanism for its carcinogenic effect remains unknown and is an active area of research. This review summarizes the possible modes of action for this chemical, data gaps and application to risk assessment. We find that the cytotoxicity/hyperplasia and metabolic saturation hypotheses do not explain the carcinogenic response and do not take into account 1,4-dioxane's induction of its own metabolism, leading to less likelihood for saturation during chronic exposure. There is evidence for other mechanisms, especially oxidative stress associated with the induction of CYP2E1 and in vivo genotoxicity that is not seen in vitro. The dose response for these effects needs further exploration compared to the time course and dose response for 1,4-dioxane-induced carcinogenesis. An additional consideration is the manner in which these 1,4-dioxane effects may augment naturally occurring and disease-related processes that contribute to the increasing rate of human liver cancer. These factors add to the rationale for using a non-threshold linear approach for extrapolating to low dose for this carcinogen, which is consistent with the default for carcinogens which do not have a clearly defined mode of action.
Collapse
Affiliation(s)
- Gary Ginsberg
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
37
|
van Berlo D, Woutersen M, Muller A, Pronk M, Vriend J, Hakkert B. 10% Body weight (gain) change as criterion for the maximum tolerated dose: A critical analysis. Regul Toxicol Pharmacol 2022; 134:105235. [PMID: 35917983 DOI: 10.1016/j.yrtph.2022.105235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/03/2022] [Accepted: 07/16/2022] [Indexed: 11/15/2022]
Abstract
The concept of the Maximum Tolerated Dose (MTD) was introduced in the seventies for carcinogenicity testing and was defined as the highest dose inducing clear toxicity, but not mortality by causes other than cancer. As estimation of the MTD in a carcinogenicity study, the highest dose that causes a 10% decrease in body weight compared to control animals over the course of a 90-day study, was formulated as a suitable criterion. This criterion was not seen as indicator of excessive toxicity but as a means to avoid false negative outcomes in a carcinogenicity study, as tumor formation may be reduced when body weight is significantly decreased. The body weight-based MTD criterion, however, turned up in carcinogenicity test guidelines and guidance (e.g., from OECD) as the highest dose that causes a 10% decrease in body weight gain relative to controls. Moreover, the 10% decrease in body weight gain criterion for MTD also ended up in test guidelines and guidances for toxicity endpoints other than carcinogenicity, so outside the context it was intended for. A 10% decrease in body weight gain relative to controls is however not a biologically relevant effect as it corresponds to less than 3% body weight reduction relative to controls in a 90-day study, which is within the normal variation in body weight. It therefore should certainly not be considered as a condition of excessive toxicity. Using the 10% lower weight gain criterion and incorrectly associating it with excessive toxicity has major implications for top dose selection in regulatory safety studies, resulting in tests performed at doses too low to elicit toxicity. This negatively impacts the reliability of studies and their regulatory usability; moreover, it results in a waste of experimental animals, which is ethically highly undesirable. Hence, our plea is to remove this MTD criterion for top dose selection in test guidelines and guidances for toxicity endpoints other than carcinogenicity and to reinstall the original 10% decrease in body weight criterion in test guidelines and guidances for carcinogenicity.
Collapse
Affiliation(s)
- Damiën van Berlo
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products (VSP), Bilthoven, the Netherlands.
| | - Marjolijn Woutersen
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products (VSP), Bilthoven, the Netherlands
| | - Andre Muller
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products (VSP), Bilthoven, the Netherlands
| | - Marja Pronk
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products (VSP), Bilthoven, the Netherlands
| | - Jelle Vriend
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products (VSP), Bilthoven, the Netherlands
| | - Betty Hakkert
- National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products (VSP), Bilthoven, the Netherlands
| |
Collapse
|
38
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
39
|
In Silico Pharmacokinetic Profiling of the Identified Bioactive Metabolites of Pergularia tomentosa L. Latex Extract and In Vitro Cytotoxic Activity via the Induction of Caspase-Dependent Apoptosis with S-Phase Arrest. Pharmaceuticals (Basel) 2022; 15:ph15091132. [PMID: 36145353 PMCID: PMC9501251 DOI: 10.3390/ph15091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The in vitro cytotoxic efficacy of plant latex from Pergularia tomentosa L. was studied using five human cancer cell lines: HeLa cells (cervical carcinoma cells), A-549 (lung carcinoma), Panc-1 (pancreatic carcinoma cells), MDA-MB-231 (metastatic mammary adenocarcinoma), and MRC-5 (lung fibroblast cell line) cells. The phytonutrient content of plant latex was identified using the liquid chromatography/mass spectra-quadrupole time of flight (LC/MS-QTOF) technique. In silico studies of polyphenols were carried out to clarify the potential mode of action of the plant latex’s constituents. The treatment of different tumor cell lines with different concentrations of plant latex revealed a potent efficacy on the human lung carcinoma cell line (A-549) (IC50 = 3.89 µg/mL) compared with that with vinblastine as a positive control (IC50 = 7.12 µg/mL). The effect of the potent concentration of plant latex on the A-549 cell line induced cell arrest, upregulated the expression of pre-apoptotic markers, and downregulated the expression of antiapoptotic markers. Seven identified polyphenols were selected for the in silico study. A docking assessment using the epidermal growth factor receptor kinase (EGFRk) and eltronib as a positive control showed a higher affinity for the enzyme receptor of the selected polyphenols, except for methyl orsellinate and ginkgotoxin. The ADMET assessment demonstrated the inhibitory effect of the polyphenols on CYP450, except for ouabagenin and xanthyletine. The selected polyphenols obey Lipinski’s drug-likeness with no significant toxicity effect. In conclusion, the plant latex of P. tomentosa L. showed cytotoxic activity on the A-549 cell line, and the selected polyphenols showed a promising prodrug agent with a low profile of toxicity in the study.
Collapse
|
40
|
Liu S, Huang F, Ru G, Wang Y, Zhang B, Chen X, Chu L. Mouse Models of Hepatocellular Carcinoma: Classification, Advancement, and Application. Front Oncol 2022; 12:902820. [PMID: 35847898 PMCID: PMC9279915 DOI: 10.3389/fonc.2022.902820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the subtype of liver cancer with the highest incidence, which is a heterogeneous malignancy with increasing incidence rate and high mortality. For ethical reasons, it is essential to validate medical clinical trials for HCC in animal models before further consideration on humans. Therefore, appropriate models for the study of the pathogenesis of the disease and related treatment methods are necessary. For tumor research, mouse models are the most commonly used and effective in vivo model, which is closer to the real-life environment, and the repeated experiments performed on it are closer to the real situation. Several mouse models of HCC have been developed with different mouse strains, cell lines, tumor sites, and tumor formation methods. In this review, we mainly introduce some mouse HCC models, including induced model, gene-edited model, HCC transplantation model, and other mouse HCC models, and discuss how to choose the appropriate model according to the purpose of the experiments.
Collapse
Affiliation(s)
- Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liang Chu,
| |
Collapse
|
41
|
Do B, Kwon H. Genotoxicity test of eight natural color additives in the Korean market. Genes Environ 2022; 44:19. [PMID: 35676722 PMCID: PMC9175484 DOI: 10.1186/s41021-022-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Various natural color additives are preferred by many consumers over synthetic color additives because they are perceived to be safer. However, most do not have sufficient toxicity data for safety assurance. Color ingredients in particular have some structures suspected of being toxic. Eight natural color additives, gardenia red, blue, and yellow; lac color; cochineal extract; beet red; Curcuma longa Linne extract (Curcuma extract); and Monascus red, currently permitted for use in Korea, were selected and subjected to genotoxicity tests. Acceptable daily intake values have not been allocated to these color additives (except for cochineal extract) due to the lack of toxicity data. We used genotoxicity testing-the bacterial reverse mutation test (Ames test), in vitro mammalian chromosomal aberration test, and in vivo alkaline comet test-for minimum safety assurance. RESULTS Gardenia red and blue, cochineal extract, lac color, and beet red did not induce mutagenicity or chromosomal abnormalities. Gardenia yellow was mutagenic in the Ames test, but was not positive in the in vitro chromosomal aberration test or in vivo alkaline comet assay. Curcuma extract and Monascus red induced cytotoxicity in the Ames test at high concentrations in Salmonella typhimurium TA1537 and TA100, without showing mutagenicity. On cytotoxicity testing, Curcuma extract and Monascus red showed cytotoxicity at concentrations higher than 313 μg/ml in Chinese hamster ovary CHO-K1 cells and showed equivocal results in chromosomal aberration assay of the same cells. Curcuma extract and Monascus red produced significant increases in DNA damage at a dose of 2000 mg/kg b.w./day, and induced dose-dependent increases in % DNA in the tail and tail moment on in vivo comet assay. CONCLUSIONS Six out of eight food colorants did not cause genotoxicity and cytotoxicity. However, Monascus red and Curcuma extract showed definite cytotoxicity and probable genotoxicity.
Collapse
Affiliation(s)
- Byungkyung Do
- Department of Food and Nutrition, Seoul National University, Gwanak-ro 1 Gwanak-gu, Seoul, 08826 Republic of Korea
| | - Hoonjeong Kwon
- Department of Food and Nutrition, Seoul National University, Gwanak-ro 1 Gwanak-gu, Seoul, 08826 Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
42
|
Ye L, He Z, Li D, Chen L, Chen S, Guo P, Yu D, Ma L, Niu Y, Duan H, Xing X, Xiao Y, Zeng X, Wang Q, Dong G, Aschner M, Zheng Y, Chen W. CpG site-specific methylation as epi-biomarkers for the prediction of health risk in PAHs-exposed populations. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128538. [PMID: 35231813 DOI: 10.1016/j.jhazmat.2022.128538] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Environmental insults can lead to alteration in DNA methylation of specific genes. To address the role of altered DNA methylation in prediction of polycyclic aromatic hydrocarbons (PAHs) exposure-induced genetic damage, we recruited two populations, including diesel engine exhausts (low-level) and coke oven emissions (high-level) exposed subjects. The positive correlation was observed between the internal exposure marker (1-hydroxypyrene) and the extents of DNA damage (P < 0.05). The methylation of representative genes, including TRIM36, RASSF1a, and MGMT in peripheral blood lymphocytes was quantitatively examined by bisulfite-pyrosequencing assay. The DNA methylation of these three genes in response to PAHs exposure were changed in a CpG-site-specific manner. The identified hot CpG site-specific methylation of three genes exhibited higher predictive power for DNA damage than the respective single genes in both populations. Furthermore, the dose-response relationship analysis revealed a nonlinear U-shape curve of TRIM36 or RASSF1a methylation in combined population, which led to determination of the threshold of health risk. Furthermore, we established a prediction model for genetic damage based on the unidirectional-alteration MGMT methylation levels. In conclusion, this study provides new insight into the application of multiple epi-biomarkers for health risk assessment upon PAHs exposure.
Collapse
Affiliation(s)
- Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhini He
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Guo
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Lu Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266021, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
43
|
Liu W, Li Z, Cui X, Luo F, Zhou C, Zhang J, Xing L. Genotoxicity, oxidative stress and transcriptomic effects of Nitenpyram on human bone marrow mesenchymal stem cells. Toxicol Appl Pharmacol 2022; 446:116065. [PMID: 35568224 DOI: 10.1016/j.taap.2022.116065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022]
Abstract
Despite of the global contamination and ubiquitous exposure to nitenpyram (NIT), little knowledge is available on the adverse effects to human health, with some evidence referring to its genotoxic potency to non-target organisms and esophageal squamous papilloma in rats. Human bone marrow mesenchymal stem cells (hBMSCs) was employed as an in vitro model more relevant to humans to assess the potential genotoxicity of NIT and to understand the underlying mechanisms at cellular and molecular levels. Noncytotoxic concentrations of NIT, 50-2500 μg/mL, dose-dependently elevated MNs and nuclear buds frequencies to 8.7-29‰ and 15-35‰, respectively. Additional metabolism by rat liver S9 fraction decreased chromosome impairment by 27-52% on MN frequencies and 63-76% on NB frequencies. A commercial NIT product, containing 20% of NIT and 60% of pymetrozine, caused higher cytotoxicity and chromosome impairment in comparison with NIT alone. Expressions of genes responses to DNA damage, ATM, ATR, p53, p21, Bax, H2AX, and GADD45A were disturbed by NIT treatment. Reactive oxygen species (ROS) amount and superoxide dismutase (SOD) activity were enhanced by NIT. Comet assay showed that lower concentrations of NIT, 12.5-100 μg/mL, induced the DNA damage. Transcriptomic analysis identified 468 differentially expressed genes (p < 0.05, |log2(Foldchange)| ≥ 1), from which 22 pathways were enriched. Multiple affected pathways were related to cancer including viral carcinogenesis and bladder cancer. NIT may produce genotoxicity via inducing oxidative stress and deregulating PI3K/Akt, AMPK and mTOR signaling pathways, associated with carcinogenetic potency. While environmental levels of NIT alone may pose little risk to human health, attention should be paid to the health risk arose from the synergistic or additive effects that may exist among NEOs and other types of pesticides.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zechang Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoyu Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fang Luo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chunyan Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiangyu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liguo Xing
- Shenyang Research Institute of Chemical Industry of SINOCHEM Group, Shenyang 110027, China
| |
Collapse
|
44
|
Microbiome in cancer: Role in carcinogenesis and impact in therapeutic strategies. Biomed Pharmacother 2022; 149:112898. [PMID: 35381448 DOI: 10.1016/j.biopha.2022.112898] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is the world's second-leading cause of death, and the involvement of microbes in a range of diseases, including cancer, is well established. The gut microbiota is known to play an important role in the host's health and physiology. The gut microbiota and its metabolites may activate immunological and cellular pathways that kill invading pathogens and initiate a cancer-fighting immune response. Cancer is a multiplex illness, characterized by the persistence of several genetic and physiological anomalies in malignant tissue, complicating disease therapy and control. Humans have coevolved with a complex bacterial, fungal, and viral microbiome over millions of years. Specific long-known epidemiological links between certain bacteria and cancer have recently been grasped at the molecular level. Similarly, advances in next-generation sequencing technology have enabled detailed research of microbiomes, such as the human gut microbiome, allowing for the finding of taxonomic and metabolomic linkages between the microbiome and cancer. These investigations have found causative pathways for both microorganisms within tumors and bacteria in various host habitats far from tumors using direct and immunological procedures. Anticancer diagnostic and therapeutic solutions could be developed using this review to tackle the threat of anti-cancer medication resistance as well through the wide-ranging involvement of the microbiota in regulating host metabolic and immunological homeostasis. We reviewed the significance of gut microbiota in cancer initiation as well as cancer prevention. We look at certain microorganisms that may play a role in the development of cancer. Several bacteria with probiotic qualities may be employed as bio-therapeutic agents to re-establish the microbial population and trigger a strong immune response to remove malignancies, and further study into this should be conducted.
Collapse
|
45
|
Das A, Greco G, Kumar S, Catanzaro E, Morigi R, Locatelli A, Schols D, Alici H, Tahtaci H, Ravindran F, Fimognari C, Karki SS. Synthesis, in vitro cytotoxicity, molecular docking and ADME study of some indolin-2-one linked 1,2,3-triazole derivatives. Comput Biol Chem 2022; 97:107641. [DOI: 10.1016/j.compbiolchem.2022.107641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 01/16/2023]
|
46
|
Muresanu C, Khalchitsky S. Updated Understanding of the Causes of Cancer, and a New Theoretical Perspective of Combinational Cancer Therapies, a Hypothesis. DNA Cell Biol 2022; 41:342-355. [PMID: 35262416 DOI: 10.1089/dna.2021.1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present an integrative understanding of cancer as a metabolic multifactorial, multistage disease. We focus on underlying genetics-environmental interactions, evidenced by telomere changes. A range of genetic and epigenetic factors, including physical agents and predisposing factors such as diet and lifestyle are included. We present a structured model of the causes of cancer, methods of investigations, approaches to cancer prevention, and polypharmaceutical multidisciplinary complex treatment within a framework of personalized medicine. We searched PubMed, National Cancer Institute online, and other databases for publications regarding causes of cancer, reports of novel mitochondrial reprogramming, epigenetic, and telomerase therapies and state-of-the-art investigations. We focused on multistep treatment protocols to enhance early detection of cancer, and elimination or neutralization of the causes and factors associated with cancer formation and progression.Our aim is to suggest a model therapeutic protocol that incorporates the patient's genome, metabolism, and immune system status; stage of tumor development; and comorbidity(ies), if any. Investigation and treatment of cancer is a challenge that requires further holistic studies that improve the quality of life and survival rates, but are most likely to aid prevention.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Cluj-Napoca, Romania.,Department of Ecology, Taxonomy and Nature Conservation, Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Sergei Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
47
|
Vieira A, Gramacho A, Rolo D, Vital N, Silva MJ, Louro H. Cellular and Molecular Mechanisms of Toxicity of Ingested Titanium Dioxide Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:225-257. [DOI: 10.1007/978-3-030-88071-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAn exponential increase in products containing titanium dioxide nanomaterials (TiO2), in agriculture, food and feed industry, lead to increased oral exposure to these nanomaterials (NMs). Thus, the gastrointestinal tract (GIT) emerges as a possible route of exposure that may drive systemic exposure, if the intestinal barrier is surpassed. NMs have been suggested to produce adverse outcomes, such as genotoxic effects, that are associated with increased risk of cancer, leading to a concern for public health. However, to date, the differences in the physicochemical characteristics of the NMs studied and other variables in the test systems have generated contradictory results in the literature. Processes like human digestion may change the NMs characteristics, inducing unexpected toxic effects in the intestine. Using TiO2 as case-study, this chapter provides a review of the works addressing the interactions of NMs with biological systems in the context of intestinal tract and digestion processes, at cellular and molecular level. The knowledge gaps identified suggest that the incorporation of a simulated digestion process for in vitro studies has the potential to improve the model for elucidating key events elicited by these NMs, advancing the nanosafety studies towards the development of an adverse outcome pathway for intestinal effects.
Collapse
|
48
|
Kovarich S, Cappelli CI. Use of In Silico Methods for Regulatory Toxicological Assessment of Pharmaceutical Impurities. Methods Mol Biol 2022; 2425:537-560. [PMID: 35188646 DOI: 10.1007/978-1-0716-1960-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of novel non-testing methodologies to support the toxicological assessment of drug impurities is having a growing impact in the regulatory framework for pharmaceutical development and marketed products. For DNA reactive (mutagenic) impurities specific recommendations for the use of in silico structure-based approaches (namely (Q)SAR methodologies) are provided in the ICH M7 guideline. In 2018 a draft reflection paper has been published by EMA addressing open issues in the qualification approach of non-genotoxic impurities (NGI) according to the ICH Q3A/Q3B guidelines, and proposing the use of alternative testing strategies, including TTC, (Q)SAR, read-across, and in vitro approaches, to gather impurity-specific safety information.In the present chapter we describe a workflow to perform the safety assessment of drug impurities based on non-testing in silico methodologies. The proposed approach consists of a stepwise decision scheme including three key phases: PHASE 1: assessment of bacterial mutagenicity and consequent classification of impurities according to ICH M7; PHASE 2: risk characterization of mutagenic impurities (Classes 1, 2 or 3); PHASE 3: qualification of non-mutagenic impurities (Classes 4 or 5). The proposed decision scheme offers the possibility to acquire impurity-specific data, also if testing is not feasible, and to decide on further in vitro testing, besides meeting 3R's principle.
Collapse
|
49
|
Deep neural network for the determination of transformed foci in Bhas 42 cell transformation assay. Sci Rep 2021; 11:23344. [PMID: 34857826 PMCID: PMC8639770 DOI: 10.1038/s41598-021-02774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Bhas 42 cell transformation assay (CTA) has been used to estimate the carcinogenic potential of chemicals by exposing Bhas 42 cells to carcinogenic stimuli to form colonies, referred to as transformed foci, on the confluent monolayer. Transformed foci are classified and quantified by trained experts using morphological criteria. Although the assay has been certified by international validation studies and issued as a guidance document by OECD, this classification process is laborious, time consuming, and subjective. We propose using deep neural network to classify foci more rapidly and objectively. To obtain datasets, Bhas 42 CTA was conducted with a potent tumor promotor, 12-O-tetradecanoylphorbol-13-acetate, and focus images were classified by experts (1405 images in total). The labeled focus images were augmented with random image processing and used to train a convolutional neural network (CNN). The trained CNN exhibited an area under the curve score of 0.95 on a test dataset significantly outperforming conventional classifiers by beginners of focus judgment. The generalization performance of unknown chemicals was assessed by applying CNN to other tumor promotors exhibiting an area under the curve score of 0.87. The CNN-based approach could support the assay for carcinogenicity as a fundamental tool in focus scoring.
Collapse
|
50
|
Liu YZ, Lu HL, Qi XM, Xing GZ, Wang X, Yu P, Liu L, Yang FF, Ding XL, Zhang ZA, Deng ZP, Gong LK, Ren J. Aristolochic acid I promoted clonal expansion but did not induce hepatocellular carcinoma in adult rats. Acta Pharmacol Sin 2021; 42:2094-2105. [PMID: 33686245 PMCID: PMC8633323 DOI: 10.1038/s41401-021-00622-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/06/2021] [Indexed: 12/31/2022]
Abstract
Aristolochic acid I (AAI) is a well-known nephrotoxic carcinogen, which is currently reported to be also associated with hepatocellular carcinoma (HCC). Whether AAI is a direct hepatocarcinogen remains controversial. In this study we investigated the association between AAI exposure and HCC in adult rats using a sensitive rat liver bioassay with several cofactors. Formation of glutathione S-transferase placental form-positive (GST-P+) foci was used as the marker for preneoplastic lesions/clonal expansion. We first conducted a medium-term (8 weeks) study to investigate whether AAI had any tumor-initiating or -promoting activity. Then a long-term (52 weeks) study was conducted to determine whether AAI can directly induce HCC. We showed that oral administration of single dose of AAI (20, 50, or 100 mg/kg) in combination with partial hepatectomy (PH) to stimulate liver proliferation did not induce typical GST-P+ foci in liver. In the 8-week study, only high dose of AAI (10 mg · kg-1 · d-1, 5 days a week for 6 weeks) in combination with PH significantly increased the number and area of GST-P+ foci initiated by diethylnitrosamine (DEN) in liver. Similarly, only high dose of AAI (10 mg· kg-1· d-1, 5 days a week for 52 weeks) in combination with PH significantly increased the number and area of hepatic GST-P+ foci in the 52-week study. No any nodules or HCC were observed in liver of any AAI-treated groups. In contrast, long-term administration of AAI (0.1, 1, 10 mg· kg-1· d-1) time- and dose-dependently caused death due to the occurrence of cancers in the forestomach, intestine, and/or kidney. Besides, AAI-DNA adducts accumulated in the forestomach, kidney, and liver in a time- and dose-dependent manner. Taken together, AAI promotes clonal expansion only in the high-dose group but did not induce any nodules or HCC in liver of adult rats till their deaths caused by cancers developed in the forestomach, intestine, and/or kidney. Findings from our animal studies will pave the way for further large-scale epidemiological investigation of the associations between AA and HCC.
Collapse
Affiliation(s)
- Yong-Zhen Liu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng-Lei Lu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin-Ming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guo-Zhen Xing
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pan Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lu Liu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fang-Fang Yang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Lan Ding
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ze-An Zhang
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong-Ping Deng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li-Kun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, CAS, Zhongshan, 528400, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|