1
|
Zamanian MY, Kamran Z, Tavakoli MR, Oghenemaro EF, Abohassan M, Kubaev A, Nathiya D, Kaur P, Zwamel AH, Abdulamer RS. The Role of ΔFosB in the Pathogenesis of Levodopa-Induced Dyskinesia: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2025:10.1007/s12035-025-04720-z. [PMID: 39890697 DOI: 10.1007/s12035-025-04720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Levodopa-induced dyskinesia (LID) represents a significant complication associated with the long-term administration of levodopa (L-DOPA) for the treatment of Parkinson's disease (PD). This review examines the critical role of ΔFosB, a transcription factor, in the pathogenesis of LID and explores potential therapeutic interventions. ΔFosB accumulates within the striatum in response to chronic dopaminergic stimulation, thereby driving maladaptive changes that culminate in dyskinesia. Its persistent expression modifies gene transcription, influencing neuronal plasticity and contributing to the sustained presence of dyskinetic movements. This study explains how ΔFosB functions at the molecular level, focusing on its connections with dopamine D1 receptors, the cAMP/PKA signaling pathway, and its regulatory effects on downstream targets such as DARPP-32 and GluA1 AMPA receptor subunits. Additionally, it examines how neuronal nitric oxide synthase (nNOS) affects ΔFosB levels and the development of LID. This review also considers the interactions between ΔFosB and other signaling pathways, such as ERK and mTOR, in the context of LID and striatal plasticity. Emerging therapeutic strategies targeting ΔFosB and its associated pathways include pharmacological interventions like ranitidine, 5-hydroxytryptophan, and carnosic acid. Furthermore, this study addresses the role of JunD, another component of the AP-1 transcription factor complex, in the pathogenesis of LID. Understanding the molecular mechanisms by which ΔFosB contributes to LID offers promising avenues for developing novel treatments that could mitigate dyskinesia and improve the quality of life for PD patients undergoing long-term L-DOPA therapy.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Zahra Kamran
- Department of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Resan Shakir Abdulamer
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
2
|
Kuo YY, Pen SY, Cheng CH, Ho WC, Chen CY, Wu WC, Chou HH, Chen JY, Lin CH, Lin JF, Yang SB, Chen PC. Decrease of K ATP channel expression through D3 receptor-mediated GSK3β signaling alleviates levodopa-induced dyskinesia (LID) in Parkinson's disease mouse model. Life Sci 2024; 359:123255. [PMID: 39557392 DOI: 10.1016/j.lfs.2024.123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
AIMS The standard Parkinson's disease (PD) treatment is L-3,4-dihydroxyphenylalanine (L-DOPA); however, its long-term use may cause L-DOPA-induced dyskinesia (LID). Aberrant activation of medium spiny neurons (MSNs) contributes to LID, and MSN excitability is regulated by dopamine D3 receptor (D3R) and ATP-sensitive potassium (KATP) channel activity. Nevertheless, it remains unclear if D3R and KATP channels may be linked in the context of LID. METHODS Wild-type and tyrosine hydroxylase (TH)-specific Kir6.2 knockout mice were injected with 6-hydroxydopamine (6-OHDA) to generate a PD mouse model, then chronically treated with L-DOPA to induce LID. Analyses included immunohistochemical staining, biochemical endpoints, and behavior tests. The mechanisms by which D3R/KATP channels regulate LID in the PD/LID mouse model were probed by treatment with a D3R antagonist, KATP channel opener and glycogen synthase kinase 3β (GSK3β) inhibitor, followed by evaluation of abnormal involuntary movements (AIMs). KEY FINDINGS The D3R antagonist FAUC365 alleviated LID, reducing AIMs and protecting against degeneration of the nigrostriatal pathway, which occurred through a direct interaction between D3Rs and KATP channels. In line with this mechanism, activation of D3R/GSK3β signaling increased KATP channel expression in the striatum of PD/LID mice. Additionally, the KATP channel opener Diz slowed LID progression and preserved nigrostriatal projections. Consistently, mice with TH-specific knockout of Kir6.2 exhibited reduced PD-like symptoms and less severe LID. SIGNIFICANCE D3Rs act through GSK3β signaling to regulate expression of KATP channels, which may subsequently modulate LID. Inhibition of KATP channels in TH-positive cells is sufficient to reduce AIMs in a mouse model of PD/LID.
Collapse
Affiliation(s)
- Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan; Institue of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sih-Yu Pen
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan
| | - Chia-Hui Cheng
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan
| | - Wan-Chen Ho
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Wen-Chung Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ho-Hsuan Chou
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jung-Yao Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Han Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Taiwan
| | - Jen-Feng Lin
- Department of Emergency, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung Univesity, Tainan 70101, Taiwan; Institue of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
3
|
Villano R, Di Marzo V. A sustainable protocol for the synthesis of N-acyl tryptamines, a class of potential gut microbiota-derived endocannabinoid-like mediators. Front Chem 2024; 12:1436008. [PMID: 39449691 PMCID: PMC11500036 DOI: 10.3389/fchem.2024.1436008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
A simple and sustainable propylphosphonic anhydride (T3P)-assisted methodology for the synthesis of N-acyl tryptamines, an interesting class of gut microbiota-derived endocannabinoid-like lipid mediators, was proposed. This protocol is characterized by great operational simplicity, and all products were obtained at room temperature, without the use of an inert atmosphere and by using limited amounts of non-halogenated solvents. Finally, the possibility to realize the reaction under mechanochemical conditions was explored with interesting results.
Collapse
Affiliation(s)
- Rosaria Villano
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agricultural and Food Sciences, Centre de Recherche de l’Institut de Cardiologie et Pneumologie de l’Université et Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec, Canada
| |
Collapse
|
4
|
Guida F, Iannotta M, Lauritano A, Infantino R, Salviati E, Verde R, Luongo L, Sommella EM, Iannotti FA, Campiglia P, Maione S, Di Marzo V, Piscitelli F. Early biomarkers in the presymptomatic phase of cognitive impairment: changes in the endocannabinoidome and serotonergic pathways in Alzheimer's-prone mice after mTBI. Acta Neuropathol Commun 2024; 12:113. [PMID: 38992700 PMCID: PMC11241935 DOI: 10.1186/s40478-024-01820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Despite extensive studies on the neurobiological correlates of traumatic brain injury (TBI), little is known about its molecular determinants on long-term consequences, such as dementia and Alzheimer's disease (AD). METHODS Here, we carried out behavioural studies and an extensive biomolecular analysis, including inflammatory cytokines, gene expression and the combination of LC-HRMS and MALDI-MS Imaging to elucidate the targeted metabolomics and lipidomics spatiotemporal alterations of brains from wild-type and APP-SWE mice, a genetic model of AD, at the presymptomatic stage, subjected to mild TBI. RESULTS We found that brain injury does not affect cognitive performance in APP-SWE mice. However, we detected an increase of key hallmarks of AD, including Aβ1-42 levels and BACE1 expression, in the cortices of traumatized transgenic mice. Moreover, significant changes in the expanded endocannabinoid (eCB) system, or endocannabinoidome (eCBome), occurred, including increased levels of the endocannabinoid 2-AG in APP-SWE mice in both the cortex and hippocampus, and N-acylserotonins, detected for the first time in the brain. The gene expression of enzymes for the biosynthesis and inactivation of eCBs and eCB-like mediators, and some of their main molecular targets, also underwent significant changes. We also identified the formation of heteromers between cannabinoid 1 (CB1) and serotonergic 2A (5HT2A) receptors, whose levels increased in the cortex of APP-SWE mTBI mice, possibly contributing to the exacerbated pathophysiology of AD induced by the trauma. CONCLUSIONS Mild TBI induces biochemical changes in AD genetically predisposed mice and the eCBome may play a role in the pathogenetic link between brain injury and neurodegenerative disorders also by interacting with the serotonergic system.
Collapse
Affiliation(s)
- Francesca Guida
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Rosmara Infantino
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Emanuela Salviati
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Livio Luongo
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy
| | - Pietro Campiglia
- Dipartimento di Farmacia, Università Degli Studi di Salerno, Fisciano, (SA), Italy
| | - Sabatino Maione
- Pharmacology Division, Department of Experimental Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, Canada.
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, (NA), Italy.
| |
Collapse
|
5
|
Silva ACR, da Silva CC, Garrett R, Rezende CM. Comprehensive lipid analysis of green Arabica coffee beans by LC-HRMS/MS. Food Res Int 2020; 137:109727. [PMID: 33233296 DOI: 10.1016/j.foodres.2020.109727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022]
Abstract
Lipids play an important role in coffee bean development, coffee brew and in the effects of coffee on human health. They account for around 17% of the dry bean weight and encompass different classes and subclasses, mostly triacylglycerols (TAG) and a minor quantity of phospholipids (PL) and βN-alkanoyl-5-hydroxytryptamides (C-5HT). To comprehensive profile these different lipids, it is important to evaluate extraction methods that provide high lipid coverage and to analyze the lipids in high-resolution techniques. In this work, liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) was employed to comprehensive profile lipids from green Arabica coffee beans and to evaluate the extraction efficiency and lipid coverage of three methods: Bligh-Dyer (BD), Folch (FO), and Matyash (MA). The MA method yielded the greatest number of annotated compounds (131 lipids) compared to the other methods. In the positive electrospray ionization (ESI) mode, the main difference among extraction methods was observed for TAG and diacylglycerols, whereas for the negative ESI it was observed differences for phosphatidylinositol (PI), lysophosphatidylinositol and phosphatidic acid (p < 0.05). The analysis of coffees from different maturation stages and/or post-harvest processes were also performed using the MA method. Immature beans were discriminated from mature and overripe beans by its lower levels of C-5HT, PI, phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, and lysophosphatidylethanolamine. These results can help to better understand the coffee lipid composition and its association with coffee quality.
Collapse
Affiliation(s)
- Ana Carolina R Silva
- Federal University of Rio de Janeiro, Institute of Chemistry, Aroma Analysis Laboratory, 21941-909 Rio de Janeiro, RJ, Brazil; Federal University of Rio de Janeiro, Institute of Chemistry, Metabolomics Laboratory (LabMeta-LADETEC), 21941-598 Rio de Janeiro, RJ, Brazil
| | - Carol Cristine da Silva
- Federal University of Rio de Janeiro, Institute of Chemistry, Metabolomics Laboratory (LabMeta-LADETEC), 21941-598 Rio de Janeiro, RJ, Brazil
| | - Rafael Garrett
- Federal University of Rio de Janeiro, Institute of Chemistry, Metabolomics Laboratory (LabMeta-LADETEC), 21941-598 Rio de Janeiro, RJ, Brazil.
| | - Claudia M Rezende
- Federal University of Rio de Janeiro, Institute of Chemistry, Aroma Analysis Laboratory, 21941-909 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Alarcón-Arís D, Pavia-Collado R, Miquel-Rio L, Coppola-Segovia V, Ferrés-Coy A, Ruiz-Bronchal E, Galofré M, Paz V, Campa L, Revilla R, Montefeltro A, Kordower JH, Vila M, Artigas F, Bortolozzi A. Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson's disease-like mouse model and in monkeys. EBioMedicine 2020; 59:102944. [PMID: 32810825 PMCID: PMC7452525 DOI: 10.1016/j.ebiom.2020.102944] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Progressive neuronal death in monoaminergic nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson's disease (PD). Given that α-synuclein may be an early mediator of the pathological cascade that ultimately leads to neurodegeneration, decreased α-synuclein synthesis will abate neurotoxicity if delivered to the key affected neurons. METHODS We used a non-viral gene therapy based on a new indatraline-conjugated antisense oligonucleotide (IND-ASO) to disrupt the α-synuclein mRNA transcription selectively in monoamine neurons of a PD-like mouse model and elderly nonhuman primates. Molecular, cell biology, histological, neurochemical and behavioral assays were performed. FINDINGS Intracerebroventricular and intranasal IND-ASO administration for four weeks in a mouse model with AAV-mediated wild-type human α-synuclein overexpression in dopamine neurons prevented the synthesis and accumulation of α-synuclein in the connected brain regions, improving dopamine neurotransmission. Likewise, the four-week IND-ASO treatment led to decreased levels of endogenous α-synuclein protein in the midbrain monoamine nuclei of nonhuman primates, which are affected early in PD. CONCLUSIONS The inhibition of α-synuclein production in dopamine neurons and its accumulation in cortical/striatal projection areas may alleviate the early deficits of dopamine function, showing the high translational value of antisense oligonucleotides as a disease modifying therapy for PD and related synucleinopathies. FUNDING Grants SAF2016-75797-R, RTC-2014-2812-1 and RTC-2015-3309-1, Ministry of Economy and Competitiveness (MINECO) and European Regional Development Fund (ERDF), UE; Grant ID 9238, Michael J. Fox Foundation; and Centres for Networked Biomedical Research on Mental Health (CIBERSAM), and on Neurodegenerative Diseases (CIBERNED).
Collapse
Affiliation(s)
- Diana Alarcón-Arís
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rubén Pavia-Collado
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lluis Miquel-Rio
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Valentín Coppola-Segovia
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Laboratory of Neurobiology and Redox Pathology, Department of Basic Pathology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Albert Ferrés-Coy
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Esther Ruiz-Bronchal
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Mireia Galofré
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Verónica Paz
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Leticia Campa
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | | | | | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| |
Collapse
|
7
|
Ryu YK, Park HY, Go J, Kim YH, Hwang JH, Choi DH, Noh JR, Rhee M, Han PL, Lee CH, Kim KS. Effects of histone acetyltransferase inhibitors on L-DOPA-induced dyskinesia in a murine model of Parkinson's disease. J Neural Transm (Vienna) 2018; 125:1319-1331. [PMID: 29998409 DOI: 10.1007/s00702-018-1902-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/04/2018] [Indexed: 12/18/2022]
Abstract
Histone acetylation is a key regulatory factor for gene expression in cells. Modulation of histone acetylation by targeting of histone acetyltransferases (HATs) effectively alters many gene expression profiles and synaptic plasticity in the brain. However, the role of HATs on L-DOPA-induced dyskinesia of Parkinson's disease (PD) has not been reported. Our aim was to determine whether HAT inhibitors such as anacardic acid, garcinol, and curcumin from natural plants reduce severity of L-DOPA-induced dyskinesia using a unilaterally 6-hydroxydopamine (6-OHDA)-lesioned PD mouse model. Anacardic acid 2 mg/kg, garcinol 5 mg/kg, or curcumin 100 mg/kg co-treatment with L-DOPA significantly reduced the axial, limb, and orofacial (ALO) score indicating less dyskinesia with administration of HAT inhibitors in 6-OHDA-lesioned mice. Additionally, L-DOPA's efficacy was not altered by the compounds in the early stage of treatment. The expression levels of c-Fos, Fra-2, and Arc were effectively decreased by administration of HAT inhibitors in the ipsilateral striatum. Our findings indicate that HAT inhibitor co-treatment with L-DOPA may have therapeutic potential for management of L-DOPA-induced dyskinesia in patients with PD.
Collapse
Affiliation(s)
- Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Biosciences & Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Brain & Cognitive Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Myungchull Rhee
- College of Biosciences & Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain & Cognitive Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Fahimi Z, Jahromy MH. Effects of blackberry ( Morus nigra) fruit juice on levodopa-induced dyskinesia in a mice model of Parkinson's disease. J Exp Pharmacol 2018; 10:29-35. [PMID: 30013404 PMCID: PMC6037159 DOI: 10.2147/jep.s161782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background and objective Levodopa-induced dyskinesia (LID) is a movement disorder that occurs due to levodopa consumption for a long period to attenuate Parkinsonism. Plants have been the basis for medical treatments in human history and still widely practiced. Blackberry (Morus nigra) is one of the fruits rich in anthocyanin. The present study examined the effect of blackberry fruit juice on LID in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease in mice. Materials and methods In this study, 42 male mice were used, which were divided into six groups equally: one control group and five groups receiving MPTP injection. After confirmation of Parkinsonism in MPTP groups, one group was preserved without treatment and four other groups were treated with levodopa (50 mg/kg ip). After the onset of LID (2 weeks), one group was kept without additional treatment and three other groups were treated with three different doses of blackberry fruit juice (5, 10, and 15 mL/kg) with levodopa orally for 7 days. Abnormal involuntary movement scale (AIMS) and cylinder behavioral test were carried out according to the schedule. The collected data were analyzed using the SPSS software with the significant level of P<0.05. Results Parkinson’s disease was confirmed with AIMS test on the fourth day after MPTP injection. The onset of LID was observed after 2 weeks of levodopa treatment using both behavioral tests. The result of administration of M. nigra fruit juice for 1 week showed that this addition is useful in hindering LID. These effects were more pronounced at doses 10 and 15 mL/kg with nearly the same results on attenuating AIMS. Low dose of the fruit juice does not seem to affect LID significantly. Conclusion M. nigra fruit juice is effective to attenuate LID in an MPTP-induced Parkinson mice model.
Collapse
Affiliation(s)
- Zahra Fahimi
- Herbal Pharmacology Research Center, Department of Pharmacology, Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran,
| | - Mahsa Hadipour Jahromy
- Herbal Pharmacology Research Center, Department of Pharmacology, Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran,
| |
Collapse
|
9
|
Tong H, Zhang X, Meng X, Lu L, Mai D, Qu S. Simvastatin Inhibits Activation of NADPH Oxidase/p38 MAPK Pathway and Enhances Expression of Antioxidant Protein in Parkinson Disease Models. Front Mol Neurosci 2018; 11:165. [PMID: 29872377 PMCID: PMC5972184 DOI: 10.3389/fnmol.2018.00165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that oxidative stress is involved in the pathogenesis of Parkinson disease (PD). Simvastatin has been suggested to protect against oxidative stress in several diseases. However, the molecular mechanisms by which simvastatin protects against neuropathology and oxidative damage in PD are poorly elucidated. In this study, we aimed to investigate the potential neuroprotective effects of simvastatin owing to its anti-oxidative properties in 6-hydroxydopamine (6-OHDA)-treated SH-SY5Y cells and mice. The results of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence and CCK-8 assay demonstrated that simvastatin reduced intracellular reactive oxygen species (ROS) levels and reversed apoptosis in 6-OHDA-treated SH-SY5Y cells. Mechanistic studies revealed that 6-OHDA-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase/p38 mitogen-activated protein kinase (MAPK) pathway was inhibited and nuclear factor-κB (NF-κB) nuclear transcription decreased in SH-SY5Y cells after simvastatin treatment. Enhanced expression levels of superoxide dismutase (SOD), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and glutamate-cysteine ligase modifier subunit (GCLM) were observed after simvastatin treatment in 6-OHDA-treated SH-SY5Y cells. In vivo studies revealed that administration of simvastatin by gavage decreased limb-use asymmetry and apomorphine-induced rotations in 6-OHDA-lesioned mice. Simvastatin increased dopaminergic neurons and reduced protein tyrosine nitration and gliosis in the midbrain of PD mice. An inhibitory effect on activation of the NADPH oxidase/p38 MAPK was observed, and increased antioxidant protein expression in the midbrain were seen in the simvastatin plus 6-OHDA group compared with the 6-OHDA-lesioned group. Taken together, these results demonstrate that simvastatin might inhibit the activation of NADPH oxidase/p38 MAPK pathway, enhance antioxidant protein expression and protect against oxidative stress, thereby providing a novel antioxidant mechanism that has therapeutic validity.
Collapse
Affiliation(s)
- Huichun Tong
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xingjun Meng
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Lingli Lu
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Dongmei Mai
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| | - Shaogang Qu
- Clinical Medicine Research Center, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
10
|
Yoo JM, Lee BD, Lee SJ, Ma JY, Kim MR. Anti-Apoptotic Effect ofN-Palmitoyl Serotonin on Glutamate-Mediated Apoptosis Through Secretion of BDNF and Activation of TrkB/CREB Pathway in HT-22 Cells. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jae-Myung Yoo
- Korean Medicine-Application Center; Korea Institute of Oriental Medicine; Daegu 41062 Republic of Korea
| | - Bo Dam Lee
- Department of Food and Nutrition; Chungnam National University; 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| | - Su Jin Lee
- Department of Food and Nutrition; Chungnam National University; 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine-Application Center; Korea Institute of Oriental Medicine; Daegu 41062 Republic of Korea
| | - Mee Ree Kim
- Department of Food and Nutrition; Chungnam National University; 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| |
Collapse
|