1
|
Debsikréo N, Dehainsala M, Debsikréo O, Leye N, LO G, Dia A, Flore MNB, Diaw NA, Diouf ND, Otchere ID, Toyé RM, Chemin I, Moussa AM, Toure-Kane NC, Lunel-Fabiani F. Prevalence and molecular characterization of hepatitis delta virus infection among hepatitis B virus surface antigen positive students and pregnant women in N'djamena, Chad. IJID REGIONS 2025; 14:100560. [PMID: 39895833 PMCID: PMC11786080 DOI: 10.1016/j.ijregi.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 02/02/2025]
Abstract
OBJECTIVES This study sought to determine the prevalence of hepatitis B virus (HBV)-hepatitis D virus (HDV) co-infection and to characterize isolates of both viruses in a Chadian population of HBV surface antigen (HBsAg)-positive pregnant women and students. METHODS This was a cross-sectional retrospective study using archived samples from pregnant women and students in N'djamena who had been systematically screened for HBsAg between April and August 2021. HBsAg-positive samples were tested for the presence of HDV antibodies (Ab) and were screened for the presence of both HBV and HDV (in anti-HDV Ab-positive samples) viral load estimations. Genome sequencing of the viruses was used for both genotyping and phylogenetic analysis. RESULTS A total of 94 participants were included in this study. The mean age was 24 ± 4.89 years (range: 18-42 years). Anti-HDV Ab were found in 9.57% (9/94) of the participants. The prevalence of anti-HDV Ab positivity among students (6.45% [4/62]) was lower than the 15.63% (5/32) observed among pregnant women. HDV-RNA was detected in 7/9 (77.77%) confirmed anti-HDV-positive participants. Most HDV-RN-positive participants had very low HBV DNA viral loads. All HBV sequences belonged to genotype E and all HDV sequences to genotype 1. CONCLUSIONS Hepatitis D is a potential public health challenge in Chad, which requires active surveillance and public education in the country for proper control. This surveillance should be supported with mass immunization against HBV.
Collapse
Affiliation(s)
- Nalda Debsikréo
- Cheikh Anta Diop University, Dakar, Senegal
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Sénégal
- University of N'Djamena, N'Djamena, Chad
| | | | - Odan Debsikréo
- University of Félix Houphouët Boigny Abidjan, Abidjan, Côte d'ivore
| | - Nafissatou Leye
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Sénégal
| | - Gora LO
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Sénégal
| | - Aminata Dia
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Sénégal
| | | | - Ndeye Aminata Diaw
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Sénégal
| | - Ndeye Dieynaba Diouf
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Sénégal
| | - Isaac Darko Otchere
- Medical Research Council Unit the Gambia at London School of Hygiene and Tropical Medicine, Fajara, the Gambia
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Rayana Maryse Toyé
- Centre de Recherche en Cancérologie de Lyon INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Isabelle Chemin
- Centre de Recherche en Cancérologie de Lyon INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | - Ali Mahamat Moussa
- University of N'Djamena, N'Djamena, Chad
- Centre Hospitalier Universitaire la Référence, N'Djamena, Chad
| | - Ndèye Coumba Toure-Kane
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation, Dakar, Sénégal
| | - Françoise Lunel-Fabiani
- Centre Hospitalier Universitaire Angers, BAT IBS-4 rue Larrey-49000 ANGERS, Laboratoire HIFIH, UFR Santé département Médecine, SFR 4208-UPRES EA3859, Université d'Angers, Angers Cedex, France
| |
Collapse
|
2
|
Mlewa M, Nyawale HA, Henerico S, Mangowi I, Shangali AR, Manisha AM, Kisanga F, Kidenya BR, Jaka H, Kilonzo SB, Mirambo MM, Mshana SE. Hepatitis B infection: Evaluation of demographics and treatment of chronic hepatitis B infection in Northern-western Tanzania. PLoS One 2024; 19:e0309314. [PMID: 39378209 PMCID: PMC11460692 DOI: 10.1371/journal.pone.0309314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is still a major public health problem. In response to the World Health Organization (WHO), Tanzania implemented immunization and treatment to achieve the eradication of HBV infection by 2030. To achieve this goal, frequent updates of demographic data, antiviral therapy eligibility, and uptake are essential. We therefore evaluated demographic data, antiviral therapy eligibility, and uptake among chronically HBV-infected patients attending at Bugando Medical Centre (BMC), Tanzania. METHODS A cross-sectional study enrolled 196 chronic HBV patients from April 23, 2023, to October 10, 2023, at BMC, where 100 and 96 patients were retrospectively and prospectively enrolled, respectively. Study's ethical clearance and permission were observed by the Catholic University of Health and Allied Sciences/Bugando Medical Centre research ethics and review committee and the Bugando Medical Centre management respectively. For all patients, socio-demographic data and whole blood samples were obtained. Full blood picture, alanine and aspartate amino transferases, and HBV viral load parameters were determined. Aspartate-Platelet Ratio Index (APRI) and Fibrosis Four (FIB-4) scores were calculated according to their respective formulas. Therapy eligibility and uptake were evaluated according to the 2015 WHO HBV prevention, treatment, and care guidelines. The data were summarized and analysed using STATA version 15. RESULTS The median age for all patients was 39 [IQR: 32-47.5] years. Nearly all study patients, 99% (194/196), were older than 20 years old, with significant male dominance (73.5% [144/196] versus 26.5% [52/196]; p<0.0001). Anti-HBV antiviral therapy eligibility was 22.4%, while uptake was 6.8% (3/4), which was significantly lower than the WHO expectation of 80% (p <0.0001). CONCLUSION Almost all chronically HBV-infected patients attending at BMC were older than 20 years old and were significantly dominated by males. Antiviral therapy uptake was remarkably lower than expected by the WHO towards combating HBV infection by 2030.
Collapse
Affiliation(s)
- Mathias Mlewa
- Department of Microbiology and Immunology, Mwanza University, Mwanza, Tanzania
- Department of Microbiology and Immunology, Catholic University of Health, and Allied Sciences, Mwanza, Tanzania
| | - Helmut A. Nyawale
- Department of Microbiology and Immunology, Catholic University of Health, and Allied Sciences, Mwanza, Tanzania
| | - Shimba Henerico
- Department of Central Pathology Laboratory, Molecular Biology Laboratory, Bugando Medical Centre, Mwanza, Tanzania
| | - Ivon Mangowi
- Department of Central Pathology Laboratory, Molecular Biology Laboratory, Bugando Medical Centre, Mwanza, Tanzania
| | | | | | - Felix Kisanga
- Department of Public Health, Mwanza University, Mwanza, Tanzania
| | - Benson R. Kidenya
- Department of Biochemistry and Molecular Biology, Catholic University of Health, and Allied Sciences, Mwanza, Tanzania
| | - Hyasinta Jaka
- Department of Gastroenterology, Bugando Medical Centre, Mwanza, Tanzania
- Department of Internal Medicine, Catholic University of Health, and Allied Sciences, Mwanza, Tanzania
| | - Semvua B. Kilonzo
- Department of Internal Medicine, Catholic University of Health, and Allied Sciences, Mwanza, Tanzania
| | - Mariam M. Mirambo
- Department of Microbiology and Immunology, Catholic University of Health, and Allied Sciences, Mwanza, Tanzania
| | - Stephen E. Mshana
- Department of Microbiology and Immunology, Catholic University of Health, and Allied Sciences, Mwanza, Tanzania
| |
Collapse
|
3
|
Baruti K, Choga WT, Phinius BB, Phakedi B, Bhebhe L, Mpebe GGA, Motshosi PC, Ratsoma T, Moyo S, Jongman M, Anderson M, Gaseitsiwe S. Impact of Hepatitis Delta Virus Infection on the Selection of Hepatitis B Surface Antigen Mutations. Genes (Basel) 2024; 15:982. [PMID: 39202343 PMCID: PMC11353884 DOI: 10.3390/genes15080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
The interaction of multiple viruses in one host is thought to enhance the development of mutations. However, the impact of hepatitis D virus (HDV) positivity on the development of unique hepatitis B virus (HBV) mutations among people living with human immunodeficiency virus (HIV) (PLWH) remains poorly understood in African countries, including Botswana. We used HBV sequences generated from the Botswana Combination Prevention Project (BCPP), which is the largest pair-matched cluster-randomized HIV trial in Botswana. Only participants with available HBV sequences (n = 55) were included in our study ([HIV/HBV-positive (n = 50) and HIV/HBV/HDV-positive (n = 5)]. Geno2pheno was used to determine HBV genotypes, and HBV surface region sequences (all subgenotype A1) were aligned in AliView for mutational analysis, while the impact of mutations was assessed using Phyre2. Our results identified 182 common mutations between the two groups. In the HIV/HBV/HDV cohort, only three mutations (L95W, W156Q, C221Y) were classified as deleterious, with only L95W being the most frequent. In the HIV/HBV cohort, four mutations (W199R, C221A, C221S, W223G) were also classified as deleterious. Our results demonstrate the presence of unique HBV mutations among the HIV/HBV/HDV-positive cohort. Functional characterization of these mutations is recommended to determine their effect on HDV.
Collapse
Affiliation(s)
- Kabo Baruti
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Wonderful T. Choga
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Bonolo B. Phinius
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Basetsana Phakedi
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
| | - Lynnette Bhebhe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
| | - Gorata G. A. Mpebe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
| | - Patience C. Motshosi
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
| | - Tsholofelo Ratsoma
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
| | - Sikhulile Moyo
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Pathology, Division of Medical Virology, Stellenbosch University, Cape Town 7535, South Africa
| | - Mosimanegape Jongman
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone Private Bag 00704, Botswana
| | - Motswedi Anderson
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
- Africa Health Research Institute (AHRI), Durban 4013, South Africa
- The Francis Crick Institute, London NW1 2BE, UK
| | - Simani Gaseitsiwe
- Research Laboratory, Botswana Harvard Health Partnership, Gaborone Private Bag BO 320, Botswana; (K.B.); (W.T.C.); (B.B.P.); (B.P.); (L.B.); (G.G.A.M.); (P.C.M.); (T.R.); (S.M.); (M.J.); (M.A.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
4
|
Păcurar D, Dinulescu A, Jugulete G, Păsărică AS, Dijmărescu I. Hepatitis B in Pediatric Population: Observational Retrospective Study in Romania. Life (Basel) 2024; 14:348. [PMID: 38541675 PMCID: PMC10970939 DOI: 10.3390/life14030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 09/29/2024] Open
Abstract
Hepatitis B virus (HBV) is a frequent cause of chronic hepatitis worldwide, with an estimated 5.6 million children under 5 years being infected. In Romania, there are no available epidemiology reports on large cohorts in children. We aimed to assess the profile of pediatric chronic HBV infection in southern Romania. We conducted an observational retrospective study on 506 HBV-infected children. Based on alaninaminotransferase (ALT), HBV serology and viremia, we identified four states of the disease. We correlated age, gender, household HBV infection, coinfection with other viruses and laboratory parameters. Most patients were in a positive HBV envelope antigen (HBeAg) immune-active state (65.4%). Age at diagnosis was significantly lower for those with household infection (p < 0.05). ALT values were not significantly different between positive or negative HBeAg patients in the immune-active state (p = 0.780). ALT values were higher in patients with hepatitis D virus (HDV)-associated infection (p < 0.001). Children with a household HBV infection had a high viraemia more frequently when compared to those with no infected relative (79.3% vs. 67.4%) (p < 0.001), but the ALT values were not significantly different (p = 0.21). Most of the patients are in an immune-active state (high ALT, high viremia). The percentages of HBV- and HDV-associated infections are high, but lower than the reported prevalence in Romania in the general population.
Collapse
Affiliation(s)
- Daniela Păcurar
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.P.); (I.D.)
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania;
| | - Alexandru Dinulescu
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.P.); (I.D.)
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania;
| | - Gheorghiță Jugulete
- Department of Infectious Diseases 3, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Alexandru-Sorin Păsărică
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania;
| | - Irina Dijmărescu
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.P.); (I.D.)
- Department of Pediatrics, “Grigore Alexandrescu” Emergency Children’s Hospital, 011743 Bucharest, Romania;
| |
Collapse
|
5
|
Ilyassova BS, Abzhaparova B, Smailova DS, Bolatov A, Baymakhanov B, Beloussov V, Solomadin M, Shamsivaliyeva K, Alpysbayava G, Issakova G, Granica J, Mukushkina D, Sagatov IY, Kaniyev S. Prevalence and genotypes distribution of virus hepatitis B and hepatitis delta virus in chronic liver diseases in Kazakhstan. BMC Infect Dis 2023; 23:533. [PMID: 37580657 PMCID: PMC10426108 DOI: 10.1186/s12879-023-08524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The geographical distribution of hepatitis B virus (HBV) and hepatitis D virus (HDV) genotypes is uneven and has its own clinical and organizational implications for health systems. Despite the introduction of vaccination and successful antiviral therapy the prevalence of chronic hepatitis B (with or without delta agent) increased over the past 5 years. This study aimed for the first time to investigate the molecular epidemiology of HBV and HDV in Kazakhstan. METHODS Total 834 chronic hepatitis B (with or without delta agent) patients were included to the study from November 2017 to June 2019. The material was collected from the regional hepatological сenters from 13 cities of Kazakhstan. Genotyping of HBV/HDV isolates was carried out using phylogenetic analysis of null-binary sequences of Kazakhstani isolates, in comparison with the reference sequences. Nucleotide sequence alignment was performed using the ClustalW algorithm, the "neighbor-joining" method was used for the construction of phylogenetic trees and subsequent analysis. RESULTS Overall 341 samples were PCR-positive and genotyped for HBV. Comparison and phylogenetic analysis of nucleotide sequences of HBV isolates showed that they were represented by genotypes HBV-D (95.9%), HBV-A (3.5%) and HBV-C (0.6%). At the same time, the identity of the nucleotide sequences of Kazakhstani isolates were: HBV-D (95-100%); HBV-A (97.2-100%) and HBV-C (99%). 256 samples were PCR positive and genotyped for HDV, all of them belonged to genotype 1. CONCLUSION This study describes for the first time the molecular epidemiology of HBV and HDV in Kazakhstan. The data obtained expand the knowledge of the global epidemiology of viruses; have potential implications for public health policy and for further clinical research on chronic hepatitis in Kazakhstan. TRIAL REGISTRATION ClinicalTrials.gov NCT05095181 (registered on 27/10/2021).
Collapse
Affiliation(s)
- Bibigul S. Ilyassova
- JSC “National Scientific center of Surgery named after A.N.Syzganov”, Zheltoksan str. 62, Almaty, 050004 Kazakhstan
| | - Balzhan Abzhaparova
- JSC “National Scientific center of Surgery named after A.N.Syzganov”, Zheltoksan str. 62, Almaty, 050004 Kazakhstan
| | | | | | - Bolatbek Baymakhanov
- JSC “National Scientific center of Surgery named after A.N.Syzganov”, Zheltoksan str. 62, Almaty, 050004 Kazakhstan
| | | | | | - Kunsulu Shamsivaliyeva
- JSC “National Scientific center of Surgery named after A.N.Syzganov”, Zheltoksan str. 62, Almaty, 050004 Kazakhstan
| | | | - Gaukhar Issakova
- JSC “National Scientific center of Surgery named after A.N.Syzganov”, Zheltoksan str. 62, Almaty, 050004 Kazakhstan
| | - Joanna Granica
- Molecular Genetics Laboratory “TreeGene”, Almaty, Kazakhstan
| | - Dina Mukushkina
- Molecular Genetics Laboratory “TreeGene”, Almaty, Kazakhstan
| | - Inkar Y. Sagatov
- JSC “National Scientific center of Surgery named after A.N.Syzganov”, Zheltoksan str. 62, Almaty, 050004 Kazakhstan
| | - Shokan Kaniyev
- JSC “National Scientific center of Surgery named after A.N.Syzganov”, Zheltoksan str. 62, Almaty, 050004 Kazakhstan
| |
Collapse
|
6
|
What does quantitative HBsAg level mean in chronic hepatitis D infection? Eur J Gastroenterol Hepatol 2023; 35:320-326. [PMID: 36708303 DOI: 10.1097/meg.0000000000002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE In hepatitis delta virus (HDV) infection, which is an important etiological cause of chronic liver disease, the relationship between serum quantitative HBsAg level and fibrosis and histological activity was investigated. METHODS Between 2014 and 2020, 98 patients with chronic HDV infection (53 noncirrhotic, 45 cirrhotic) participated in this prospectively designed study. Quantitative HBsAg levels of the patients were measured and their relationship with the stage of chronic liver disease was compared with histological activity index (HAI), fibrosis score and HDV RNA, model for end-stage liver disease score and other biochemical parameters. RESULTS All patients were infected with genotype 1 (100%). HBeAg was positive in 8 (8.1%) of the patients. A correlation was found between quantitative HBsAg level and HDV RNA level in patients with both cirrhotic (r = 0.568; P < 0.001) and noncirrhotic (r = 0.644; P < 0.001) HDV infection. Alanine transaminase (P = 0.001; r = 0.495) and aspartate transaminase (P = 0.001; r = 0.511) levels correlated with quantitative HBsAg levels, more prominently in noncirrhotic patients. There was a correlation between quantitative HBsAg level and histological activity index (HAI) in patients with noncirrhotic HDV infection (P < 0.001; r = 0.664). In receiver operating characteristic analysis, both quantitative HBsAg (for cutoff: 1000; sensitivity 76%; specificity 17%; P = 0.335) and HDV RNA (for cutoff: 100000; sensitivity 2%; specificity 98%; P = 0.096) were not predictive markers for cirrhosis. CONCLUSION Quantitative HBsAg level can be evaluated as an indicator of viral replication and histological activity in patients with chronic delta hepatitis without cirrhosis. We think that quantitative HBsAg level will be useful in the management of chronic HDV infection, especially in noncirrhotic patients.
Collapse
|
7
|
de los Ángeles Rodríguez Lay L, Tan Z, Villalba MCM, Suárez MS, Corredor MB, Hernández DL, Sánchez BM, Alonso LV, Sausy A, Hübschen JM. Low prevalence of hepatitis delta infection in Cuban HBsAg carriers: Prospect for elimination. Front Med (Lausanne) 2023; 9:1069372. [PMID: 36816726 PMCID: PMC9928864 DOI: 10.3389/fmed.2022.1069372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction Infection with hepatitis delta virus (HDV) is one of the most severe hepatitis B virus (HBV) complications, with a more rapid progression to cirrhosis and an increased risk of hepatic decompensation and death. Data on HDV infection in Cuba are limited. The aims of our study were to determine the HDV prevalence in HBsAg carriers and to characterize the HDV strains circulating. The data were used to assess the possibility of HDV elimination in the Cuban HBV epidemiological setting. Methods Five hundred and two serum samples from the same number of HBsAg carriers collected in the period 2006-2019 from all over the country were tested for anti-HDV total antibodies. If positive, the samples were analyzed for HDV-RNA using Real-Time RT-PCR targeting the ribozyme and HD antigen domains followed by genotyping based on phylogenetic analysis. Results Two samples were anti-HDV positive [0.39% (95% CI 0.11-1.44)]. One of them was also HDV-RNA positive. Clinically, the patient with active HDV infection had compensated liver cirrhosis. Phylogenetic analysis showed that the virus belonged to genotype 1 and thus clustered with contemporary strains from North America, Europe, Middle East, and Asia. Discussion This is the first HDV study, including molecular detection and virus characterization, done after the introduction of the universal childhood anti-hepatitis B vaccination. The very low prevalence of HDV infection in HBsAg carriers combined with the high HBV vaccination coverage of all newborn children, of previously identified risk groups, and of the general population currently under 40 years of age suggests that HDV elimination is feasible in Cuba if the success in HBV control is maintained.
Collapse
Affiliation(s)
- Licel de los Ángeles Rodríguez Lay
- National Reference Laboratory of Viral Hepatitis, Department of Virology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba,*Correspondence: Licel de los Ángeles Rodríguez Lay, ; orcid.org/0000-0002-7742-3146
| | - Zexi Tan
- National Reference Laboratory of Viral Hepatitis, Department of Virology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
| | - Maria Caridad Montalvo Villalba
- National Reference Laboratory of Viral Hepatitis, Department of Virology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
| | | | - Marité Bello Corredor
- National Reference Laboratory of Viral Hepatitis, Department of Virology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
| | - Dayesi López Hernández
- National Reference Laboratory of Viral Hepatitis, Department of Virology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
| | - Barbara Marrero Sánchez
- National Reference Laboratory of Viral Hepatitis, Department of Virology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
| | - Lidunka Valdés Alonso
- National Reference Laboratory of Viral Hepatitis, Department of Virology, Institute of Tropical Medicine “Pedro Kourí”, Havana, Cuba
| | - Aurélie Sausy
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Judith M. Hübschen
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
8
|
Mhlanga A, Zakh R, Churkin A, Reinharz V, Glenn JS, Etzion O, Cotler SJ, Yurdaydin C, Barash D, Dahari H. Modeling the Interplay between HDV and HBV in Chronic HDV/HBV Patients. MATHEMATICS (BASEL, SWITZERLAND) 2022; 10:3917. [PMID: 36540372 PMCID: PMC9762680 DOI: 10.3390/math10203917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hepatitis D virus is an infectious subviral agent that can only propagate in people infected with hepatitis B virus. In this study, we modified and further developed a recent model for early hepatitis D virus and hepatitis B virus kinetics to better reproduce hepatitis D virus and hepatitis B virus kinetics measured in infected patients during anti-hepatitis D virus treatment. The analytical solutions were provided to highlight the new features of the modified model. The improved model offered significantly better prospects for modeling hepatitis D virus and hepatitis B virus interactions.
Collapse
Affiliation(s)
- Adequate Mhlanga
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 84101, USA
| | - Rami Zakh
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
- Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva 84108, Israel
| | - Alexander Churkin
- Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva 84108, Israel
| | - Vladimir Reinharz
- Department of Computer Science, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Jeffrey S. Glenn
- Division of Gastroenterology and Hepatology, Departments of Medicine, Microbiology & Immunology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Ohad Etzion
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Scott J. Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 84101, USA
| | - Cihan Yurdaydin
- Department of Gastroenterology and Hepatology, Koç University Medical School, Istanbul 34450, Turkey
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 84101, USA
| |
Collapse
|
9
|
Gerber A, Le Gal F, Dziri S, Alloui C, Roulot D, Dény P, Sureau C, Brichler S, Gordien E. Comprehensive Analysis of Hepatitis Delta Virus Assembly Determinants According to Genotypes: Lessons From a Study of 526 Hepatitis Delta Virus Clinical Strains. Front Microbiol 2021; 12:751531. [PMID: 34867871 PMCID: PMC8636853 DOI: 10.3389/fmicb.2021.751531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Human hepatitis Delta virus (HDV) infection is associated to the most severe viral hepatic disease, including severe acute liver decompensation and progression to cirrhosis, and hepatocellular carcinoma. HDV is a satellite of hepatitis B virus (HBV) that requires the HBV envelope proteins for assembly of HDV virions. HDV and HBV exhibit a large genetic diversity that extends, respectively to eight (HDV-1 to -8) and to ten (HBV/A to/J) genotypes. Molecular determinants of HDV virion assembly consist of a C-terminal Proline-rich domain in the large Hepatitis Delta Antigen (HDAg) protein, also known as the Delta packaging domain (DPD) and of a Tryptophan-rich domain, the HDV matrix domain (HMD) in the C-terminal region of the HBV envelope proteins. In this study, we performed a systematic genotyping of HBV and HDV in a cohort 1,590 HDV-RNA-positive serum samples collected between 2001 to 2014, from patients originated from diverse parts of the world, thus reflecting a large genetic diversity. Among these samples, 526 HBV (HBV/A, B, C, D, E, and G) and HDV (HDV-1, 2, 3, and 5 to -8) genotype couples could be obtained. We provide results of a comprehensive analysis of the amino-acid sequence conservation within the HMD and structural and functional features of the DPD that may account for the yet optimal interactions between HDV and its helper HBV.
Collapse
Affiliation(s)
- Athenaïs Gerber
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France
| | - Frédéric Le Gal
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Samira Dziri
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France
| | - Chakib Alloui
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Dominique Roulot
- Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Unité d'Hépatologie, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France
| | - Paul Dény
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Inserm, U1052 - UMR CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, Paris, France
| | - Ségolène Brichler
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Emmanuel Gordien
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| |
Collapse
|
10
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Berg MG, Olivo A, Forberg K, Harris BJ, Yamaguchi J, Shirazi R, Gozlan Y, Sauleda S, Kaptue L, Rodgers MA, Mor O, Cloherty GA. Advanced molecular surveillance approaches for characterization of blood borne hepatitis viruses. PLoS One 2020; 15:e0236046. [PMID: 32678844 PMCID: PMC7367454 DOI: 10.1371/journal.pone.0236046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Defining genetic diversity of viral infections directly from patient specimens is the ultimate goal of surveillance. Simple tools that can provide full-length sequence information on blood borne viral hepatitis viruses: hepatitis C, hepatitis B and hepatitis D viruses (HCV, HBV and HDV) remain elusive. Here, an unbiased metagenomic next generation sequencing approach (mNGS) was used for molecular characterization of HCV infections (n = 99) from Israel which yielded full-length HCV sequences in 89% of samples, with 7 partial sequences sufficient for classification. HCV genotypes were primarily 1b (68%) and 1a (19%), with minor representation of genotypes 2c (1%) and 3a (8%). HBV/HDV coinfections were characterized by suppressed HBV viral loads, resulting in sparse mNGS coverage. A probe-based enrichment approach (xGen) aiming to increase HBV and HDV coverage was validated on a panel of diverse genotypes, geography and titers. The method extended HBV genome coverage a median 61% (range 8–84%) and provided orders of magnitude boosts in reads and sequence depth for both viruses. When HBV-xGen was applied to Israeli samples, coverage was improved by 28–73% in 4 samples and identified HBV genotype A1, A2, D1 specimens and a dual B/D infection. Abundant HDV reads in mNGS libraries yielded 18/26 (69%) full genomes and 8 partial sequences, with HDV-xGen only providing minimal extension (3–11%) of what were all genotype 1 genomes. Advanced molecular approaches coupled to virus-specific capture probes promise to enhance surveillance of viral infections and aid in monitoring the spread of local subtypes.
Collapse
Affiliation(s)
- Michael G. Berg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
- * E-mail:
| | - Ana Olivo
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Kenn Forberg
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Barbara J. Harris
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Julie Yamaguchi
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Rachel Shirazi
- Central Virology Laboratory, National HIV and Viral Hepatitis Reference Center, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Yael Gozlan
- Central Virology Laboratory, National HIV and Viral Hepatitis Reference Center, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
| | - Silvia Sauleda
- Transfusion Safety Laboratory, Banc de Sang i Teixits, Servei Català de la Salut, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Mary A. Rodgers
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| | - Orna Mor
- Central Virology Laboratory, National HIV and Viral Hepatitis Reference Center, Public Health Services, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Israel
| | - Gavin A. Cloherty
- Infectious Diseases Research, Abbott Diagnostics, Abbott Park, Illinois, United States of America
| |
Collapse
|
12
|
Pauly MD, Kamili S, Hayden TM. Impact of nucleic acid extraction platforms on hepatitis virus genome detection. J Virol Methods 2019; 273:113715. [PMID: 31419455 DOI: 10.1016/j.jviromet.2019.113715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Detection and quantification of viral nucleic acids are important for diagnosing current viral infections and monitoring response to antiviral therapy. Automated nucleic acid extraction and purification platforms are routinely used during the first step in these processes in clinical and research laboratories. Here, we compare the extraction efficiencies of four MagNA Pure magnetic bead-based nucleic acid extraction platforms and associated kits using samples positive for nucleic acids from HAV, HBV, HCV, HDV, and HEV. These five hepatitis viruses are diverse in their virion structures and type of nucleic acid that compose their genomes. We found that the most efficient nucleic acid extraction platform and corresponding kit, when averaged across all tested viruses, was the MagNA Pure 96, which yielded twice as much detectable nucleic acid as the other platforms. However, the relative efficiencies of the different platforms varied by virus type, suggesting that an extraction platform that is more efficient for one virus type will not necessarily function better with a different virus type. Our results show that the choice of a nucleic acid extraction platform influences the sensitivity of the methodology and has the potential to generate false-negative results especially in samples with low levels of viral nucleic acids.
Collapse
Affiliation(s)
- Matthew D Pauly
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, GA, USA
| | - Saleem Kamili
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, GA, USA
| | - Tonya M Hayden
- Division of Viral Hepatitis, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, GA, USA.
| |
Collapse
|
13
|
Godoy C, Tabernero D, Sopena S, Gregori J, Cortese MF, González C, Casillas R, Yll M, Rando A, López-Martínez R, Quer J, González-Aseguinolaza G, Esteban R, Riveiro-Barciela M, Buti M, Rodríguez-Frías F. Characterization of hepatitis B virus X gene quasispecies complexity in mono-infection and hepatitis delta virus superinfection. World J Gastroenterol 2019; 25:1566-1579. [PMID: 30983817 PMCID: PMC6452231 DOI: 10.3748/wjg.v25.i13.1566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis delta virus (HDV) seems to strongly suppress hepatitis B virus (HBV) replication, although little is known about the mechanism of this interaction. Both these viruses show a dynamic distribution of mutants, resulting in viral quasispecies. Next-generation sequencing is a viable approach for analyzing the composition of these mutant spectra. As the regulatory hepatitis B X protein (HBx) is essential for HBV replication, determination of HBV X gene (HBX) quasispecies complexity in HBV/HDV infection compared to HBV mono-infection may provide information on the interactions between these two viruses. AIM To compare HBV quasispecies complexity in the HBX 5' region between chronic hepatitis delta (CHD) and chronic HBV mono-infected patients. METHODS Twenty-four untreated patients were included: 7/24 (29.2%) with HBeAg-negative chronic HBV infection (CI, previously termed inactive carriers), 8/24 (33.3%) with HBeAg-negative chronic hepatitis B (CHB) and 9/24 (37.5%) with CHD. A serum sample from each patient was first tested for HBV DNA levels. The HBX 5' region [nucleotides (nt) 1255-1611] was then PCR-amplified for subsequent next-generation sequencing (MiSeq, Illumina, United States). HBV quasispecies complexity in the region analyzed was evaluated using incidence-based indices (number of haplotypes and number of mutations), abundance-based indices (Hill numbers of order 1 and 2), and functional indices (mutation frequency and nucleotide diversity). We also evaluated the pattern of nucleotide changes to investigate which of them could be the cause of the quasispecies complexity. RESULTS CHB patients showed higher median HBV-DNA levels [5.4 logIU/mL, interquartile range (IQR) 3.5-7.9] than CHD (3.4 logIU/mL, IQR 3-7.6) (P = n.s.) or CI (3.2 logIU/mL, IQR 2.3-3.5) (P < 0.01) patients. The incidence and abundance indices indicated that HBV quasispecies complexity was significantly greater in CI than CHB. A similar trend was observed in CHD patients, although only Hill numbers of order 2 showed statistically significant differences (CHB 2.81, IQR 1.11-4.57 vs CHD 8.87, 6.56-11.18, P = 0.038). There were no significant differences in the functional indices, but CI and CHD patients also showed a trend towards greater complexity than CHB. No differences were found for any HBV quasispecies complexity indices between CHD and CI patients. G-to-A and C-to-T nucleotide changes, characteristic of APOBEC3G, were higher in CHD and CI than in CHB in genotype A haplotypes, but not in genotype D. The proportion of nt G-to-A vs A-to-G changes and C-to-T vs T-to-C changes in genotype A and D haplotypes in CHD patients showed no significant differences. In CHB and CI the results of these comparisons were dependent on HBV genotype. CONCLUSION The lower-replication CHD and CI groups show a trend to higher quasispecies complexity than the higher-replication CHB group. The mechanisms associated with this greater complexity require elucidation.
Collapse
Affiliation(s)
- Cristina Godoy
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sara Sopena
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Josep Gregori
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Roche Diagnostics SL, Sant Cugat del Vallès 08174, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Carolina González
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Rosario Casillas
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Marçal Yll
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Ariadna Rando
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Rosa López-Martínez
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d’Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | | | - Rafael Esteban
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
14
|
Abstract
Hepatitis delta virus (HDV) is a defective RNA virus that depends on the presence of hepatitis B virus (HBV) for the creation of new virions and propagation of the infection to hepatocytes. Chronic infection with HDV is usually associated with a worsening of HBV infection, leading more frequently to cirrhosis, increased risk of liver decompensation and hepatocellular carcinoma (HCC) occurrence. In spite of a progressive declining prevalence of both acute and chronic HDV infection observed over several years, mainly due to increased global health policies and mass vaccination against HBV, several European countries have more recently observed stable HDV prevalence mainly due to migrants from non-European countries. Persistent HDV replication has been widely demonstrated as associated with cirrhosis development and, as a consequence, development of liver decompensation and occurrence of HCC. Several treatment options have been attempted with poor results in terms of HDV eradication and improvement of long-term prognosis. A global effort is deemed urgent to enhance the models already existing as well as to learn more about HDV infection and correlated tumourigenesis mechanisms.
Collapse
|
15
|
Colagrossi L, Salpini R, Scutari R, Carioti L, Battisti A, Piermatteo L, Bertoli A, Fabeni L, Minichini C, Trimoulet P, Fleury H, Nebuloso E, De Cristofaro M, Cappiello G, Spanò A, Malagnino V, Mari T, Barlattani A, Iapadre N, Lichtner M, Mastroianni C, Lenci I, Pasquazzi C, De Sanctis GM, Galeota Lanza A, Stanzione M, Stornaiuolo G, Marignani M, Sarmati L, Andreoni M, Angelico M, Ceccherini-Silberstein F, Perno CF, Coppola N, Svicher V. HDV Can Constrain HBV Genetic Evolution in HBsAg: Implications for the Identification of Innovative Pharmacological Targets. Viruses 2018; 10:v10070363. [PMID: 29987240 PMCID: PMC6071122 DOI: 10.3390/v10070363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic HBV + HDV infection is associated with greater risk of liver fibrosis, earlier hepatic decompensation, and liver cirrhosis hepatocellular carcinoma compared to HBV mono-infection. However, to-date no direct anti-HDV drugs are available in clinical practice. Here, we identified conserved and variable regions in HBsAg and HDAg domains in HBV + HDV infection, a critical finding for the design of innovative therapeutic agents. The extent of amino-acid variability was measured by Shannon-Entropy (Sn) in HBsAg genotype-d sequences from 31 HBV + HDV infected and 62 HBV mono-infected patients (comparable for demographics and virological-parameters), and in 47 HDAg genotype-1 sequences. Positions with Sn = 0 were defined as conserved. The percentage of conserved HBsAg-positions was significantly higher in HBV + HDV infection than HBV mono-infection (p = 0.001). Results were confirmed after stratification for HBeAg-status and patients’ age. A Sn = 0 at specific positions in the C-terminus HBsAg were correlated with higher HDV-RNA, suggesting that conservation of these positions can preserve HDV-fitness. Conversely, HDAg was characterized by a lower percentage of conserved-residues than HBsAg (p < 0.001), indicating higher functional plasticity. Furthermore, specific HDAg-mutations were significantly correlated with higher HDV-RNA, suggesting a role in conferring HDV replicative-advantage. Among HDAg-domains, only the virus-assembly signal exhibited a high genetic conservation (75% of conserved-residues). In conclusion, HDV can constrain HBsAg genetic evolution to preserve its fitness. The identification of conserved regions in HDAg poses the basis for designing innovative targets against HDV-infection.
Collapse
Affiliation(s)
- Luna Colagrossi
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Romina Salpini
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Rossana Scutari
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Luca Carioti
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Arianna Battisti
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Lorenzo Piermatteo
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Ada Bertoli
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Lavinia Fabeni
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| | - Carmine Minichini
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania L. Vanvitelli, 81100 Naples, Italy.
| | - Pascale Trimoulet
- Laboratoire de Virologie, Hôpital Pellegrin tripode, 33076 Bordeaux, France.
| | - Hervé Fleury
- Laboratoire de Virologie, Hôpital Pellegrin tripode, 33076 Bordeaux, France.
| | - Elena Nebuloso
- Unit of Microbiology, Sandro Pertini Hospital, 00157 Rome, Italy.
| | | | | | - Alberto Spanò
- Unit of Microbiology, Sandro Pertini Hospital, 00157 Rome, Italy.
| | - Vincenzo Malagnino
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | - Terenzio Mari
- Hepatology Unit, Nuovo Regina Margherita Hospital, 00153 Rome, Italy.
| | - Angelo Barlattani
- Hepatology Unit, Nuovo Regina Margherita Hospital, 00153 Rome, Italy.
| | - Nerio Iapadre
- Infectious Diseases Unit, San Salvatore Hospital, 67100 L'Aquila, Italy.
| | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy.
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, 00185 Rome, Italy.
| | - Ilaria Lenci
- Hepatology Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | | | | | | | - Maria Stanzione
- Department of Internal Medicine, University of Campania L. Vanvitelli, Viral Unit, 81100 Naples, Italy.
| | - Gianfranca Stornaiuolo
- Department of Internal Medicine, University of Campania L. Vanvitelli, Viral Unit, 81100 Naples, Italy.
| | | | - Loredana Sarmati
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | - Massimo Andreoni
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | - Mario Angelico
- Hepatology Unit, Tor Vergata University Hospital, 00133 Rome, Italy.
| | | | - Carlo-Federico Perno
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
- Haematology and Oncohematology, University of Milan, 20122 Milan, Italy.
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania L. Vanvitelli, 81100 Naples, Italy.
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, Tor Vergata University, 00133 Rome, Italy.
| |
Collapse
|
16
|
Winer BY, Shirvani-Dastgerdi E, Bram Y, Sellau J, Low BE, Johnson H, Huang T, Hrebikova G, Heller B, Sharon Y, Giersch K, Gerges S, Seneca K, Pais MA, Frankel AS, Chiriboga L, Cullen J, Nahass RG, Lutgehetmann M, Toettcher JE, Wiles MV, Schwartz RE, Ploss A. Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med 2018; 10:eaap9328. [PMID: 29950446 PMCID: PMC6337727 DOI: 10.1126/scitranslmed.aap9328] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Chronic delta hepatitis, caused by hepatitis delta virus (HDV), is the most severe form of viral hepatitis, affecting at least 20 million hepatitis B virus (HBV)-infected patients worldwide. HDV/HBV co- or superinfections are major drivers for hepatocarcinogenesis. Antiviral treatments exist only for HBV and can only suppress but not cure infection. Development of more effective therapies has been impeded by the scarcity of suitable small-animal models. We created a transgenic (tg) mouse model for HDV expressing the functional receptor for HBV and HDV, the human sodium taurocholate cotransporting peptide NTCP. Both HBV and HDV entered hepatocytes in these mice in a glycoprotein-dependent manner, but one or more postentry blocks prevented HBV replication. In contrast, HDV persistently infected hNTCP tg mice coexpressing the HBV envelope, consistent with HDV dependency on the HBV surface antigen (HBsAg) for packaging and spread. In immunocompromised mice lacking functional B, T, and natural killer cells, viremia lasted at least 80 days but resolved within 14 days in immunocompetent animals, demonstrating that lymphocytes are critical for controlling HDV infection. Although acute HDV infection did not cause overt liver damage in this model, cell-intrinsic and cellular innate immune responses were induced. We further demonstrated that single and dual treatment with myrcludex B and lonafarnib efficiently suppressed viremia but failed to cure HDV infection at the doses tested. This small-animal model with inheritable susceptibility to HDV opens opportunities for studying viral pathogenesis and immune responses and for testing novel HDV therapeutics.
Collapse
Affiliation(s)
- Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Elham Shirvani-Dastgerdi
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Julie Sellau
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Benjamin E Low
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Heath Johnson
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Tiffany Huang
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Yael Sharon
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Katja Giersch
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sherif Gerges
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Kathleen Seneca
- Infectious Disease Care, 105 Raider Boulevard, Hillsborough, NJ 08844, USA
| | - Mihai-Alexandru Pais
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Angela S Frankel
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA
| | - John Cullen
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Ronald G Nahass
- Infectious Disease Care, 105 Raider Boulevard, Hillsborough, NJ 08844, USA
| | - Marc Lutgehetmann
- Institute of Microbiology, Virology and Hygiene, University Medical Hospital, Hamburg-Eppendorf, Hamburg, Germany
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Michael V Wiles
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
17
|
Shirazi R, Ram D, Rakovsky A, Bucris E, Gozlan Y, Lustig Y, Shaked-Mishan P, Picard O, Shemer-Avni Y, Ben-Zvi H, Halutz O, Lurie Y, Veizman E, Carlebach M, Braun M, Naftaly MC, Shlomai A, Safadi R, Mendelson E, Sklan EH, Ben-Ari Z, Mor O. Characterization of hepatitis B and delta coinfection in Israel. BMC Infect Dis 2018; 18:97. [PMID: 29486716 PMCID: PMC6389180 DOI: 10.1186/s12879-018-3008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Characteristics of hepatitis B (HBV) and delta (HDV) coinfection in various geographical regions, including Israel, remain unclear. Here we studied HDV seroprevalence in Israel, assessed HDV/HBV viral loads, circulating genotypes and hepatitis delta antigen (HDAg) conservation. METHODS Serological anti HDV IgG results from 8969 HBsAg positive individuals tested in 2010-2015 were retrospectively analyzed to determine HDV seroprevalence. In a cohort of HBV/HDV coinfected (n=58) and HBV monoinfected (n=27) patients, quantitative real-time PCR (qRT-PCR) and sequencing were performed to determine viral loads, genotypes and hepatitis delta antigen (HDAg) protein sequence. RESULTS 6.5% (587/8969) of the HBsAg positive patients were positive for anti HDV antibodies. HDV viral load was >2 log copies/ml higher than HBV viral load in most of the coinfected patients with detectable HDV RNA (86%, 50/58). HDV genotype 1 was identified in all patients, most of whom did not express HBV. While 66.6% (4/6) of the HBV/HDV co-expressing patients carried HBV-D2 only 18.5% (5/27) of the HBV monoinfections had HBV-D2 (p=0.03). Higher genetic variability in the HDAg protein sequence was associated with higher HDV viral load. CONCLUSIONS The overall significant prevalence of HDV (6.5%) mandates HDV RNA testing for all coinfected patients. Patients positive for HDV RNA (characterized by low HBV DNA blood levels) carried HDV genotype 1. Taken together, the significant HDV seroprevalence and the lack of effective anti-HDV therapy, necessitates strict clinical surveillance especially in patients with higher HDV viral loads and increased viral evolution.
Collapse
Affiliation(s)
- Rachel Shirazi
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel - Hashomer, 52621, Ramat Gan, Israel
| | - Daniela Ram
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel - Hashomer, 52621, Ramat Gan, Israel
| | - Aviya Rakovsky
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel - Hashomer, 52621, Ramat Gan, Israel
| | - Efrat Bucris
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel - Hashomer, 52621, Ramat Gan, Israel
| | - Yael Gozlan
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel - Hashomer, 52621, Ramat Gan, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel - Hashomer, 52621, Ramat Gan, Israel
| | | | - Orit Picard
- Gastroenterology Laboratory, Sheba Medical Center, Ramat Gan, Israel
| | - Yonat Shemer-Avni
- Laboratory of Clinical Virology, Soroka University Medical Center, Beer Sheva, Israel
| | - Haim Ben-Zvi
- Microbiology Laboratory, Rabin Medical Center, Petach Tikva, Israel
| | - Ora Halutz
- Microbiology Laboratory, Sorasky Medical Center, Tel Aviv, Israel
| | - Yoav Lurie
- Liver Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ella Veizman
- Liver Unit, Rambam Medical Center, Haifa, Israel
| | | | - Marius Braun
- Liver Institute, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Amir Shlomai
- Liver Institute, Rabin Medical Center, Petah-Tikva, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rifaat Safadi
- Liver Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel - Hashomer, 52621, Ramat Gan, Israel.,School of Public Health, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ella H Sklan
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ziv Ben-Ari
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Liver Disease Center, Sheba Medical Center, Ramat Gan, Israel
| | - Orna Mor
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel - Hashomer, 52621, Ramat Gan, Israel. .,School of Public Health, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Nguyen HM, Sy BT, Trung NT, Hoan NX, Wedemeyer H, Velavan TP, Bock CT. Prevalence and genotype distribution of hepatitis delta virus among chronic hepatitis B carriers in Central Vietnam. PLoS One 2017; 12:e0175304. [PMID: 28403190 PMCID: PMC5389633 DOI: 10.1371/journal.pone.0175304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis D virus (HDV) infection plays an important role in liver diseases. However, the molecular epidemiology and impact of HDV infection in chronic hepatitis B (CHB) remain uncertain in Vietnam. This cross-sectional study aimed to investigate the prevalence and genotype distribution of HDV among HBsAg-positive patients in Central Vietnam. 250 CHB patients were tested for HDV using newly established HDV-specific RT-PCR techniques. HDV genotypes were determined by direct sequencing. Of the 250 patients 25 (10%) had detectable copies of HDV viral RNA. HDV-2 was predominant (20/25; 80%) followed by HDV-1 (5/25; 20%). Proven HDV genotypes share the Asian nomenclature. Chronic hepatitis B patients with concomitant HDV-1 showed higher HBV loads as compared to HDV-2 infected patients [median log10 (HBV-DNA copies/ml): 8.5 vs. 4.4, P = 0.036]. Our findings indicate that HDV infection is highly prevalent and HDV-2 is predominant in Central Vietnam. The data will add new information to the management of HBsAg-positive patients in a highly HBV endemic region to in- or exclude HDV infection in terms of diagnostic and treatment options.
Collapse
Affiliation(s)
- Hung Minh Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Bui Tien Sy
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Nguyen Thanh Trung
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Heiner Wedemeyer
- German Center for Infection Research, Department for Gastroenterology, Hepatology, and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Thirumalaisamy P. Velavan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - C-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
19
|
Affiliation(s)
| | - Abdurrahman Sahin
- Department of Gastroenterology, Medicine Faculty, Firat University, Elazig, Turkey
| |
Collapse
|
20
|
Hepatocarcinogenesis associated with hepatitis B, delta and C viruses. Curr Opin Virol 2016; 20:1-10. [PMID: 27504999 DOI: 10.1016/j.coviro.2016.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Globally, over half a billion people are persistently infected with hepatitis B (HBV) and/or hepatitis C viruses. Chronic HBV and HCV infection frequently lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Co-infections with hepatitis delta virus (HDV), a subviral satellite requiring HBV for its propagation, accelerates the progression of liver disease toward HCC. The mechanisms by which these viruses cause malignant transformation, culminating in HCC, remain incompletely understood, partially due to the lack of adequate experimental models for dissecting these complex disease processes in vivo.
Collapse
|
21
|
Dynamics of in vivo hepatitis D virus infection. J Theor Biol 2016; 398:9-19. [PMID: 27012516 DOI: 10.1016/j.jtbi.2016.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Hepatitis-D virus (HDV) is a satellite virus of hepatitis-B virus (HBV) whose intracellular products are required for the completion of the HDV life cycle. HDV can replicate in a cell without the presence of HBV but needs hepatitis B surface antigen (HBsAg) to complete virus assembly and packaging. In order to better understand HDV dynamics, we developed a mathematical model and successfully simulated HBV and HDV data under a range of scenarios. Compared to HBV mono-infection, dual HDV infection resulted in lower chronic HBV DNA levels, with more marked suppression for coinfection (1 logs HBV DNA copies/ml lower) compared to superinfection (0.6 logs HBV DNA copies/ml). Although they have no effect on HBV, prenylation inhibitors may provide the best therapy for reducing HDV viremia irrespective of the stage in which they are commenced. We found that highly effective long term pegylated interferon (IFN) therapy (99.99%) eliminates HBV and HDV viremia while less effective long term IFN therapy (99%) will only produce approximately 2.03 logs and no decrease in HBV and HDV viremia respectively in both coinfection and superinfection settings. Our study also suggests that there is a substantial difference in the outcome of therapies depending upon the time of commencement. CONCLUSION Mathematical modeling of HDV infection can describe the complex interplay between this virus and HBV. Simulations suggest that HDV impacts on the feedback mechanisms that maintain cccDNA levels and that targeting these mechanisms may result in new therapeutic agents for both viruses.
Collapse
|
22
|
Rizzetto M, Smedile A, Ciancio A. Hepatitis D. CLINICAL VIROLOGY 2016:1409-1423. [DOI: 10.1128/9781555819439.ch58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
23
|
Shirvani-Dastgerdi E, Pourkarim MR, Herbers U, Amini-Bavil-Olyaee S, Yagmur E, Alavian SM, Trautwein C, Tacke F. Hepatitis delta virus facilitates the selection of hepatitis B virus mutants in vivo and functionally impacts on their replicative capacity in vitro. Clin Microbiol Infect 2015; 22:98.e1-98.e6. [PMID: 26433026 DOI: 10.1016/j.cmi.2015.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 02/06/2023]
Abstract
To identify molecular interactions between hepatitis B virus (HBV) and hepatitis delta virus (HDV), HBV sequences were analysed in HBV/HDV-infected patients. Characteristic amino acid substitutions were found in cytosolic domains of hepatitis B surface antigen (HBsAg), in contrast to HBV-mono-infected controls. The functional impact of HDV on the replication of wild-type and mutant HBV was assessed in vitro. HDV co-transfection significantly reduced the replication of HBV strains containing precore or basal core promoter mutations, and HBV polymerase or surface antigen mutants affected HDV replication in vitro. Conclusively, our study revealed distinct HBsAg mutational patterns in HBV/HDV-infected patients and novel functional interactions between HBV and HDV.
Collapse
Affiliation(s)
| | - M R Pourkarim
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Belgium; Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - U Herbers
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - S Amini-Bavil-Olyaee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, Los Angeles, CA, USA
| | - E Yagmur
- Medical Care Centre, Dr Stein and Colleagues, Mönchengladbach, Germany
| | - S M Alavian
- Baqiyatallah Research Centre for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - C Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - F Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
24
|
Yacoubi L, Brichler S, Mansour W, Le Gal F, Hammami W, Sadraoui A, Ben Mami N, Msaddek A, Cheikh I, Triki H, Gordien E. Molecular epidemiology of hepatitis B and Delta virus strains that spread in the Mediterranean North East Coast of Tunisia. J Clin Virol 2015; 72:126-32. [PMID: 26513762 DOI: 10.1016/j.jcv.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tunisia is classified as an area of middle endemic for hepatitis B virus (HBV) infection, however little is known about hepatitis Delta virus (HDV) infection. OBJECTIVES This study aimed to address the prevalence of HDV infection, to identify possible risks factors, and to analyze the genetic diversity of HDV strains that are spreading in Tunisia. STUDY DESIGN A retrospective large-scale study including 1615 HBsAg positive patients, native of the North East coast of Tunisia, recruited from Gastroenterology departments, was conducted. Demographic, epidemiological, ethnical, clinical and biological data were recorded. HBV and HDV serological analyses and DNA and RNA viral load quantification were performed. Genotyping of HBV and HDV strains was performed using nucleotide sequencing followed by phylogenetic analyses. RESULTS The study population included 819 (50.7%) men and 796 (49.3%) women; aged 12-90 years (mean age 41±13 years). A very low prevalence of HDV infection, 2% was observed. No risk factor, except a history of hospitalization for surgery was found. All HDV strains belonged to genotype 1, with a wide distribution within the HDV-1 group. They all share the African amino acid marker, a serine at position 202 of the large Delta protein. HBV genotypes were distributed as follows: HBV/D1 (56.8%), HBV/D7 (40.9%), and HBV/A2 (2.3%). CONCLUSION Tunisia is a low endemic region for HDV infection, due to an efficient policy of HBV infection control. HDV-1 is the sole genotype found, with a high diversity within this group. Further studies are ongoing in order to better characterize and manage the HBV/HDV-infected patients according to the genetic variability of the viral strains.
Collapse
Affiliation(s)
- Lamia Yacoubi
- Laboratoire de Virologie Clinique, Institut Pasteur de Tunis, Tunisia; Carthage University, Tunis, Tunisia
| | - Ségolène Brichler
- Laboratoire de Bactériologie, Virologie, Hygiène, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Laboratoire Associé au Centre National de Référence des Hépatites B, C et Delta, UFR Santé Médecine Biologie Humaine, Université Paris 13, Bobigny, France
| | - Wael Mansour
- Laboratoire de Bactériologie, Virologie, Hygiène, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Laboratoire Associé au Centre National de Référence des Hépatites B, C et Delta, UFR Santé Médecine Biologie Humaine, Université Paris 13, Bobigny, France
| | - Frédéric Le Gal
- Laboratoire de Bactériologie, Virologie, Hygiène, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Laboratoire Associé au Centre National de Référence des Hépatites B, C et Delta, UFR Santé Médecine Biologie Humaine, Université Paris 13, Bobigny, France
| | - Walid Hammami
- Laboratoire de Virologie Clinique, Institut Pasteur de Tunis, Tunisia
| | - Amel Sadraoui
- Laboratoire de Virologie Clinique, Institut Pasteur de Tunis, Tunisia
| | - Nabil Ben Mami
- Department of Gastroenterology B, La Rabta Hospital, Tunisia; Tunis El Manar University, Tunis, Tunisia
| | - Azouz Msaddek
- Department of Gastroenterology, Tahar Maamouri Hospital, Nabeul, Tunisia; Tunis El Manar University, Tunis, Tunisia
| | - Imed Cheikh
- Department of Gastroenterology, Habib Bougatfa Hospital, Bizerte, Tunisia; Tunis El Manar University, Tunis, Tunisia
| | - Henda Triki
- Laboratoire de Virologie Clinique, Institut Pasteur de Tunis, Tunisia; Tunis El Manar University, Tunis, Tunisia.
| | - Emmanuel Gordien
- Laboratoire de Bactériologie, Virologie, Hygiène, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Laboratoire Associé au Centre National de Référence des Hépatites B, C et Delta, UFR Santé Médecine Biologie Humaine, Université Paris 13, Bobigny, France.
| |
Collapse
|