1
|
Valacchi G, Pecorelli A. Role of Scavenger Receptor B1 (SR-B1) in Improving Food Benefits for Human Health. Annu Rev Food Sci Technol 2025; 16:403-432. [PMID: 39899837 DOI: 10.1146/annurev-food-111523-121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Scavenger receptor class B member 1 (SR-B1) is a multiligand receptor with a broad range of functions spanning from the uptake of cholesteryl esters from high-density lipoproteins (HDLs) and transport of micronutrients such as fat-soluble vitamins and carotenoids across cell membranes to roles in tumor progression, pathogen recognition, and inflammatory responses. As a target of exposome factors such as environmental stressors and unhealthy lifestyle choices, as well as aging, dysregulated expression and activity of SR-B1 can negatively impact human health. Intriguingly, not only is SR-B1 a major determinant of nutrient homeostasis and, hence, metabolic health status, but these same nutrients and some phytochemicals have also demonstrated their ability to modulate SR-B1. Therefore, an integrated approach that, taking into account human health, nutrition, and food technology sciences, aims to produce foods with health-promoting effects should take advantage of the multifaceted properties of SR-B1. Improved functional foods and novel nanoparticle-based delivery systems, rich in nutrients and phytochemicals, with precise targeting to SR-B1 in specific tissues or structures could represent a strategic advance to improve human health and promote well-being.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Animal Science, North Carolina State University, Kannapolis, North Carolina, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy;
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy;
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, North Carolina, USA
| |
Collapse
|
2
|
Krishnamurthy HK, Reddy S, Jayaraman V, Krishna K, Song Q, Wang T, Bei K, Rajasekaran JJ. Profiling the Effect of Micronutrient Levels on Vital Cardiovascular Markers. Cureus 2025; 17:e78268. [PMID: 40027047 PMCID: PMC11872020 DOI: 10.7759/cureus.78268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Cardiovascular diseases (CVDs) remain the leading cause of mortality globally. The role of micronutrients in maintaining cardiovascular health has gained increasing attention, as deficiencies or imbalances in vitamins, minerals, and amino acids may influence the risk and progression of CVDs. This study aimed to evaluate the relationship between serum micronutrient levels and critical lipid and lipoprotein markers indicative of cardiovascular health. Materials and methods A retrospective analysis was conducted on 358 individuals who underwent testing for the Cardio Health and Micronutrients Panel at Vibrant America Clinical Laboratory. The participants were divided into three groups based on their serum lipid and lipoprotein concentrations: 'Low', 'Normal', and 'High'. The levels of vitamins (A, D, E, and K), minerals (zinc, iron, calcium, and magnesium), and amino acids (leucine, isoleucine, and valine) were measured, and their correlation with cardiovascular markers such as cholesterol, LDL, HDL, and Apo B was analyzed using Pearson's correlation. Results The study found significant associations between micronutrient levels and cardiovascular markers. Vitamins D, E, and K and minerals like zinc, calcium, and magnesium showed positive correlations with lipid markers. Asparagine was negatively correlated with cholesterol and LDL, while amino acids such as isoleucine and valine negatively correlated with HDL but showed a positive association with LDL and Apo B. Fat-soluble vitamins demonstrated strong positive associations with total cholesterol and triglycerides. Conclusion These findings suggest that certain micronutrients play a critical role in regulating lipid profiles and overall cardiovascular health. Further studies are necessary to explore the therapeutic potential of micronutrient supplementation in preventing or managing CVDs.
Collapse
Affiliation(s)
| | | | | | - Karthik Krishna
- Research and Development, Vibrant Sciences LLC, San Carlos, USA
| | - Qi Song
- Clinical Laboratory, Vibrant America LLC, San Carlos, USA
| | - Tianhao Wang
- Research and Development, Vibrant Sciences LLC, San Carlos, USA
| | - Kang Bei
- Research and Development, Vibrant Sciences LLC, San Carlos, USA
| | | |
Collapse
|
3
|
Latib F, Zafendi MAI, Mohd Lazaldin MA. The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100224. [PMID: 39415777 PMCID: PMC11481750 DOI: 10.1016/j.fochms.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E's role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.
Collapse
Affiliation(s)
- Fazira Latib
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | | |
Collapse
|
4
|
Jin Y, Li K, Vik JO, Hillestad M, Olsen RE. Effect of Dietary Cholesterol, Phytosterol, and Docosahexaenoic Acid on Astaxanthin Absorption and Retention in Rainbow Trout. AQUACULTURE NUTRITION 2024; 2024:8265746. [PMID: 39555545 PMCID: PMC11496587 DOI: 10.1155/2024/8265746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 11/19/2024]
Abstract
Astaxanthin (Ax) determines the flesh redness of a salmonid fish which is the most desirable quality indicator by consumers. Fish cannot synthesize Ax de novo, therefore, the only way to increase flesh redness is to increase dietary input or improve the absorption and retention rate of dietary Ax. As a hydrophobic carotenoid, the absorption of Ax can be modulated by other lipid molecules in the diet. The present study explored the effect of three lipids, cholesterol (CH), phytosterol (PS), and docosahexaenoic acid (DHA) on Ax absorption, transport, and retention in rainbow trout. Dietary CH significantly improved Ax absorption by elevating plasma Ax levels (p < 0.05); however, it had no effect on the whole body Ax or flesh color. Dietary PS appears to inhibit Ax absorption since fish had significantly (p < 0.05) reduced whole body Ax. Dietary DHA appeared to have no effect on Ax absorption or retention. By comparing intestinal transcriptomes, a low density lipoprotein receptor (ldlr) gene was significantly downregulated in fish fed the CH diet as compared to the control diet. Since LDLR protein plays a major role in plasma lipoprotein turnover, we hypothesized that the inhibition of ldlr gene by high dietary CH resulted in higher retention of plasma Ax. The elevation of plasma Ax was not reflected in higher flesh coloration, which suggested other limiting factors governing Ax retention in the muscle. On the other hand, the transcriptomic and proteomic analyses found no changes of genes or proteins involved in Ax absorption, transport, or excretion in fish fed PS or DHA diets as compared to the control diet. In conclusion, this study has suggested that CH promotes Ax absorption by regulating lipoprotein retention and provide evidence for improving Ax absorption via dietary modulation.
Collapse
Affiliation(s)
- Yang Jin
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | | | - Rolf Erik Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Serafini F, Maxwell KM, Zhu X, Lennon EM. Dysregulated serum concentrations of fat-soluble vitamins in dogs with chronic enteropathy. J Vet Intern Med 2024; 38:2612-2619. [PMID: 39087781 PMCID: PMC11423464 DOI: 10.1111/jvim.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/02/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND In inflammatory bowel disease (IBD) of humans, nutrient malabsorption can result in fat-soluble vitamin deficiency, especially of vitamin D. In veterinary species, decreased concentrations of vitamin D are relatively common in dogs with chronic enteropathy (CE), but data on the status of other fat-soluble vitamins (FSVs) is lacking. OBJECTIVES Determine the serum concentrations of retinol, vitamin D, and α-tocopherol in dogs with CE compared with healthy dogs and compare clinical, clinicopathologic variables between CE and healthy dogs to detect associations with decreased FSVs concentrations. ANIMALS Eighteen client-owned dogs with CE and 33 healthy dogs. METHODS Serum 25-hydroxyvitamin D (25[OH]D), serum retinol and α-tocopherol concentrations were compared between groups. Correlations and multiple regression modeling were used to examine the relationship between serum 25(OH)D, retinol, and α-tocopherol concentrations and clinical and clinicopathological variables. RESULTS Dogs with low serum albumin concentrations were more likely to have lower 25(OH)D concentrations than dogs with normal serum albumin concentration. Dogs with CE had higher serum concentrations of retinol, and variable α-tocopherol concentrations. The cause of these dysregulated vitamin concentrations is unclear and requires further study. CONCLUSION AND CLINICAL IMPORTANCE Dogs with severe forms of CE should be monitored for decreased concentrations of 25(OH)D. Additional studies are needed to evaluate the clinical relevance and the possible benefit of vitamin D supplementation in these patients.
Collapse
Affiliation(s)
- Federica Serafini
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Kristen M Maxwell
- Department of Small Animal Clinical Sciences, University of Tennessee, College of Veterinary Medicine, Knoxville, Tennessee, USA
| | - Xiaojuan Zhu
- Office of Innovative Technologies, The University of Tennessee, Knoxville, Tennessee, USA
| | - Elizabeth M Lennon
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Wang H, Ma Y. The Potential of Vitamin K as a Regulatory Factor of Bone Metabolism-A Review. Nutrients 2023; 15:4935. [PMID: 38068793 PMCID: PMC10708186 DOI: 10.3390/nu15234935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Vitamin K (VK), a fat-soluble vitamin, is essential for the clotting of blood because of its role in the production of clotting factors in the liver. Moreover, researchers continue to explore the role of VK as an emerging novel bioactive molecule with the potential function of improving bone health. This review focuses on the effects of VK on bone health and related mechanisms, covering VK research history, homologous analogs, dietary sources, bioavailability, recommended intake, and deficiency. The information summarized here could contribute to the basic and clinical research on VK as a natural dietary additive and drug candidate for bone health. Future research is needed to extend the dietary VK database and explore the pharmacological safety of VK and factors affecting VK bioavailability to provide more support for the bone health benefits of VK through more clinical trials.
Collapse
Affiliation(s)
- Huakai Wang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Nongkenan Road No. 40, Hefei 230031, China
| | - Yongxi Ma
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
7
|
Aaseth JO, Alehagen U, Opstad TB, Alexander J. Vitamin K and Calcium Chelation in Vascular Health. Biomedicines 2023; 11:3154. [PMID: 38137375 PMCID: PMC10740993 DOI: 10.3390/biomedicines11123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The observation that the extent of artery calcification correlates with the degree of atherosclerosis was the background for the alternative treatment of cardiovascular disease with chelator ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has only marginal impact on the course of vascular disease. In contrast, endogenous calcium chelation with removal of calcium from the cardiovascular system paralleled by improved bone mineralization exerted, i.e., by matrix Gla protein (MGP) and osteocalcin, appears to significantly delay the development of cardiovascular diseases. After post-translational vitamin-K-dependent carboxylation of glutamic acid residues, MGP and other vitamin-K-dependent proteins (VKDPs) can chelate calcium through vicinal carboxyl groups. Dietary vitamin K is mainly provided in the form of phylloquinone from green leafy vegetables and as menaquinones from fermented foods. Here, we provide a review of clinical studies, addressing the role of vitamin K in cardiovascular diseases, and an overview of vitamin K kinetics and biological actions, including vitamin-K-dependent carboxylation and calcium chelation, as compared with the action of the exogenous (therapeutic) chelator EDTA. Consumption of vitamin-K-rich foods and/or use of vitamin K supplements appear to be a better preventive strategy than EDTA chelation for maintaining vascular health.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Research Department, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, N-2418 Elverum, Norway
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden;
| | - Trine Baur Opstad
- Oslo Centre for Clinical Heart Research Laboratory, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway;
- Faculty of Medicine, University of Oslo, N-0370 Oslo, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway;
| |
Collapse
|
8
|
Engin KN, Harmancı Karagülle D, Durmaz Engin C, Kant M, Yaman A, Akış M, Özel Yıldız S, İşlekel H, Güner Akdoğan G, Söylev Bajin M. Is the clinical course of non-arteritic ischemic optic neuropathy associated with oxidative damage and the dynamics of the antioxidant response? Int Ophthalmol 2023; 43:2935-2945. [PMID: 37029212 DOI: 10.1007/s10792-023-02699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
PURPOSE Oxidative stress is known to be a decisive factor in the wide etiopathogenesis of optic neuropathy. This study aimed to comprehensively evaluate the interaction of optic neuropathy's clinical course with systemic oxidative damage and antioxidant response dynamics in a large series. METHODS This case-controlled clinical study included 33 non-arteritic anterior ischemic optic neuropathy (NAION) patients and 32 healthy individuals. Extensive systemic oxidation profiles were statistically compared between the two groups, and correlations between the clinical and biochemical data in the study group were analyzed. RESULTS Vitamin E and malondialdehyde (MDA) levels were significantly higher in the study group. Significant correlations were observed in the analyses between clinical findings and oxidative stress parameters. Correlations between vitamin E and intraocular pressure (IOP), between B12 and cup-to-disk ratio (c/d), between antioxidant glutathione and superoxide dismutase (SOD) enzyme systems, and between uric acid (UA) and age were found to be very significant. As significant correlations were found in either clinical and biochemical data or in oxidative stress parameters, correlations between vitamin E and cholesterol, MDA were found to be very significant. CONCLUSIONS This study not only supplies significant information regarding oxidative damage and antioxidant response in NAION, but also points out the specific interactions of neuromodulators, like vitamin E, in intracellular signaling pathways and regulation mechanisms. A better reading of these connections may help improve diagnosis, follow-ups and treatment criteria and strategies.
Collapse
Affiliation(s)
- Kaya Nusret Engin
- Department of Ophthalmology, Ümraniyemraniye Education and Research Hospital, Sağlık University, Elmalıkent Mh. Ümraniye, 34764, Istanbul, Turkey.
| | - Duygu Harmancı Karagülle
- Graduate School of Health Science, Department of Molecular Genetics, Dokuz Eylül University, Izmir, Turkey
| | - Ceren Durmaz Engin
- Faculty of Medicine, Department of Ophthalmology, Dokuz Eylül University, Izmir, Turkey
| | - Melis Kant
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, Izmir, Turkey
| | - Aylin Yaman
- Faculty of Medicine, Department of Ophthalmology, Dokuz Eylül University, Izmir, Turkey
| | - Merve Akış
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, Izmir, Turkey
| | - Sevda Özel Yıldız
- Istanbul Faculty of Medicine, Department of Biostatistics, Istanbul University, Istanbul, Turkey
| | - Hüray İşlekel
- Graduate School of Health Science, Department of Molecular Genetics, Dokuz Eylül University, Izmir, Turkey
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, Izmir, Turkey
| | - Gül Güner Akdoğan
- Department of Medical Biochemistry, School of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Meltem Söylev Bajin
- Faculty of Medicine, Department of Ophthalmology, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
9
|
Mong MA. Vitamin K and the Visual System-A Narrative Review. Nutrients 2023; 15:nu15081948. [PMID: 37111170 PMCID: PMC10143727 DOI: 10.3390/nu15081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system.
Collapse
Affiliation(s)
- Michael A Mong
- Department of Ophthalmology, Veteran Affairs North Texas Health Care Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
10
|
Matsuo M, Ogata Y, Yamanashi Y, Takada T. ABCG5 and ABCG8 Are Involved in Vitamin K Transport. Nutrients 2023; 15:nu15040998. [PMID: 36839356 PMCID: PMC9966996 DOI: 10.3390/nu15040998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
ATP-binding cassette protein G5 (ABCG5)/ABCG8 heterodimer exports cholesterol from cells, while Niemann-Pick C1-like 1 (NPC1L1) imports cholesterol and vitamin K. We examined whether ABCG5/ABCG8 transports vitamin K similar to NPC1L1. Since high concentrations of vitamin K3 show cytotoxicity, the cytoprotective effects of ABCG5/ABCG8 were examined. BHK cells expressing ABCG5/ABCG8 were more resistant to vitamin K3 cytotoxicity than control cells, suggesting that ABCG5/ABCG8 transports vitamin K3 out of cells. The addition of vitamin K1 reversed the effects of ABCG5/ABCG8, suggesting that vitamin K1 competitively inhibits the transport of vitamin K3. To examine the transport of vitamin K1 by ABCG5/ABCG8, vitamin K1 levels in the medium and cells were measured. Vitamin K1 levels in cells expressing ABCG5/ABCG8 were lower than those in control cells, while vitamin K1 efflux increased in cells expressing ABCG5/ABCG8. Furthermore, the biliary vitamin K1 concentration in Abcg5/Abcg8-deficient mice was lower than that in wild-type mice, although serum vitamin K1 levels were not affected by the presence of Abcg5/Abcg8. These findings suggest that ABCG5 and ABCG8 are involved in the transport of sterols and vitamin K. ABCG5/ABCG8 and NPC1L1 might play important roles in the regulation of vitamin K absorption and excretion.
Collapse
Affiliation(s)
- Michinori Matsuo
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto 605-8501, Japan
- Correspondence:
| | - Yutaka Ogata
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshihide Yamanashi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
11
|
Yoon H, Lee Y, Jeong J, Jang S, Lee HH, Kim G. Binding free energy of several sterols to the N‐terminal domain of
Niemann‐Pick C1
‐like 1 protein due to mutation: Molecular dynamics study. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hye‐Jin Yoon
- Department of Chemistry Seoul National University Seoul Republic of Korea
| | - Yeeun Lee
- Department of Chemistry Sejong University Seoul Republic of Korea
| | - Jian Jeong
- Department of Chemistry Sejong University Seoul Republic of Korea
| | - Soonmin Jang
- Department of Chemistry Sejong University Seoul Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry Seoul National University Seoul Republic of Korea
| | - Gap‐Sue Kim
- Dharma College Dongguk University Seoul Republic of Korea
| |
Collapse
|
12
|
Sobh MM, Abdalbary M, Elnagar S, Nagy E, Elshabrawy N, Abdelsalam M, Asadipooya K, El-Husseini A. Secondary Osteoporosis and Metabolic Bone Diseases. J Clin Med 2022; 11:2382. [PMID: 35566509 PMCID: PMC9102221 DOI: 10.3390/jcm11092382] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fragility fracture is a worldwide problem and a main cause of disability and impaired quality of life. It is primarily caused by osteoporosis, characterized by impaired bone quantity and or quality. Proper diagnosis of osteoporosis is essential for prevention of fragility fractures. Osteoporosis can be primary in postmenopausal women because of estrogen deficiency. Secondary forms of osteoporosis are not uncommon in both men and women. Most systemic illnesses and organ dysfunction can lead to osteoporosis. The kidney plays a crucial role in maintaining physiological bone homeostasis by controlling minerals, electrolytes, acid-base, vitamin D and parathyroid function. Chronic kidney disease with its uremic milieu disturbs this balance, leading to renal osteodystrophy. Diabetes mellitus represents the most common secondary cause of osteoporosis. Thyroid and parathyroid disorders can dysregulate the osteoblast/osteoclast functions. Gastrointestinal disorders, malnutrition and malabsorption can result in mineral and vitamin D deficiencies and bone loss. Patients with chronic liver disease have a higher risk of fracture due to hepatic osteodystrophy. Proinflammatory cytokines in infectious, autoimmune, and hematological disorders can stimulate osteoclastogenesis, leading to osteoporosis. Moreover, drug-induced osteoporosis is not uncommon. In this review, we focus on causes, pathogenesis, and management of secondary osteoporosis.
Collapse
Affiliation(s)
- Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
13
|
Yan H, Chen Y, Zhu H, Huang WH, Cai XH, Li D, Lv YJ, Si-Zhao, Zhou HH, Luo FY, Zhang W, Li X. The Relationship Among Intestinal Bacteria, Vitamin K and Response of Vitamin K Antagonist: A Review of Evidence and Potential Mechanism. Front Med (Lausanne) 2022; 9:829304. [PMID: 35510250 PMCID: PMC9058076 DOI: 10.3389/fmed.2022.829304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
The vitamin K antagonist is a commonly prescribed effective oral anticoagulant with a narrow therapeutic range, and the dose requirements for different patients varied greatly. In recent years, studies on human intestinal microbiome have provided many valuable insights into disease development and drug reactions. A lot of studies indicated the potential relationship between microbiome and the vitamin K antagonist. Vitamin K is absorbed by the gut, and the intestinal bacteria are a major source of vitamin K in human body. A combined use of the vitamin K antagonist and antibiotics may result in an increase in INR, thus elevating the risk of bleeding, while vitamin K supplementation can improve stability of anticoagulation for oral vitamin K antagonist treatment. Recently, how intestinal bacteria affect the response of the vitamin K antagonist remains unclear. In this review, we reviewed the research, focusing on the physiology of vitamin K in the anticoagulation treatment, and investigated the potential pathways of intestinal bacteria affecting the reaction of the vitamin K antagonist.
Collapse
|
14
|
Ellis JL, Fu X, Karl JP, Hernandez CJ, Mason JB, DeBose-Boyd RA, Booth SL. Multiple Dietary Vitamin K Forms Are Converted to Tissue Menaquinone-4 in Mice. J Nutr 2022; 152:981-993. [PMID: 34550377 PMCID: PMC8971004 DOI: 10.1093/jn/nxab332] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vitamin K is a term that comprises a family of structurally related quinones, phylloquinone (PK) and the menaquinones (MKn), that share a common naphthoquinone ring but vary in sidechain length (n) and saturation. Dietary PK is a biosynthetic precursor to tissue menaquinone-4 (MK4), but little is known about the absorption and metabolism of dietary MKn. OBJECTIVE To characterize the absorption and metabolism of dietary MKn relative to PK. METHODS In the 4-week diet study, 10-week-old male and female C57BL/6 mice were pair-fed a vitamin K deficient diet (control) or a diet supplemented with 5.0 μmol/kg total PK, MK4, and/or MK9 (separately and in combination). In the 1-week stable isotope study, 12-week-old mice were pair-fed diets containing 2.2 μmol/kg PK (unlabeled control), 2H7PK, 13C11MK4, 2H7MK7, or 2H7MK9. Vitamin K tissue content was quantified by HPLC and/or LC-MS, and concentrations were compared by sex and diet group using 2-factor ANOVA. RESULTS Regardless of the form(s) of vitamin K provided in the diet, tissue MK4 concentrations did not differ across equimolar supplemented groups in the kidney, adipose, reproductive organ, bone, or pancreas in either males or females in the diet study (all P values > 0.05). Isotopic labeling confirmed the naphthoquinone ring of MK4 in tissues originated from the administered dietary PK or MKn. Despite equimolar supplementation, accumulation of the administered dietary form differed across diet groups in small intestinal segments (all P values < 0.002) and the liver (P < 0.001). Female mice had greater total vitamin K than males in every tissue examined (P < 0.05). CONCLUSIONS Dietary PK, MK4, MK7, and MK9 all served as precursors to tissue MK4 in mice. This study expands our understanding of vitamin K metabolism and supports a common conversion mechanism of all dietary vitamin K forms to MK4. Further investigation of the metabolism and physiological roles of MK4 that may be independent of classical vitamin K function is warranted.
Collapse
Affiliation(s)
- Jessie L Ellis
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
- The Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA, USA
| | - Xueyan Fu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - J Philip Karl
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Christopher J Hernandez
- Schools of Mechanical and Aerospace Engineering & Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joel B Mason
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
15
|
Lai Y, Masatoshi H, Ma Y, Guo Y, Zhang B. Role of Vitamin K in Intestinal Health. Front Immunol 2022; 12:791565. [PMID: 35069573 PMCID: PMC8769504 DOI: 10.3389/fimmu.2021.791565] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC) generally characterized by clinical symptoms, including malabsorption, intestinal dysfunction, injury, and microbiome imbalance, as well as certain secondary intestinal disease complications, continue to be serious public health problems worldwide. The role of vitamin K (VK) on intestinal health has drawn growing interest in recent years. In addition to its role in blood coagulation and bone health, several investigations continue to explore the role of VK as an emerging novel biological compound with the potential function of improving intestinal health. This study aims to present a thorough review on the bacterial sources, intestinal absorption, uptake of VK, and VK deficiency in patients with intestinal diseases, with emphasis on the effect of VK supplementation on immunity, anti-inflammation, intestinal microbes and its metabolites, antioxidation, and coagulation, and promoting epithelial development. Besides, VK-dependent proteins (VKDPs) are another crucial mechanism for VK to exert a gastroprotection role for their functions of anti-inflammation, immunomodulation, and anti-tumorigenesis. In summary, published studies preliminarily show that VK presents a beneficial effect on intestinal health and may be used as a therapeutic drug to prevent/treat intestinal diseases, but the specific mechanism of VK in intestinal health has yet to be elucidated.
Collapse
Affiliation(s)
- Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Hoshino Y, Sugihara T, Ikeda S, Tarumoto R, Matsuki Y, Kanda T, Iyama T, Takata T, Matono T, Nagahara T, Okano JI, Ueki M, Koda M, Osaki M, Okada F, Isomoto H. Newly Invented Micellized Vitamin K2 Recovered Prolonged Prothrombin Time under Obstructive Jaundice in Rats with Bile Duct Ligation. J Nutr Sci Vitaminol (Tokyo) 2022; 67:397-403. [PMID: 34980718 DOI: 10.3177/jnsv.67.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In cholestatic liver diseases, coagulopathy is induced by malabsorption of vitamin K. Supplementation of vitamin K has previously been shown to prevent coagulopathy. In this study, we tested the efficacy of a newly invented micellized vitamin K2 (m-vitK2) in treating coagulopathy, using a rat bile duct ligation (BDL) model. Experiment 1: m-vitK2 (0.3 mg/kg) or m-vitK2 (0.3 mg/kg) mixed with taurocholic acid (TA) (10 mg/body) was orally administrated every day for 7 d from the fourth day after BDL (n=6 for each). Experiment 2: To evaluate absorption, m-vitK2 (0.3 mg/kg) with or without TA (10 mg/body) was orally administered on the fourth day after BDL and compared with the untreated control BDL (n=2 for each). These data were compared with sham-operated (n=6) and untreated control BDL rats (n=6). The m-vitK2 recovered prothrombin time (PT) in Experiment 1 (control 42.7±5.7 s vs. m-vitK2 24.0±9.3 s, p<0.05). Experiment 2 demonstrated that the mixture of m-vitK2 and TA enhanced absorption compared to m-vitK2 alone. Moreover, in Experiment 1, m-vitK2 mixed with TA completely recovered PT (control 42.7±5.7 s vs. m-vitK2+TA 14.9±1.2 s, p<0.01). Micelle sizes decreased with the m-vitK2 and TA treatment (m-vitK2 86.3±5.6 nm vs. m-vitK2+TA 71.9±4.7 nm, p<0.05). Orally administered, newly invented m-vitK2 recovered coagulopathy even under obstructive jaundice. TA decreased the mean micelle size and improved m-vitK2 absorption.
Collapse
Affiliation(s)
- Yoshiki Hoshino
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Takaaki Sugihara
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Suguru Ikeda
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Ryohei Tarumoto
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Yukako Matsuki
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Tsutomu Kanda
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Takuji Iyama
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Tomoaki Takata
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Tomomitsu Matono
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Takakazu Nagahara
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Jun-Ichi Okano
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| | - Masaru Ueki
- Division of Medical Education, School of Medicine, Tottori University
| | | | - Mitsuhiko Osaki
- Division of Experimental Pathology, School of Medicine, Tottori University
| | - Futoshi Okada
- Division of Experimental Pathology, School of Medicine, Tottori University
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University
| |
Collapse
|
17
|
The proteomics analysis of the effects of Zhishi Rhubarb soup on ischaemic stroke. Proteome Sci 2021; 19:13. [PMID: 34758819 PMCID: PMC8582178 DOI: 10.1186/s12953-021-00181-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Stroke has always been a major threat worldwide but is most severe in China, with 2.5 million new stroke cases each year and 7.5 million stroke survivors, placing a heavy burden on the social and national health care systems. Zhishi Rhubarb Soup (ZRS) is a traditional Chinese medicine (TCM) that has been used clinically for many years in China. To explore the potential mechanism of ZRS in the treatment of stroke, liquid chromatography with mass spectrometry (LC-MS) was performed. METHODS In this study, a quantitative proteomic method with LC-MS was used to analyse the proteomic differences between MACO samples treated with ZRS and those without ZRS treatment. RESULTS Liquid chromatography with mass spectrometry (LC-MS) analysis led to the identification of 35,006 peptides, with 5160.0 proteins identified and 4094.0 quantified. Significantly differentially expressed proteins were identified through data analysis, and the difference was found to be more than 1.2 times (P < 0.05). The Gene Ontology (GO) analysis provided a summary of the dysregulated protein expression in the biological process (BP), cell component (CC), and molecular function (MF) categories. Proteins related to brain repair, including BDNF, IL-10, IL-6, and TGF-β, were found to change significantly, partially demonstrating the effectiveness of ZRS to attenuate tissue injury. CONCLUSION In this study, LC-MS/MS was performed to assess the effects of ZRS on differentially expressed proteins in rats with cerebral infarction. These promising results could help to improve the understanding of the effects of drugs on stroke.
Collapse
|
18
|
Nilsson Å, Duan RD, Ohlsson L. Digestion and Absorption of Milk Phospholipids in Newborns and Adults. Front Nutr 2021; 8:724006. [PMID: 34490332 PMCID: PMC8417471 DOI: 10.3389/fnut.2021.724006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Milk polar lipids provide choline, ethanolamine, and polyunsaturated fatty acids, which are needed for the growth and plasticity of the tissues in a suckling child. They may also inhibit cholesterol absorption by interacting with cholesterol during micelle formation. They may also have beneficial luminal, mucosal, and metabolic effects in both the neonate and the adult. The milk fat globule membrane contains large proportions of sphingomyelin (SM), phosphatidylcholine (PC), and phosphatidylethanolamine (PE), and some phosphatidylserine (PS), phosphatidylinositol (PI), and glycosphingolipids. Large-scale technical procedures are available for the enrichment of milk fat globule membrane (MFGM) in milk replacement formulations and food additives. Pancreatic phospholipase A2 (PLA2) and mucosal phospholipase B digest glycero-phospholipids in the adult. In the neonate, where these enzymes may be poorly expressed, pancreatic lipase-related protein 2 probably has a more important role. Mucosal alkaline SM-ase and ceramidase catalyze the digestion of SM in both the neonate and the adult. In the mucosa, the sphingosine is converted into sphingosine-1-phosphate, which is both an intermediate in the conversion to palmitic acid and a signaling molecule. This reaction sequence also generates ethanolamine. Here, we summarize the pathways by which digestion and absorption may be linked to the biological effects of milk polar lipids. In addition to the inhibition of cholesterol absorption and the generation of lipid signals in the gut, the utilization of absorbed choline and ethanolamine for mucosal and hepatic phospholipid synthesis and the acylation of absorbed lyso-PC with polyunsaturated fatty acids to chylomicron and mucosal phospholipids are important.
Collapse
Affiliation(s)
- Åke Nilsson
- Division of Medicine, Gastroenterology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rui-Dong Duan
- Gastroenterology and Nutrition Laboratory, Division of Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| | - Lena Ohlsson
- Division of Medicine, Experimental Vascular Medicine, Department of Clinical Science, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Szewczyk K, Chojnacka A, Górnicka M. Tocopherols and Tocotrienols-Bioactive Dietary Compounds; What Is Certain, What Is Doubt? Int J Mol Sci 2021; 22:6222. [PMID: 34207571 PMCID: PMC8227182 DOI: 10.3390/ijms22126222] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tocopherols and tocotrienols are natural compounds of plant origin, available in the nature. They are supplied in various amounts in a diet, mainly from vegetable oils, some oilseeds, and nuts. The main forms in the diet are α- and γ-tocopherol, due to the highest content in food products. Nevertheless, α-tocopherol is the main form of vitamin E with the highest tissue concentration. The α- forms of both tocopherols and tocotrienols are considered as the most metabolically active. Currently, research results indicate also a greater antioxidant potential of tocotrienols than tocopherols. Moreover, the biological role of vitamin E metabolites have received increasing interest. The aim of this review is to update the knowledge of tocopherol and tocotrienol bioactivity, with a particular focus on their bioavailability, distribution, and metabolism determinants in humans. Almost one hundred years after the start of research on α-tocopherol, its biological properties are still under investigation. For several decades, researchers' interest in the biological importance of other forms of vitamin E has also been growing. Some of the functions, for instance the antioxidant functions of α- and γ-tocopherols, have been confirmed in humans, while others, such as the relationship with metabolic disorders, are still under investigation. Some studies, which analyzed the biological role and mechanisms of tocopherols and tocotrienols over the past few years described new and even unexpected cellular and molecular properties that will be the subject of future research.
Collapse
Affiliation(s)
- Kacper Szewczyk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Aleksandra Chojnacka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Magdalena Górnicka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| |
Collapse
|
20
|
Kim IS, Kim CH, Yang WS. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective. Int J Mol Sci 2021; 22:4054. [PMID: 33920015 PMCID: PMC8071044 DOI: 10.3390/ijms22084054] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Gyunggi-Do 16419, Korea
- Samsung Advanced Institute of Health Science and Technology, Gyunggi-Do 16419, Korea
| | | |
Collapse
|
21
|
Sahagun E, Bachman BB, Kinzig KP. Sex-specific effects of ketogenic diet after pre-exposure to a high-fat, high-sugar diet in rats. Nutr Metab Cardiovasc Dis 2021; 31:961-971. [PMID: 33546948 DOI: 10.1016/j.numecd.2020.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS The objectives were to evaluate the relationship between ketogenic diets, the ketone body beta-hydroxybutyrate (BHB), parameters known to increase risk for cardiovascular and metabolic diseases in both sexes, using a pre-clinical model of obesity. METHODS AND RESULTS Rats had access to a diet high in fat and sugar (HFS) for 12 weeks. After HFS, they switched to chow (HFS-CH) or ketogenic diet (HFS-KD) for 3 weeks to model a dietary intervention. Body weight, adiposity, and food intake were measured. Glucose tolerance and corticosterone response to stress were measured after HFS, then again after the intervention. Both sexes increased body weight, food intake, and adiposity compared to control (CTL) while on HFS. HFS females showed impaired glucose tolerance. HFS males developed a dampened corticosterone to stress, whereas HFS females developed an exacerbated response. The effects of HFS on adiposity and corticosterone were reversed in HFS-CH males. These same improvements were observed in HFS-CH females, although they still had impaired glucose tolerance. HFS-KD males showed some improvements, however, they still had higher body weight and adiposity than CTL. The same pattern was observed in females. These beneficial effects of KD correlated with plasma BHB levels in females but not in males. CONCLUSIONS These data model effects reported in clinical literature and serve as a valuable translational tool to further test causal mechanisms that lead to desirable outcomes of KD. These sex-specific relationships are important, as KD could potentially affect endocrine mechanisms differently in males and females.
Collapse
Affiliation(s)
- Elizabeth Sahagun
- Purdue University, Department of Psychological Sciences, 703 3rd Street, West Lafayette, IN, 47907, USA.
| | - Brent B Bachman
- Purdue University, Department of Psychological Sciences, 703 3rd Street, West Lafayette, IN, 47907, USA
| | - Kimberly P Kinzig
- Purdue University, Department of Psychological Sciences, 703 3rd Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
22
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
23
|
El‐Mayta R, Zhang R, Shepherd SJ, Wang F, Billingsley MM, Dudkin V, Klein D, Lu HD, Mitchell MJ. A Nanoparticle Platform for Accelerated In Vivo Oral Delivery Screening of Nucleic Acids. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rakan El‐Mayta
- Department of Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
| | - Rui Zhang
- Department of Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
| | - Sarah J. Shepherd
- Department of Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
| | - Feng Wang
- Center for Computational and Genomic Medicine The Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | | | - Vadim Dudkin
- Janssen Research & Development Spring House PA 19477 USA
| | - Donna Klein
- Janssen Research & Development Spring House PA 19477 USA
| | - Hoang D. Lu
- Janssen Research & Development Spring House PA 19477 USA
| | - Michael J. Mitchell
- Department of Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
- Abramson Cancer Center Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 USA
- Institute for Immunology Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 USA
- Cardiovascular Institute Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 USA
- Institute for Regenerative Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
24
|
Nakazawa T, Yamazaki S, Uchida M, Suzuki T, Nakamura T, Takayashiki T, Ohtsuka M, Ishii I. Association of marked prolongation of prothrombin time-international normalized ratio with warfarin and endoscopic nasobiliary drainage for biliary fistula after left hemihepatectomy. J Clin Pharm Ther 2020; 45:815-818. [PMID: 32208539 DOI: 10.1111/jcpt.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/07/2020] [Accepted: 03/09/2020] [Indexed: 01/17/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Vitamin K deficiency is known to cause impaired coagulation. We report a case of marked prolongation of the prothrombin time-international normalized ratio (PT-INR) associated with warfarin and vitamin K deficiency caused by endoscopic nasobiliary drainage (ENBD). CASE PRESENTATION Oral administration of warfarin was initiated in a 67-year-old man after left hemihepatectomy. He developed a biliary fistula after surgery that was treated by ENBD, which resulted in significant prolongation of the PT-INR. WHAT IS NEW AND CONCLUSION The effect of warfarin was enhanced in this patient due to reduced absorption of vitamin K as a result of external biliary drainage.
Collapse
Affiliation(s)
| | - Shingo Yamazaki
- Division of Pharmacy, Chiba University Hospital, Chiba-shi, Japan
| | - Masashi Uchida
- Division of Pharmacy, Chiba University Hospital, Chiba-shi, Japan
| | - Takaaki Suzuki
- Division of Pharmacy, Chiba University Hospital, Chiba-shi, Japan
| | - Takako Nakamura
- Division of Pharmacy, Chiba University Hospital, Chiba-shi, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba-shi, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba-shi, Japan
| | - Itsuko Ishii
- Division of Pharmacy, Chiba University Hospital, Chiba-shi, Japan
| |
Collapse
|
25
|
Xing PY, Pettersson S, Kundu P. Microbial Metabolites and Intestinal Stem Cells Tune Intestinal Homeostasis. Proteomics 2020; 20:e1800419. [PMID: 31994831 DOI: 10.1002/pmic.201800419] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota-derived signals and molecules influence another key player maintaining intestinal homeostasis-the intestinal stem cell niche, which regulates epithelial self-renewal. In this review, the literature on gut microbiota-host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon.
Collapse
Affiliation(s)
- Peter Yuli Xing
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, South Spine, Level B3, Block S2-B3a, Singapore, 639798, Singapore
| | - Sven Pettersson
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, SE, 17 177, Stockholm, Sweden
| | - Parag Kundu
- Singapore Centre for Environmental Life Sciences Engineering, 60 Nanyang Drive, Singapore, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.,The Center for Microbes, Development and Health, Laboratory for Microbiota-Host Interactions, Institute Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building, Shanghai, 200031, China
| |
Collapse
|
26
|
Livny A, Schnaider Beeri M, Heymann A, Moshier E, Berman Y, Mamistalov M, Shahar DR, Tsarfaty G, Leroith D, Preiss R, Soleimani L, Silverman JM, Bendlin BB, Levy A, Ravona-Springer R. Vitamin E Intake Is Associated with Lower Brain Volume in Haptoglobin 1-1 Elderly with Type 2 Diabetes. J Alzheimers Dis 2020; 74:649-658. [PMID: 32065799 DOI: 10.3233/jad-191294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUNDS The efficacy of vitamin E in prevention of diabetes-related complications differs by Haptoglobin (Hp) genotype. OBJECTIVE To examine the role of Hp genotype in the relationship of vitamin E intake with brain volume in cognitively normal elderly patients with type 2 diabetes. METHODS Brain volumes for the superior, middle, and inferior frontal gyri and for the middle temporal gyrus were generated from structural T1 MRI in 181 study participants (Hp 1-1: n = 24, Hp 2-1: n = 77, Hp 2-2: n = 80). Daily vitamin E intake was assessed using the Food Frequency Questionnaire. Analyses of covariance, controlling for demographic and cardiovascular variables was used to evaluate whether the association of daily vitamin E intake with brain volume was modified by Hp genotype. RESULTS Average age was 70.8 (SD = 4.2) with 40% females, and mean Mini-Mental State Examination score of 28.17 (SD = 1.90). A significant interaction was found between vitamin E intake and Hp genotype in inferior frontal gyrus' volume; p = 0.0108. For every 1 microgram increase in vitamin E intake, the volume of the inferior frontal gyrus decreased by 0.955% for Hp 1-1 (p = 0.0348), increased by 0.429% for Hp 2-1 (p = 0.0457), and by 0.077% for Hp 2-2 (p = 0.6318). There were no significant interactions between vitamin E intake and Hp genotype for the middle (p = 0.6011) and superior (p = 0.2025) frontal gyri or for the middle temporal gyrus (p = 0.503). CONCLUSIONS The effect of dietary vitamin E on the brain may differ by Hp genotype. Studies examining the impact of vitamin E on brain-related outcomes should consider Hp genotype.
Collapse
Affiliation(s)
- Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Baruch Ivcher School of Psychology, Interdisciplinary Center, Herzliya, Israel
| | - Anthony Heymann
- Department of Family Medicine, Tel Aviv University, Tel Aviv, Israel.,Maccabi Health Services, Israel
| | - Erin Moshier
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Berman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Mary Mamistalov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | | | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek Leroith
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Laili Soleimani
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy M Silverman
- The Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew Levy
- Rambam Medical Center, Technion, Haifa, Israel
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Psychiatric Division, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
27
|
Cedó L, Farràs M, Lee-Rueckert M, Escolà-Gil JC. Molecular Insights into the Mechanisms Underlying the Cholesterol- Lowering Effects of Phytosterols. Curr Med Chem 2019; 26:6704-6723. [DOI: 10.2174/0929867326666190822154701] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 01/18/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
Dietary phytosterols, which comprise plant sterols and stanols, reduce plasma Low-Density Lipoprotein-Cholesterol (LDL-C) levels when given 2 g/day. Since this dose has not been reported to cause health-related side effects in long-term human studies, food products containing these plant compounds are used as potential therapeutic dietary options to reduce LDL-C and cardiovascular disease risk. Several mechanisms have been proposed to explain the cholesterol-lowering action of phytosterols. They may compete with dietary and biliary cholesterol for micellar solubilization in the intestinal lumen, impairing intestinal cholesterol absorption. Recent evidence indicates that phytosterols may also regulate other pathways. Impaired intestinal cholesterol absorption is usually associated with reduced cholesterol transport to the liver, which may reduce the incorporation of cholesterol into Very-Low- Density Lipoprotein (VLDL) particles, thereby lowering the rate of VLDL assembly and secretion. Impaired liver VLDL production may reduce the rate of LDL production. On the other hand, significant evidence supports a role for plant sterols in the Transintestinal Cholesterol Excretion (TICE) pathway, although the exact mechanisms by which they promote the flow of cholesterol from the blood to enterocytes and the intestinal lumen remains unknown. Dietary phytosterols may also alter the conversion of bile acids into secondary bile acids, and may lower the bile acid hydrophobic/hydrophilic ratio, thereby reducing intestinal cholesterol absorption. This article reviews the progress to date in research on the molecular mechanisms underlying the cholesterol-lowering effects of phytosterols.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d'Investigacions Biomediques (IIB) Sant Pau, Barcelona, Spain
| | - Marta Farràs
- Integrative Systems Medicine and Digestive Disease Division, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
28
|
Lenahan C, Huang L, Travis ZD, Zhang JH. Scavenger Receptor Class B type 1 (SR-B1) and the modifiable risk factors of stroke. Chin Neurosurg J 2019; 5:30. [PMID: 32922929 PMCID: PMC7398188 DOI: 10.1186/s41016-019-0178-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/30/2019] [Indexed: 01/11/2023] Open
Abstract
Stroke is a devastating disease that occurs when a blood vessel in the brain is either blocked or ruptured, consequently leading to deficits in neurological function. Stroke consistently ranked as one of the top causes of mortality, and with the mean age of incidence decreasing, there is renewed interest to seek novel therapeutic treatments. The Scavenger Receptor Class B type 1 (SR-B1) is a multifunctional protein found on the surface of a variety of cells. Research has found that that SR-B1 primarily functions in an anti-inflammatory and anti-atherosclerotic capacity. In this review, we discuss the characteristics of SR-B1 and focus on its potential correlation with the modifiable risk factors of stroke. SR-B1 likely has an impact on stroke through its interaction with smoking, diabetes mellitus, diet, physical inactivity, obesity, hypercholesterolemia, atherosclerosis, coronary heart disease, hypertension, and sickle cell disease, all of which are critical risk factors in the pathogenesis of stroke.
Collapse
Affiliation(s)
- Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88003 USA
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
| | - Lei Huang
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Physiology & Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - Zachary D. Travis
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - John H. Zhang
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Physiology & Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
| |
Collapse
|
29
|
Yamanashi Y. [Translational Research Based on Understanding the Regulatory Mechanisms of in Vivo Behaviors of Fat-soluble Compounds]. YAKUGAKU ZASSHI 2019; 139:1485-1494. [PMID: 31787634 DOI: 10.1248/yakushi.19-00136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several fat-soluble compounds such as cholesterol and fat-soluble vitamins have important physiological activities in the body, and their excess and/or deficiency have been reported to be closely associated with the onset and progression of several conditions such as lifestyle-related diseases. It is important to clarify not only the physiological activities but also in vivo kinetics of fat-soluble compounds to understand their in vivo activity (toxicity). This review introduces our recent (reverse) translational research in a combination of basic and clinical studies to reveal the regulatory mechanisms of in vivo behaviors of fat-soluble compounds and effects of their disruption in humans.
Collapse
|
30
|
Walther B, Lett AM, Bordoni A, Tomás‐Cobos L, Nieto JA, Dupont D, Danesi F, Shahar DR, Echaniz A, Re R, Fernandez AS, Deglaire A, Gille D, Schmid A, Vergères G. GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract. Mol Nutr Food Res 2019; 63:e1900677. [PMID: 31483113 PMCID: PMC6900003 DOI: 10.1002/mnfr.201900677] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Nutritional research is currently entering the field of personalized nutrition, to a large extent driven by major technological breakthroughs in analytical sciences and biocomputing. An efficient launching of the personalized approach depends on the ability of researchers to comprehensively monitor and characterize interindividual variability in the activity of the human gastrointestinal tract. This information is currently not available in such a form. This review therefore aims at identifying and discussing published data, providing evidence on interindividual variability in the processing of the major nutrients, i.e., protein, fat, carbohydrates, vitamins, and minerals, along the gastrointestinal tract, including oral processing, intestinal digestion, and absorption. Although interindividual variability is not a primary endpoint of most studies identified, a significant number of publications provides a wealth of information on this topic for each category of nutrients. This knowledge remains fragmented, however, and understanding the clinical relevance of most of the interindividual responses to food ingestion described in this review remains unclear. In that regard, this review has identified a gap and sets the base for future research addressing the issue of the interindividual variability in the response of the human organism to the ingestion of foods.
Collapse
Affiliation(s)
- Barbara Walther
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Aaron M. Lett
- Section for Nutrition ResearchDepartment of MedicineImperial College LondonLondonUK
| | - Alessandra Bordoni
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | | | | | - Didier Dupont
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Francesca Danesi
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | - Danit R. Shahar
- Department of Public HealthThe S. Daniel Abraham International Center for Health and NutritionBen‐Gurion University of the Negev84105Beer‐ShevaIsrael
| | - Ana Echaniz
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | - Roberta Re
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | | | - Amélie Deglaire
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Doreen Gille
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Alexandra Schmid
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Guy Vergères
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| |
Collapse
|
31
|
Yamamoto H, Yamanashi Y, Takada T, Mu S, Tanaka Y, Komine T, Suzuki H. Hepatic Expression of Niemann-Pick C1-Like 1, a Cholesterol Reabsorber from Bile, Exacerbates Western Diet-Induced Atherosclerosis in LDL Receptor Mutant Mice. Mol Pharmacol 2019; 96:47-55. [PMID: 31064810 DOI: 10.1124/mol.119.115840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022] Open
Abstract
Westernization of dietary habits increases lipid intake and is responsible for increased numbers of patients with atherosclerotic diseases. Niemann-Pick C1-Like 1 (NPC1L1)-a cholesterol importer-plays a crucial role in dietary cholesterol absorption in the intestine and is closely associated with several lipid-related diseases, including atherosclerosis. NPC1L1 is highly expressed in the liver and intestine in humans, whereas NPC1L1 expression is low in the rodent liver. Due to species differences in the tissue distribution of NPC1L1, there are limited studies on the pathophysiological role of hepatic NPC1L1, a cholesterol reabsorber from bile. In the present study, to explore whether hepatic NPC1L1 is involved in the development/progression of atherosclerosis, we compared four kinds of atherosclerosis mouse models with different expression levels of NPC1L1 in the intestinal and liver tissues in a genetic background of dysfunctional low-density lipoprotein receptor mutation. Western diet (WD)-induced hyperlipidemia and atherosclerotic plaque formation were more severe in mice expressing NPC1L1 in both the liver and intestine (plasma cholesterol, 839.5 mg/dl; plaque area, 29.5% of total aorta), compared with mice expressing NPC1L1 only in the intestine (plasma cholesterol, 573.1 mg/dl; plaque area, 13.3% of total aorta). Such hepatic NPC1L1-mediated promotion of hyperlipidemia and atherosclerosis was not observed in mice not expressing intestinal NPC1L1 and mice treated with ezetimibe, an NPC1L1 inhibitor used clinically for dyslipidemia. These results suggested that hepatic NPC1L1 promotes WD-induced dyslipidemia and atherosclerosis in concert with intestinal NPC1L1. Our findings provide novel insights into the pathophysiological importance of hepatic NPC1L1 in development/progression of atherosclerosis. SIGNIFICANCE STATEMENT: Niemann-Pick C1-Like 1 (NPC1L1) protein, a cholesterol importer and a molecular target of ezetimibe clinically used for dyslipidemia, is highly expressed not only in the intestine, but also in the liver in humans, although the pathophysiological importance of hepatic NPC1L1 in atherosclerotic diseases remained unclear. By using novel mouse models to separately analyze the effects of hepatic and intestinal NPC1L1 on the development/progression of atherosclerosis, we first demonstrated that hepatic NPC1L1 accelerates Western diet-induced atherosclerotic plaque formation in an intestinal NPC1L1-dependent and an ezetimibe-sensitive manner.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Yamanashi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuang Mu
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Tanaka
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toko Komine
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Qi L, Tian Y, Chen Y. Gall bladder: The metabolic orchestrator. Diabetes Metab Res Rev 2019; 35:e3140. [PMID: 30770629 DOI: 10.1002/dmrr.3140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/02/2019] [Accepted: 02/09/2019] [Indexed: 12/13/2022]
Abstract
It is commonly held that the gall bladder (GB) is not indispensable for life. However, recent studies strongly suggest that GB removal can lead to the development of metabolic syndrome (MetS). With the recent recognition of the role of bile acids (BAs) in systemic metabolic regulation, it is worthwhile to re-examine the function of the GB, which can be regarded as the physiological "pacemaker" of BA flow. Thus, in the present study, we review the role of the GB in BA flow regulation, describe the epidemiologic evidence that associates cholecystectomy with various components of MetS, and discuss the possible mechanism behind these connections in order to demonstrate the pivotal role that GB plays in metabolic regulation.
Collapse
Affiliation(s)
- Li Qi
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Vitamin E Metabolic Effects and Genetic Variants: A Challenge for Precision Nutrition in Obesity and Associated Disturbances. Nutrients 2018; 10:nu10121919. [PMID: 30518135 PMCID: PMC6316334 DOI: 10.3390/nu10121919] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Vitamin E (VE) has a recognized leading role as a contributor to the protection of cell constituents from oxidative damage. However, evidence suggests that the health benefits of VE go far beyond that of an antioxidant acting in lipophilic environments. In humans, VE is channeled toward pathways dealing with lipoproteins and cholesterol, underlining its relevance in lipid handling and metabolism. In this context, both VE intake and status may be relevant in physiopathological conditions associated with disturbances in lipid metabolism or concomitant with oxidative stress, such as obesity. However, dietary reference values for VE in obese populations have not yet been defined, and VE supplementation trials show contradictory results. Therefore, a better understanding of the role of genetic variants in genes involved in VE metabolism may be crucial to exert dietary recommendations with a higher degree of precision. In particular, genetic variability should be taken into account in targets concerning VE bioavailability per se or concomitant with impaired lipoprotein transport. Genetic variants associated with impaired VE liver balance, and the handling/resolution of oxidative stress might also be relevant, but the core information that exists at present is insufficient to deliver precise recommendations.
Collapse
|
34
|
Yamanashi Y, Takada T, Suzuki H. Associations between Lifestyle-Related Diseases and Transporters Involved in Intestinal Absorption and Biliary Excretion of Cholesterol. Biol Pharm Bull 2018; 41:1-10. [PMID: 29311470 DOI: 10.1248/bpb.b17-00690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Westernization of dietary habits leads to an increase in lipid intake and is thought to be responsible for an increase in patients with dyslipidemia. It is a well-known fact that the impaired cholesterol homeostasis is closely related to the development of various lifestyle-related diseases such as fatty liver, diabetes, and gallstone as well as dyslipidemia leading to atherosclerosis and cardiovascular diseases such as heart attack and stroke. Therefore, appropriate management of cholesterol levels in the body is considered important in prevention and treatments of these lifestyle-related diseases and in addition, molecular mechanisms controlling plasma (and/or hepatic) cholesterol levels have been intensively studied. Due to its hydrophobicity, cholesterol was long believed to pass through cell membranes by passive diffusion. However, recent studies have identified a number of plasma membrane transporters that are responsible for the cellular uptake or efflux of cholesterol and involved in developments of lifestyle-related diseases. In this review, we focus on Niemann-Pick C1 Like 1 (NPC1L1) and a heterodimer of ATP-binding cassette transporter G5 and G8 (ABCG5/G8), both of which are responsible for intestinal cholesterol absorption and biliary cholesterol secretion, and discuss the relationship between these cholesterol transporters and lifestyle-related diseases. In addition, we also discuss the related uncertainties that need to be explored in future studies.
Collapse
Affiliation(s)
- Yoshihide Yamanashi
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| | - Tappei Takada
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| | - Hiroshi Suzuki
- Department of Pharmacy, the University of Tokyo Hospital, Faculty of Medicine, the University of Tokyo
| |
Collapse
|
35
|
Abstract
Vitamin K (VK) is an essential cofactor for the post-translational conversion of peptide-bound glutamate to γ-carboxyglutamate. The resultant vitamin K-dependent proteins are known or postulated to possess a variety of biological functions, chiefly in the maintenance of hemostasis. The vitamin K cycle is a cellular pathway that drives γ-carboxylation and recycling of VK via γ-carboxyglutamyl carboxylase (GGCX) and vitamin K epoxide reductase (VKOR), respectively. In this review, we show how novel molecular biological approaches are providing new insights into the pathophysiological mechanisms caused by rare mutations of both GGCX and VKOR. We also discuss how other protein regulators influence the intermediary metabolism of VK, first through intestinal absorption and second through a pathway that converts some dietary phylloquinone to menadione, which is prenylated to menaquinone-4 (MK-4) in target tissues by UBIAD1. The contribution of MK-4 synthesis to VK functions is yet to be revealed.
Collapse
Affiliation(s)
- Martin J Shearer
- Centre for Haemostasis and Thrombosis, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom;
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Kobe 658-8558 Japan;
| |
Collapse
|
36
|
Schubert M, Kluge S, Schmölz L, Wallert M, Galli F, Birringer M, Lorkowski S. Long-Chain Metabolites of Vitamin E: Metabolic Activation as a General Concept for Lipid-Soluble Vitamins? Antioxidants (Basel) 2018; 7:antiox7010010. [PMID: 29329238 PMCID: PMC5789320 DOI: 10.3390/antiox7010010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Vitamins E, A, D and K comprise the class of lipid-soluble vitamins. For vitamins A and D, a metabolic conversion of precursors to active metabolites has already been described. During the metabolism of vitamin E, the long-chain metabolites (LCMs) 13'-hydroxychromanol (13'-OH) and 13'-carboxychromanol (13'-COOH) are formed by oxidative modification of the side-chain. The occurrence of these metabolites in human serum indicates a physiological relevance. Indeed, effects of the LCMs on lipid metabolism, apoptosis, proliferation and inflammatory actions as well as tocopherol and xenobiotic metabolism have been shown. Interestingly, there are several parallels between the actions of the LCMs of vitamin E and the active metabolites of vitamin A and D. The recent findings that the LCMs exert effects different from that of their precursors support their putative role as regulatory metabolites. Hence, it could be proposed that the mode of action of the LCMs might be mediated by a mechanism similar to vitamin A and D metabolites. If the physiological relevance and this concept of action of the LCMs can be confirmed, a general concept of activation of lipid-soluble vitamins via their metabolites might be deduced.
Collapse
Affiliation(s)
- Martin Schubert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Stefan Kluge
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Lisa Schmölz
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| | - Maria Wallert
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Baker IDI Heart and Diabetes Institute, Melbourne VIC 3004, Australia.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Clinical Biochemistry, University of Perugia, 06123 Perugia, Italy.
| | - Marc Birringer
- Department of Nutrition, Food and Consumer Sciences, University of Applied Sciences Fulda, 36037 Fulda, Germany.
| | - Stefan Lorkowski
- Department of Biochemistry and Physiology of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
- Competence Center for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, 07743 Jena, Germany.
| |
Collapse
|
37
|
Masana L, Girona J, Ibarretxe D, Rodríguez-Calvo R, Rosales R, Vallvé JC, Rodríguez-Borjabad C, Guardiola M, Rodríguez M, Guaita-Esteruelas S, Oliva I, Martínez-Micaelo N, Heras M, Ferré R, Ribalta J, Plana N. Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels-The zero-LDL hypothesis. J Clin Lipidol 2018; 12:292-299.e3. [PMID: 29398429 DOI: 10.1016/j.jacl.2017.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022]
Abstract
While the impact of very low concentrations of low-density lipoprotein cholesterol (LDL-C) on cardiovascular prevention is very reassuring, it is intriguing to know what effect these extremely low LDL-C concentrations have on lipid homoeostasis. The evidence supporting the safety of extremely low LDL levels comes from genetic studies and clinical drug trials. Individuals with lifelong low LDL levels due to mutations in genes associated with increased LDL-LDL receptor (LDLR) activity reveal no safety issues. Patients achieving extremely low LDL levels in the IMPROVE-IT and FOURIER, and the PROFICIO and ODYSSEY programs seem not to have an increased prevalence of adverse effects. The main concern regarding extremely low LDL-C plasma concentrations is the adequacy of the supply of cholesterol, and other molecules, to peripheral tissues. However, LDL proteomic and kinetic studies reaffirm that LDL is the final product of endogenous lipoprotein metabolism. Four of 5 LDL particles are cleared through the LDL-LDLR pathway in the liver. Given that mammalian cells have no enzymatic systems to degrade cholesterol, the LDL-LDLR pathway is the main mechanism for removal of cholesterol from the body. Our focus, therefore, is to review, from a physiological perspective, why such extremely low LDL-C concentrations do not appear to be detrimental. We suggest that extremely low LDL-C levels due to increased LDLR activity may be a surrogate of adequate LDL-LDLR pathway function.
Collapse
Affiliation(s)
- Luis Masana
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain.
| | - Josefa Girona
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Daiana Ibarretxe
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Ricardo Rodríguez-Calvo
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Roser Rosales
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Joan-Carles Vallvé
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Cèlia Rodríguez-Borjabad
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Montserrat Guardiola
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Marina Rodríguez
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Sandra Guaita-Esteruelas
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Iris Oliva
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Neus Martínez-Micaelo
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Mercedes Heras
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Raimon Ferré
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Josep Ribalta
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| | - Núria Plana
- Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lipids i Arteriosclerosis, Sant Joan University Hospital, IISPV, CIBERDEM, Universitat Rovira I Virgili, Reus, Spain
| |
Collapse
|