1
|
Matoba K, Takeda Y, Nagai Y, Kanazawa Y, Kawanami D, Yokota T, Utsunomiya K, Nishimura R. ROCK Inhibition May Stop Diabetic Kidney Disease. JMA J 2020; 3:154-163. [PMID: 33150249 PMCID: PMC7590381 DOI: 10.31662/jmaj.2020-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is strongly associated with cardiovascular mortality. Given the pandemic of obesity and diabetes, the elucidation of the molecular underpinnings of DKD and establishment of effective therapy are urgently required. Studies over the past decade have identified the activated renin-angiotensin system (RAS) and hemodynamic changes as important therapeutic targets. However, given the residual risk observed in patients treated with RAS inhibitors and/or sodium glucose co-transporter 2 inhibitors, the involvement of other molecular machinery is likely, and the elucidation of such pathways represents fertile ground for the development of novel strategies. Rho-kinase (ROCK) is a serine/threonine kinase that is under the control of small GTPase protein Rho. Many fundamental cellular processes, including migration, proliferation, and survival are orchestrated by ROCK through a mechanism involving cytoskeletal reorganization. From a pathological standpoint, several analyses provide compelling evidence supporting the hypothesis that ROCK is an important regulator of DKD that is highly pertinent to cardiovascular disease. In cell-based studies, ROCK is activated in response to a diverse array of external stimuli associated with diabetes, and renal ROCK activity is elevated in the context of type 1 and 2 diabetes. Experimental studies have demonstrated the efficacy of pharmacological or genetic inhibition of ROCK in the prevention of diabetes-related histological and functional abnormalities in the kidney. Through a bird’s eye view of ROCK in renal biology, the present review provides a conceptual framework that may be widely applicable to the pathological processes of multiple organs and illustrate novel therapeutic promise in diabetology.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
ROCK Inhibitor-Induced Promotion of Retinal Pigment Epithelial Cell Motility during Wound Healing. J Ophthalmol 2019; 2019:9428738. [PMID: 31316826 PMCID: PMC6607728 DOI: 10.1155/2019/9428738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose No standard therapy for RPE tear, a complication of neovascular age-related macular degeneration, exists even though RPE tears cause severe vision loss, and promotion of cell proliferation and/or migration could be a candidate RPE tear therapy. The aim of this study is to evaluate the effect of Rho-associated coiled-coil containing kinase (ROCK) inhibitor Y27632 on retinal pigment epithelial (RPE) cell motility during wound healing. Methods Human RPE cells were cultured in media with and without 10 μM Y27632. A luminescent cell viability assay and vinculin immunocytochemistry were used to test the Y27632 effect on RPE cell adhesion. The mean size of vinculin puncta was quantified from immunofluorescence images. RPE cell motility during wound healing was evaluated using time-lapse imaging and measuring cell migration distances and cell coverage rate in wound fields. Results The number of adhered RPE and mean size of vinculin puncta were, respectively, 20519 cells and 3.65 μm2 under nontreatment and 23569 cells and 0.66 μm2 under Y27632 treatment. Cell migration distance and cell coverage percentage for untreated and Y27632-treated cells were 98.9 and 59.4% and 203.4 and 92.5%, respectively. Conclusions Inhibition of ROCK signaling by using 10 μM Y27632 promoted RPE cell motility during wound healing by reducing RPE cell adhesion strength.
Collapse
|
3
|
ROCK2 Regulates Monocyte Migration and Cell to Cell Adhesion in Vascular Endothelial Cells. Int J Mol Sci 2019; 20:ijms20061331. [PMID: 30884801 PMCID: PMC6471293 DOI: 10.3390/ijms20061331] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
The small GTPase Rho and its downstream effector, Rho-kinase (ROCK), regulate various cellular functions, including organization of the actin cytoskeleton, cell adhesion and migration. A pro-inflammatory lipid mediator, lysophosphatidic acid (LPA), is a potent activator of the Rho/ROCK signalling pathway and has been shown to induce the expression of chemokines and cell adhesion molecules (CAMs). In the present study, we aimed to elucidate the precise mechanism by which ROCK regulates LPA-induced expressions and functions of chemokines and CAMs. We observed that ROCK blockade reduced LPA-induced phosphorylation of IκBα and inhibited NF-κB RelA/p65 phosphorylation, leading to attenuation of RelA/p65 nuclear translocation. Furthermore, small interfering RNA-mediated ROCK isoform knockdown experiments revealed that LPA induces the expression of monocyte chemoattractant protein-1 (MCP-1) and E-selectin via ROCK2 in human aortic endothelial cells (HAECs). Importantly, we found that ROCK2 but not ROCK1 controls LPA-induced monocytic migration and monocyte adhesion toward endothelial cells. These findings demonstrate that ROCK2 is a key regulator of endothelial inflammation. We conclude that targeting endothelial ROCK2 is potentially effective in attenuation of atherosclerosis.
Collapse
|
4
|
Lv M, Zhou Y, Polson SW, Wan LQ, Wang M, Han L, Wang L, Lu XL. Identification of Chondrocyte Genes and Signaling Pathways in Response to Acute Joint Inflammation. Sci Rep 2019; 9:93. [PMID: 30643177 PMCID: PMC6331554 DOI: 10.1038/s41598-018-36500-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023] Open
Abstract
Traumatic joint injuries often result in elevated proinflammatory cytokine (such as IL-1β) levels in the joint cavity, which can increase the catabolic activities of chondrocytes and damage cartilage. This study investigated the early genetic responses of healthy in situ chondrocytes under IL-1β attack with a focus on cell cycle and calcium signaling pathways. RNA sequencing analysis identified 2,232 significantly changed genes by IL-1β, with 1,259 upregulated and 973 downregulated genes. Catabolic genes related to ECM degeneration were promoted by IL-1β, consistent with our observations of matrix protein loss and mechanical property decrease during 24-day in vitro culture of cartilage explants. IL-1β altered the cell cycle (108 genes) and Rho GTPases signaling (72 genes) in chondrocytes, while chondrocyte phenotypic shift was observed with histology, cell volume measurement, and MTT assay. IL-1β inhibited the spontaneous calcium signaling in chondrocytes, a fundamental signaling event in chondrocyte metabolic activities. The expression of 24 genes from 6 calcium-signaling related pathways were changed by IL-1β exposure. This study provided a comprehensive list of differentially expressed genes of healthy in situ chondrocytes in response to IL-1β attack, which represents a useful reference to verify and guide future cartilage studies related to the acute inflammation after joint trauma.
Collapse
Affiliation(s)
- Mengxi Lv
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Meiqing Wang
- Department of Oral Anatomy and Physiology and TMD, the Fourth Military Medical University, Xi'an, Shanxi, China
| | - Lin Han
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States.
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States.
| |
Collapse
|
5
|
Wei H, Zhang D, Liu L, Xia W, Li F. Rho signaling pathway enhances proliferation of PASMCs by suppressing nuclear translocation of Smad1 in PAH. Exp Ther Med 2018; 17:71-78. [PMID: 30603049 PMCID: PMC6307528 DOI: 10.3892/etm.2018.6942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/26/2018] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenetic protein (BMP) and Rho kinase signaling pathways exert counter regulatory effects on pulmonary artery smooth muscle cell (PASMC) proliferation in pulmonary artery hypertension (PAH). To elucidate the mechanism of this interaction, the present study tested whether Rho kinase activated by platelet derived growth factor-BB (PDGF-BB) enhances PASMC proliferation by suppressing the nuclear translocation of Smad1 induced by BMP-2. BMP-2 was used to activate the Smad1 signaling pathway and PDGF-BB was used to activate the Rho kinase signaling pathway when cells were pretreated with or without Rho-associated protein kinase (ROCK) inhibitor Y-27632 or dual specificity mitogen-activated protein kinase kinase (MEK) 1 and 2 inhibitor U0126. Western blotting was used to determine the expression of the components of the Rho signaling pathway, and the expression of various variants of phosphorylated mothers against decapentaplegic homolog (p-Smad)1 in the cytoplasm and nucleus. Immunofluorescent staining was used to observe subcellular distribution of p-Smad1. A cell counting kit was used to analyze cell proliferation. Active RhoA/Rho kinase signaling and decreased nuclear translocation of Smad1 were found in primary cultured PASMCs from the rat model of PAH compared with the control PASMCs. Treatment with BMP-2 significantly increased nuclear accumulation of Smad1 and inhibited the proliferation of PASMCs. However, pretreatment with PDGF-BB significantly decreased the nuclear accumulation of Smad1 induced by BMP-2 and enhanced the proliferation of PASMCs. Furthermore, pretreatment with Y-27632 or U0126 was found to restore the nuclear translocation of Smad1 suppressed by PDGF-BB and decrease the proliferation of PASMCs. In conclusion, the present study suggested that Rho kinase activated by PDGF-BB suppressed BMP-2-induced nuclear translocation of Smad1 via the MEK/mitogen-activated protein kinase and enhanced BMP-2-inhibited proliferation of PASMCs.
Collapse
Affiliation(s)
- Hongwei Wei
- Department of Pediatrics, The Third Hospital of Jinan, Jinan, Shandong 250132, P.R. China
| | - Dongqing Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lili Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Xia
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fuhai Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
6
|
Ichimura K, Matoba T, Koga JI, Nakano K, Funamoto D, Tsutsui H, Egashira K. Nanoparticle-Mediated Targeting of Pitavastatin to Small Pulmonary Arteries and Leukocytes by Intravenous Administration Attenuates the Progression of Monocrotaline-Induced Established Pulmonary Arterial Hypertension in Rats. Int Heart J 2018; 59:1432-1444. [PMID: 30369578 DOI: 10.1536/ihj.17-683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Statins are known to improve pulmonary arterial hypertension (PAH) by their anti-inflammatory and anti-proliferative effects in animal models. However, recent clinical studies have reported that clinically approved statin doses failed to improve clinical outcomes in patients with PAH. We therefore hypothesized that nanoparticle (NP) -mediated targeting of pitavastatin could attenuate the progression of established PAH.We induced PAH by subcutaneously injecting monocrotaline (MCT) in Sprague-Dawley rats. On day 14 after the MCT injection, animals that displayed established PAH on echocardiography were included. On day 17, they were randomly assigned to the following 5 groups: daily intravenous administration of (1) vehicle, (2) fluorescein-isothiocyanate-NP, (3) pitavastatin, (4) pitavastatin-NP, or (5) oral sildenafil. Intravenous NP was selectively delivered to small pulmonary arteries and circulating CD11b-positive leukocytes. On day 21, pitavastatin-NP attenuated the progression of PAH at lower doses than pitavastatin alone. This was associated with the inhibition of monocyte-mediated inflammation, proliferation, and remodeling of the pulmonary arteries. Interestingly, sildenafil attenuated the development of PAH, but had no effects on inflammation or remodeling of the pulmonary arteries. In separate experiments, only treatment with pitavastatin-NP reduced the mortality rate at day 35.NP-mediated targeting of pitavastatin to small pulmonary arteries and leukocytes attenuated the progression of established MCT-induced PAH and improved survival. Therapeutically, pitavastatin-NP was associated with anti-inflammatory and anti-proliferative effects on small pulmonary arteries, which was completely distinct from the vasodilatory effect of sildenafil. Pitavastatin-NP can be a novel therapeutic modality for PAH.
Collapse
Affiliation(s)
- Kenzo Ichimura
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | - Jun-Ichiro Koga
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University
| | - Kaku Nakano
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University
| | - Daiki Funamoto
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | - Kensuke Egashira
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University
| |
Collapse
|
7
|
Ghali MGZ, Srinivasan VM, Johnson J, Kan P, Britz G. Therapeutically Targeting Platelet-Derived Growth Factor-Mediated Signaling Underlying the Pathogenesis of Subarachnoid Hemorrhage-Related Vasospasm. J Stroke Cerebrovasc Dis 2018; 27:2289-2295. [PMID: 30037648 DOI: 10.1016/j.jstrokecerebrovasdis.2018.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Vasospasm accounts for a large fraction of the morbidity and mortality burden in patients sustaining subarachnoid hemorrhage (SAH). Platelet-derived growth factor (PDGF)-β levels rise following SAH and correlate with incidence and severity of vasospasm. METHODS The literature was reviewed for studies investigating the role of PDGF in the pathogenesis of SAH-related vasospasm and efficacy of pharmacological interventions targeting the PDGF pathway in ameliorating the same and improving clinical outcomes. RESULTS Release of blood under high pressure into the subarachnoid space activates the complement cascade, which results in release of PDGF. Abluminal contact of blood with cerebral vessels increases their contractile response to PDGF-β and thrombin, with the latter upregulating PDGF-β receptors and augmenting effects of PDGF-β. PDGF-β figures prominently in the early and late phases of post-SAH vasospasm. PDGF-β binding to the PDGF receptor-β results in receptor tyrosine kinase domain activation and consequent stimulation of intracellular signaling pathways, including p38 mitogen-activated protein kinase, phosphatidylinositol-3-kinase, Rho-associated protein kinase, and extracellular regulated kinase 1 and 2. Consequent increases in intracellular calcium and increased expression of genes mediating cellular growth and proliferation mediate PDGF-induced augmentation of vascular smooth muscle cell contractility, hypertrophy, and proliferation. CONCLUSION Treatments with statins, serine protease inhibitors, and small molecular pathway inhibitors have demonstrated varying degrees of efficacy in prevention of cerebral vasospasm, which is improved with earlier institution.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas.
| | | | - Jeremiah Johnson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Peter Kan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Gavin Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
8
|
Zhang HB, Wang ZQ, Chen FZ, Ding W, Liu WB, Chen ZR, He SH, Wei AY. Maintenance of the contractile phenotype in corpus cavernosum smooth muscle cells by Myocardin gene therapy ameliorates erectile dysfunction in bilateral cavernous nerve injury rats. Andrology 2017; 5:798-806. [PMID: 28544569 DOI: 10.1111/andr.12375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
The pathophysiology of erectile dysfunction post radical prostatectomy is not clearly clarified, and the low efficacy of traditional PDE5i treatment remains a major complaint in contemporary practice. This study aimed to demonstrate phenotypic modulation in bilateral cavernous nerve injury (BCNI) rats within 7 days, and subsequently validate gene therapy with Myocardin (Mycod) by maintaining a contractile phenotype in corpus cavernosum smooth muscle cells. Initially, 36 male rats were randomly divided into BCNI and negative control (NC) groups for histological and phenotypic molecular measurements at 3, 5, and 7 days. Afterwards, an additional 30 rats received a single intra-cavernous injection of 50 μL PBS, Ad-Myocd (1 × 1011 pfu/ml) or Ad-vector for 10 animals each, namely the NC+PBS, BCNI+Ad-Myocd, and BCNI+Ad-vector groups. Finally, the validity and mechanism of Myocd transfection was explored at 21 days in vivo and 48 h in vitro. Western blotting showed canonical declines in Myocd, α-SMA, and Calponin expression, as well as elevated Osteopontin (OPN) expression, before corporeal morphological and SM-to-collagen ratio changes at day 5 after injury. Overexpression of Myocd maintained the contractile phenotype of corpus cavernosum smooth muscle cells, ameliorated bilateral cavernous nerve injury rat erectile dysfunction, as well as promoted cell contractility and suppressed proliferative capacity. Simultaneously, confocal imaging revealed up-regulation and co-localization of serum response factor in gene-transferred cells. In conclusion, our study is the first to investigate corpus cavernosum smooth muscle cells phenotypes in the early stages of cavernous injury model rats, and Myocd reversed phenotypic modulation by activating serum response factor. The experimental results demonstrated the validity of gene therapy for erectile dysfunction.
Collapse
Affiliation(s)
- H-B Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z-Q Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - F-Z Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - W Ding
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, The First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - W-B Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z-R Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - S-H He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - A-Y Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Li Q, Zhu L, Zhang L, Chen H, Zhu Y, Du Y, Zhong W, Zhong M, Shi X. Inhibition of estrogen related receptor α attenuates vascular smooth muscle cell proliferation and migration by regulating RhoA/p27 Kip1 and β-Catenin/Wnt4 signaling pathway. Eur J Pharmacol 2017; 799:188-195. [PMID: 28213288 DOI: 10.1016/j.ejphar.2017.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 12/28/2022]
Abstract
RhoA/p27Kip1 and β-Catenin/Wnt4 signaling processes play central roles in proliferation and migration in vascular smooth muscle cells (VSMCs). ERRα, a member of orphan nuclear receptors, is a potent prognostic factor in breast, ovarian, colon and other types of tumors. However, biological significance of ERRα in VSMCs as well as the molecular mechanisms remains largely unknown. Therefore, the present study was designed to investigate whether ERRα is involved in the proliferation and migration of VSMCs in vitro and neointimal formation in vivo. The specific ERRα inverse agonist XCT790 (or ERRα shRNA) resulted in a significant inhibition of proliferation and phenotypic switch in cultured rat aortic SMCs (RASMCs). Furthermore, cycle progression, cell cycle protein transcription as well as hyperphosphorylation of the retinoblastoma protein (Rb) in RASMCs were prevented by downregulation of ERRα. Transwell assay demonstrated that migratory capacity of RASMCs was also inhibited the treatment of XCT790 (or ERRα shRNA). At the molecular levels, RhoA/p27Kip1 and β-Catenin/Wnt4 signaling pathways are involved in ERRα-mediated RASMCs growth and migration. Finally, inhibition of ERRα significantly attenuated neointimal formation in rat artery after balloon injury. These results help to further understand vascular remodeling and suggest that ERRα might be a potential target for the treatment of vascular proliferative diseases.
Collapse
Affiliation(s)
- Qunyi Li
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China.
| | - Lei Zhu
- Department of General Surgery, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Yingfeng Zhu
- Department of Pathology, Huashan Hospital North, Fudan University, Shanghai 201907, China
| | - Yongli Du
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Wanxian Zhong
- Department of Pharmacy, Jinshan Branch of the Sixth People's Hospital, Affiliated with Shanghai Jiaotong University, Shanghai 201500, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China; Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital North, Fudan University, Shanghai 201907, China.
| |
Collapse
|
10
|
Pandey P, Ali Z, Mohammad G, Pasha MAQ. Elevated blood plasma levels of epinephrine, norepinephrine, tyrosine hydroxylase, TGFβ1, and TNFα associated with high-altitude pulmonary edema in an Indian population. Ther Clin Risk Manag 2016; 12:1207-21. [PMID: 27540296 PMCID: PMC4982497 DOI: 10.2147/tcrm.s111030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biomarkers are essential to unravel the locked pathophysiology of any disease. This study investigated the role of biomarkers and their interactions with each other and with the clinical parameters to study the physiology of high-altitude pulmonary edema (HAPE) in HAPE-patients (HAPE-p) against adapted highlanders (HLs) and healthy sojourners, HAPE-controls (HAPE-c). For this, seven circulatory biomarkers, namely, epinephrine, norepinephrine, tyrosine hydroxylase, transforming growth factor beta 1, tumor necrosis factor alpha (TNFα), platelet-derived growth factor beta beta, and C-reactive protein (CRP), were measured in blood plasma of the three study groups. All the subjects were recruited at ~3,500 m, and clinical features such as arterial oxygen saturation (SaO2), body mass index, and mean arterial pressure were measured. Increased levels of epinephrine, norepinephrine, tyrosine hydroxylase, transforming growth factor-beta 1, and TNFα were observed in HAPE-p against the healthy groups, HAPE-c, and HLs (P<0.0001). CRP levels were decreased in HAPE-p against HAPE-c and HLs (P<0.0001). There was no significant difference or very marginal difference in the levels of these biomarkers in HAPE-c and HLs (P>0.01). Correlation analysis revealed a negative correlation between epinephrine and norepinephrine (P=4.6E−06) in HAPE-p and positive correlation in HAPE-c (P=0.004) and HLs (P=9.78E−07). A positive correlation was observed between TNFα and CRP (P=0.004) in HAPE-p and a negative correlation in HAPE-c (P=4.6E−06). SaO2 correlated negatively with platelet-derived growth factor beta beta (HAPE-p; P=0.05), norepinephrine (P=0.01), and TNFα (P=0.005) and positively with CRP (HAPE-c; P=0.02) and norepinephrine (HLs; P=0.04). Body mass index correlated negatively with epinephrine (HAPE-p; P=0.001) and positively with norepinephrine and tyrosine hydroxylase in HAPE-c (P<0.05). Mean arterial pressure correlated positively with TNFα in HAPE-p and norepinephrine in HLs (P<0.05). Receiver operating characteristic curve analysis yielded a positive predictive value for these biomarkers with HAPE (area under the curve >0.70, P<0.05). The results clearly suggest that increased plasma levels of these circulatory biomarkers associated with HAPE.
Collapse
Affiliation(s)
- Priyanka Pandey
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi; Department of Biotechnology, Savitribai Phule Pune University, Pune
| | - Zahara Ali
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi; Department of Biotechnology, Savitribai Phule Pune University, Pune
| | - Ghulam Mohammad
- Department of Medicine, SNM Hospital, Ladakh, Jammu and Kashmir, India
| | - M A Qadar Pasha
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi; Department of Biotechnology, Savitribai Phule Pune University, Pune
| |
Collapse
|
11
|
Bhattacharjee D, Chogtu B, Magazine R. Statins in Asthma: Potential Beneficial Effects and Limitations. Pulm Med 2015; 2015:835204. [PMID: 26618001 PMCID: PMC4651730 DOI: 10.1155/2015/835204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/02/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
Asthma's sustenance as a global pandemic, across centuries, can be attributed to the lack of an understanding of its workings and the inability of the existing treatment modalities to provide a long lasting cure without major adverse effects. The discovery of statins boosted by a better comprehension of the pathophysiology of asthma in the past few decades has opened up a potentially alternative line of treatment that promises to be a big boon for the asthmatics globally. However, the initial excellent results from the preclinical and animal studies have not borne the results in clinical trials that the scientific world was hoping for. In light of this, this review analyzes the ways by which statins could benefit in asthma via their pleiotropic anti-inflammatory properties and explain some of the queries raised in the previous studies and provide recommendations for future studies in this field.
Collapse
Affiliation(s)
- Dipanjan Bhattacharjee
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Bharti Chogtu
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Rahul Magazine
- Department of Pulmonary Medicine, Kasturba Medical College, Manipal University, Manipal 576104, India
| |
Collapse
|
12
|
Saccà SC, Pulliero A, Izzotti A. The Dysfunction of the Trabecular Meshwork During Glaucoma Course. J Cell Physiol 2014; 230:510-25. [DOI: 10.1002/jcp.24826] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/05/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies; St Martino Hospital; Ophthalmology Unit; Genoa Italy
| | - Alessandra Pulliero
- Department of Health Sciences; Section of Hygiene and Preventive Medicine; University of Genoa; Genoa Italy
| | - Alberto Izzotti
- Department of Health Sciences; Section of Hygiene and Preventive Medicine; University of Genoa; Genoa Italy
- Mutagenesis Unit; IST National Institute for Cancer Research; IRCCS Hospital-University San Martino Company; Genoa Italy
| |
Collapse
|
13
|
Lauriol J, Keith K, Jaffré F, Couvillon A, Saci A, Goonasekera SA, McCarthy JR, Kessinger CW, Wang J, Ke Q, Kang PM, Molkentin JD, Carpenter C, Kontaridis MI. RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis. Sci Signal 2014; 7:ra100. [PMID: 25336613 DOI: 10.1126/scisignal.2005262] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras-related guanosine triphosphatase RhoA mediates pathological cardiac hypertrophy, but also promotes cell survival and is cardioprotective after ischemia/reperfusion injury. To understand how RhoA mediates these opposing roles in the myocardium, we generated mice with a cardiomyocyte-specific deletion of RhoA. Under normal conditions, the hearts from these mice showed functional, structural, and growth parameters similar to control mice. Additionally, the hearts of the cardiomyocyte-specific, RhoA-deficient mice subjected to transverse aortic constriction (TAC)-a procedure that induces pressure overload and, if prolonged, heart failure-exhibited a similar amount of hypertrophy as those of the wild-type mice subjected to TAC. Thus, neither normal cardiac homeostasis nor the initiation of compensatory hypertrophy required RhoA in cardiomyocytes. However, in response to chronic TAC, hearts from mice with cardiomyocyte-specific deletion of RhoA showed greater dilation, with thinner ventricular walls and larger chamber dimensions, and more impaired contractile function than those from control mice subjected to chronic TAC. These effects were associated with aberrant calcium signaling, as well as decreased activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT. In addition, hearts from mice with cardiomyocyte-specific RhoA deficiency also showed less fibrosis in response to chronic TAC, with decreased transcriptional activation of genes involved in fibrosis, including myocardin response transcription factor (MRTF) and serum response factor (SRF), suggesting that the fibrotic response to stress in the heart depends on cardiomyocyte-specific RhoA signaling. Our data indicated that RhoA regulates multiple pathways in cardiomyocytes, mediating both cardioprotective (hypertrophy without dilation) and cardio-deleterious effects (fibrosis).
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Kimberly Keith
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Fabrice Jaffré
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Anthony Couvillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Abdel Saci
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sanjeewa A Goonasekera
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Jason R McCarthy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chase W Kessinger
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jianxun Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Qingen Ke
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Peter M Kang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | | | - Maria I Kontaridis
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Matoba K, Kawanami D, Tsukamoto M, Kinoshita J, Ito T, Ishizawa S, Kanazawa Y, Yokota T, Murai N, Matsufuji S, Utsunomiya K. Rho-kinase regulation of TNF-α-induced nuclear translocation of NF-κB RelA/p65 and M-CSF expression via p38 MAPK in mesangial cells. Am J Physiol Renal Physiol 2014; 307:F571-80. [DOI: 10.1152/ajprenal.00113.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The small GTPase Rho and its downstream effector, Rho-associated coiled-coil containing protein kinase (Rho-kinase), regulate a number of cellular processes, including organization of the actin cytoskeleton, cell adhesion, and migration. While pharmacological inhibitors of Rho-kinase signaling are known to block renal inflammation, the molecular basis for this effect is unclear. Here, we provide evidence that proinflammatory TNF-α promotes mesangial expression of macrophage colony-stimulating factor (M-CSF), a key regulator for the growth and differentiation of mononuclear phagocytes, in a Rho-kinase-dependent manner. Consistent with this observation, TNF-α-mediated renal expression of M-CSF in insulin-resistant db/db mice was downregulated by Rho-kinase inhibition. Small interfering RNA-facilitated knockdown of Rho-kinase isoforms ROCK1 and ROCK2 indicated that both isoforms make comparable contributions to regulation of M-CSF expression in mesangial cells. From a mechanistic standpoint, Western blotting and EMSA showed that Rho-kinase and its downstream target p38 MAPK regulate nuclear translocation of NF-κB RelA/p65 and subsequent DNA binding activity, with no significant effects on IκBα degradation and RelA/p65 phosphorylation. Moreover, we showed that Rho-kinase-mediated cytoskeletal organization is required for the nuclear uptake of RelA/p65. Collectively, these findings identify Rho-kinase as a critical regulator of chemokine expression and macrophage proliferation.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Daiji Kawanami
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Masami Tsukamoto
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Jun Kinoshita
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Tomoko Ito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Sho Ishizawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| | - Noriyuki Murai
- Department of Molecular Biology, Jikei University School of Medicine, Tokyo, Japan
| | - Senya Matsufuji
- Department of Molecular Biology, Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan; and
| |
Collapse
|
15
|
Jasińska-Stroschein M, Orszulak-Michalak D. The current approach into signaling pathways in pulmonary arterial hypertension and their implication in novel therapeutic strategies. Pharmacol Rep 2014; 66:552-64. [PMID: 24948054 DOI: 10.1016/j.pharep.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 02/01/2023]
Abstract
Many mediators and signaling pathways, with their downstream effectors, have been implicated in the pathogenesis of pulmonary hypertension. Currently approved drugs, representing an option of specific therapy, target NO, prostacyclin or ET-1 pathways and provide a significant improvement in the symptomatic status of patients and a slower rate of clinical deterioration. However, despite such improvements in the treatment, PAH remains a chronic disease without a cure, the mortality associated with PAH remains high and effective therapeutic regimens are still required. Knowledge about the role of the pathways involved in PAH and their interactions provides a better understanding of the pathogenesis of the disease and may highlight directions for novel therapeutic strategies for PAH. This paper reviews some novel, promising PAH-associated signaling pathways, such as RAAS, RhoA/ROCK, PDGF, PPAR, and TGF, focusing also on their possible interactions with well-established ones such as NO, ET-1 and prostacyclin pathways.
Collapse
|
16
|
Jasińska-Stroschein M, Owczarek J, Plichta P, Orszulak-Michalak D. Concurrent rho-kinase and tyrosine kinase platelet-derived growth factor inhibition in experimental pulmonary hypertension. Pharmacology 2014; 93:145-50. [PMID: 24662671 DOI: 10.1159/000360182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/31/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND We hypothesized that inhibition of Rho-kinase by fasudil, together with tyrosine kinase platelet-derived growth factor (PDGF) receptor inhibition by imatinib, results in greater pulmonary arterial hypertension (PAH) improvement. METHODS The effects of such regimens were investigated on hemodynamics, right ventricle hypertrophy, PDGF and ROCK in experimental monocrotaline (MCT)-induced pulmonary hypertension. Fourteen days after MCT injection, male rats were treated orally for another 14 days with imatinib, fasudil or their combination. RESULTS Concurrent imatinib and fasudil administration reversed an MCT-induced increase in right ventricular pressure more than either drug alone and decreased right ventricle hypertrophy (right ventricle weight to left ventricle plus septum weight ratio) significantly. The simultaneous administration of fasudil and imatinib caused a further decrease in plasma PDGF-BB levels compared to either drug alone. CONCLUSIONS Inhibition of Rho-kinase by fasudil in addition to tyrosine kinase PDGF inhibition by imatinib can result in further PAH improvement. Such outcome may result from additional impact of the Rho-kinase inhibitor on the decrease in PDGF-induced effects.
Collapse
|
17
|
Shimizu T, Fukumoto Y, Tanaka SI, Satoh K, Ikeda S, Shimokawa H. Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice. Arterioscler Thromb Vasc Biol 2013; 33:2780-91. [PMID: 24135024 DOI: 10.1161/atvbaha.113.301357] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Rho/Rho-kinase (ROCK) pathway in vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of cardiovascular diseases, including pulmonary arterial hypertension (PAH). Rho-kinase has 2 isoforms, ROCK1 and ROCK2, with different functions in different cells; ROCK1 for circulating inflammatory cells and ROCK2 for the vasculature. In the present study, we aimed to examine whether ROCK2 in VSMC is involved in the pathogenesis of PAH. APPROACH AND RESULTS In patients with PAH, the expression of ROCK2 was increased in pulmonary arterial media and primary pulmonary arterial smooth muscle cells when compared with controls. To investigate the role of ROCK2 in VSMC, we generated VSMC-specific heterozygous ROCK2-deficient (ROCK2(+/-)) mice and VSMC-specific ROCK2-overexpressing transgenic (ROCK2-Tg) mice. The extent of hypoxia-induced pulmonary hypertension was reduced in ROCK2(+/-) mice and was enhanced in ROCK2-Tg mice compared with respective littermates. The protein expression of ROCK activity and phosphorylated extracellular signal-regulated kinase and the number of Ki67-positive proliferating cells in the lung were reduced in ROCK2(+/-) mice and were increased in ROCK2-Tg mice compared with respective littermates. In cultured mouse aortic VSMC, migration and proliferation activities were reduced in ROCK2(+/-) mice, and migration activity was increased in ROCK2-Tg mice compared with respective littermates. In addition, in primary pulmonary arterial smooth muscle cells from a patient with PAH, ROCK2 was required for migration and proliferation through ROCK and extracellular signal-regulated kinase activation. CONCLUSIONS ROCK2 in VSMC contributes to the pathogenesis of PAH.
Collapse
Affiliation(s)
- Toru Shimizu
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
19
|
Matoba K, Kawanami D, Okada R, Tsukamoto M, Kinoshita J, Ito T, Ishizawa S, Kanazawa Y, Yokota T, Murai N, Matsufuji S, Takahashi-Fujigasaki J, Utsunomiya K. Rho-kinase inhibition prevents the progression of diabetic nephropathy by downregulating hypoxia-inducible factor 1α. Kidney Int 2013; 84:545-54. [DOI: 10.1038/ki.2013.130] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 01/26/2013] [Accepted: 01/31/2013] [Indexed: 11/09/2022]
|
20
|
Li DB, Yang GJ, Xu HW, Fu ZX, Wang SW, Hu SJ. Regulation on RhoA in Vascular Smooth Muscle Cells Under Inflammatory Stimulation Proposes a Novel Mechanism Mediating the Multiple-Beneficial Action of Acetylsalicylic Acid. Inflammation 2013; 36:1403-14. [DOI: 10.1007/s10753-013-9680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Kawanami D, Matoba K, Okada R, Tsukamoto M, Kinoshita J, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K. Fasudil inhibits ER stress-induced VCAM-1 expression by modulating unfolded protein response in endothelial cells. Biochem Biophys Res Commun 2013; 435:171-5. [PMID: 23665024 DOI: 10.1016/j.bbrc.2013.04.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/28/2022]
Abstract
The process of atherosclerosis is affected by interactions among numerous biological pathways. Accumulating evidence shows that endoplasmic reticulum (ER) stress plays a crucial role in the development of atherosclerosis. Rho-kinase is an effector of small GTP-binding protein Rho, and has been implicated as an atherogenic factor. Previous studies demonstrated that fasudil, a specific Rho-kinase inhibitor, exerts a cardioprotective effect by downregulating ER stress signaling. However, the molecular link between ER stress and Rho-kinase in endothelial cells has not been elucidated. In this study, we investigated the mechanisms by which fasudil regulates endothelial inflammation during ER stress. Tunicamycin, an established ER stress inducer, increased vascular cellular adhesion molecule (VCAM)-1 expression in endothelial cells. Intriguingly, fasudil inhibited VCAM-1 induction. From a mechanistic stand point, fasudil inhibited expression of activating transcription factor (ATF)4 and subsequent C/EBP homologous protein (CHOP) induction by tunicamycin. Furthermore, fasudil attenuated tunicamycin-induced phophorylation of p38MAPK that is crucial for the atherogenic response during ER stress. These findings indicate that Rho-kinase regulates ER stress-mediated VCAM-1 induction by ATF4- and p38MAPK-dependent signaling pathways. Rho-kinase inhibition by fasudil would be an important therapeutic approach against atherosclerosis, in particular, under conditions of ER stress.
Collapse
Affiliation(s)
- Daiji Kawanami
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Role of Rho-kinase and its inhibitors in pulmonary hypertension. Pharmacol Ther 2013; 137:352-64. [DOI: 10.1016/j.pharmthera.2012.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 11/20/2022]
|
23
|
Awooda HA. Down-regulation of Rho-kinases induce tolerance in Ischemic preconditioning model after transient cerebral ischemia/reperfusion in rats. Health (London) 2013. [DOI: 10.4236/health.2013.57a5002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Yanamoto H, Kataoka H, Nakajo Y, Iihara K. The Role of the Host Defense System in the Development of Cerebral Vasospasm: Analogies between Atherosclerosis and Subarachnoid Hemorrhage. Eur Neurol 2012; 68:329-43. [DOI: 10.1159/000341336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/24/2012] [Indexed: 01/13/2023]
|
25
|
Kawanami D, Matoba K, Kanazawa Y, Ishizawa S, Yokota T, Utsunomiya K. Thrombin induces MCP-1 expression through Rho-kinase and subsequent p38MAPK/NF-κB signaling pathway activation in vascular endothelial cells. Biochem Biophys Res Commun 2011; 411:798-803. [PMID: 21787749 DOI: 10.1016/j.bbrc.2011.07.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022]
Abstract
Thrombin has been shown to increase expression of chemokines such as monocyte chemoattractant protein 1 (MCP-1) in endothelial cells, leading to the development of atherosclerosis. However, the precise mechanism of this induction remains unknown. In the present study, we investigated whether the small G protein RhoA, and its effector, Rho-kinase are involved in MCP-1 induction by thrombin in endothelial cells. Y-27632, a specific Rho-kinase inhibitor, potently inhibited MCP-1 induction by thrombin. Y-27632 significantly decreased the chemotactic activity of thrombin-stimulated supernatants of endothelial cells on monocytes. Importantly, fasudil, a specific Rho-kinase inhibitor, attenuated MCP-1 gene expression in the aorta of db/db mice. Y-27632 attenuated thrombin-mediated phosphorylation of p38MAPK and p65, indicating that Rho-kinase mediates thrombin-induced MCP-1 expression through p38MAPK and NF-κB activation. Our findings demonstrate that the Rho/Rho-kinase signaling pathway plays a critical role in thrombin-mediated MCP-1 expression and function, and suggest that Rho/Rho-kinase may be an important target in the development of new therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Daiji Kawanami
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Yotova I, Quan P, Leditznig N, Beer U, Wenzl R, Tschugguel W. Abnormal activation of Ras/Raf/MAPK and RhoA/ROCKII signalling pathways in eutopic endometrial stromal cells of patients with endometriosis. Hum Reprod 2011; 26:885-97. [DOI: 10.1093/humrep/der010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
27
|
Hashizume S, Akaike M, Azuma H, Ishikawa K, Yoshida S, Sumitomo-Ueda Y, Yagi S, Ikeda Y, Iwase T, Aihara KI, Abe M, Sata M, Matsumoto T. Activation of peroxisome proliferator-activated receptor α in megakaryocytes reduces platelet-derived growth factor-BB in platelets. J Atheroscler Thromb 2010; 18:138-47. [PMID: 21060209 DOI: 10.5551/jat.5868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Platelet-derived growth factor (PDGF)-BB plays a crucial role in atherosclerosis and vascular remodeling by promoting the migration and proliferation of vascular smooth muscle cells. The objective of this study was to clarify the pleiotropic effect of peroxisome proliferator-activated receptor α (PPARα) activators on PDGF-BB expression in megakaryocytes and platelets. METHODS AND RESULTS The expression of PPARα in a human erythroleukemia (HEL) cells was clearly detected by reverse transcriptase-PCR and immunofluorescence microscopy. The expression level of PPARα in HEL cells was unchanged regardless of differentiation into megakaryocytic cells by treatment with phorbol 12-myristate 13 acetate (TPA). The TPA-induced expression of PDGF-B mRNA and PDGF-BB protein levels in culture media was significantly decreased by treatment with PPARα activators, Wy14643 and fenofibric acid, in a dose-dependent manner. PDGF-BB expression induced by inflammatory cytokines, including interleukin-1β or interleukin-6, was also significantly suppressed by treatment with PPARα activators. Immunohistochemistry of human bone marrow showed the expression of PPARα in both the nucleus and cytoplasm of megakaryocytes. In addition, PDGF-BB levels in platelets were significantly decreased from 1,800±870 to 1,470±840 pg/10(5) platelets (mean±SD, p<0.05) by treatment with 300 mg fenofibrate once daily for 4 weeks in 13 patients with dyslipidemia. CONCLUSIONS Activation of PPARα in megakaryocytes reduces PDGF-BB expression in platelets. PPARα activators may exert vasculo-protective action through suppression of PDGF-BB production in a megakaryocyte/platelet pathway.
Collapse
Affiliation(s)
- Shunji Hashizume
- Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rho-kinase mediates TNF-α-induced MCP-1 expression via p38 MAPK signaling pathway in mesangial cells. Biochem Biophys Res Commun 2010; 402:725-30. [PMID: 20977889 DOI: 10.1016/j.bbrc.2010.10.093] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 10/19/2010] [Indexed: 11/23/2022]
Abstract
Macrophage accumulation has been implicated in the pathogenesis of inflammatory glomerular disease. Monocyte chemoattractant protein-1 (MCP-1) plays a central role in recruiting monocytes to the glomeruli. Tumor necrosis factor-α (TNF-α) has been shown to induce MCP-1 expression in mesangial cells, although the precise mechanisms remain unclear. We previously demonstrated that RhoA and its effector, Rho-kinase (Rho-associated coiled-coil containing protein kinase, ROCK), are involved in the pathogenesis of diabetic nephropathy. However, its role in MCP-1 induction by TNF-α has not been elucidated. In the present study, we investigated whether the Rho/Rho-kinase signaling pathway regulates the TNF-α-mediated induction of MCP-1 in mesangial cells. Exposure of mouse mesangial cells (MES-13) to TNF-α resulted in an increase of MCP-1 expression (by RT-PCR) and secretion into the medium (by ELISA). Pull down and Western blot analysis revealed that TNF-α activated RhoA and Rho-kinase. Based on these observations, we speculated that the Rho/Rho-kinase signaling pathway may be involved in MCP-1 induction by TNF-α. In agreement with this concept, Y-27632, a specific Rho-kinase inhibitor, attenuated TNF-α-mediated induction of MCP-1. We demonstrated that Y-27632 inhibited TNF-α-mediated monocyte migration and attenuated TNF-α-mediated p38 MAPK activation. Based on these data we infer that Y-27632 inhibits TNF-α-induced MCP-1 expression, secretion and function through inhibition of Rho-kinase and p38 MAPK activity. Our study suggests that Rho/Rho-kinase is an important therapeutic target of monocyte recruitment and accumulation within the glomerulus in inflammatory renal disease.
Collapse
|
29
|
Zhang ZW, Yanamoto H, Nagata I, Miyamoto S, Nakajo Y, Xue JH, Iihara K, Kikuchi H. Platelet-derived growth factor-induced severe and chronic vasoconstriction of cerebral arteries: proposed growth factor explanation of cerebral vasospasm. Neurosurgery 2010; 66:728-35; discussion 735. [PMID: 20305494 DOI: 10.1227/01.neu.0000366111.08024.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE After subarachnoid hemorrhage (SAH), platelet-derived growth factor-BB (PDGF-BB) is secreted in and around the cerebral arteries. To clarify the role of PDGF-BB in the development of vasospasm after SAH, we determined whether PDGF-BB alone can cause long-lasting vasoconstriction of a severity similar to that of vasospasm. In addition, the anti-vasospastic effect of trapidil, an antagonist of PDGF-BB function, was investigated. METHODS We infused recombinant PDGF-BB (10 microg/mL saline as the vehicle) (n = 14) into the subarachnoid space of rabbits and analyzed alterations in the caliber of the basilar artery using repeated angiography. To study the role of PDGF-BB on the development of vasospasm, trapidil was administered continuously starting 1 hour after SAH, on day 0 (0.63-1.25 mg/kg /h or vehicle) for 47 hours (n = 24), or after the full development of cerebral vasospasm on day 2 (3.0 mg/kg/h or vehicle) for 0.5 hours (n = 17), and alterations in the caliber of the basilar artery were monitored. RESULTS PDGF-BB caused long-lasting vasoconstriction, with maximum constriction of 56% (P < .001) of the control value (= 100%) on day 2, resembling vasospasm seen after SAH. Prolonged administration of intravenous trapidil, starting soon after SAH, prevented the development of vasospasm in a dose-dependent manner (P < .05, .01, or .001). Intravenous or intra-arterial administration of trapidil significantly dilated vasospasm (P < .01) on day 2, at least transiently. CONCLUSION PDGF-BB, a growth factor synthesized in the subarachnoid space after SAH, can cause severe and long-lasting vasoconstriction. Significant prevention and resolution of vasospasm can be achieved by the PDGF-BB antagonist trapidil. We propose that excessive production of PDGF-BB, essentially aiming to repair injured arteries, causes cerebral vasospasm. Although the half-life of trapidil in serum may be shorter than that of PDGFG-BB-derived spasmogenic signaling, trapidil is a candidate drug for constructing a new therapeutic modality for preventing and resolving vasospasm.
Collapse
Affiliation(s)
- Zhi-Wen Zhang
- Laboratory for Cerebrovascular Disorders, Research Institute of National Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wirth A. Rho kinase and hypertension. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1276-84. [PMID: 20460153 DOI: 10.1016/j.bbadis.2010.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/16/2010] [Accepted: 05/01/2010] [Indexed: 11/26/2022]
Abstract
Arterial hypertension is a multifactorial disease that is characterised by increased peripheral vascular resistance often accompanied by smooth muscle cell hypertrophy and proliferation. Rho kinases (ROCKs) are the most extensively studied effectors of the small G-protein RhoA and abnormalities in RhoA/ROCK signalling have been observed in various cardiovascular disease including hypertension. The RhoA/ROCK-pathway is a key player in different smooth muscle cell functions including contractility, proliferation and migration. Furthermore, there is extensive crosstalk between RhoA/ROCK- and NO-signalling. Therefore, not only ROCK inhibitors but also NO-donators or pleiotropic agents like statins exert their beneficial effects on the cardiovascular system at least in part via Rho/Rho-kinase.
Collapse
Affiliation(s)
- Angela Wirth
- Max-Planck-Institute for Heart and Lung Research, Dept. of Pharmacology, Ludwigstraße 43, 61231 Bad Nauheim, Germany.
| |
Collapse
|
31
|
Ohkawara H, Ishibashi T, Shiomi M, Sugimoto K, Uekita H, Kamioka M, Takuwa Y, Teramoto T, Maruyama Y, Takeishi Y. RhoA and Rac1 changes in the atherosclerotic lesions of WHHLMI rabbits. J Atheroscler Thromb 2009; 16:846-56. [PMID: 20032577 DOI: 10.5551/jat.2394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The activation of RhoA and Rac1 is crucial for the pathogenesis of atherosclerosis. This study investigated the changes of unprocessed and mature forms of RhoA and Rac1 in the progression of atherosclerosis. METHODS Unprocessed and geranylgeranylated forms of RhoA and Rac1 in aortic atherosclerotic lesions were separated by the Triton X-114 partition method using Watanabe heritable hyperlipidemic (WHHLMI) rabbits prone to myocardial infarction. The activation of RhoA and Rac1 was determined by membrane translocation and pull-down assays. RESULTS The levels of unprocessed RhoA and Rac1 of the aortas were higher at 7 months than 3 months, accompanied by increased levels of total RhoA and Rac1. Membrane-bound RhoA and Rac1 levels of the aortas at 7 months were significantly increased compared with those at 3 months, consistent with the results of GTP-loading. Unprocessed and activated forms of RhoA and Rac1 had gradually decreas at 15 and 24 months compared to 7 months. CONCLUSIONS We show evidence of marked increases in unprocessed RhoA and Rac1 with enhanced activities in the progression of atherosclerosis in WHHLMI rabbits. This is important for better understanding of the pathogenesis of hyperlipidemia-dependent atherosclerosis.
Collapse
Affiliation(s)
- Hiroshi Ohkawara
- Department of Cardiology and Hematology, Fukushima Medical University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mori-Kawabe M, Tsushima H, Fujimoto S, Tada T, Ito JI. Role of Rho/Rho-kinase and NO/cGMP signaling pathways in vascular function prior to atherosclerosis. J Atheroscler Thromb 2009; 16:722-32. [PMID: 19755789 DOI: 10.5551/jat.1875] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Atherosclerosis is a cardiovascular disease; however, there is little information on signal transduction for vascular function in the early stage of atherosclerosis. In this work, we investigated the role of Rho/Rho-kinase and nitrogen oxide (NO)/cyclic GMP (cGMP) signaling pathways in the aorta prior to atherosclerosis. METHODS Tension, the expression of RhoA protein, Rho-kinase activity and the cGMP level were measured using endothelium-intact or -denuded aorta prepared from apolipoprotein E-deficient (apoE-KO) and C57BL/6 wild-type (WT) mice at 2 months of age. RESULTS Phenylephrine (PE) induced less maximal contraction in the endothelium-denuded aorta from apoE-KO than from WT mice. A Rho-kinase inhibitor (Y-27632) reduced more effectively the contraction of apoE-KO than WT mice, but their RhoA proteins and Rho-kinase activities were not so different. Acetylcholine caused larger relaxation of the PE-stimulated, endothelium-intact aorta in apoE-KO due to endothelial NO release than WT mice. The basal cGMP level in the endothelium-intact aorta of apoE-KO mice was higher than that of WT. CONCLUSIONS Smooth muscle contraction via alpha(1)-adrenergic receptor shows higher dependency on Rho-kinase activity, suggesting down-regulation of the mechanism different from Rho/Rho kinase signaling in the aorta prior to atherosclerosis. Endothelium-dependent relaxation is also intensified through the NO/cGMP pathway.
Collapse
Affiliation(s)
- Mayumi Mori-Kawabe
- Department of Cellular and Molecular Pharmacology, Nagoya City University Graduate School of Medical Sciences, Japan.
| | | | | | | | | |
Collapse
|
33
|
Damoiseaux R, Sherman SP, Alva JA, Peterson C, Pyle AD. Integrated chemical genomics reveals modifiers of survival in human embryonic stem cells. Stem Cells 2009; 27:533-542. [PMID: 19074420 DOI: 10.1634/stemcells.2008-0596] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding how survival is regulated in human embryonic stem cells (hESCs) could improve expansion of stem cells for production of cells for regenerative therapy. There is great variability in comparing the differentiation potential of multiple hESC lines. One reason for this is poor survival upon dissociation, which limits selection of homogeneous populations of cells. Understanding the complexity of survival signals has been hindered by the lack of a reproducible system to identify modulators of survival in pluripotent cells. We therefore developed a high-content screening approach with small molecules to examine hESC survival. We have identified novel small molecules that improve survival by inhibiting either Rho-kinase or protein kinase C. Importantly, small molecule targets were verified using short hairpin RNA. Rescreening with stable hESCs that were genetically altered to have increased survival enabled us to identify groups of pathway targets that are important for modifying survival. Understanding how survival is regulated in hESCs could overcome severe technical difficulties in the field, namely expansion of stem cells to improve production of cells and tissues for regenerative therapy.
Collapse
Affiliation(s)
- Robert Damoiseaux
- Molecular Screening Shared Resource, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - Sean P Sherman
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - Jackelyn A Alva
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - Cory Peterson
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| | - April D Pyle
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
34
|
Löhn M, Plettenburg O, Ivashchenko Y, Kannt A, Hofmeister A, Kadereit D, Schaefer M, Linz W, Kohlmann M, Herbert JM, Janiak P, O'Connor SE, Ruetten H. Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension 2009; 54:676-83. [PMID: 19597037 DOI: 10.1161/hypertensionaha.109.134353] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances in basic and clinical research have identified Rho kinase as an important target potentially implicated in a variety of cardiovascular diseases. Rho kinase is a downstream mediator of RhoA that leads to stress fiber formation, membrane ruffling, smooth muscle contraction, and cell motility. Increased Rho-kinase activity is associated with vasoconstriction and elevated blood pressure. We identified a novel inhibitor of Rho kinase (SAR407899) and characterized its effects in biochemical, cellular, tissue-based, and in vivo assays. SAR407899 is an ATP-competitive Rho-kinase inhibitor, equipotent against human and rat-derived Rho-kinase 2 with inhibition constant values of 36 nM and 41 nM, respectively. It is highly selective in panel of 117 receptor and enzyme targets. SAR407899 is approximately 8-fold more active than fasudil. In vitro, SAR407899 demonstrated concentration-dependent inhibition of Rho-kinase-mediated phosphorylation of myosin phosphatase, thrombin-induced stress fiber formation, platelet-derived growth factor-induced proliferation, and monocyte chemotactic protein-1-stimulated chemotaxis. SAR407899 potently (mean IC(50) values: 122 to 280 nM) and species-independently relaxed precontracted isolated arteries of different species and different vascular beds. In vivo, over the dose range 3 to 30 mg/kg PO, SAR407899 lowered blood pressure in a variety of rodent models of arterial hypertension. The antihypertensive effect of SAR407899 was superior to that of fasudil and Y-27632. In conclusion, SAR407899 is a novel and potent selective Rho-kinase inhibitor with promising antihypertensive activity.
Collapse
Affiliation(s)
- Matthias Löhn
- TD CV Pharmacology, Sanofi-Aventis, Industriepark Hoechst, Frankfurt am Main, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liang KW, Yin SC, Ting CT, Lin SJ, Hsueh CM, Chen CY, Hsu SL. Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells. Eur J Pharmacol 2008; 590:343-54. [PMID: 18590725 DOI: 10.1016/j.ejphar.2008.06.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/03/2008] [Indexed: 01/09/2023]
Abstract
Platelet-derived growth factor (PDGF) is released from vascular smooth muscle cells (VSMCs), endothelial cells, or macrophages after percutaneous coronary intervention and is related with neointimal proliferation and restenosis. Berberine is a well-known component of the Chinese herb medicine Huanglian (Coptis chinensis), and is capable of inhibiting growth and endogenous PDGF synthesis in VSMCs after in vitro mechanical injury. We analyzed the effects of berberine on VSMC growth, migration, and signaling events after exogenous PDGF stimulation in vitro in order to mimic a post-angioplasty PDGF shedding condition. Pretreatment of VSMCs with berberine inhibited PDGF-induced proliferation. Berberine significantly suppressed PDGF-stimulated Cyclin D1/D3 and Cyclin-dependent kinase (Cdk) gene expression. Moreover, berberine increased the activity of AMP-activated protein kinase (AMPK), which led to phosphorylation activation of p53 and increased protein levels of the Cdk inhibitor p21(Cip1). Compound C, an AMPK inhibitor, partly but significantly attenuated berberine-elicited growth inhibition. In addition, stimulation of VSMCs with PDGF led to a transient increase in GTP-bound, active form of Ras, Cdc42 and Rac1, as well as VSMC migration. However, pretreatment with berberine significantly inhibited PDGF-induced Ras, Cdc42 and Rac1 activation and cell migration. Co-treatment with farnesyl pyrophosphate and geranylgeranyl pyrophosphate drastically reversed berberine-mediated anti-proliferative and migratory effects in VSMCs. Based on these findings, we conclude that berberine inhibited PDGF-induced VSMC growth via activation of AMPK/p53/p21(Cip1) signaling while inactivating Ras/Rac1/Cyclin D/Cdks and suppressing PDGF-stimulated migration via inhibition of Rac1 and Cdc42. These observations offer a molecular explanation for the anti-proliferative and anti-migratory properties of berberine.
Collapse
Affiliation(s)
- Kae-Woei Liang
- Institute of Clinical Medicine, Cardiovascular Research Center and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Akiyama N, Naruse K, Kobayashi Y, Nakamura N, Hamada Y, Nakashima E, Matsubara T, Oiso Y, Nakamura J. High glucose-induced upregulation of Rho/Rho-kinase via platelet-derived growth factor receptor-beta increases migration of aortic smooth muscle cells. J Mol Cell Cardiol 2008; 45:326-32. [PMID: 18561944 DOI: 10.1016/j.yjmcc.2008.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/25/2008] [Accepted: 04/10/2008] [Indexed: 11/17/2022]
Abstract
Small GTPase Rho and Rho-kinase, the target protein of Rho, play an important role in atherosclerosis. In diabetic macroangiopathy, one of the major pathogenic changes is the migration of vascular smooth muscle cells (SMCs). Platelet-derived growth factor (PDGF) is known to stimulate the migration of SMCs. In the current study, we have investigated the involvement of the Rho/Rho-kinase pathway in the increased migration of cultured human aortic SMCs under a high glucose condition. PDGF stimulated the activation and the protein level of Rho. The protein level of PDGF receptor-beta (PDGFR-beta) was increased under the high glucose condition concomitant with the increased protein level and activation of Rho. The increased protein level and activity of Rho were suppressed by an anti-PDGF neutralizing antibody or a PDGFR-beta inhibitor, AG1433, under the high glucose condition. Furthermore, high glucose significantly increased the migration of SMCs. A specific inhibitor of Rho-kinase, Y-27632, or anti-PDGF neutralizing antibody inhibited increased migration of SMCs under the high glucose condition. The protein levels of Rho were increased in aortae of diabetic rats, which were abolished by the treatment of Imatinib, the inhibitor of PDGFR. These observations indicate that the upregulation of the PDGFR-beta / Rho / Rho-kinase pathway increases the migration of SMCs under the high glucose condition. The inhibition of Rho/Rho-kinase may be a new target for the treatment of diabetic macroangiopathy.
Collapse
Affiliation(s)
- Noboru Akiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Peyton SR, Kim PD, Ghajar CM, Seliktar D, Putnam AJ. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 2008; 29:2597-607. [PMID: 18342366 DOI: 10.1016/j.biomaterials.2008.02.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/09/2008] [Indexed: 11/30/2022]
Abstract
Studies using 2-D cultures have shown that the mechanical properties of the extracellular matrix (ECM) influence cell migration, spreading, proliferation, and differentiation; however, cellular mechanosensing in 3-D remains under-explored. To investigate this topic, a unique biomaterial system based on poly(ethylene glycol)-conjugated fibrinogen was adapted to study phenotypic plasticity in smooth muscle cells (SMCs) as a function of ECM mechanics in 3-D. Tuning the compressive modulus between 448 and 5804 Pa modestly regulated SMC cytoskeletal assembly in 3-D, with spread cells in stiff matrices having a slightly higher degree of F-actin bundling after prolonged culture. However, vinculin expression in all 3-D conditions was qualitatively low and was not assembled into the classic focal adhesions typically seen in 2-D cultures. Given the evidence that RhoA-mediated cytoskeletal contractility represents a critical node in mechanosensing, we molecularly upregulated contractility by inducing SMCs to express constitutively active RhoA. In these cells, F-actin bundling and total vinculin expression increased, and focal adhesion-like structures began to emerge, consistent with RhoA's mechanism of action in cells cultured on 2-D substrates. Furthermore, SMC proliferation in 3-D did not depend significantly on matrix stiffness, and was reduced by constitutive activation of RhoA irrespective of ECM mechanical properties. Conversely, the expression of contractile markers globally increased with constitutive RhoA activation and depended on 3-D matrix stiffness only in cells with heightened RhoA activity. Combined, these data suggest that the synergistic effects of ECM mechanics and RhoA activity on SMC phenotype in 3-D are distinct from those in 2-D, and highlight the importance of studying the mechanical role of cell-matrix interactions in tunable 3-D environments.
Collapse
Affiliation(s)
- Shelly R Peyton
- Department of Chemical Engineering and Materials Science, The Henry Samueli School of Engineering, University of California, Irvine, CA 92697-2715, United States
| | | | | | | | | |
Collapse
|
38
|
Yokota T, Utsunomiya K, Taniguchi K, Gojo A, Kurata H, Tajima N. Involvement of the Rho/Rho Kinase Signaling Pathway in Platelet-Derived Growth Factor BB-induced Vascular Endothelial Growth Factor Expression in Diabetic Rat Retina. Jpn J Ophthalmol 2007; 51:424-30. [DOI: 10.1007/s10384-007-0471-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 06/25/2007] [Indexed: 11/27/2022]
|
39
|
Abstract
Rho kinases (ROCKs) are the first and the best-characterized effectors of the small G-protein RhoA. In addition to their effect on actin organization, or through this effect, ROCKs have been found to regulate a wide range of fundamental cell functions such as contraction, motility, proliferation, and apoptosis. Abnormal activation of the RhoA/ROCK pathway has been observed in major cardiovascular disorders such as atherosclerosis, restenosis, hypertension, pulmonary hypertension, and cardiac hypertrophy. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of ROCK signaling and its roles in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM U-533-Institut du Thorax, Faculté des Sciences, Nantes, France
| | | | | |
Collapse
|
40
|
Gojo A, Utsunomiya K, Taniguchi K, Yokota T, Ishizawa S, Kanazawa Y, Kurata H, Tajima N. The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats. Eur J Pharmacol 2007; 568:242-7. [PMID: 17511984 DOI: 10.1016/j.ejphar.2007.04.011] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 03/28/2007] [Accepted: 04/01/2007] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the effect of the Rho-kinase inhibitor fasudil on the development of diabetic nephropathy and clarify a contribution of the Rho/Rho-kinase pathway to the pathogenesis of diabetic nephropathy. Diabetes was induced in male Sprague-Dawley rats with an intraperitoneal injection of streptozotocin. Animals were then divided into the following 4 groups; normal control rats, diabetic rats, diabetic rats administered fasudil orally and diabetic rats administered fluvastatin (3-hydroxy-methylglutaryl coenzyme A reductase inhibitor, statin) orally. After 1 month of treatment, neither fasudil nor statin had any influence on blood glucose or blood pressure in diabetic rats. While urinary excretion of albumin and 8-hydroxydeoxyguanosine (8-OHdG) was increased in diabetic rats, both of these increases were abolished by fasudil and statin. Rho activity was enhanced in the renal cortex of diabetic rats compared to normal controls, and this enhancement was abolished by statin treatment. Expression of transforming growth factor-beta (TGF-beta) and connective tissue growth factor (CTGF) mRNA was up-regulated in the renal cortex of diabetic rats, and this was abolished by fasudil as well as statin. Expression of NOX4 mRNA (catalytic subunit of NAD(P)H oxidase) was up-regulated in the renal cortex of diabetic rats, an effect which was also abolished by fasudil as well as statin. The present study demonstrates that the Rho/Rho-kinase pathway is involved in up-regulation of TGF-beta, CTGF and NAD(P)H oxidase in diabetic kidney. We conclude that suppression of the Rho/Rho-kinase pathway could be a new strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Atsushi Gojo
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi Minato-ku, Tokyo, 105-8461, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tawara S, Shimokawa H. Progress of the Study of Rho-kinase and Future Perspective of the Inhibitor. YAKUGAKU ZASSHI 2007; 127:501-14. [PMID: 17329936 DOI: 10.1248/yakushi.127.501] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rho-kinase has been identified as one of the effectors of the small GTP-binding protein Rho. Accumulating evidence has demonstrated that the Rho/Rho-kinase pathway plays an important role in various cellular functions, not only in vascular smooth muscle cell (VSMC) contraction but also in VSMC proliferation, cell migration, and gene expression. Two isoforms of Rho-kinase encoded by two different genes have been identified: ROCK1 and ROCK2. These isoforms are ubiquitously expressed, but with preferential expression of ROCK2 in the brain and skeletal muscle. The expression of Rho-kinase itself is mediated by the protein kinase C/NF-kappaB pathway with an inhibitory and stimulatory modulation by estrogen and nicotine, respectively. At the cellular level, Rho-kinase mediates VSMC contraction, stimulates VSMC proliferation and migration, and enhances inflammatory cell motility. Rho-kinase also upregulates various molecules that accelerate inflammation/oxidative stress, thrombus formation, and fibrosis, while it downregulates endothelial nitric oxide synthase and inhibits insulin signaling. Rho-kinase activity regulates major morphogenetic events during embryonic development through cell migration, differentiation, and axis formation. In animal and clinical studies, Rho-kinase has been shown to be substantially involved in the pathogenesis of vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, and ischemia/reperfusion injury. Fasudil, a selective Rho-kinase inhibitor developed in Japan, is effective for the treatment of a wide range of cardiovascular diseases, with reasonable safety. Thus Rho-kinase is an important therapeutic target in cardiovascular medicine. This review summarizes the recent progress in the study of Rho-kinase and addresses future perspectives of Rho-kinase inhibitors.
Collapse
Affiliation(s)
- Shunsuke Tawara
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
42
|
Tristano AG, Fuller K. Immunomodulatory effects of statins and autoimmune rheumatic diseases: novel intracellular mechanism involved. Int Immunopharmacol 2006; 6:1833-1846. [PMID: 17052674 DOI: 10.1016/j.intimp.2006.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/25/2006] [Accepted: 08/03/2006] [Indexed: 01/26/2023]
Abstract
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, known as statins, are the most commonly prescribed agents for the treatment of hypercholesterolemia. However, the effects of statins may extend beyond their influences on serum cholesterol levels resulting in cholesterol-independent or pleiotropic effects. Clinical, animal and in vitro studies suggest that statins have additional clinical uses because of their anti-inflammatory and immunomodulatory effects, in part due to their capacity to interfere with the mevalonate pathway and inhibit prenylation of Rho family GTPases. This review focuses on the molecular mechanisms of the anti-inflammatory and immunomodulatory effects of statins. In base to all these information, we suggest that statins could have similar inhibitory effects on MAPKs pathways in cells from RA patients, including osteoclasts and fibroblasts.
Collapse
Affiliation(s)
- Antonio G Tristano
- Pharmaceutical and Administrative Sciences Department, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | | |
Collapse
|
43
|
Xing XQ, Gan Y, Wu SJ, Chen P, Zhou R, Xiang XD. Statins may ameliorate pulmonary hypertension via RhoA/Rho-kinase signaling pathway. Med Hypotheses 2006; 68:1108-1113. [PMID: 17097823 DOI: 10.1016/j.mehy.2006.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 02/08/2023]
Abstract
Statins are the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors that function as potent inhibitors of cholesterol biosynthesis and have been used for many years for the treatment of hypercholesterolemia. However, accumulating experimental and clinical studies have revealed that the health benefits associated with statins treatment, particularly those conferred on the cardiovascular system, were the cholesterol-independent. Because statins inhibit an early step in the cholesterol biosynthetic pathway, they also inhibit the synthesis of isoprenoids such as farnesylpyrophosphate and geranylgeranylpyrophosphate, which are important postranslational lipid attachments for intracellular signaling molecules such as the Rho GTPases. The isoprenylation of Rho is a prerequisite for Rho activation, facilitating its interaction with the plasma membrane, undergoing GDP-GTP exchange and be activated. Inhibition of RhoA geranylgeranylation by statins decreases membrane GTP-bound active RhoA and subsequent Rho-kinase activity. Activated RhoA via its downstream effector Rho-kinase is involved in a wide range of cellular functions, such as cell migration, proliferation and apoptosis. Recently, rising evidences suggested that RhoA/Rho-kinase pathway was essentially involved in various models of pulmonary hypertension and statins effectively ameliorated pulmonary hypertension. Based on this findings, we hypothesis that statins attenuate pulmonary hypertension via RhoA/Rho-kinase signaling pathway in vivo.
Collapse
Affiliation(s)
- Xi-Qian Xing
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Middle Renmin Road, No. 86, Changsha, Hunan 410011, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Khwaja A, Sharpe CC, Noor M, Hendry BM. The role of geranylgeranylated proteins in human mesangial cell proliferation. Kidney Int 2006; 70:1296-304. [PMID: 16929252 DOI: 10.1038/sj.ki.5001713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Rho family of guanine 5'-triphosphatases (GTPases) play a key role in regulating cell proliferation, tubulointerstitial fibrosis, and glomerular hemodynamics. The post-translational prenylation of RhoGTPases by the addition of a geranylgeranyl moiety is critical for cellular localization and signaling activity. This study investigates the effects of (i) inhibiting geranylgeranylation (GG) in human mesangial cell (HMC) proliferation and apoptosis, using GGTI 298, a specific inhibitor of GG and (ii) lovastatin, an HMG-coacetyl A-reductase inhibitor, which depletes the availability of prenylation substrates. HMC proliferation was assessed using an assay of viable cell number and measuring bromodeoxyuridine (BrdU) incorporation. Hoechst 33342 staining was used to determine apoptosis. Extracellular signal-regulated protein kinase (Erk)1/2 and Akt activation were analysed by Western blotting. Rho activation was determined using the Rhotekin pull-down assay. Immunocytochemistry was performed to study the effects on the actin cytoskeleton and RhoA localization. GGTI 298 (10-20 muM) and lovastatin (5-10 muM) potently inhibited platelet-derived growth factor and serum-stimulated HMC proliferation and induced apoptosis. These effects of lovastatin were attenuated by co-incubation with geranylgeranylpyrophosphate. C3 exoenzyme, a clostridial toxin that specifically targets Rho also inhibited BrdU incorporation and promoted apoptosis. GGTI 298 increased cytosolic expression of RhoA, prevented RhoA activation, and inhibited the activation of Erk1/2 and the survival protein Akt. GGTI 298, lovastatin, and C3 exoenzyme inhibit HMC proliferation and promote apoptosis. Inhibiting GG increases cytosolic RhoA expression, disrupts the actin cytoskeleton, and inhibits RhoA activation. These results suggest that targeting geranylgeranylated proteins with statins or GGTI 298 is a promising therapeutic strategy in human mesangioproliferative renal disease.
Collapse
Affiliation(s)
- A Khwaja
- Department of Renal Medicine, GKT School of Medicine, King's College London, Bessemer Road, London, UK
| | | | | | | |
Collapse
|
45
|
Croft DR, Olson MF. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol Cell Biol 2006; 26:4612-27. [PMID: 16738326 PMCID: PMC1489131 DOI: 10.1128/mcb.02061-05] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. However, the mechanisms by which ROCK signaling promotes cell cycle progression have not been thoroughly characterized. Using a conditionally activated ROCK-estrogen receptor fusion protein, we found that ROCK activation is sufficient to stimulate G1/S cell cycle progression in NIH 3T3 mouse fibroblasts. Further analysis revealed that ROCK acts via independent pathways to alter the levels of cell cycle regulatory proteins: cyclin D1 and p21(Cip1) elevation via Ras and the mitogen-activated protein kinase pathway, increased cyclin A via LIM kinase 2, and reduction of p27(Kip1) protein levels. Therefore, the influence of ROCK on cell cycle regulatory proteins occurs by multiple independent mechanisms.
Collapse
Affiliation(s)
- Daniel R Croft
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom
| | | |
Collapse
|
46
|
Ward JPT, Knock GA, Snetkov VA, Aaronson PI. Protein kinases in vascular smooth muscle tone--role in the pulmonary vasculature and hypoxic pulmonary vasoconstriction. Pharmacol Ther 2005; 104:207-31. [PMID: 15556675 DOI: 10.1016/j.pharmthera.2004.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is an adaptive mechanism that in the normal animal diverts blood away from poorly ventilated areas of the lung, thereby maintaining optimal ventilation-perfusion matching. In global hypoxia however, such as in respiratory disease or at altitude, it causes detrimental increases in pulmonary vascular resistance and pulmonary artery (PA) pressure. The precise intracellular pathways and mechanisms underlying HPV remain unclear, although it is now recognised that both an elevation in smooth muscle intracellular [Ca2+] and a concomitant increase in Ca2+ sensitivity are involved. Several key intracellular protein kinases have been proposed as components of the signal transduction pathways leading to development of HPV, specifically Rho kinase, non-receptor tyrosine kinases (NRTK), p38 mitogen activated protein (MAP) kinase, and protein kinase C (PKC). All of these have been implicated to a greater or lesser extent in pathways leading to Ca2+ sensitisation, and in some cases regulation of intracellular [Ca2+] as well. In this article, we review the role of these key protein kinases in the regulation of vascular smooth muscle (VSM) constriction, applying what is known in the systemic circulation to the pulmonary circulation and HPV. We conclude that the strongest evidence for direct involvement of protein kinases in the mechanisms of HPV concerns a central role for Rho kinase in Ca2+ sensitisation, and a potential role for Src-family kinases in both modulation of Ca2+ entry via capacitative Ca2+ entry (CCE) and activation of Rho kinase, though others are likely to have indirect or modulatory influences. In addition, we speculate that Src family kinases may provide a central interface between the proposed hypoxia-induced generation of reactive oxygen species by mitochondria and both the elevation in intracellular [Ca2+] and Rho kinase mediated Ca2+ sensitisation.
Collapse
Affiliation(s)
- Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, Guy's, King's and St Thomas' School of Medicine, King's College London, London, UK.
| | | | | | | |
Collapse
|
47
|
Turner NA, O'Regan DJ, Ball SG, Porter KE. Simvastatin inhibits MMP‐9 secretion from human saphenous vein smooth muscle cells by inhibiting the RhoA/ROCK pathway and reducing MMP‐9 mRNA levels. FASEB J 2005; 19:804-6. [PMID: 15728660 DOI: 10.1096/fj.04-2852fje] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased matrix metalloproteinase-9 (MMP-9) expression is associated with intimal hyperplasia in saphenous vein (SV) bypass grafts. Recent evidence suggests that HMG-CoA reductase inhibitors (statins) can prevent the progression of vein graft failure. Here we investigated whether statins inhibited MMP-9 secretion from cultured human SV smooth muscle cells (SMC) and examined the underlying mechanisms. SV-SMC from different patients were exposed to phorbol ester (TPA) or PDGF-BB plus interleukin-1alpha (IL-1). MMP-9 secretion and mRNA expression were analyzed using gelatin zymography and RT-PCR, respectively. Specific signal transduction pathways were investigated by immunoblotting and pharmacological inhibition. Simvastatin reduced TPA- and PDGF/IL-1-induced MMP-9 secretion and mRNA levels, effects reversed by geranylgeranyl pyrophosphate and mimicked by inhibiting Rho geranylgeranylation or Rho-kinase (ROCK). MMP-9 secretion induced by PDGF/IL-1 was mediated via the ERK, p38 MAPK, and NFkappaB pathways, whereas that induced by TPA was mediated specifically via the ERK pathway. Simvastatin failed to inhibit activation of these signaling pathways. Moreover, simvastatin did not affect MMP-9 mRNA stability. Together these data suggest that simvastatin reduces MMP-9 secretion from human SV-SMC by inhibiting the RhoA/ROCK pathway and decreasing MMP-9 mRNA levels independently of effects on signaling pathways required for MMP-9 gene expression.
Collapse
Affiliation(s)
- Neil A Turner
- Institute for Cardiovascular Research, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
48
|
Liu Y, Suzuki YJ, Day RM, Fanburg BL. Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res 2004; 95:579-86. [PMID: 15297378 DOI: 10.1161/01.res.0000141428.53262.a4] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There is now considerable evidence supporting a mitogenic action of serotonin (5-HT) on vascular smooth muscle cells (SMC) that might participate in pulmonary hypertension (PH). Our previous studies have demonstrated that 5-HT-induced proliferation depends on the generation of reactive oxygen species and activation of extracellular signal-regulated kinase (ERK) 1/ERK2. Activation of Rho kinase (ROCK) in SMC also may be important in PH. We undertook the present study to assess the role of Rho A/ROCK and its possible relation to ERK1/ERK2 in 5-HT-induced pulmonary artery SMC proliferation. We found that this stimulation of SMC proliferation requires Rho A/ROCK as inhibition with Y27632, a ROCK inhibitor, or dominant negative (DN) mutant Rho A blocks 5-HT-induced proliferation, cyclin D1 expression, phosphorylation of Elk, and the DNA binding of transcription factors, Egr-1 and GATA-4. 5-HT activated ROCK, and the activation was blocked by GR 55562 and GR127935, 5-HT 1B/1D receptor antagonists, but not by serotonin transport (SERT) inhibitors. Activation of Rho kinase by 5-HT was independent of activation of ERK1/ERK2, and 5-HT activated ERK1/ERK2 independently of ROCK. Treatment of SMC with Y27632 and expression of DNRho A in cells blocked translocation of ERK1/ERK2 to the cellular nucleus. Depolymerization of actin with cytochalasin D (CD) and latrunculin B (latB) failed to block the translocation of ERK, suggesting that the actin cytoskeleton does not participate in the translocation. The studies show for the first time to our knowledge combinational action of SERT and a 5-HT receptor in SMC growth and Rho A/ROCK participation in 5-HT receptor 1B/1D-mediated mitogenesis of vascular SMCs through an effect on cytoplasmic to nuclear translocation of ERK1/ERK2.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amides/pharmacology
- Animals
- Benzamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cattle
- Cell Division
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cytochalasin D/pharmacology
- Enzyme Activation/drug effects
- Intracellular Signaling Peptides and Proteins
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myosin-Light-Chain Phosphatase/metabolism
- Oxadiazoles/pharmacology
- Phosphoproteins/metabolism
- Phosphorylation
- Piperazines/pharmacology
- Protein Processing, Post-Translational
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Protein Subunits/metabolism
- Protein Transport/physiology
- Pulmonary Artery
- Pyridines/pharmacology
- Receptor, Serotonin, 5-HT1B/drug effects
- Receptor, Serotonin, 5-HT1B/physiology
- Receptor, Serotonin, 5-HT1D/drug effects
- Receptor, Serotonin, 5-HT1D/physiology
- Recombinant Fusion Proteins/physiology
- Serotonin/physiology
- Serotonin 5-HT1 Receptor Antagonists
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thiazoles/pharmacology
- Thiazolidines
- Transcription Factors/metabolism
- rho-Associated Kinases
Collapse
Affiliation(s)
- Yinglin Liu
- Tufts-New England Medical Center, Pulmonary, Critical Care and Sleep Division, Tupper Research Institute, Boston, Mass 02111, USA
| | | | | | | |
Collapse
|