1
|
Zhao Z, He D, Wang J, Xiao Y, Gong L, Tang C, Peng H, Qiu X, Liu R, Zhang T, Li J. Swertiamarin relieves radiation-induced intestinal injury by limiting DNA damage. Mol Cell Biochem 2025; 480:2277-2290. [PMID: 38795212 DOI: 10.1007/s11010-024-05030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 05/04/2024] [Indexed: 05/27/2024]
Abstract
Radiotherapy is the conventional treatment for pelvic abdominal tumors. However, it can cause some damage to the small intestine and colorectal, which are very sensitive to radiation. Radiation-induced intestinal injury (RIII) affects the prognosis of radiotherapy, causing sequelae of loss of function and long-term damage to patients' quality of life. Swertiamarin is a glycoside that has been reported to prevent a variety of diseases including but not limited to diabetes, hypertension, atherosclerosis, arthritis, malaria, and abdominal ulcers. However, its therapeutic effect and mechanism of action on RIII have not been established. We investigated whether swertiamarin has a protective effect against RIII. In this article, we use irradiator to create cellular and mouse models of radiation damage. Preventive administration of swertiamarin could reduce ROS and superoxide anion levels to mitigate the cellular damage caused by radiation. Swertiamarin also attenuated RIII in mice, as evidenced by longer survival, less weight loss and more complete intestinal barrier. We also found an increase in the relative abundance of primary bile acids in irradiated mice, which was reduced by both FXR agonists and swertiamarin, and a reduction in downstream interferon and inflammatory factors via the cGAS-STING pathway to reduce radiation-induced damage.
Collapse
Affiliation(s)
- Zhe Zhao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Dan He
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Jinyu Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yu Xiao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Can Tang
- School of Biological Science and Technology, Chengdu Medical College, Chengdu, China
| | - Haibo Peng
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Tao Zhang
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China.
- School of Biological Science and Technology, Chengdu Medical College, Chengdu, China.
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China.
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
2
|
Vermeulen I, Li M, van Mourik H, Yadati T, Eijkel G, Balluff B, Godschalk R, Temmerman L, Biessen EAL, Kulkarni A, Theys J, Houben T, Cillero‐Pastor B, Shiri‐Sverdlov R. Inhibition of intracellular versus extracellular cathepsin D differentially alters the liver lipidome of mice with metabolic dysfunction-associated steatohepatitis. FEBS J 2025; 292:1781-1797. [PMID: 39726152 PMCID: PMC11970712 DOI: 10.1111/febs.17358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/09/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly. Our previous proteomics research has shown that inhibition of extracellular CTSD results in more anti-inflammatory effects and fewer potential side effects compared to intracellular CTSD inhibition. However, the correlation between reduced side effects and alterations in the hepatic lipid composition remains unknown. This study aims to investigate the correlation between intra- and extracellular CTSD inhibition and potential alterations in the hepatic lipid composition in MASH. Low-density lipoprotein receptor knockout (Ldlr-/-) mice were fed a high-fat diet for 10 weeks and received subcutaneous injections every 2 days of vehicle, intracellular CTSD inhibitor (GA-12), or extracellular CTSD inhibitor (CTD-002). Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize and compare the lipid composition in liver tissues. Hepatic phosphatidylcholine remodeling was observed with both inhibitors, suggesting their therapeutic potential in treating MASH. Treatment with an intracellular CTSD inhibitor resulted in elevated levels of cardiolipin, reactive oxygen species, phosphatidylinositol, phosphatidylethanolamine, and lipids that are linked to mitochondrial dysfunction and inflammation, and induced more oxidative stress. The observed modifications in lipid composition demonstrate the clinical advantages of extracellular CTSD inhibition as a potentially beneficial therapeutic approach for MASH.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- Maastricht Multimodal Molecular Imaging Institute (M4i)University of MaastrichtThe Netherlands
| | - Mengying Li
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| | - Hester van Mourik
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
- Department of Precision Medicine, Institute for Oncology and Reproduction (GROW)Maastricht UniversityThe Netherlands
| | - Tulasi Yadati
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| | - Gert Eijkel
- Maastricht Multimodal Molecular Imaging Institute (M4i)University of MaastrichtThe Netherlands
| | - Benjamin Balluff
- Maastricht Multimodal Molecular Imaging Institute (M4i)University of MaastrichtThe Netherlands
| | - Roger Godschalk
- Department of Pharmacology and Toxicology, Institute for Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM)Maastricht University Medical Center (UMC)The Netherlands
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM)Maastricht University Medical Center (UMC)The Netherlands
- Institute for Molecular Cardiovascular ResearchRheinisch‐Westfälische Technische Hochschule (RWTH) Aachen UniversityGermany
| | | | - Jan Theys
- Department of Precision Medicine, Institute for Oncology and Reproduction (GROW)Maastricht UniversityThe Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| | - Berta Cillero‐Pastor
- Maastricht Multimodal Molecular Imaging Institute (M4i)University of MaastrichtThe Netherlands
- Cell Biology‐Inspired Tissue Engineering (cBITE), MERLNMaastricht UniversityThe Netherlands
| | - Ronit Shiri‐Sverdlov
- Department of Genetics and Cell Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht UniversityThe Netherlands
| |
Collapse
|
3
|
Kupikowska-Stobba B, Niu H, Klojdová I, Agregán R, Lorenzo JM, Kasprzak M. Controlled lipid digestion in the development of functional and personalized foods for a tailored delivery of dietary fats. Food Chem 2025; 466:142151. [PMID: 39615348 DOI: 10.1016/j.foodchem.2024.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
In recent decades, obesity and its associated health issues have risen dramatically. The COVID-19 pandemic has further exacerbated this trend, underscoring the pressing need for new strategies to manage weight. Functional foods designed to modulate lipid digestion and absorption rates and thereby reduce the assimilation of dietary fats have gained increasing attention in food science as a potentially safer alternative to weight-loss medications. This review provides insights into controlled lipid digestion and customized delivery of fats. The first section introduces basic concepts of lipid digestion and absorption in the human gastrointestinal tract. The second section discusses factors regulating lipid digestion and absorption rates, as well as strategies for modulating lipid assimilation from food. The third section focuses on applications of controlled lipid digestion in developing personalized foods designed for specific consumer groups, with particular emphasis on two target populations: overweight individuals and infants.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Iveta Klojdová
- DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic
| | - Ruben Agregán
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
4
|
Blok L, Hanssen N, Nieuwdorp M, Rampanelli E. From Microbes to Metabolites: Advances in Gut Microbiome Research in Type 1 Diabetes. Metabolites 2025; 15:138. [PMID: 39997763 PMCID: PMC11857261 DOI: 10.3390/metabo15020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Type 1 diabetes (T1D) is a severe chronic T-cell mediated autoimmune disease that attacks the insulin-producing beta cells of the pancreas. The multifactorial nature of T1D involves both genetic and environmental components, with recent research focusing on the gut microbiome as a crucial environmental factor in T1D pathogenesis. The gut microbiome and its metabolites play an important role in modulating immunity and autoimmunity. In recent years, studies have revealed significant alterations in the taxonomic and functional composition of the gut microbiome associated with the development of islet autoimmunity and T1D. These changes include reduced production of short-chain fatty acids, altered bile acid and tryptophan metabolism, and increased intestinal permeability with consequent perturbations of host (auto)immune responses. Methods/Results: In this review, we summarize and discuss recent observational, mechanistic and etiological studies investigating the gut microbiome in T1D and elucidating the intricate role of gut microbes in T1D pathogenesis. Moreover, we highlight the recent advances in intervention studies targeting the microbiota for the prevention or treatment of human T1D. Conclusions: A deeper understanding of the evolution of the gut microbiome before and after T1D onset and of the microbial signals conditioning host immunity may provide us with essential insights for exploiting the microbiome as a prognostic and therapeutic tool.
Collapse
Affiliation(s)
- Lente Blok
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Nordin Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| |
Collapse
|
5
|
Cifuentes M, Verdejo HE, Castro PF, Corvalan AH, Ferreccio C, Quest AFG, Kogan MJ, Lavandero S. Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology (Bethesda) 2025; 40:0. [PMID: 39078396 DOI: 10.1152/physiol.00021.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, the persistence of the harmful trigger or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated with the development of several increasingly prevalent and serious chronic conditions, such as obesity, cancer, and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms, and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases, and cancer. We examine the state of the art in selected aspects of the topic and propose future directions and approaches for the field.
Collapse
Affiliation(s)
- Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- OMEGA Laboratory, Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Hematology and Oncology, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Public Health, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Department of Pharmacological & Toxicological Chemistry, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
- Department of Biochemistry & Molecular Biology, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
6
|
Minagar A, Jabbour R. The Human Gut Microbiota: A Dynamic Biologic Factory. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025; 189:91-106. [PMID: 38337077 DOI: 10.1007/10_2023_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term "gut microbiota" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term "microbiome" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Biotechnology (Bioinformatics), University of Maryland Global Campus, Adelphi, MD, USA
| | - Rabih Jabbour
- University of Maryland Global Campus, Largo, MD, USA
| |
Collapse
|
7
|
Deng Y, Nong Z, Wei M, Xu Y, Luo Y, Li X, Zhao R, Yang Z, Pan L. Characteristics and function of the gut microbiota in patients with IgA nephropathy via metagenomic sequencing technology. Ren Fail 2024; 46:2393754. [PMID: 39177227 PMCID: PMC11346320 DOI: 10.1080/0886022x.2024.2393754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the characteristics and related functional pathways of the gut microbiota in patients with IgA nephropathy (IgAN) through metagenomic sequencing technology. METHODS We enrolled individuals with primary IgAN, including patients with normal and abnormal renal function. Additionally, we recruited healthy volunteers as the healthy control group. Stool samples were collected, and species and functional annotation were performed through fecal metagenome sequencing. We employed linear discriminant analysis effect size (LEfSe) analysis to identify significantly different bacterial microbiota and functional pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to annotate microbiota functions, and redundancy analysis (RDA) was performed to analyze the factors affecting the composition and distribution of the gut microbiota. RESULTS LEfSe analysis revealed differences in the gut microbiota between IgAN patients and healthy controls. The characteristic microorganisms in the IgAN group were classified as Escherichia coli, with a significantly greater abundance than that in the healthy control group (p < 0.05). The characteristic microorganisms in the IgAN group with abnormal renal function were identified as Enterococcaceae, Moraxella, Moraxella, and Acinetobacter. KEGG functional analysis demonstrated that the functional pathways of the microbiota that differed between IgAN patients and healthy controls were related primarily to bile acid metabolism. CONCLUSIONS The status of the gut microbiota is closely associated not only with the onset of IgAN but also with the renal function of IgAN patients. The characteristic gut microbiota may serve as a promising diagnostic biomarker and therapeutic target for IgAN.
Collapse
Affiliation(s)
- Yang Deng
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiqiang Nong
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Meiju Wei
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanshan Xu
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuzhen Luo
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohua Li
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ruobei Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenhua Yang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Pan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Singh S, Kriti M, Catanzaro R, Marotta F, Malvi M, Jain A, Verma V, Nagpal R, Tiwari R, Kumar M. Deciphering the Gut–Liver Axis: A Comprehensive Scientific Review of Non-Alcoholic Fatty Liver Disease. LIVERS 2024; 4:435-454. [DOI: 10.3390/livers4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health issue. The condition is closely linked to metabolic dysfunctions such as obesity and type 2 diabetes. The gut–liver axis, a bidirectional communication pathway between the liver and the gut, plays a crucial role in the pathogenesis of NAFLD. This review delves into the mechanisms underlying the gut–liver axis, exploring the influence of gut microbiota, intestinal permeability, and inflammatory pathways. This review also explores the potential therapeutic strategies centered on modulating gut microbiota such as fecal microbiota transplantation; phage therapy; and the use of specific probiotics, prebiotics, and postbiotics in managing NAFLD. By understanding these interactions, we can better comprehend the development and advancement of NAFLD and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Mona Kriti
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Roberto Catanzaro
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Service, University Hospital Policlinico “G. Rodolico”, University of Catania, 95123 Catania, Italy
| | | | - Mustafa Malvi
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Ajay Jain
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rajnarayan Tiwari
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| |
Collapse
|
9
|
Jia H, Dong N. Effects of bile acid metabolism on intestinal health of livestock and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:1258-1269. [PMID: 38649786 DOI: 10.1111/jpn.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bile acids are synthesised in the liver and are essential amphiphilic steroids for maintaining the balance of cholesterol and energy metabolism in livestock and poultry. They can be used as novel feed additives to promote fat utilisation in the diet and the absorption of fat-soluble substances in the feed to improve livestock performance and enhance carcass quality. With the development of understanding of intestinal health, the balance of bile acid metabolism is closely related to the composition and growth of livestock intestinal microbiota, inflammatory response, and metabolic diseases. This paper systematically reviews the effects of bile acid metabolism on gut health and gut microbiology in livestock. In addition, our paper summarised the role of bile acid metabolism in performance and disease control.
Collapse
Affiliation(s)
- Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Abildinova GZ, Benberin VV, Vochshenkova TA, Afshar A, Mussin NM, Kaliyev AA, Zhussupova Z, Tamadon A. Global trends and collaborative networks in gut microbiota-insulin resistance research: a comprehensive bibliometric analysis (2000-2024). Front Med (Lausanne) 2024; 11:1452227. [PMID: 39211341 PMCID: PMC11358073 DOI: 10.3389/fmed.2024.1452227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background The human gut microbiota plays a crucial role in maintaining metabolic health, with substantial evidence linking its composition to insulin resistance. This study aims to analyze the global scholarly contributions on the relationship between intestinal microbiota and insulin resistance from 2000 to 2024. Methods A bibliometric analysis was conducted using data from Scopus and Web of Science Core Collection. The search strategy included terms related to "Gastrointestinal Microbiome" and "Insulin Resistance" in the title or abstract. Results The analysis of 1,884 relevant studies from 510 sources was conducted, revealing a mean citation of 51.36 per manuscript and a remarkable annual growth rate of 22.08%. The findings highlight the significant role of gut microbiota in insulin resistance, corroborating prior studies that emphasize its influence on metabolic disorders. The literature review of the current study showed key mechanisms include the regulation of short-chain fatty acids (SCFAs) and gut hormones, which are critical for glucose metabolism and inflammation regulation. The analysis also identifies "Food and Function" as the most productive journal and Nieuwdorp M. as a leading author, underscoring the collaborative nature of this research area. Conclusion The consistent increase in publications in the field of gut microbiota and insulin resistance indicates growing recognition of the gut microbiota's therapeutic potential in treating insulin resistance and related metabolic disorders. Future research should focus on standardizing methodologies and conducting large-scale clinical trials to fully realize these therapeutic possibilities.
Collapse
Affiliation(s)
- Gulshara Zh Abildinova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Valeriy V. Benberin
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Foundation, Institute of Innovative and Preventive Medicine, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- PerciaVista R&D Co., Shiraz, Iran
| | - Nadiar M. Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset A. Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neurology, Psychiatry and Narcology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Choucair I, Mallela DP, Hilser JR, Hartiala JA, Nemet I, Gogonea V, Li L, Lusis AJ, Fischbach MA, Tang WW, Allayee H, Hazen SL. Comprehensive Clinical and Genetic Analyses of Circulating Bile Acids and Their Associations With Diabetes and Its Indices. Diabetes 2024; 73:1215-1228. [PMID: 38701355 PMCID: PMC11262044 DOI: 10.2337/db23-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Bile acids (BAs) are cholesterol-derived compounds that regulate glucose, lipid, and energy metabolism. Despite their significance in glucose homeostasis, the association between specific BA molecular species and their synthetic pathways with diabetes is unclear. Here, we used a recently validated, stable-isotope dilution, high-performance liquid chromatography with tandem mass spectrometry method to quantify a panel of BAs in fasting plasma from 2,145 study participants and explored structural and genetic determinants of BAs linked to diabetes, insulin resistance, and obesity. Multiple 12α-hydroxylated BAs were associated with diabetes (adjusted odds ratio [aOR] range, 1.3-1.9; P < 0.05 for all) and insulin resistance (aOR range, 1.3-2.2; P < 0.05 for all). Conversely, multiple 6α-hydroxylated BAs and isolithocholic acid (iso-LCA) were inversely associated with diabetes and obesity (aOR range, 0.3-0.9; P < 0.05 for all). Genome-wide association studies revealed multiple genome-wide significant loci linked with 9 of the 14 diabetes-associated BAs, including a locus for iso-LCA (rs11866815). Mendelian randomization analyses showed genetically elevated deoxycholic acid levels were causally associated with higher BMI, and iso-LCA levels were causally associated with reduced BMI and diabetes risk. In conclusion, comprehensive, large-scale, quantitative mass spectrometry and genetics analyses show circulating levels of multiple structurally specific BAs, especially DCA and iso-LCA, are clinically associated with and genetically linked to obesity and diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Ibrahim Choucair
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
| | - Deepthi P. Mallela
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
| | - James R. Hilser
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jaana A. Hartiala
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
| | - Valentin Gogonea
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
- Department of Chemistry, Cleveland State University, Cleveland, OH
| | - Lin Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
| | - Aldons J. Lusis
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
| | | | - W.H. Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Hooman Allayee
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
12
|
Yang X, Xu Y, Li J, Ran X, Gu Z, Song L, Zhang L, Wen L, Ji G, Wang R. Bile acid-gut microbiota imbalance in cholestasis and its long-term effect in mice. mSystems 2024; 9:e0012724. [PMID: 38934542 PMCID: PMC11265269 DOI: 10.1128/msystems.00127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
UNLABELLED Cholestasis is a common morbid state that may occur in different phases; however, a comprehensive evaluation of the long-term effect post-recovery is still lacking. In the hepatic cholestasis mouse model, which was induced by a temporary complete blockage of the bile duct, the stasis of bile acids and liver damage typically recovered within a short period. However, we found that the temporary hepatic cholestasis had a long-term effect on gut microbiota dysbiosis, including overgrowth of small intestinal bacteria, decreased diversity of the gut microbiota, and an overall imbalance in its composition accompanied by an elevated inflammation level. Additionally, we observed an increase in Escherichia-Shigella (represented by ASV136078), rich in virulence factors, in both small and large intestines following cholestasis. To confirm the causal role of dysregulated gut microbiota in promoting hepatic inflammation and injury, we conducted gut microbiota transplantation into germ-free mice. We found that recipient mice transplanted with feces from cholestasis mice exhibited liver inflammation, damage, and accumulation of hepatic bile acids. In conclusion, our study demonstrates that cholestasis disrupts the overall load and structural composition of the gut microbiota in mice, and these adverse effects persist after recovery from cholestatic liver injury. This finding suggests the importance of monitoring the structural composition of the gut microbiota in patients with cholestasis and during their recovery. IMPORTANCE Our pre-clinical study using a mouse model of cholestasis underscores that cholestasis not only disrupts the equilibrium and structural configuration of the gut microbiota but also emphasizes the persistence of these adverse effects even after bile stasis restoration. This suggests the need of monitoring and initiating interventions for gut microbiota structural restoration in patients with cholestasis during and after recovery. We believe that our study contributes to novel and better understanding of the intricate interplay among bile acid homeostasis, gut microbiota, and cholestasis-associated complications. Our pre-clinical findings may provide implications for the clinical management of patients with cholestasis.
Collapse
Affiliation(s)
- Xin Yang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yuesong Xu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ximing Ran
- Department of Biostatistics and Bioinformatics, Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Zhihao Gu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Linfeng Song
- General Medicine, Medical school, Kunming University of Science and Technology, Kunming, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Singh A, Paruthy SB, Kuraria V, Dhawaria M, Khera D, M S H, Raju H, Madhuri SS, Saini Y, Kumar A. A Comprehensive Study on Ruptured Liver Abscess in a Tertiary Care Center. Cureus 2024; 16:e64526. [PMID: 39139323 PMCID: PMC11321501 DOI: 10.7759/cureus.64526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
Background Bacteria and parasites cause liver abscesses (LAs), with the unusual but fatal consequence of ruptured LA. Along with the clinical signs of icterus, right upper quadrant pain, and a history of loose stools, patients present with non-specific symptoms such as fever, nausea, and generalized weakness. Consistent findings include male sex prevalence and frequent alcohol consumption. Leukocytosis, abnormal liver function, and an increased international normalized ratio have been identified by biochemical analysis; however, these findings are not specific to a ruptured LA diagnosis, and imaging is necessary to reach a definitive diagnosis. Ultrasonography usually confirms the diagnosis, and computed tomography is required in certain situations. In confined ruptures, percutaneous drainage combined with antibiotic therapy is typically the initial treatment course. Generally reserved for non-responders or moribund patients with delayed presentation, an open surgical approach may involve simple draining of a ruptured abscess or ileocecal resection, or right hemicolectomy in cases of large bowel perforations, both of which increase patient morbidity. A definite guide to management is still missing in the literature. In this article, we have discussed and correlated with data the predictors of surgery and preoperative predictors of perforation. Materials and methods This retrospective study was performed at Safdarjung Hospital, New Delhi, between January 2022 and December 2023. The study included 115 patients diagnosed with ruptured LA by ultrasound. Medical records were analyzed, and various parameters of the illness, clinical features, hematological and biochemical profiles, ultrasound features, and therapeutic measures were noted and assessed. Results Of the 115 patients, 88% (n = 101) were male. The most common symptoms were abdominal pain (114 patients) and right upper abdominal tenderness (107 patients). Fifty-two patients were treated with percutaneous drainage, and 42 underwent laparotomy. Intercostal drainage (ICD) tubes were placed in 19 patients. Sixteen patients had large bowel perforations. Twenty-three patients died (20%), including 17 patients who underwent laparotomy and nine patients who had large bowel perforation (39.1% associated with overall mortality, 52.9% associated with mortality in laparotomy). One patient with percutaneous drainage and a right ICD tube died in the intensive care unit. Four patients died before intervention. Significant associations were noted between perforation and mortality in patients who underwent surgical drainage. Loose motions, alcohol and smoking consumption, and deranged creatinine and albumin levels were found to have a significant association with surgical drainage. Conclusion The study found that a ruptured liver abscess (LA) may require surgery to drain the collection or repair the pathological bowel, which increases the morbidity, but it is a lifesaving procedure over percutaneous catheter drainage. The study also identified factors associated with a higher risk of death, such as a history of loose stools and low blood albumin levels.
Collapse
Affiliation(s)
- Arun Singh
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Shivani B Paruthy
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Vaibhav Kuraria
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Mohit Dhawaria
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Dhananjay Khera
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Hrishikesh M S
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Hinduja Raju
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Singamsetty S Madhuri
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Yogesh Saini
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Abhinav Kumar
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| |
Collapse
|
14
|
Liu H, Wei M, Tan B, Dong X, Xie S. The Supplementation of Berberine in High-Carbohydrate Diets Improves Glucose Metabolism of Tilapia ( Oreochromis niloticus) via Transcriptome, Bile Acid Synthesis Gene Expression and Intestinal Flora. Animals (Basel) 2024; 14:1239. [PMID: 38672387 PMCID: PMC11047455 DOI: 10.3390/ani14081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Berberine is an alkaloid used to treat diabetes. This experiment aimed to investigate the effects of berberine supplementation in high-carbohydrate diets on the growth performance, glucose metabolism, bile acid synthesis, liver transcriptome, and intestinal flora of Nile tilapia. The six dietary groups were the C group with 29% carbohydrate, the H group with 44% carbohydrate, and the HB1-HB4 groups supplemented with 25, 50, 75, and 100 mg/kg of berberine in group H. The results of the 8-week trial showed that compared to group C, the abundance of Bacteroidetes was increased in group HB2 (p < 0.05). The cholesterol-7α-hydroxylase (CYP7A1) and sterol-27-hydroxylase (CYP27A1) activities were decreased and the expression of FXR was increased in group HB4 (p < 0.05). The pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK) activities was decreased in group HB4 (p < 0.05). The liver transcriptome suggests that berberine affects carbohydrate metabolic pathways and primary bile acid synthesis pathways. In summary, berberine affects the glucose metabolism in tilapia by altering the intestinal flora structure, enriching differentially expressed genes (DEGs) in the bile acid pathway to stimulate bile acid production so that it promotes glycolysis and inhibits gluconeogenesis. Therefore, 100 mg/kg of berberine supplementation in high-carbohydrate diets is beneficial to tilapia.
Collapse
Affiliation(s)
- Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Menglin Wei
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (H.L.); (M.W.); (X.D.); (S.X.)
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| |
Collapse
|
15
|
Hu L, Wang X, Qian M, Zhang H, Jin Y. Impacts of prothioconazole and prothioconazole-desthio on bile acid and glucolipid metabolism: Upregulation of CYP7A1 expression in HepG2 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105702. [PMID: 38225060 DOI: 10.1016/j.pestbp.2023.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
As an efficient triazole fungicide, prothioconazole (PTC) is widely used for the prevention and control of plant fungal pathogens. It was reported that the residues of PTC and prothioconazole-desthio (PTC-d) have been detected in the environment and crops, and the effects of PTC-d may be higher than that of PTC. Currently, PTC and PTC-d have been proven to induce hepatic metabolic disorders. However, their toxic effects on cellular bile acid (BA) and glucolipid metabolism remain unknown. In this study, HepG2 cells were exposed to 1-500 μM of PTC or PTC-d. High concentrations of PTC and PTC-d were found to induce cytotoxicity; thus, subsequent experimental exposure was conducted at concentrations of 10-50 μM. The expression levels of CYP7A1 and TG synthesis-related genes and levels of TG and total BA were observed to increase in HepG2 cells. Molecular docking analysis revealed direct interactions between PTC or PTC-d and CYP7A1 protein. To further investigate the underlying mechanisms, PTC and PTC-d were treated to HepG2 cells in which CYP7A1 expression was knocked down using siCYP7A1. It was observed that PTC and PTC-d affected the BA metabolism process and regulated the glycolipid metabolism process by promoting the expression of CYP7A1. In summary, we comprehensively analyzed the effects and mechanisms of PTC and PTC-d on cellular metabolism in HepG2 cells, providing theoretical data for evaluating the safety and potential risks associated with these substances.
Collapse
Affiliation(s)
- Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
16
|
Liu L, Xiang M, Cai X, Wu B, Chen C, Cai N, Ao D. Multi-omics analyses of gut microbiota via 16S rRNA gene sequencing, LC-MS/MS and diffusion tension imaging reveal aberrant microbiota-gut-brain axis in very low or extremely low birth weight infants with white matter injury. BMC Microbiol 2023; 23:387. [PMID: 38057706 PMCID: PMC10699022 DOI: 10.1186/s12866-023-03103-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE The goal of this study was to comprehensively investigate the characteristics of gut microbiota dysbiosis and metabolites levels in very low or extremely low birth weight (VLBW/ELBW) infants with white matter injury (WMI). METHODS In this prospective cohort study, preterm infants with gestational age < 32 weeks and weight < 1.5 kg were investigated. Additionally, fecal samples were collected on days zero, 14d and 28d after admission to the intensive care unit. All subjects underwent brain scan via MRI and DTI at a corrected gestational age of 37 ~ 40 weeks. Based on the results of MRI examination, the VLBW/ELBW infants were divided into two groups: WMI and non-WMI. Finally, based on a multi-omics approach, we performed 16S rRNA gene sequencing, LC-MS/MS, and diffusion tension imaging to identify quantifiable and informative biomarkers for WMI. RESULT We enrolled 23 patients with and 48 patients without WMI. The results of 16S RNA sequencing revealed an increase in the number of Staphylococcus and Acinetobacter species in the fecal samples of infants with WMI, as well as increasing levels of S. caprae and A._johnsonii. LEfSe analysis (LDA ≥ 4) showed that the WMI group carried an abundance of Staphylococcus species including S. caprae, members of the phyla Bacteroidota and Actinobacteriota, and Acinetobacter species. A total of 139 metabolic markers were significantly and differentially expressed between WMI and nWMI. KEGG pathway enrichment analysis revealed that the WMI group showed significant downregulation of 17 metabolic pathways including biosynthesis of arginine and primary bile acids. The WMI group showed delayed brain myelination, especially in the paraventricular white matter and splenium of corpus callosum. Staphylococcus species may affect WMI by downregulating metabolites such as cholic acid, allocholic acid, and 1,3-butadiene. Gut microbiota such as Acinetobacter and Bacteroidetes may alter white matter structurally by upregulating metabolites such as cinobufagin. CONCLUSION Based on 16S RNA sequencing results, severe gut microbiota dysbiosis was observed in the WMI group. The results might reveal damage to potential signaling pathways of microbiota-gut-brain axis in gut microbiota. The mechanism was mediated via downregulation of the bile acid biosynthetic pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiangsheng Cai
- Guangzhou Cadre Health Management Center, Guangzhou Eleventh People's Hospital, Guangzhou, 510000, Guangdong, China
| | - Benqing Wu
- University of the Chinese Academy of Science-Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Chaohong Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Nali Cai
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Dang Ao
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
17
|
Lu SY, Tan K, Zhong S, Cheong KL. Marine algal polysaccharides as future potential constituents against non-alcoholic steatohepatitis. Int J Biol Macromol 2023; 250:126247. [PMID: 37562483 DOI: 10.1016/j.ijbiomac.2023.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most chronic and incurable liver diseases triggered mainly by an inappropriate diet and hereditary factors which burden liver metabolic stress, and may result in liver fibrosis or even cancer. While the available drugs show adverse side effects. The non-toxic bioactive molecules derived from natural resources, particularly marine algal polysaccharides (MAPs), present significant potential for treating NASH. In this review, we summarized the protective effects of MAPs on NASH from multiple perspectives, including reducing oxidative stress, regulating lipid metabolism, enhancing immune function, preventing fibrosis, and providing cell protection. Furthermore, the mechanisms of MAPs in treating NASH were comprehensively described. Additionally, we highlight the influences of the special structures of MAPs on their bioactive differences. Through this comprehensive review, we aim to further elucidate the molecular mechanisms of MAPs in NASH and inspire insights for deeper research on the functional food and clinical applications of MAPs.
Collapse
Affiliation(s)
- Si-Yuan Lu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China.
| |
Collapse
|
18
|
Guo GJ, Yao F, Lu WP, Xu HM. Gut microbiome and metabolic-associated fatty liver disease: Current status and potential applications. World J Hepatol 2023; 15:867-882. [PMID: 37547030 PMCID: PMC10401411 DOI: 10.4254/wjh.v15.i7.867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. In recent years, the occurrence rate of MAFLD has been on the rise, mainly due to lifestyle changes, high-calorie diets, and imbalanced dietary structures, thereby posing a threat to human health and creating heavy social and economic burdens. With the development of 16S sequencing and integrated multi-omics analysis, the role of the gut microbiota (GM) and its metabolites in MAFLD has been further recognized. The GM plays a role in digestion, energy metabolism, vitamin synthesis, the prevention of pathogenic bacteria colonisation, and immunoregulation. The gut-liver axis is one of the vital links between the GM and the liver. Toxic substances in the intestine can enter the liver through the portal vascular system when the intestinal barrier is severely damaged. The liver also influences the GM in various ways, such as bile acid circulation. The gut-liver axis is essential in maintaining the body's normal physiological state and plays a role in the onset and prognosis of many diseases, including MAFLD. This article reviews the status of the GM and MAFLD and summarizes the GM characteristics in MAFLD. The relationship between the GM and MAFLD is discussed in terms of bile acid circulation, energy metabolism, micronutrients, and signalling pathways. Current MAFLD treatments targeting the GM are also listed.
Collapse
Affiliation(s)
- Gong-Jing Guo
- Gastroenterology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, Guangdong Province, China
| | - Fei Yao
- Department of Science and Education, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, Guangdong Province, China
| | - Wei-Peng Lu
- The First Clinical School, Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China.
| |
Collapse
|
19
|
Liu Y, Azad MAK, Ding S, Zhu Q, Blachier F, Yu Z, Gao H, Kong X. Dietary bile acid supplementation in weaned piglets with intrauterine growth retardation improves colonic microbiota, metabolic activity, and epithelial function. J Anim Sci Biotechnol 2023; 14:99. [PMID: 37438768 DOI: 10.1186/s40104-023-00897-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) is one of the major constraints in animal production. Our previous study showed that piglets with IUGR are associated with abnormal bile acid (BA) metabolism. This study explored whether dietary BA supplementation could improve growth performance and colonic development, function, microbiota, and metabolites in the normal birth weight (NBW) and IUGR piglets. A total of 48 weaned piglets (24 IUGR and 24 NBW) were allocated to four groups (12 piglets per group): (i) NBW group, (ii) NBW + BA group, (iii) IUGR group, and (iv) IUGR + BA group. Samples were collected after 28 days of feeding. RESULTS The results showed that dietary BA supplementation increased the length and weight of the colon and colon weight to body weight ratio, while decreased the plasma diamine oxidase (DAO) concentration in the NBW piglets (P < 0.05). Dietary BA supplementation to IUGR piglets decreased (P < 0.05) the plasma concentrations of D-lactate and endotoxin and colonic DAO and endotoxin, suggesting a beneficial effect on epithelial integrity. Moreover, dietary BA supplementation to NBW and IUGR piglets increased Firmicutes abundance and decreased Bacteroidetes abundance (P < 0.05), whereas Lactobacillus was the dominant genus in the colon. Metabolome analysis revealed 65 and 51 differential metabolites in the colon of piglets fed a diet with/without BA, respectively, which was associated with the colonic function of IUGR piglets. Furthermore, dietary BA supplementation to IUGR piglets upregulated the expressions of CAT, GPX, SOD, Nrf1, IL-2, and IFN-γ in colonic mucosa (P < 0.05). CONCLUSIONS Collectively, dietary BA supplementation could improve the colonic function of IUGR piglets, which was associated with increasing proportions of potentially beneficial bacteria and metabolites. Furthermore, BA shows a promising application prospect in improving the intestinal ecosystem and health of animals.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Sujuan Ding
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Qian Zhu
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Francois Blachier
- Université Paris-SaclayAgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Zugong Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Haijun Gao
- College of Medicine, Howard University, Washington, DC, 20059, USA
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Process in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
20
|
Zhang H, Mo Y. The gut-retina axis: a new perspective in the prevention and treatment of diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1205846. [PMID: 37469982 PMCID: PMC10352852 DOI: 10.3389/fendo.2023.1205846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic retinopathy (DR) is a microvascular lesion that occurs as a complication of diabetes mellitus. Many studies reveal that retinal neurodegeneration occurs early in its pathogenesis, and abnormal retinal function can occur in patients without any signs of microvascular abnormalities. The gut microbiota is a large, diverse colony of microorganisms that colonize the human intestine. Studies indicated that the gut microbiota is involved in the pathophysiological processes of DR and plays an important role in its development. On the one hand, numerous studies demonstrated the involvement of gut microbiota in retinal neurodegeneration. On the other hand, alterations in gut bacteria in RD patients can cause or exacerbate DR. The present review aims to underline the critical relationship between gut microbiota and DR. After a brief overview of the composition, function, and essential role of the gut microbiota in ocular health, and the review explores the concept of the gut-retina axis and the conditions of the gut-retina axis crosstalk. Because gut dysbiosis has been associated with DR, the review intends to determine changes in the gut microbiome in DR, the hypothesized mechanisms linking to the gut-retina axis, and its predictive potential.
Collapse
Affiliation(s)
- Haiyan Zhang
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Ya Mo
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| |
Collapse
|
21
|
Chen M, Cao Y, Ji G, Zhang L. Lean nonalcoholic fatty liver disease and sarcopenia. Front Endocrinol (Lausanne) 2023; 14:1217249. [PMID: 37424859 PMCID: PMC10327437 DOI: 10.3389/fendo.2023.1217249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in the world. The risk factor for NAFLD is often considered to be obesity, but it can also occur in people with lean type, which is defined as lean NAFLD. Lean NAFLD is commonly associated with sarcopenia, a progressive loss of muscle quantity and quality. The pathological features of lean NAFLD such as visceral obesity, insulin resistance, and metabolic inflammation are inducers of sarcopenia, whereas loss of muscle mass and function further exacerbates ectopic fat accumulation and lean NAFLD. Therefore, we discussed the association of sarcopenia and lean NAFLD, summarized the underlying pathological mechanisms, and proposed potential strategies to reduce the risks of lean NAFLD and sarcopenia in this review.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
23
|
Du Y, Gao Y, Hu M, Hou J, Yang L, Wang X, Du W, Liu J, Xu Q. Colonization and development of the gut microbiome in calves. J Anim Sci Biotechnol 2023; 14:46. [PMID: 37031166 PMCID: PMC10082981 DOI: 10.1186/s40104-023-00856-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 04/10/2023] Open
Abstract
Colonization and development of the gut microbiome are crucial for the growth and health of calves. In this review, we summarized the colonization, beneficial nutrition, immune function of gut microbiota, function of the gut barrier, and the evolution of core microbiota in the gut of calves of different ages. Homeostasis of gut microbiome is beneficial for nutritional and immune system development of calves. Disruption of the gut microbiome leads to digestive diseases in calves, such as diarrhea and intestinal inflammation. Microbiota already exists in the gut of calf fetuses, and the colonization of microbiota continues to change dynamically under the influence of various factors, which include probiotics, diet, age, and genotype. Colonization depends on the interaction between the gut microbiota and the immune system of calves. The abundance and diversity of these commensal microbiota stabilize and play a critical role in the health of calves.
Collapse
Affiliation(s)
- Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya Gao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiu Hou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linhai Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghuang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianxin Liu
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Wang X, Weng Y, Geng S, Wang C, Jin C, Shi L, Jin Y. Maternal procymidone exposure has lasting effects on murine gut-liver axis and glucolipid metabolism in offspring. Food Chem Toxicol 2023; 174:113657. [PMID: 36764477 DOI: 10.1016/j.fct.2023.113657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
There is increasing evidence that maternal exposure to environmental pollutants can cause intestinal and metabolic diseases, and these disease risks still exist in offspring. Here, female C57BL/6 mice were orally treated with procymidone (PRO) (10 and 100 mg/kg body weight/day) by dietary supplementation during the gestation and lactation periods. Then, we discovered PRO changed the physiology, intestinal barrier and metabolism both in the generations of F0 and different developmental stages of F1 (7 weeks and 30 weeks old, respectively). Maternal PRO exposure affected the growth phenotypes and the glucolipid metabolism related indicators and genes of mice, especially the male mice of F1 generations. The changes in bile acids (BAs) metabolism demonstrated that PRO disordered glucolipid metabolism through enterohepatic circulation. Furthermore, PRO reduced mucus secretion in the gut and altered the composition of gut microbiota, leading more bacteria to disseminate in the gut and inflammatory responses both in F0 and F1 regenerations. And PRO-induced gut microbiota dysbiosis was tightly related to BAs metabolites. Together, the results indicated that PRO destructed the functional integrity of intestinal barrier and the inflammatory reaction was triggered. And then, the disorder of glucolipid metabolism was induced through the BAs enterohepatic circulation. This study indicated that the cross-generation effects of PRO could not be ignored.
Collapse
Affiliation(s)
- Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shinan Geng
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
25
|
Guo Q, Hou X, Cui Q, Li S, Shen G, Luo Q, Wu H, Chen H, Liu Y, Chen A, Zhang Z. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Crit Rev Food Sci Nutr 2023; 64:6714-6736. [PMID: 36756885 DOI: 10.1080/10408398.2023.2173719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Pectin is a complex polysaccharide found in plant cell walls and interlayers. As a food component, pectin is benefit for regulating intestinal flora. Metabolites of intestinal flora, including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), are involved in blood glucose regulation. SCFAs promote insulin synthesis through the intestine-GPCRs-derived pathway and hepatic adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway to promote hepatic glycogen synthesis. On the one hand, BAs stimulate intestinal L cells and pancreatic α cells to secrete Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) through receptors G protein-coupled receptor (TGR5) and farnesoid X receptor (FXR). On the other hand, BAs promote hepatic glycogen synthesis through AMPK pathway. LPS inhibits the release of inflammatory cytokines through Toll-like receptors (TLRs)-myeloid differentiation factor 88 (MYD88) pathway and mitogen-activated protein kinase (MAPK) pathway, thereby alleviating insulin resistance (IR). In brief, both SCFAs and BAs promote GLP-1 secretion through different pathways, employing strategies of increasing glucose consumption and decreasing glucose production to maintain normal glucose levels. Notably, pectin can also directly inhibit the release of inflammatory cytokines through the -TLRs-MYD88 pathway. These data provide valuable information for further elucidating the relationship between pectin-intestinal flora-glucose metabolism.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qiang Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qingying Luo
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hejun Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
26
|
JinHua C, YaMan L, Jian L. Double pigtail tube drainage for large multiloculated pyogenic liver abscesses. Front Surg 2023; 9:1106348. [PMID: 36713673 PMCID: PMC9877412 DOI: 10.3389/fsurg.2022.1106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background This study aims to investigate the efficacy and safety of double pigtail tube drainage compared with single pigtail tube drainage for the treatment of multiloculated pyogenic liver abscesses greater than 5 cm. Patients and Methods This study retrospectively analyzed patients with pyogenic liver abscess admitted in the Affiliated Hospital of Chengde Medical College between May 2013 and May 2021. Patients with pyogenic liver abscess more than 5 cm in size, who underwent drainage of the abscess with either double pigtail or single pigtail tube, were included. Results A total of 97 patients with pyogenic liver abscesses larger than 5 cm were studied. These included 34 patients with double pigtail tube drainage and 63 patients with single pigtail tube drainage. The postoperative hospital stay (13.39 ± 4.21 days vs. 15.67 ± 7.50 days; P = 0.045), and time for removal of the catheter (17.23 ± 3.70 days vs. 24.11 ± 5.83 days; P = 0.038) were lower in the double pigtail tube group compared with the single pigtail tube group. The rate of reduction, in three days, of c-reactive protein levels was 26.61 ± 14.11 mg/L/day in the double pigtail tube group vs. 20.06 ± 11.74 mg/L/day in the single pigtail tube group (P = 0.025). The diameter of the abscess cavity at discharge was 3.1 ± 0.07 cm in the double pigtail tube group as compared with 3.7 ± 0.6 cm in the single pigtail tube group (P = 0.047). There was no bleeding in any of the patients despite abnormal coagulation profiles. There was no recurrence of abscess within six months of discharge and no death in the double pigtail tube group. Conclusion: Double pigtail tube drainage treatment in multiloculated pyogenic liver abscesses greater than 5 cm in size, is safe and effective.
Collapse
Affiliation(s)
- Cui JinHua
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Liu YaMan
- Department of Gynaecology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Li Jian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical College, Chengde, China,Correspondence: Li Jian
| |
Collapse
|
27
|
Sah DK, Arjunan A, Park SY, Jung YD. Bile acids and microbes in metabolic disease. World J Gastroenterol 2022; 28:6846-6866. [PMID: 36632317 PMCID: PMC9827586 DOI: 10.3748/wjg.v28.i48.6846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
Bile acids (BAs) serve as physiological detergents that enable the intestinal absorption and transportation of nutrients, lipids and vitamins. BAs are primarily produced by humans to catabolize cholesterol and play crucial roles in gut metabolism, microbiota habitat regulation and cell signaling. BA-activated nuclear receptors regulate the enterohepatic circulation of BAs which play a role in energy, lipid, glucose, and drug metabolism. The gut microbiota plays an essential role in the biotransformation of BAs and regulates BAs composition and metabolism. Therefore, altered gut microbial and BAs activity can affect human metabolism and thus result in the alteration of metabolic pathways and the occurrence of metabolic diseases/syndromes, such as diabetes mellitus, obesity/hypercholesterolemia, and cardiovascular diseases. BAs and their metabolites are used to treat altered gut microbiota and metabolic diseases. This review explores the increasing body of evidence that links alterations of gut microbial activity and BAs with the pathogenesis of metabolic diseases. Moreover, we summarize existing research on gut microbes and BAs in relation to intracellular pathways pertinent to metabolic disorders. Finally, we discuss how therapeutic interventions using BAs can facilitate microbiome functioning and ease metabolic diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Sun Young Park
- Department of Internal Medicine, Chonnam National University, Gwangju 501190, South Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| |
Collapse
|
28
|
Giannini C, Mastromauro C, Scapaticci S, Gentile C, Chiarelli F. Role of bile acids in overweight and obese children and adolescents. Front Endocrinol (Lausanne) 2022; 13:1011994. [PMID: 36531484 PMCID: PMC9747777 DOI: 10.3389/fendo.2022.1011994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Bile acids (BAs) are amphipathic molecules synthetized in the liver. They are primarily involved in the digestion of nutrients. Apart from their role in dietary lipid absorption, BAs have progressively emerged as key regulators of systemic metabolism and inflammation. In the last decade, it became evident that BAs are particularly important for the regulation of glucose, lipid, and energy metabolism. Indeed, the interest in role of BA in metabolism homeostasis is further increased due to the global public health increase in obesity and related complications and a large number of research postulating that there is a close mutual relationship between BA and metabolic disorders. This strong relationship seems to derive from the role of BAs as signaling molecules involved in the regulation of a wide spectrum of metabolic pathways. These actions are mediated by different receptors, particularly nuclear farnesoid X receptor (FXR) and Takeda G protein coupled receptor 5 (TGR5), which are probably the major effectors of BA actions. These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in BA, lipid and carbohydrate metabolism, energy expenditure, and inflammation. The large correlation between BAs and metabolic disorders offers the possibility that modulation of BAs could be used as a therapeutic approach for the treatment of metabolic diseases, including obesity itself. The aim of this review is to describe the main physiological and metabolic actions of BA, focusing on its signaling pathways, which are important in the regulation of metabolism and might provide new BA -based treatments for metabolic diseases.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | | | |
Collapse
|
29
|
Polidori I, Marullo L, Ialongo C, Tomassetti F, Colombo R, di Gaudio F, Calugi G, Marrone G, Noce A, Bernardini S, Broccolo F, Pieri M. Characterization of Gut Microbiota Composition in Type 2 Diabetes Patients: A Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315913. [PMID: 36497987 PMCID: PMC9740005 DOI: 10.3390/ijerph192315913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 05/27/2023]
Abstract
(1) Background: A clinical laboratory index to assess gut dysbiosis is the F/B ratio < 0.8. In fact, an elevated proportion of Firmicutes and a reduced population of Bacteroides in diabetes type 2 (T2D) subjects has been observed. This study aimed to detail the dysbiosis status in the Italian population, focusing on some pathogenic spectra (T2D) or metabolic disorders. (2) Material and methods: A quantity of 334 fecal samples was analyzed in order to perform genetic testing and sequencing. (3) Results: A trend in over imbalance was observed in the percentage of Proteobacteria (median value: 6.75%; interquartile range (IQR): 3.57−17.29%). A statistically significant association (χ2p = 0.033) was observed between type of dysbiosis and T2D, corresponding to an Odds Ratio (OR) of 1.86. It was noted that females with cystitis/candidiasis are significantly prevalent in T2D patients (p < 0.01; OR: 3.59; 95% CI: 1.43−8.99). Although, in non-diabetic males, a sugar craving is significantly associated with the rate of dysbiosis in non-diabetic males (p < 0.05; OR 1.07; 95% CI 1.00−1.16). (4) Conclusion: In T2D patients, the Bacteroidetes/Firmicutes ratio was biased in favor of Proteobacteria, to be expected due to the nutritional habits of the patients. Thus, T2D females had altered gut permeability favoring the development of infections in the vaginal tract.
Collapse
Affiliation(s)
- Isabella Polidori
- Lifebrain srl Cerba Healthcare, Guidonia Montecelio, 190/A Viale Roma, 00012 Rome, Italy
| | - Laura Marullo
- Lifebrain Nocera Cerba Healthcare, 84014 Nocera Inferiore, Italy
| | - Cristiano Ialongo
- Department of Experimental Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Colombo
- Lifebrain srl Cerba Healthcare, Guidonia Montecelio, 190/A Viale Roma, 00012 Rome, Italy
| | | | - Graziella Calugi
- Lifebrain srl Cerba Healthcare, Guidonia Montecelio, 190/A Viale Roma, 00012 Rome, Italy
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Laboratory Medicine, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Francesco Broccolo
- Cerba HealthCare Italia, 20137 Milan, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, 20854 Milan, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Laboratory Medicine, Tor Vergata University Hospital, 00133 Rome, Italy
| |
Collapse
|
30
|
Zhou J, Zhang R, Guo P, Li P, Huang X, Wei Y, Yang C, Zhou J, Yang T, Liu Y, Shi S. Effects of intestinal microbiota on pharmacokinetics of cyclosporine a in rats. Front Microbiol 2022; 13:1032290. [PMID: 36483198 PMCID: PMC9723225 DOI: 10.3389/fmicb.2022.1032290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Intestinal microbiota has been confirmed to influencing the pharmacokinetic processes of a variety of oral drugs. However, the pharmacokinetic effects of the gut microbiota on cyclosporine A, a drug with a narrow therapeutic window, remain to be studied. METHOD Twenty-one rats were randomly divided into three groups: (a) control group (CON), (b) antibiotic treatment group (ABT) and (c) fecal microbe transplantation group (FMT). The ABT group was administrated with water containing multiple antibiotics to deplete microorganisms. FMT was with the same treatment, followed by oral administration of conventional rat fecal microorganisms for normalization. RESULT The bioavailability of CSA increased by 155.6% after intestinal microbes were consumed by antibiotics. After intestinal microbiota reconstruction by fecal transplantation, the increased bioavailability was significantly reduced and basically returned to the control group level. Changes in gut microbiota alter the protein expression of CYP3A1, UGT1A1 and P-gp in liver. The expressions of these three proteins in ABT group were significantly lower than those in CON and FMT groups. The relative abundance of Alloprevolleta and Oscillospiraceae UCG 005 was negatively correlated with CSA bioavailability while the relative abundance of Parasutterella and Eubacterium xylanophilum group was negatively correlated with CSA bioavailability. CONCLUSION Intestinal microbiota affects the pharmacokinetics of CSA by regulating the expression of CYP3A1, UGT1A1 and P-GP.
Collapse
Affiliation(s)
- Jinping Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengpeng Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peixia Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Wei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxiao Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojun Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Union Jiangnan Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Pezzino S, Sofia M, Faletra G, Mazzone C, Litrico G, La Greca G, Latteri S. Gut-Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. BIOLOGY 2022; 11:1622. [PMID: 36358323 PMCID: PMC9687983 DOI: 10.3390/biology11111622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent, multifactorial, and poorly understood liver disease with an increasing incidence worldwide. NAFLD is typically asymptomatic and coupled with other symptoms of metabolic syndrome. The prevalence of NAFLD is rising in tandem with the prevalence of obesity. In the Western hemisphere, NAFLD is one of the most prevalent causes of liver disease and liver transplantation. Recent research suggests that gut microbiome dysbiosis may play a significant role in the pathogenesis of NAFLD by dysregulating the gut-liver axis. The so-called "gut-liver axis" refers to the communication and feedback loop between the digestive system and the liver. Several pathological mechanisms characterized the alteration of the gut-liver axis, such as the impairment of the gut barrier and the increase of the intestinal permeability which result in endotoxemia and inflammation, and changes in bile acid profiles and metabolite levels produced by the gut microbiome. This review will explore the role of gut-liver axis disruption, mediated by gut microbiome dysbiosis, on NAFLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| |
Collapse
|
32
|
Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022; 12:1064. [PMID: 36355147 PMCID: PMC9692419 DOI: 10.3390/metabo12111064] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The gut-brain axis is a bidirectional communication network connecting the gastrointestinal tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates them to connect gut health to higher cognitive parts of the brain. Disruption in this connection may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These disorders are not only caused by changes in the neural compartment but also due to other factors of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota plays a critical role in the regulation and physiological function of the brain, although the mechanism involved has not yet been fully interpreted. One of the emerging explanations of the start and progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The present understanding of the literature surrounding the relationship between intestinal dysbiosis and the emergence of certain neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, is the main emphasis of this review. The potential entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has been explored in this article at the outset of neuropathology. We have also included the possible mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions based on the current understanding.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Deeksha Tiwari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telengana, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Kiran Bala
- Algal Ecotechnology & Sustainability Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Avinash Sonawane
- Disease Biology & Cellular Immunology Lab, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
33
|
Li S, Zhan M, Yan S, Xiao X. The Antifatigue Mechanism of Buyang-huanwu Decoction as Revealed by Serum Metabolomics in an Endurance Swimming Rat Model. J Med Food 2022; 25:1038-1049. [DOI: 10.1089/jmf.2022.k.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Min Zhan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou, China
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| |
Collapse
|
34
|
Jian Z, Zeng L, Xu T, Sun S, Yan S, Zhao S, Su Z, Ge C, Zhang Y, Jia J, Dou T. The intestinal microbiome associated with lipid metabolism and obesity in humans and animals. J Appl Microbiol 2022; 133:2915-2930. [PMID: 35882518 DOI: 10.1111/jam.15740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 01/07/2023]
Abstract
Intestinal microbiota is considered to play an integral role in maintaining health of host by modulating several physiological functions including nutrition, metabolism and immunity. Accumulated data from human and animal studies indicate that intestinal microbes can affect lipid metabolism in host through various direct and indirect biological mechanisms. These mechanisms include the production of various signalling molecules by the intestinal microbiome, which exert a strong effect on lipid metabolism, bile secretion in the liver, reverse transport of cholesterol and energy expenditure and insulin sensitivity in peripheral tissues. This review discusses the findings of recent studies suggesting an emerging role of intestinal microbiota and its metabolites in regulating lipid metabolism and the association of intestinal microbiota with obesity. Additionally, we discuss the controversies and challenges in this research area. However, intestinal micro-organisms are also affected by some external factors, which in turn influence the regulation of microbial lipid metabolism. Therefore, we also discuss the effects of probiotics, prebiotics, diet structure, exercise and other factors on intestinal microbiological changes and lipid metabolism regulation.
Collapse
Affiliation(s)
- Zonghui Jian
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Li Zeng
- The Chenggong Department, Kunming Medical University Affiliated Stomatological Hospital, Kunming, People's Republic of China.,Yunnan Key Laboratory of Stomatology, Kunming, People's Republic of China
| | - Taojie Xu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Shuai Sun
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Shixiong Yan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Changrong Ge
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Yunmei Zhang
- Department of Cardiovascular, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Junjing Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Tengfei Dou
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| |
Collapse
|
35
|
Lamichhane S, Sen P, Dickens AM, Alves MA, Härkönen T, Honkanen J, Vatanen T, Xavier RJ, Hyötyläinen T, Knip M, Orešič M. Dysregulation of secondary bile acid metabolism precedes islet autoimmunity and type 1 diabetes. Cell Rep Med 2022; 3:100762. [PMID: 36195095 PMCID: PMC9589006 DOI: 10.1016/j.xcrm.2022.100762] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/28/2022] [Accepted: 09/10/2022] [Indexed: 11/13/2022]
Abstract
The gut microbiota is crucial in the regulation of bile acid (BA) metabolism. However, not much is known about the regulation of BAs during progression to type 1 diabetes (T1D). Here, we analyzed serum and stool BAs in longitudinal samples collected at 3, 6, 12, 18, 24, and 36 months of age from children who developed a single islet autoantibody (AAb) (P1Ab; n = 23) or multiple islet AAbs (P2Ab; n = 13) and controls (CTRs; n = 38) who remained AAb negative. We also analyzed the stool microbiome in a subgroup of these children. Factor analysis showed that age had the strongest impact on both BA and microbiome profiles. We found that at an early age, systemic BAs and microbial secondary BA pathways were altered in the P2Ab group compared with the P1Ab and CTR groups. Our findings thus suggest that dysregulated BA metabolism in early life may contribute to the risk and pathogenesis of T1D.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland,School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Alex M. Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland,Department of Chemistry, University of Turku, 20520 Turku, Finland
| | - Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland,Walter Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, 21941-599 Rio de Janeiro, Brazil
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tommi Vatanen
- The Liggins Institute, University of Auckland, Auckland, New Zealand,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland,School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden,Corresponding author
| |
Collapse
|
36
|
Zhang YL, Li ZJ, Gou HZ, Song XJ, Zhang L. The gut microbiota–bile acid axis: A potential therapeutic target for liver fibrosis. Front Cell Infect Microbiol 2022; 12:945368. [PMID: 36189347 PMCID: PMC9519863 DOI: 10.3389/fcimb.2022.945368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Liver fibrosis involves the proliferation and deposition of extracellular matrix on liver tissues owing to various etiologies (including viral, alcohol, immune, and metabolic factors), ultimately leading to structural and functional abnormalities in the liver. If not effectively treated, liver fibrosis, a pivotal stage in the path to chronic liver disease, can progress to cirrhosis and eventually liver cancer; unfortunately, no specific clinical treatment for liver fibrosis has been established to date. In liver fibrosis cases, both the gut microbiota and bile acid metabolism are disrupted. As metabolites of the gut microbiota, bile acids have been linked to the progression of liver fibrosis via various pathways, thus implying that the gut microbiota–bile acid axis might play a critical role in the progression of liver fibrosis and could be a target for its reversal. Therefore, in this review, we examined the involvement of the gut microbiota–bile acid axis in liver fibrosis progression to the end of discovering new targets for the prevention, diagnosis, and therapy of chronic liver diseases, including liver fibrosis.
Collapse
Affiliation(s)
- Yu-Lin Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhen-Jiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong-Zhong Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Jing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
37
|
Zarei I, Koistinen VM, Kokla M, Klåvus A, Babu AF, Lehtonen M, Auriola S, Hanhineva K. Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition. Sci Rep 2022; 12:15018. [PMID: 36056162 PMCID: PMC9440220 DOI: 10.1038/s41598-022-19327-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/29/2022] [Indexed: 12/13/2022] Open
Abstract
The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.
Collapse
Affiliation(s)
- Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Ville M Koistinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland
| | - Marietta Kokla
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Ambrin Farizah Babu
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, 70211, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Science, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Itäinen Pitkäkatu 4, 20014, Turku, Finland.
| |
Collapse
|
38
|
Huang Y, Liu L, Hao Z, Chen L, Yang Q, Xiong X, Deng Y. Potential roles of gut microbial tryptophan metabolites in the complex pathogenesis of acne vulgaris. Front Microbiol 2022; 13:942027. [PMID: 35966699 PMCID: PMC9363916 DOI: 10.3389/fmicb.2022.942027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Acne vulgaris is a chronic inflammatory skin disease in which the influence of gut microbiota has been implicated but without clarification of mechanisms. Gut microbiota may exert such an influence via metabolites, particularly those of tryptophan. End metabolites of tryptophan activate receptors, including aryl hydrocarbon, G protein-coupled, and pregnane X receptors to stabilize the immune microenvironment and intestinal mucosal homeostasis. Any impact on the pathogenesis of acne vulgaris remains unclear. The current review collates recent advances concerning potential roles of tryptophan metabolism in mediating skin inflammation, follicular sebaceous gland function and intestinal permeability, all of which influence the pathogenesis of acne vulgaris. The aim was to improve understanding of the pathogenesis of acne vulgaris and to expose therapeutic opportunities.
Collapse
Affiliation(s)
- Yukun Huang
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu Liu
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhenyu Hao
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lingna Chen
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qian Yang
- School of Nursing, Chengdu Medical College, Chengdu, China
- *Correspondence: Qian Yang,
| | - Xia Xiong
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Xia Xiong,
| | - Yongqiong Deng
- Department of Dermatology and STD, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Yongqiong Deng,
| |
Collapse
|
39
|
Ocansey DKW, Zhang Z, Xu X, Liu L, Amoah S, Chen X, Wang B, Zhang X, Mao F. Mesenchymal stem cell-derived exosome mitigates colitis via the modulation of the gut metagenomics-metabolomics-farnesoid X receptor axis. Biomater Sci 2022; 10:4822-4836. [PMID: 35858469 DOI: 10.1039/d2bm00559j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with chronic gut immune dysregulation and altered microbiome and metabolite composition. Bile acids and their receptors such as the farnesoid X receptor (FXR) form a crucial component of the chemical communications between the intestinal microbiota and the host immune system; thus, alterations in the bile acid pool affect intestinal homeostasis and exacerbate IBD. Considering the promising therapeutic effect of mesenchymal stem cell-derived exosomes (MSC-Ex) on IBD, this study assessed the regulatory effect of MSC-Ex on the gut bacteria composition and diversity, metabolites, and their related functions and pathways, as well as key inflammatory and anti-inflammatory cytokines during the mitigation of IBD. The dextran sulfate sodium (DSS)-induced IBD model of BABL/C mice was established, consisting of three groups: control, DSS, and MSC-Ex groups. Post administration of MSC-Ex, the effect was evaluated via hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), qRT-PCR, and western blotting. Mice fecal samples were obtained for metagenomics and metabolomics analysis via 16S rRNA gene sequencing and UHPLC/Q-TOF-MS respectively. Results showed that MSC-Ex mitigated colitis by significantly relieving the macroscopic and microscopic features of inflammation, modulating the gut metagenomics and metabolomics profile, and increasing colonic FXR. MSC-Ex improved the gut microbiota composition by significantly restoring the structure of OTUs and colitis-induced reduction in α-diversity, increasing the abundance of 'healthy' bacteria, decreasing disease-associated bacteria, decreasing detrimental functions, and enhancing other vital cellular functions. For the first time, we demonstrate that MSC-Ex mitigates colitis in mice by modulating the gut metagenomics-metabolomics-FXR axis, thus providing potential therapeutic targets.
Collapse
Affiliation(s)
- Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China. .,Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Zhiyu Zhang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, Jiangsu, P.R. China
| | - Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| | - Lianqin Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| | - Samuel Amoah
- Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Xiang Chen
- Zhenjiang Institute for Drug and Food Control, Zhenjiang 212001, Jiangsu, P.R. China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, P.R. China.
| |
Collapse
|
40
|
Cheng X, Jiang J, Li C, Xue C, Kong B, Chang Y, Tang Q. The compound enzymatic hydrolysate of Neoporphyra haitanensis improved hyperglycemia and regulated the gut microbiome in high-fat diet-fed mice. Food Funct 2022; 13:6777-6791. [PMID: 35667104 DOI: 10.1039/d2fo00055e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously found that the combination of protease and a novel β-porphyranase Por16A_Wf may contribute to the deep-processing of laver. The purpose of the present study is to assess the hypoglycemic effect of the compound enzymatic hydrolysate (CEH) of Neoporphyra haitanensis. Thus, biochemical indexes related to diet-induced hyperglycemia were mainly detected using hematoxylin and eosin (H&E) staining, fluorescence quantitative PCR, and ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS). Then 16s rRNA gene sequencing was performed to analyze the effects of CEH on the gut microbiome in high-fat diet (HFD)-fed mice. The results suggested that CEH reduced the blood glucose level and alleviated insulin resistance. Possibly because CEH repressed intestinal α-glucosidase activity, inhibiting key enzymes (G6Pase and PEPCK) related to hepatic gluconeogenesis, and increased the expression of the enzyme (GLUT4) involved in peripheral glucose uptake. As potential indicators of hyperglycemia, total bile acids in the feces were reversed to the control levels after CEH intervention. Particularly, CEH decreased the content of tauro-α-muricholic acid (TαMCA) and ω-muricholic acid (ωMCA). Furthermore, CEH promoted the proliferation of beneficial bacteria (e.g. Parabacteroides), which may play a role in glycemic control. CEH also regulated the KEGG pathways associated with glycometabolism, such as "fructose and mannose metabolism". In summary, CEH supplementation has favorable effects on improving glucose metabolism and regulating the gut microbiome in HFD-fed mice. CEH has potential to be applied in the development of functional foods.
Collapse
Affiliation(s)
- Xiaojie Cheng
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Jiali Jiang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Chunjun Li
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Biao Kong
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Yushan Road, 5th, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
41
|
Simpson S, Mclellan R, Wellmeyer E, Matalon F, George O. Drugs and Bugs: The Gut-Brain Axis and Substance Use Disorders. J Neuroimmune Pharmacol 2022; 17:33-61. [PMID: 34694571 PMCID: PMC9074906 DOI: 10.1007/s11481-021-10022-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorders (SUDs) represent a significant public health crisis. Worldwide, 5.4% of the global disease burden is attributed to SUDs and alcohol use, and many more use psychoactive substances recreationally. Often associated with comorbidities, SUDs result in changes to both brain function and physiological responses. Mounting evidence calls for a precision approach for the treatment and diagnosis of SUDs, and the gut microbiome is emerging as a contributor to such disorders. Over the last few centuries, modern lifestyles, diets, and medical care have altered the health of the microbes that live in and on our bodies; as we develop, our diets and lifestyle dictate which microbes flourish and which microbes vanish. An increase in antibiotic treatments, with many antibiotic interventions occurring early in life during the microbiome's normal development, transforms developing microbial communities. Links have been made between the microbiome and SUDs, and the microbiome and conditions that are often comorbid with SUDs such as anxiety, depression, pain, and stress. A better understanding of the mechanisms influencing behavioral changes and drug use is critical in developing novel treatments for SUDSs. Targeting the microbiome as a therapeutic and diagnostic tool is a promising avenue of exploration. This review will provide an overview of the role of the gut-brain axis in a wide range of SUDs, discuss host and microbe pathways that mediate changes in the brain's response to drugs, and the microbes and related metabolites that impact behavior and health within the gut-brain axis.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US.
| | - Rio Mclellan
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Emma Wellmeyer
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Frederic Matalon
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| |
Collapse
|
42
|
Fobofou SA, Savidge T. Microbial metabolites: cause or consequence in gastrointestinal disease? Am J Physiol Gastrointest Liver Physiol 2022; 322:G535-G552. [PMID: 35271353 PMCID: PMC9054261 DOI: 10.1152/ajpgi.00008.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/31/2023]
Abstract
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Collapse
Affiliation(s)
- Serge Alain Fobofou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
43
|
Lebrun A, Fortin H, Fontaine N, Fillion D, Barbier O, Boudreau D. Pushing the Limits of Surface-Enhanced Raman Spectroscopy (SERS) with Deep Learning: Identification of Multiple Species with Closely Related Molecular Structures. APPLIED SPECTROSCOPY 2022; 76:609-619. [PMID: 35081756 PMCID: PMC9082968 DOI: 10.1177/00037028221077119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Raman spectroscopy is a non-destructive and label-free molecular identification technique capable of producing highly specific spectra with various bands correlated to molecular structure. Moreover, the enhanced detection sensitivity offered by surface-enhanced Raman spectroscopy (SERS) allows analyzing mixtures of related chemical species in a relatively short measurement time. Combining SERS with deep learning algorithms allows in some cases to increase detection and classification capabilities even further. The present study evaluates the potential of applying deep learning algorithms to SERS spectroscopy to differentiate and classify different species of bile acids, a large family of molecules with low Raman cross sections and molecular structures that often differ by a single hydroxyl group. Moreover, the study of these molecules is of interest for the medical community since they have distinct pathological roles and are currently viewed as potential markers of gut microbiome imbalances. A convolutional neural network model was developed and used to classify SERS spectra from five bile acid species. The model succeeded in identifying the five analytes despite very similar molecular structures and was found to be reliable even at low analyte concentrations.
Collapse
Affiliation(s)
- Alexis Lebrun
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
- Laboratoire de Pharmacologie Moléculaire, Axe Endocrinologie-Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Hubert Fortin
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Nicolas Fontaine
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Daniel Fillion
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| | - Olivier Barbier
- Laboratoire de Pharmacologie Moléculaire, Axe Endocrinologie-Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Denis Boudreau
- Departement of Chemistry, Université Laval, Québec, Canada
- Center for Optics, Photonics and Lasers (COPL), Université Laval, Québec, Canada
| |
Collapse
|
44
|
Zou L. Pivotal Dominant Bacteria Ratio and Metabolites Related to Healthy Body Index Revealed by Intestinal Microbiome and Metabolomics. Indian J Microbiol 2022; 62:130-141. [PMID: 35068612 PMCID: PMC8758854 DOI: 10.1007/s12088-021-00989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Various body indexes, especially body fat percentage (BFP), are widely used as effective indicators to measure our health. BFP is used in medicine to assess obesity, which is a body fat mass disorder accompanied with changes of the gut microbiota. However, the relationship between BFP and the gut microbiota has not been studied so far. To address this problem, we examined how gut microbiota and metabolome associated with body indices in healthy people. Microbial and metabolomics data based on 16S rDNA sequencing and LC-MS were obtained from stool samples of 20 healthy adults. Bioinformatics analysis was performed to explore the correlations between the body indices and gut microbial characteristics. Significantly different microbes were further validated via qPCR. Differential characteristics were filtered by building machine learning models to predict body status. Our data showed that abundance of Prevotella and the Prevotella/Bacteroides (P/B) ratio in the gut were markedly higher in high-BFP individuals than in low-BFP individuals. Microbial and metabolomics data consistently suggested significant differences in fatty acid metabolism in stool samples from the two groups. The P/B ratio and fatty acids are discriminative for people with different index levels by cross validation tests with machine learning models. These results suggest using Prevotella and fecal fatty acids as predictors may offer an alternative method for evaluating health status or weight loss. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00989-5.
Collapse
Affiliation(s)
- Lingyun Zou
- Sichuan EYE Hospital, Aier EYE Hospital Group, No. 153, Tianfu Fourth Street, High-tech Zone, Chengdu, 610047 China
| |
Collapse
|
45
|
Osuna-Prieto FJ, Rubio-Lopez J, Di X, Yang W, Kohler I, Rensen PCN, Ruiz JR, Martinez-Tellez B. Plasma Levels of Bile Acids Are Related to Cardiometabolic Risk Factors in Young Adults. J Clin Endocrinol Metab 2022; 107:715-723. [PMID: 34718617 PMCID: PMC8851912 DOI: 10.1210/clinem/dgab773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/28/2022]
Abstract
CONTEXT Bile acids (BA) are known for their role in intestinal lipid absorption and can also play a role as signaling molecules to control energy metabolism. Prior evidence suggests that alterations in circulating BA levels and in the pool of circulating BA are linked to an increased risk of obesity and a higher incidence of type 2 diabetes in middle-aged adults. OBJECTIVE We aimed to investigate the association between plasma levels of BA with cardiometabolic risk factors in a cohort of well-phenotyped, relatively healthy young adults. METHODS Body composition, brown adipose tissue, serum classical cardiometabolic risk factors, and a set of 8 plasma BA (including glyco-conjugated forms) in 136 young adults (age 22.1 ± 2.2 years, 67% women) were measured. RESULTS Plasma levels of chenodeoxycholic acid (CDCA) and glycoursodeoxycholic acid (GUDCA) were higher in men than in women, although these differences disappeared after adjusting for body fat percentage. Furthermore, cholic acid (CA), CDCA, deoxycholic acid (DCA), and glycodeoxycholic acid (GDCA) levels were positively, yet weakly associated, with lean body mass (LBM) levels, while GDCA and glycolithocholic acid (GLCA) levels were negatively associated with 18F-fluorodeoxyglucose uptake by brown adipose tissue. Interestingly, glycocholic acid (GCA), glycochenodeoxycholic acid (GCDCA), and GUDCA were positively associated with glucose and insulin serum levels, HOMA index, low-density lipoprotein cholesterol, tumor necrosis factor alpha, interleukin (IL)-2, and IL-8 levels, but negatively associated with high-density lipoprotein cholesterol, ApoA1, and adiponectin levels, yet these significant correlations partially disappeared after the inclusion of LBM as a confounder. CONCLUSION Our findings indicate that plasma levels of BA might be sex dependent and are associated with cardiometabolic and inflammatory risk factors in young and relatively healthy adults.
Collapse
Affiliation(s)
- Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | - José Rubio-Lopez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Cirugía General y del Aparato Digestivo, Complejo Hospitalario de Jaen, Spain
| | - Xinyu Di
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden University, EZ Leiden, The Netherlands
| | - Wei Yang
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research (LACDR), Leiden University, EZ Leiden, The Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), HV Amsterdam, the Netherlands
- Center for Analytical Sciences Amsterdam, HV Amsterdam, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), RC Leiden, the Netherlands
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Jonatan R. Ruiz, PhD, PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain.
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), RC Leiden, the Netherlands
- Correspondence: Borja Martinez-Tellez, PhD, PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), 2300 RC Leiden, the Netherlands.
| |
Collapse
|
46
|
Craciun CI, Neag MA, Catinean A, Mitre AO, Rusu A, Bala C, Roman G, Buzoianu AD, Muntean DM, Craciun AE. The Relationships between Gut Microbiota and Diabetes Mellitus, and Treatments for Diabetes Mellitus. Biomedicines 2022; 10:308. [PMID: 35203519 PMCID: PMC8869176 DOI: 10.3390/biomedicines10020308] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is considered to be a global epidemic. The combination of genetic susceptibility and an unhealthy lifestyle is considered to be the main trigger of this metabolic disorder. Recently, there has been increased interest in the roles of gut microbiota as a new potential contributor to this epidemic. Research, in recent years, has contributed to an in-depth characterization of the human microbiome and its associations with various diseases, including metabolic diseases and diabetes mellitus. It is known that diet can change the composition of gut microbiota, but it is unclear how this, in turn, may influence metabolism. The main objective of this review is to evaluate the pathogenetic association between microbiota and diabetes and to explore any new therapeutic agents, including nutraceuticals that may modulate the microbiota. We also look at several mechanisms involved in this process. There is a clear, bidirectional relationship between microbiota and diabetes. Current treatments for diabetes influence microbiota in various ways, some beneficial, but others with still unclear effects. Microbiota-aimed treatments have seen no real-world significant effects on the progression of diabetes and its complications, with more studies needed in order to find a really beneficial agent.
Collapse
Affiliation(s)
- Cristian-Ioan Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adriana Rusu
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Cornelia Bala
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Gabriela Roman
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Anca-Elena Craciun
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| |
Collapse
|
47
|
Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals' Health and Disease. Int J Mol Sci 2022; 23:ijms23031222. [PMID: 35163143 PMCID: PMC8835432 DOI: 10.3390/ijms23031222] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Actions of symbiotic gut microbiota are in dynamic balance with the host’s organism to maintain homeostasis. Many different factors have an impact on this relationship, including bacterial metabolites. Several substrates for their synthesis have been established, including tryptophan, an exogenous amino acid. Many biological processes are influenced by the action of tryptophan and its endogenous metabolites, serotonin, and melatonin. Recent research findings also provide evidence that gut bacteria-derived metabolites of tryptophan share the biological effects of their precursor. Thus, this review aims to investigate the biological actions of indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan. We searched PUBMED and Google Scholar databases to identify pre-clinical and clinical studies evaluating the impact of IPA on the health and pathophysiology of the immune, nervous, gastrointestinal and cardiovascular system in mammals. IPA exhibits a similar impact on the energetic balance and cardiovascular system to its precursor, tryptophan. Additionally, IPA has a positive impact on a cellular level, by preventing oxidative stress injury, lipoperoxidation and inhibiting synthesis of proinflammatory cytokines. Its synthesis can be diminished in the presence of different risk factors of atherosclerosis. On the other hand, protective factors, such as the introduction of a Mediterranean diet, tend to increase its plasma concentration. IPA seems to be a promising new target, linking gut health with the cardiovascular system.
Collapse
|
48
|
Park JW, Kim SE, Lee NY, Kim JH, Jung JH, Jang MK, Park SH, Lee MS, Kim DJ, Kim HS, Suk KT. Role of Microbiota-Derived Metabolites in Alcoholic and Non-Alcoholic Fatty Liver Diseases. Int J Mol Sci 2021; 23:426. [PMID: 35008852 PMCID: PMC8745242 DOI: 10.3390/ijms23010426] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease encompasses diseases that have various causes, such as alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). Gut microbiota dysregulation plays a key role in the pathogenesis of ALD and NAFLD through the gut-liver axis. The gut microbiota consists of various microorganisms that play a role in maintaining the homeostasis of the host and release a wide number of metabolites, including short-chain fatty acids (SCFAs), peptides, and hormones, continually shaping the host's immunity and metabolism. The integrity of the intestinal mucosal and vascular barriers is crucial to protect liver cells from exposure to harmful metabolites and pathogen-associated molecular pattern molecules. Dysbiosis and increased intestinal permeability may allow the liver to be exposed to abundant harmful metabolites that promote liver inflammation and fibrosis. In this review, we introduce the metabolites and components derived from the gut microbiota and discuss their pathologic effect in the liver alongside recent advances in molecular-based therapeutics and novel mechanistic findings associated with the gut-liver axis in ALD and NAFLD.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Internal Medicine, Hallym University Sacred Heart Hospital of Hallym University Medical Center, 22, Gwanpyeong-ro 170 beon-gil, Dongan-gu, Anyang-si 14068, Korea; (J.-W.P.); (S.-E.K.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital of Hallym University Medical Center, 22, Gwanpyeong-ro 170 beon-gil, Dongan-gu, Anyang-si 14068, Korea; (J.-W.P.); (S.-E.K.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
| | - Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital of Hallym University Medical Center, 77, Sakju-ro, Chuncheon-si 24253, Korea
| | - Jung-Hee Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Dongtan Sacred Heart Hospital of Hallym University Medical Center, 7, Keunjaebong-gil, Hwaseong-si 445-907, Korea
| | - Jang-Han Jung
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Dongtan Sacred Heart Hospital of Hallym University Medical Center, 7, Keunjaebong-gil, Hwaseong-si 445-907, Korea
| | - Myoung-Kuk Jang
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Kangdong Sacred Heart Hospital of Hallym University Medical Center, 18, Cheonho-daero 173-gil, Gangdong-gu, Seoul 05355, Korea
| | - Sang-Hoon Park
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Kangnam Sacred Heart Hospital of Hallym University Medical Center, 1, Singil-ro, Yeongdeungpo-gu, Seoul 07441, Korea
| | - Myung-Seok Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Kangnam Sacred Heart Hospital of Hallym University Medical Center, 1, Singil-ro, Yeongdeungpo-gu, Seoul 07441, Korea
| | - Dong-Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital of Hallym University Medical Center, 77, Sakju-ro, Chuncheon-si 24253, Korea
| | - Hyoung-Su Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Kangdong Sacred Heart Hospital of Hallym University Medical Center, 18, Cheonho-daero 173-gil, Gangdong-gu, Seoul 05355, Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon-si 24252, Korea; (N.Y.L.); (J.-H.K.); (J.-H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (D.-J.K.)
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital of Hallym University Medical Center, 77, Sakju-ro, Chuncheon-si 24253, Korea
| |
Collapse
|
49
|
Thangamani S, Monasky R, Lee JK, Antharam V, HogenEsch H, Hazbun TR, Jin Y, Gu H, Guo GL. Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. J Fungi (Basel) 2021; 7:jof7121030. [PMID: 34947012 PMCID: PMC8708873 DOI: 10.3390/jof7121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans (CA), a commensal and opportunistic eukaryotic organism, frequently inhabits the gastrointestinal (GI) tract and causes life-threatening infections. Antibiotic-induced gut dysbiosis is a major risk factor for increased CA colonization and dissemination from the GI tract. We identified a significant increase of taurocholic acid (TCA), a major bile acid in antibiotic-treated mice susceptible to CA infection. In vivo findings indicate that administration of TCA through drinking water is sufficient to induce colonization and dissemination of CA in wild-type and immunosuppressed mice. Treatment with TCA significantly reduced mRNA expression of immune genes ang4 and Cxcr3 in the colon. In addition, TCA significantly decreased the relative abundance of three culturable species of commensal bacteria, Turicibacter sanguinis, Lactobacillus johnsonii, and Clostridium celatum, in both cecal contents and mucosal scrapings from the colon. Taken together, our results indicate that TCA promotes fungal colonization and dissemination of CA from the GI tract by controlling the host defense system and intestinal microbiota that play a critical role in regulating CA in the intestine.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
- Correspondence: ; Tel.: +1-765-494-0763
| | - Ross Monasky
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Jung Keun Lee
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Vijay Antharam
- Department of Chemistry, College of Arts, Humanities and Sciences, Methodist University, Fayetteville, NC 28311, USA;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA;
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
- Center for Translational Science, Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL 33199, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
50
|
Ma Y, Nenkov M, Chen Y, Press AT, Kaemmerer E, Gassler N. Fatty acid metabolism and acyl-CoA synthetases in the liver-gut axis. World J Hepatol 2021; 13:1512-1533. [PMID: 34904027 PMCID: PMC8637682 DOI: 10.4254/wjh.v13.i11.1512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are energy substrates and cell components which participate in regulating signal transduction, transcription factor activity and secretion of bioactive lipid mediators. The acyl-CoA synthetases (ACSs) family containing 26 family members exhibits tissue-specific distribution, distinct fatty acid substrate preferences and diverse biological functions. Increasing evidence indicates that dysregulation of fatty acid metabolism in the liver-gut axis, designated as the bidirectional relationship between the gut, microbiome and liver, is closely associated with a range of human diseases including metabolic disorders, inflammatory disease and carcinoma in the gastrointestinal tract and liver. In this review, we depict the role of ACSs in fatty acid metabolism, possible molecular mechanisms through which they exert functions, and their involvement in hepatocellular and colorectal carcinoma, with particular attention paid to long-chain fatty acids and small-chain fatty acids. Additionally, the liver-gut communication and the liver and gut intersection with the microbiome as well as diseases related to microbiota imbalance in the liver-gut axis are addressed. Moreover, the development of potentially therapeutic small molecules, proteins and compounds targeting ACSs in cancer treatment is summarized.
Collapse
Affiliation(s)
- Yunxia Ma
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Miljana Nenkov
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Elke Kaemmerer
- Department of Pediatrics, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany.
| |
Collapse
|