1
|
Prince N, Peralta Marzal LN, Roussin L, Monnoye M, Philippe C, Maximin E, Ahmed S, Salenius K, Lin J, Autio R, Adolfs Y, Pasterkamp RJ, Garssen J, Naudon L, Rabot S, Kraneveld AD, Perez-Pardo P. Mouse strain-specific responses along the gut-brain axis upon fecal microbiota transplantation from children with autism. Gut Microbes 2025; 17:2447822. [PMID: 39773319 PMCID: PMC11730631 DOI: 10.1080/19490976.2024.2447822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Several factors are linked to the pathophysiology of autism spectrum disorders (ASD); however, the molecular mechanisms of the condition remain unknown. As intestinal problems and gut microbiota dysbiosis are associated with ASD development and severity, recent studies have focused on elucidating the microbiota-gut-brain axis' involvement. This study aims to explore mechanisms through which gut microbiota might influence ASD. Briefly, we depleted the microbiota of conventional male BALB/cAnNCrl (Balb/c) and C57BL/6J (BL/6) mice prior to human fecal microbiota transplantation (hFMT) with samples from children with ASD or their neurotypical siblings. We found mouse strain-specific responses to ASD hFMT. Notably, Balb/c mice exhibit decreased exploratory and social behavior, and show evidence of intestinal, systemic, and central inflammation accompanied with metabolic shifts. BL/6 mice show less changes after hFMT. Our results reveal that gut microbiota alone induce changes in ASD-like behavior, and highlight the importance of mouse strain selection when investigating multifactorial conditions like ASD.
Collapse
Affiliation(s)
- Naika Prince
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lucia N. Peralta Marzal
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Léa Roussin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elise Maximin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sabbir Ahmed
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karoliina Salenius
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Jake Lin
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Reija Autio
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Aletta D. Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Xie YQ, Fussenegger M. Plasmid-based electroporation for efficient genetic engineering in immortalized T lymphocytes. Metab Eng 2025; 91:77-90. [PMID: 40185196 DOI: 10.1016/j.ymben.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/07/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
The recent clinical success of genetically modified T-cell therapies underscores the urgent need to accelerate fundamental studies and functional screening methods in T lymphocytes. However, a facile and cost-effective method for efficient genetic engineering of T-cells remains elusive. Current approaches often rely on viral transduction, which is labor-intensive and requires stringent biosafety measures. Plasmid-based electroporation presents an affordable alternative, but remains underexplored in T-cells. Moreover, the availability of prototypical T-cell lines is limited. Here, we address these challenges by focusing on two immortalized murine T-cell lines, HT-2 and CTLL-2, which recapitulate key characteristics of primary T-cells, including cytotoxicity and cytokine-dependent proliferation. Alongside the widely used Jurkat T-cell line, HT-2 and CTLL-2 were successfully transfected with single or multiple genes with high efficiencies by means of optimized electroporation in a cuvette-based system. Notably, optimization of plasmid constructs enabled the delivery of large gene-of-interest (GOI) cargos of up to 6.5 kilobase pairs, as well as stable integration of a GOI into the genome via the Sleeping Beauty transposon system. We also developed advanced methodologies for CRISPR/Cas9-mediated gene editing in immortalized T lymphocytes, achieving knockout efficiencies of up to 97 % and homology-directed repair (HDR)-based targeted knock-in efficiencies of up to 70 %. We believe this optimized plasmid-based electroporation approach will contribute to advances in basic research on lymphocyte biology, as well as providing a practical, cost-effective tool for preclinical studies of T-cell therapies.
Collapse
Affiliation(s)
- Yu-Qing Xie
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule Zurich, Schanzenstrasse 48, CH-4056, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule Zurich, Schanzenstrasse 48, CH-4056, Basel, Switzerland; Faculty of Science, University of Basel, Schanzenstrasse 48, CH-4056, Basel, Switzerland.
| |
Collapse
|
3
|
Canaán-Haden C, Sánchez-Ramírez J, Martínez-Castillo R, Bequet-Romero M, Puente-Pérez P, Gonzalez-Moya I, Rodríguez-Álvarez Y, Ayala-Ávila M, Castro-Velazco J, Cabanillas-Bernal O, De-León-Nava MA, Licea-Navarro AF, Morera-Díaz Y. Immunogenicity and Safety Profile of Two Adjuvanted-PD-L1-Based Vaccine Candidates in Mice, Rats, Rabbits, and Cynomolgus Monkeys. Vaccines (Basel) 2025; 13:296. [PMID: 40266234 PMCID: PMC11946573 DOI: 10.3390/vaccines13030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND The therapeutic blockade of the PD1/PD-L1 axis with monoclonal antibodies has led to a breakthrough in cancer treatment, as it plays a key role in the immune evasion of tumors. Nevertheless, treating patients with cancer with vaccines that stimulate a targeted immune response is another attractive approach for which few side effects have been observed in combination immunotherapy clinical trials. In this sense, our group has recently developed a therapeutic cancer vaccine candidate called PKPD-L1Vac which contains as an antigen the extracellular domain of human PD-L1 fused to a 47 amino-terminal, part of the LpdA gene of N. meningitides, which is produced in E. coli. The investigation of potential toxicities associated with PD-L1 blockade by a new therapy in preclinical studies is critical to optimizing the efficacy and safety of that new therapy. METHODS Here, we describe immunogenicity and preliminary safety studies in mice, rats, rabbits, and non-human primates that make use of a 200 μg dose of PKPD-L1 in combination with VSSPs or alum phosphate to contribute to the assessment of potential adverse events that are relevant to the future clinical development program of this novel candidate. RESULTS The administration of PKPD-L1Vac to the four species at the doses studied was immunogenic and did not result in behavioral, clinical, hematological, or serum biochemical changes. CONCLUSIONS Therefore, PKPD-L1Vac could be considered suitable for further complex toxicological studies and the way for its clinical evaluation in humans has been opened.
Collapse
Affiliation(s)
- Camila Canaán-Haden
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| | - Javier Sánchez-Ramírez
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| | - Rafael Martínez-Castillo
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| | - Mónica Bequet-Romero
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| | - Pedro Puente-Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| | - Isabel Gonzalez-Moya
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| | - Yunier Rodríguez-Álvarez
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| | - Marta Ayala-Ávila
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| | - Jorge Castro-Velazco
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| | - Olivia Cabanillas-Bernal
- CONAHCYT—Innovation and Development Promotion Direction, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico;
| | - Marco A. De-León-Nava
- Biomedical Innovation Department, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico; (M.A.D.-L.-N.); (A.F.L.-N.)
| | - Alexei F. Licea-Navarro
- Biomedical Innovation Department, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico; (M.A.D.-L.-N.); (A.F.L.-N.)
| | - Yanelys Morera-Díaz
- Center for Genetic Engineering and Biotechnology (CIGB), P.O. Box 6162, Playa Cubanacán, Havana 10600, Cuba; (C.C.-H.); (J.S.-R.); (R.M.-C.); (M.B.-R.); (P.P.-P.); (I.G.-M.); (Y.R.-Á.); (M.A.-Á.); (J.C.-V.)
| |
Collapse
|
4
|
Hwangbo H, Chae S, Ryu D, Kim G. In situ magnetic-field-assisted bioprinting process using magnetorheological bioink to obtain engineered muscle constructs. Bioact Mater 2025; 45:417-433. [PMID: 39697238 PMCID: PMC11653149 DOI: 10.1016/j.bioactmat.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Tissue-engineered anisotropic cell constructs are promising candidates for treating volumetric muscle loss (VML). However, achieving successful cell alignment within macroscale 3D cell constructs for skeletal muscle tissue regeneration remains challenging, owing to difficulties in controlling cell arrangement within a low-viscosity hydrogel. Herein, we propose the concept of a magnetorheological bioink to manipulate the cellular arrangement within a low-viscosity hydrogel. This bioink consisted of gelatin methacrylate (GelMA), iron oxide nanoparticles, and human adipose stem cells (hASCs). The cell arrangement is regulated by the responsiveness of iron oxide nanoparticles to external magnetic fields. A bioprinting process using ring magnets was developed for in situ bioprinting, resulting in well-aligned 3D cell structures and enhanced mechanotransduction effects on hASCs. In vitro analyses revealed upregulation of cellular activities, including myogenic-related gene expression, in hASCs. When implanted into a VML mouse model, the bioconstructs improved muscle functionality and regeneration, validating the effectiveness of the proposed approach.
Collapse
Affiliation(s)
- Hanjun Hwangbo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - SooJung Chae
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Selitrennikoff CP, Sylvia C, Sanchez M, Lawrence P, Trosch K, Carenza A, Meschter C. Evaluate the safety of a novel photohydrolysis technology used to clean and disinfect indoor air: A murine study. PLoS One 2024; 19:e0307031. [PMID: 39383125 PMCID: PMC11463749 DOI: 10.1371/journal.pone.0307031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/27/2024] [Indexed: 10/11/2024] Open
Abstract
There is a pressing need to develop new technologies that continuously eliminates harmful pollutants and pathogens in occupied indoor spaces without compromising safety. This study was undertaken to test the safety of a novel air cleaning and disinfection technology called Advanced Photohydrolysis. Advanced Photohydrolysis generates a complex mixture of ions and molecules that are released into the air and has been shown to reduce airborne and surface pathogens. Mice (6-8-week-old) were exposed to therapeutic levels of Advanced Photohydrolysis for 90-days. During the study, the Advanced-Photohydrolysis-exposed and control mice were monitored for food consumption, body weight gain, and any overt adverse effects. In addition, at the conclusion of the study, the blood chemistry and hematology values of both groups were determined. Finally, the tissues of the conduction and respiratory portions of the airways of mice from both groups were examined for any pathological changes. The mice of both groups were found to be normal and healthy throughout the 90-day study; there were no differences in the behavior, food consumption and weight gain. Analysis of clinical chemistry values found no differences in hepatocellular function or other markers of cellular and organ function, and clinical hematology values were also unremarkable. Finally, and importantly, histopathology of the upper and lower airway tissues showed no deleterious effects. These results are the first to demonstrate directly the safety of Advanced Photohydrolysis on live mammals and encourage additional studies.
Collapse
Affiliation(s)
- Claude P. Selitrennikoff
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Charles Sylvia
- Comparative Biosciences, Inc., Sunnyvale, California, United States of America
| | - Maria Sanchez
- Comparative Biosciences, Inc., Sunnyvale, California, United States of America
| | | | - Kimberly Trosch
- ActivePure Technologies, Dallas, Texas, United States of America
| | - Amy Carenza
- ActivePure Technologies, Dallas, Texas, United States of America
| | - Carol Meschter
- Comparative Biosciences, Inc., Sunnyvale, California, United States of America
| |
Collapse
|
6
|
Mizrahi A, Péan de Ponfilly G, Sapa D, Suau A, Mangin I, Baliarda A, Hoys S, Pilmis B, Lambert S, Brosse A, Le Monnier A. A Mouse Model of Mild Clostridioides difficile Infection for the Characterization of Natural Immune Responses. Microorganisms 2024; 12:1933. [PMID: 39458243 PMCID: PMC11509167 DOI: 10.3390/microorganisms12101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: We describe a model of primary mild-Clostridioides difficile infection (CDI) in a naïve host, including gut microbiota analysis, weight loss, mortality, length of colonization. This model was used in order to describe the kinetics of humoral (IgG, IgM) and mucosal (IgA) immune responses against toxins (TcdA/TcdB) and surface proteins (SlpA/FliC). (2) Methods: A total of 105 CFU vegetative forms of C. difficile 630Δerm were used for challenge by oral administration after dysbiosis, induced by a cocktail of antibiotics. Gut microbiota dysbiosis was confirmed and described by 16S rDNA sequencing. We sacrificed C57Bl/6 mice after different stages of infection (day 6, 2, 7, 14, 21, 28, and 56) to evaluate IgM, IgG against TcdA, TcdB, SlpA, FliC in blood samples, and IgA in the cecal contents collected. (3) Results: In our model, we observed a reproducible gut microbiota dysbiosis, allowing for C. difficile digestive colonization. CDI was objectivized by a mean weight loss of 13.1% and associated with a low mortality rate of 15.7% of mice. We observed an increase in IgM anti-toxins as early as D7 after challenge. IgG increased since D21, and IgA anti-toxins were secreted in cecal contents. Unexpectedly, neither anti-SlpA nor anti-FliC IgG or IgA were observed in our model. (4) Conclusions: In our model, we induced a gut microbiota dysbiosis, allowing a mild CDI to spontaneously resolve, with a digestive clearance observed since D14. After this primary CDI, we can study the development of specific immune responses in blood and cecal contents.
Collapse
Affiliation(s)
- Assaf Mizrahi
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Gauthier Péan de Ponfilly
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Diane Sapa
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Antonia Suau
- USC ANSES-Cnam Metabiot, Conservatoire National des Arts et Métiers, 75003 Paris, France; (A.S.); (I.M.)
| | - Irène Mangin
- USC ANSES-Cnam Metabiot, Conservatoire National des Arts et Métiers, 75003 Paris, France; (A.S.); (I.M.)
| | - Aurélie Baliarda
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Sandra Hoys
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Benoît Pilmis
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Sylvie Lambert
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Anaïs Brosse
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Alban Le Monnier
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| |
Collapse
|
7
|
Zhang X, Li F, Yang H, Xu H, Wang A, Jia Q, Zhang L, Liu L. A novel simple suture method for establishing an orthotopic pancreatic cancer mouse model: a comparative study with two conventional methods. Am J Transl Res 2024; 16:4422-4435. [PMID: 39398607 PMCID: PMC11470369 DOI: 10.62347/judx2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE This study aims to evaluate the efficacy of a novel simple suture method in establishing an optimal animal model for preclinical research in pancreatic cancer. METHODS To establish a novel simple suture method, the tumor fragment was placed on the tail of the pancreas and securely wrapped into the pancreas, and compared with two conventional methods: the cell injection method and the tumor fragment embedding method. Subsequently, emission tomography/computed tomography scanning, gross anatomy observation, hematoxylin and eosin staining, and immunohistochemistry staining were performed to assess the effectiveness of these methods. RESULTS The emission tomography/computed tomography scanning and anatomical examinations confirmed the successful construction of orthotopic pancreatic cancer models using all three methods. Histopathological analysis of the orthotopic masses and metastatic lesions revealed malignant transformation with tumor infiltration into normal tissue. Comparative analysis demonstrated that the cell injection method was easy to perform but resulted in poor uniformity of tumor size and had high costs. The tumor fragment embedding method exhibited excellent uniformity of tumor size, with the highest tumor growth rates and a greater pancreatic impairment. In contrast, the novel simple suture method featured a relatively simple surgical procedure, slower growth rates, good uniformity of tumor size, and minimal pancreatic impairment. CONCLUSION The novel simple suture method is the optimal protocol for establishing an orthotopic pancreatic cancer mouse model, providing a robust foundation for preclinical studies on pancreatic cancer.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Immunology, Chengde Medical UniversityChengde 067000, Hebei, P. R. China
| | - Fan Li
- Department of Immunology, Chengde Medical UniversityChengde 067000, Hebei, P. R. China
| | - Hongbin Yang
- Department of Immunology, Chengde Medical UniversityChengde 067000, Hebei, P. R. China
| | - Hailan Xu
- Department of Oncology, The Affiliated Hospital of Chengde Medical UniversityChengde 067000, Hebei, P. R. China
| | - Aihui Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Chengde Medical UniversityChengde 067000, Hebei, P. R. China
| | - Qichen Jia
- Department of Nuclear Medicine, The Affiliated Hospital of Chengde Medical UniversityChengde 067000, Hebei, P. R. China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical UniversityChengde 067000, Hebei, P. R. China
| | - Lei Liu
- Department of Immunology, Chengde Medical UniversityChengde 067000, Hebei, P. R. China
| |
Collapse
|
8
|
Batista C, Cruz JVR, Stipursky J, de Almeida Mendes F, Pesquero JB. Kinin B 1 receptor and TLR4 interaction in inflammatory response. Inflamm Res 2024; 73:1459-1476. [PMID: 38965133 DOI: 10.1007/s00011-024-01909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE We aimed to broaden our understanding of a potential interaction between B1R and TLR4, considering earlier studies suggesting that lipopolysaccharide (LPS) may trigger B1R stimulation. METHODS We assessed the impact of DBK and LPS on the membrane potential of thoracic aortas from C57BL/6, B1R, or TLR4 knockout mice. Additionally, we examined the staining patterns of these receptors in the thoracic aortas of C57BL/6 and in endothelial cells (HBMEC). RESULTS DBK does not affect the resting membrane potential of aortic rings in C57BL/6 mice, but it hyperpolarizes preparations in B1KO and TLR4KO mice. The hyperpolarization mechanism in B1KO mice involves B2R, and the TLR4KO response is independent of cytoplasmic calcium influx but relies on potassium channels. Conversely, LPS hyperpolarizes thoracic aorta rings in both C57BL/6 and B1KO mice, with the response unaffected by a B1R antagonist. Interestingly, the absence of B1R alters the LPS response to potassium channels. These activities are independent of nitric oxide synthase (NOS). While exposure to DBK and LPS does not alter B1R and TLR4 mRNA expression, treatment with these agonists increases B1R staining in endothelial cells of thoracic aortic rings and modifies the staining pattern of B1R and TLR4 in endothelial cells. Proximity ligation assay suggests a interaction between the receptors. CONCLUSION Our findings provide additional support for a putative connection between B1R and TLR4 signaling. Given the involvement of these receptors and their agonists in inflammation, it suggests that drugs and therapies targeting their effects could be promising therapeutic avenues worth exploring.
Collapse
Affiliation(s)
- Carolina Batista
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rua César Pernetta, S/N, Prédio do ICB (Anexo ao Bloco F do CCS), 3º andar, sala LJ.03.01, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-902, Brazil
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Pedro de Toledo, 669, 9° andar, São Paulo, SP, CEP: 04039-032, Brazil
| | - João Victor Roza Cruz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rua César Pernetta, S/N, Prédio do ICB (Anexo ao Bloco F do CCS), 3º andar, sala LJ.03.01, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-902, Brazil
| | - Joice Stipursky
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rua César Pernetta, S/N, Prédio do ICB (Anexo ao Bloco F do CCS), 3º andar, sala LJ.03.01, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-902, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rua César Pernetta, S/N, Prédio do ICB (Anexo ao Bloco F do CCS), 3º andar, sala LJ.03.01, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-902, Brazil.
| | - João Bosco Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Pedro de Toledo, 669, 9° andar, São Paulo, SP, CEP: 04039-032, Brazil.
| |
Collapse
|
9
|
Mangalpady SS, Peña-Corona SI, Borbolla-Jiménez F, Kaverikana R, Shetty S, Shet VB, Almarhoon ZM, Calina D, Leyva-Gómez G, Sharifi-Rad J. Arnicolide D: a multi-targeted anticancer sesquiterpene lactone-preclinical efficacy and mechanistic insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6317-6336. [PMID: 38652277 DOI: 10.1007/s00210-024-03095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Arnicolide D, a potent sesquiterpene lactone from Centipeda minima, has emerged as a promising anticancer candidate, demonstrating significant efficacy in inhibiting cancer cell proliferation, inducing apoptosis, and suppressing metastasis across various cancer models. This comprehensive study delves into the molecular underpinnings of Arnicolide D's anticancer actions, emphasizing its impact on key signaling pathways such as PI3K/AKT/mTOR and STAT3, and its role in modulating cell cycle and survival mechanisms. Quantitative data from preclinical studies reveal Arnicolide D's dose-dependent cytotoxicity against cancer cell lines, including nasopharyngeal carcinoma, triple-negative breast cancer, and human colon carcinoma, showcasing its broad-spectrum anticancer potential. Given its multifaceted mechanisms and preclinical efficacy, Arnicolide D warrants further investigation in clinical settings to validate its therapeutic utility against cancer. The evidence presented underscores the need for rigorous pharmacokinetic and toxicological studies to establish safe dosing parameters for future clinical trials.
Collapse
Affiliation(s)
- Shivaprasad Shetty Mangalpady
- Department of Chemistry, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Nitte, Mangaluru, India
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Fabiola Borbolla-Jiménez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Rajesh Kaverikana
- Department of Pharmacology, NGSM Institute of Pharmaceuticals, Nitte (Deemed to Be University), Mangaluru, India
| | - Shobhitha Shetty
- Department of Chemistry, A.J. Institute of Engineering & Technology, Mangaluru, India
| | - Vinayaka Babu Shet
- Department of Biotechnology Engineering, NMAM Institute of Technology (NMAMIT), Nitte (Deemed to Be University), Mangaluru, India
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | | |
Collapse
|
10
|
Ganguly A, Chetty S, Primavera R, Levitte S, Regmi S, Dulken BW, Sutherland SM, Angeles W, Wang J, Thakor AS. Time-course analysis of cisplatin induced AKI in preclinical models: implications for testing different sources of MSCs. J Transl Med 2024; 22:789. [PMID: 39192240 DOI: 10.1186/s12967-024-05439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Kidneys are at risk from drug-induced toxicity, with a significant proportion of acute kidney injury (AKI) linked to medications, particularly cisplatin. Existing cytoprotective drugs for cisplatin-AKI carry side effects, prompting a search for better biological therapies. Mesenchymal Stem Cells (MSCs) are under consideration given their regenerative properties, yet their clinical application has not achieved their full potential, mainly due to variability in the source of MSC tested. In addition, translating treatments from rodent models to humans remains challenging due to a lack of standardized dosing and understanding potential differential responses to cisplatin between animal strains. METHOD In the current study, we performed a time-course analysis of the effect of cisplatin across different mouse strains and evaluated gender related differences to create a robust preclinical model that could then be used to explore the therapeutic efficacy of different sources of MSCs for their ability to reverse AKI. RESULT Our data indicated that different mouse strains produce differential responses to the same cisplatin dosing regimen. Despite this, we did not observe any gender-related bias towards cisplatin nephrotoxicity. Furthermore, our time-course analysis identified that cisplatin-induced inflammation was driven by a strong CXCL1 response, which was used as a putative biomarker to evaluate the comparative therapeutic efficacy of different MSC sources in reversing AKI. Our data indicates that UC-MSCs have a stronger anti-inflammatory effect compared to BM-MSCs and AD-MSCs, which helped to ameliorate cisplatin-AKI. CONCLUSION Overall, our data underscores the importance of using an optimized preclinical model of cisplatin-AKI to test different therapies. We identified CXCL1 as a potential biomarker of cisplatin-AKI and identified the superior efficacy of UC-MSCs in mitigating cisplatin-AKI.
Collapse
Affiliation(s)
- Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Steven Levitte
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | | | - Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Stanford University, Palo Alto, CA, USA
| | - Wendy Angeles
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Jing Wang
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
11
|
Hernández-Peralta P, Chacón-Salinas R, Gracia-Mora MI, Soldevila G, Moreno-Rodríguez J, Cobos-Marín L. Microenvironment M1/M2 macrophages and tumoral progression vary within C57BL/6 mice from same substrain in prostate cancer model. Sci Rep 2024; 14:15112. [PMID: 38956203 PMCID: PMC11219814 DOI: 10.1038/s41598-024-65960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Cancer mice models are critical for immune-oncology research; they provide conditions to explore tumor immunoenviroment aiming to advance knowledge and treatment development. Often, research groups breed their own mice colonies. To assess the effect of C57BL/6 mice breeding nuclei in prostate cancer development and intratumoral macrophage populations, an isotransplantation experiment was performed. C57BL/6J mice from two breeding nuclei (nA and nB) were employed for prostate adenocarcinoma TRAMP-C1 cell implantation; tumor growth period and intratumoral macrophage profile were measured. BL/6nB mice (54%) showed tumor implantation after 69-day growth period while BL/6nA implantation reached 100% across tumor growth period (28 days). No difference in total macrophage populations was observed between groups within several tumoral regions; significantly higher M2 macrophage profile was observed in tumor microenvironments from both mice groups. Nevertheless, BL/6nB tumors showed around twice the population of M1 profile (11-27%) than BL6nA (4-15%) and less non-polarized macrophages. The M1:M2 average ratio was 1:8 for group A and 1:4 for B. Our results demonstrate different tumor progression and intratumoral macrophage populations among mice from the same substrain. Data obtained in this study shows the relevance of animal source renewal for better control of murine cancer model variables.
Collapse
Affiliation(s)
- P Hernández-Peralta
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior sn, 04510, Mexico City, Mexico
| | - R Chacón-Salinas
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional (ENCB-IPN), 11340, Mexico City, Mexico
| | - M I Gracia-Mora
- Department of Inorganic and Nuclear Chemistry, Faculty of Chemistry, Universidad Nacional Autónoma de México (UNAM), Investigación Científica 70, 04510, Mexico City, Mexico
| | - G Soldevila
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - J Moreno-Rodríguez
- Research Division, Hospital Juárez de México, 07760, Mexico City, Mexico
| | - L Cobos-Marín
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior sn, 04510, Mexico City, Mexico.
| |
Collapse
|
12
|
Möckel T, Boegel S, Schwarting A. Transcriptome Analysis of BAFF/BAFF-R System in Murine Nephrotoxic Serum Nephritis. Int J Mol Sci 2024; 25:5415. [PMID: 38791453 PMCID: PMC11121395 DOI: 10.3390/ijms25105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is an emerging cause for morbidity and mortality worldwide. Acute kidney injury (AKI) can transition to CKD and finally to end-stage renal disease (ESRD). Targeted treatment is still unavailable. NF-κB signaling is associated with CKD and activated by B cell activating factor (BAFF) via BAFF-R binding. In turn, renal tubular epithelial cells (TECs) are critical for the progression of fibrosis and producing BAFF. Therefore, the direct involvement of the BAFF/BAFF-R system to the pathogenesis of CKD is conceivable. We performed non-accelerated nephrotoxic serum nephritis (NTN) as the CKD model in BAFF KO (B6.129S2-Tnfsf13btm1Msc/J), BAFF-R KO (B6(Cg)-Tnfrsf13ctm1Mass/J) and wildtype (C57BL/6J) mice to analyze the BAFF/BAFF-R system in anti-glomerular basement membrane (GBM) disease using high throughput RNA sequencing. We found that BAFF signaling is directly involved in the upregulation of collagen III as BAFF ko mice showed a reduced expression. However, these effects were not mediated via BAFF-R. We identified several upregulated genes that could explain the effects of BAFF in chronic kidney injury such as Txnip, Gpx3, Igfbp7, Ccn2, Kap, Umod and Ren1. Thus, we conclude that targeted treatment with anti-BAFF drugs such as belimumab may reduce chronic kidney damage. Furthermore, upregulated genes may be useful prognostic CKD biomarkers.
Collapse
Affiliation(s)
- Tamara Möckel
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
| | - Sebastian Boegel
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
| | - Andreas Schwarting
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (T.M.); (S.B.)
- Center for Rheumatic Disease Rhineland-Palatinate GmbH, 55543 Bad Kreuznach, Germany
| |
Collapse
|
13
|
Manoharan S, Ying Ying L. Pyrimethamine reduced tumour growth in pre-clinical cancer models: a systematic review to identify potential pre-clinical studies for subsequent human clinical trials. Biol Methods Protoc 2024; 9:bpae021. [PMID: 38618181 PMCID: PMC11014785 DOI: 10.1093/biomethods/bpae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Pyrimethamine (PYR), a STAT3 inhibitor, has been shown to reduce tumour burden in mouse cancer models. It is unclear how much of a reduction occurred or whether the PYR dosages and route of administration used in mice were consistent with the FDA's recommendations for drug repurposing. Search engines such as ScienceDirect, PubMed/MEDLINE, and other databases, including Google Scholar, were thoroughly searched, as was the reference list. The systematic review includes fourteen (14) articles. The risk of bias (RoB) was assessed using SYRCLE's guidelines. Due to the heterogeneity of the data, no meta-analysis was performed. According to the RoB assessment, 13/14 studies fall into the moderate RoB category, with one study classified as high RoB. None adhered to the ARRIVE guideline for transparent research reporting. Oral (FDA-recommended) and non-oral routes of PYR administration were used in mice, with several studies reporting very high PYR dosages that could lead to myelosuppression, while oral PYR dosages of 30 mg/kg or less are considered safe. Direct human equivalent dose translation is probably not the best strategy for comparing whether the used PYR dosages in mice are in line with FDA-approved strength because pharmacokinetic profiles, particularly PYR's half-life (t1/2), between humans (t1/2 = 96 h) and mice (t1/2 = 6 h), must also be considered. Based on the presence of appropriate control and treatment groups, as well as the presence of appropriate clinically proven chemotherapy drug(s) for comparison purposes, only one study (1/14) involving liver cancer can be directed into a clinical trial. Furthermore, oesophageal cancer too can be directed into clinical trials, where the indirect effect of PYR on the NRF2 gene may suppress oesophageal cancer in patients, but this must be done with caution because PYR is an investigational drug for oesophageal cancer, and combining it with proven chemotherapy drug(s) is recommended.
Collapse
Affiliation(s)
- Sivananthan Manoharan
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia
| | - Lee Ying Ying
- Department of Biomedical Sciences, Asia Metropolitan University, Johor Bahru 81750, Johor, Malaysia
| |
Collapse
|
14
|
Piatnitskaia S, Rafikova G, Bilyalov A, Chugunov S, Akhatov I, Pavlov V, Kzhyshkowska J. Modelling of macrophage responses to biomaterials in vitro: state-of-the-art and the need for the improvement. Front Immunol 2024; 15:1349461. [PMID: 38596667 PMCID: PMC11002093 DOI: 10.3389/fimmu.2024.1349461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
The increasing use of medical implants in various areas of medicine, particularly in orthopedic surgery, oncology, cardiology and dentistry, displayed the limitations in long-term integration of available biomaterials. The effective functioning and successful integration of implants requires not only technical excellence of materials but also consideration of the dynamics of biomaterial interaction with the immune system throughout the entire duration of implant use. The acute as well as long-term decisions about the efficiency of implant integration are done by local resident tissue macrophages and monocyte-derived macrophages that start to be recruited during tissue damage, when implant is installed, and are continuously recruited during the healing phase. Our review summarized the knowledge about the currently used macrophages-based in vitro cells system that include murine and human cells lines and primary ex vivo differentiated macrophages. We provided the information about most frequently examined biomarkers for acute inflammation, chronic inflammation, foreign body response and fibrosis, indicating the benefits and limitations of the model systems. Particular attention is given to the scavenging function of macrophages that controls dynamic composition of peri-implant microenvironment and ensures timely clearance of microorganisms, cytokines, metabolites, extracellular matrix components, dying cells as well as implant debris. We outline the perspective for the application of 3D systems for modelling implant interaction with the immune system in human tissue-specific microenvironment avoiding animal experimentation.
Collapse
Affiliation(s)
- Svetlana Piatnitskaia
- Cell Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Guzel Rafikova
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
- Laboratory of Immunology, Institute of Urology and Clinical Oncology, Bashkir State Medical University, Ufa, Russia
| | - Azat Bilyalov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Svyatoslav Chugunov
- Additive Technology Laboratory, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Iskander Akhatov
- Laboratory of Mathematical modeling, Institute of Fundamental Medicine, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
15
|
Zervopoulou E, Grigoriou M, Doumas SA, Yiannakou D, Pavlidis P, Gasparoni G, Walter J, Filia A, Gakiopoulou H, Banos A, Mitroulis I, Boumpas DT. Enhanced medullary and extramedullary granulopoiesis sustain the inflammatory response in lupus nephritis. Lupus Sci Med 2024; 11:e001110. [PMID: 38471723 DOI: 10.1136/lupus-2023-001110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVES In SLE, deregulation of haematopoiesis is characterised by inflammatory priming and myeloid skewing of haematopoietic stem and progenitor cells (HSPCs). We sought to investigate the role of extramedullary haematopoiesis (EMH) as a key player for tissue injury in systemic autoimmune disorders. METHODS Transcriptomic analysis of bone marrow (BM)-derived HSPCs from patients with SLE and NZBW/F1 lupus-prone mice was performed in combination with DNA methylation profile. Trained immunity (TI) was induced through β-glucan administration to the NZBW/F1 lupus-prone model. Disease activity was assessed through lupus nephritis (LN) histological grading. Colony-forming unit assay and adoptive cell transfer were used to assess HSPCs functionalities. RESULTS Transcriptomic analysis shows that splenic HSPCs carry a higher inflammatory potential compared with their BM counterparts. Further induction of TI, through β-glucan administration, exacerbates splenic EMH, accentuates myeloid skewing and worsens LN. Methylomic analysis of BM-derived HSPCs demonstrates myeloid skewing which is in part driven by epigenetic tinkering. Importantly, transcriptomic analysis of human SLE BM-derived HSPCs demonstrates similar findings to those observed in diseased mice. CONCLUSIONS These data support a key role of granulocytes derived from primed HSPCs both at medullary and extramedullary sites in the pathogenesis of LN. EMH and TI contribute to SLE by sustaining the systemic inflammatory response and increasing the risk for flare.
Collapse
Affiliation(s)
- Eleni Zervopoulou
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Grigoriou
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Stavros A Doumas
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Danae Yiannakou
- Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Gilles Gasparoni
- Department of Genetics-Epigenetics, Saarland University, Saarbrucken, Germany
| | - Jörn Walter
- Department of Genetics-Epigenetics, Saarland University, Saarbrucken, Germany
| | - Anastasia Filia
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Harikleia Gakiopoulou
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggelos Banos
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Ioannis Mitroulis
- 1st Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace School of Health Sciences, Alexandroupoli, Greece
| | - Dimitrios T Boumpas
- Autoimmunity and Inflammation Laboratory, Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Shi Y, Su C, Ding T, Zhao H, Wang Y, Ren Y, Wu L, Zhang Q, Liang J, Sun S, Wang J, Li J, Zeng X. Manganese suppresses the development of oral leukoplakia by activating the immune response. Oral Dis 2024; 30:462-476. [PMID: 36260219 DOI: 10.1111/odi.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Manganese ion (Mn2+ ) is reported to promote the antitumor immune response by activating the cGAS-STING pathway, but it is unknown whether Mn2+ can prevent the malignant transformation of precancerous lesions. The effects of Mn2+ in treating oral leukoplakia (OLK) were explored in this work. METHODS Peripheral blood Mn analysis of the patients was performed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). A coculture model of dendritic cells (DCs)/macrophages, CD8+ T cells, and dysplastic oral keratinocytes (DOKs) was employed to analyze the role and mechanism of Mn2+ in a simulated OLK immune microenvironment. Western blot, RT-PCR, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and lactate dehydrogenase (LDH) assays were adopted to detect the mechanism of Mn2+ in this model. 4-nitroquinoline oxide (4NQO)-induced OLK mice were used to assess the role of Mn2+ in suppressing OLK progression, and a novel Mn2+ -loaded guanosine-tannic acid hydrogel (G-TA@Mn2+ hydrogel) was fabricated and evaluated for its advantages in OLK therapy. RESULTS The content of Mn in patients' peripheral blood was negatively related to the progression of OLK. Mn2+ promoted the maturation and antigen presentation of DCs and macrophages and enhanced the activation of CD8+ T cells in the coculture model, resulting in effective killing of DOKs. Mechanistic analysis found that Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway. Moreover, Mn2+ suppressed the development of 4NQO-induced carcinogenesis in the mouse model. In addition, the G-TA@Mn2+ hydrogel had better anti-OLK effects. CONCLUSIONS Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway, and the G-TA@Mn2+ hydrogel is a potential novel therapeutic approach for OLK treatment.
Collapse
Affiliation(s)
- Yujie Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lanyan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Silu Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Jiao JY, Cheng CS, Cao ZQ, Chen LY, Chen Z. Evidence-Based Dampness-Heat ZHENG (Syndrome) in Cancer: Current Progress toward Establishing Relevant Animal Model with Pancreatic Tumor. Chin J Integr Med 2024; 30:85-95. [PMID: 35723813 DOI: 10.1007/s11655-022-3675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Cancer is one of the deadliest diseases affecting the health of human beings. With limited therapeutic options available, complementary and alternative medicine has been widely adopted in cancer management and is increasingly becoming accepted by both patients and healthcare workers alike. Chinese medicine characterized by its unique diagnostic and treatment system is the most widely applied complementary and alternative medicine. It emphasizes symptoms and ZHENG (syndrome)-based treatment combined with contemporary disease diagnosis and further stratifies patients into individualized medicine subgroups. As a representative cancer with the highest degree of malignancy, pancreatic cancer is traditionally classified into the "amassment and accumulation". Emerging perspectives define the core pathogenesis of pancreatic cancer as "dampness-heat" and the respective treatment "clearing heat and resolving dampness" has been demonstrated to prolong survival in pancreatic cancer patients, as has been observed in many other cancers. This clinical advantage encourages an exploration of the essence of dampness-heat ZHENG (DHZ) in cancer and investigation into underlying mechanisms of action of herbal formulations against dampness-heat. However, at present, there is a lack of understanding of the molecular characteristics of DHZ in cancer and no standardized and widely accepted animal model to study this core syndrome in vivo. The shortage of animal models limits the ability to uncover the antitumor mechanisms of herbal medicines and to assess the safety profile of the natural products derived from them. This review summarizes the current research on DHZ in cancer in terms of the clinical aspects, molecular landscape, and animal models. This study aims to provide comprehensive insight that can be used for the establishment of a future standardized ZHENG-based cancer animal model.
Collapse
Affiliation(s)
- Ju-Ying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhang-Qi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lian-Yu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Orian JM, Maxwell DL, Lim VJT. Active Induction of a Multiple Sclerosis-Like Disease in Common Laboratory Mouse Strains. Methods Mol Biol 2024; 2746:179-200. [PMID: 38070090 DOI: 10.1007/978-1-0716-3585-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a neuroinflammatory disease with facets in common with multiple sclerosis (MS). It is induced in susceptible mammalian species, with rodents as the preferred hosts, and has been used for decades as a model to investigate the immunopathogenesis of MS as well as for preclinical evaluation of candidate MS therapeutics. Most commonly, EAE is generated by active immunization with central nervous system (CNS) antigens, such as whole CNS homogenate, myelin proteins, or peptides derived from these proteins. However, EAE actually represents a spectrum of diseases in which specific combinations of host/CNS antigen exhibit defined clinical profiles, each associated with unique immunological and pathological features. Similar to MS, EAE is a complex disease where development and progression are also modulated by environmental factors; therefore, the establishment of any given EAE variant can be challenging and requires careful optimization. Here, we describe protocols for three EAE variants, successfully generated in our laboratory, and provide additional information as to how to maintain their unique features and reproducibility.
Collapse
Affiliation(s)
- Jacqueline M Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia.
| | - Dain L Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Vernise J T Lim
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
19
|
Raudszus R, Paulig A, Urban N, Deckers A, Gräßle S, Vanderheiden S, Jung N, Bräse S, Schaefer M, Hill K. Pharmacological inhibition of TRPV2 attenuates phagocytosis and lipopolysaccharide-induced migration of primary macrophages. Br J Pharmacol 2023; 180:2736-2749. [PMID: 37254803 DOI: 10.1111/bph.16154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND AND PURPOSE In macrophages, transient receptor potential vanilloid 2 (TRPV2) channel contributes to various cellular processes such as cytokine production, differentiation, phagocytosis and migration. Due to a lack of selective pharmacological tools, its function in immunological processes is not well understood and the identification of novel and selective TRPV2 modulators is highly desirable. EXPERIMENTAL APPROACH Novel and selective TRPV2 modulators were identified by screening a compound library using Ca2+ influx assays with human embryonic kidney 293 (HEK293) cells heterologously expressing rat TRPV2. Hits were further characterized and validated with Ca2+ influx and electrophysiological assays. Phagocytosis and migration of macrophages were analysed and the contribution of TRPV2 to the generation of Ca2+ microdomains was studied by total internal reflection fluorescence microscopy (TIRFM). KEY RESULTS The compound IV2-1, a dithiolane derivative (1,3-dithiolan-2-ylidene)-4-methyl-5-phenylpentan-2-one), is a potent inhibitor of heterologously expressed TRPV2 channels (IC50 = 6.3 ± 0.7 μM) but does not modify TRPV1, TRPV3 or TRPV4 channels. IV2-1 also inhibits TRPV2-mediated Ca2+ influx in macrophages. IV2-1 inhibits macrophage phagocytosis along with valdecoxib and after siRNA-mediated knockdown. Moreover, TRPV2 inhibition inhibits lipopolysaccharide-induced migration of macrophages whereas TRPV2 activation promotes migration. After activation, TRPV2 shapes Ca2+ microdomains predominantly at the margin of macrophages, which are important cellular regions to promote phagocytosis and migration. CONCLUSIONS AND IMPLICATIONS IV2-1 is a novel TRPV2-selective blocker and underline the role of TRPV2 in macrophage-mediated phagocytosis and migration. Furthermore, we provide evidence that TRPV2 activation generates Ca2+ microdomains, which may be involved in phagocytosis and migration of macrophages.
Collapse
Affiliation(s)
- Rick Raudszus
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Andrea Paulig
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Anke Deckers
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sylvia Vanderheiden
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Kerstin Hill
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| |
Collapse
|
20
|
Xu Z, Shin HS, Kim YH, Ha SY, Won JK, Kim SJ, Park YJ, Parangi S, Cho SW, Lee KE. Modeling the tumor microenvironment of anaplastic thyroid cancer: an orthotopic tumor model in C57BL/6 mice. Front Immunol 2023; 14:1187388. [PMID: 37545523 PMCID: PMC10403231 DOI: 10.3389/fimmu.2023.1187388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Securing a well-established mouse model is important in identifying and validating new therapeutic targets for immuno-oncology. The C57BL/6 mouse is one of the most fully characterised immune system of any animal and provides powerful platform for immuno-oncology discovery. An orthotopic tumor model has been established using TBP3743 (murine anaplastic thyroid cancer [ATC]) cells in B6129SF1 hybrid mice, this model has limited data on tumor immunology than C57BL/6 inbred mice. This study aimed to establish a novel orthotopic ATC model in C57BL/6 mice and characterize the tumor microenvironment focusing immunity in the model. Methods Adapted TBP3743 cells were generated via in vivo serial passaging in C57BL/6 mice. Subsequently, the following orthotopic tumor models were established via intrathyroidal injection: B6129SF1 mice injected with original TBP3743 cells (original/129), B6129SF1 mice injected with adapted cells (adapted/129), and C57BL/6 mice injected with adapted cells (adapted/B6). Results The adapted TBP3743 cells de-differentiated but exhibited cell morphology, viability, and migration/invasion potential comparable with those of original cells in vitro. The adapted/129 contained a higher Ki-67+ cell fraction than the original/129. RNA sequencing data of orthotopic tumors revealed enhanced oncogenic properties in the adapted/129 compared with those in the original/129. In contrast, the orthotopic tumors grown in the adapted/B6 were smaller, with a lower Ki-67+ cell fraction than those in the adapted/129. However, the oncogenic properties of the tumors within the adapted/B6 and adapted/129 were similar. Immune-related pathways were enriched in the adapted/B6 compared with those in the adapted/129. Flow cytometric analysis of the orthotopic tumors revealed higher cytotoxic CD8+ T cell and monocytic-myeloid-derived suppressor cell fractions in the adapted/B6 compared with the adapted/129. The estimated CD8+ and CD4+ cell fractions in the adapted/B6 were similar to those in human ATCs but negligible in the original/B6. Conclusion A novel orthotopic tumor model of ATC was established in C57BL/6 mice. Compared with the original B6129SF1 murine model, the novel model exhibited more aggressive tumor cell behaviours and strong immune responses. We expect that this novel model contributes to the understanding tumor microenvironment and provides the platform for drug development.
Collapse
Affiliation(s)
- Zhen Xu
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, YanBian University Hospital, Yanji, Jilin, China
| | - Hyo Shik Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoo Hyung Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seong Yun Ha
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Su-jin Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyu Eun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul, Republic of Korea
| |
Collapse
|
21
|
Immunoexpression Pattern of Autophagy Markers in Developing and Postnatal Kidneys of Dab1−/−(yotari) Mice. Biomolecules 2023; 13:biom13030402. [PMID: 36979337 PMCID: PMC10046325 DOI: 10.3390/biom13030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
The purpose of this study was to compare the immunofluorescence patterns of autophagic markers: Light chain 3 beta (LC3B), Glucose regulating protein 78 (GRP78), Heat shock cognate 71 (HSC70) and Lysosomal-associated membrane protein 2A (LAMP2A) in the developing and postnatal kidneys of Dab1−/− (yotari) mice to those of wild-type samples. Embryos were obtained on gestation days 13.5 and 15.5 (E13.5 and E15.5), and adult animals were sacrificed at postnatal days 4, 11 and 14 (P4, P11, and P14). After fixation and dehydration, paraffin-embedded kidney tissues were sectioned and incubated with specific antibodies. Using an immunofluorescence microscope, sections were analyzed. For statistical analysis, a two-way ANOVA test and a Tukey’s multiple comparison test were performed with a probability level of p < 0.05. A significant increase in GRP78 and LAMP2A expression was observed in the renal vesicles and convoluted tubules of yotari in embryonic stages. In postnatal kidneys, all observed proteins showed higher signal intensities in proximal and distal convoluted tubules of yotari, while a higher percentage of LC3B-positive cells was also observed in glomeruli. Our findings suggest that all of the examined autophagic markers play an important role in normal kidney development, as well as the potential importance of these proteins in renal pathology, where they primarily serve a protective function and thus may be used as diagnostic and therapeutic targets.
Collapse
|
22
|
Increased Production of Inflammatory Cytokines after Inoculation with Recombinant Zoster Vaccine in Mice. Vaccines (Basel) 2022; 10:vaccines10081339. [PMID: 36016227 PMCID: PMC9413309 DOI: 10.3390/vaccines10081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Increasing numbers of patients with zoster were reported recently, and recombinant zoster vaccine (Shingrix®) was licensed using the AS01B adjuvant system. Although it induces highly effective protection, a high incidence of local adverse events (regional pain, erythema, and swelling) has been reported with systemic reactions of fever, fatigue, and headache. To investigate the mechanism of local adverse events, cytokine profiles were investigated in mice injected with 0.1 mL of Shingrix®. Muscle tissue and serum samples were obtained on days 0, 1, 3, 5, and 7, and at 2 and 4 weeks after the first dose. The second dose was given 4 weeks after the first dose and samples were obtained on days 1, 3, 5, 7, and 14. IL-6 and G-CSF were detected in muscle tissues on day 1 of the first injection, decreased on day 3 and afterward, and enhanced production was demonstrated on day 1 of the second dose. In sera, the elevated levels of IL-6 were detected on day 1 of the first dose, and IL-10 was detected on day 1 with increased levels on day 3 of the first dose. IL-4 was detected in muscle tissue on day 1 of the second dose and IL-5 on day 1 of both the first and second doses. IFN-γ production was not enhanced in muscle tissue but increased in serum samples on day 1 of the first dose. These results in the mouse model indicate that the induction of inflammatory cytokines is related to the cause of adverse events in humans.
Collapse
|
23
|
Effects of broad-spectrum antibiotics on the colonisation of probiotic yeast Saccharomyces boulardii in the murine gastrointestinal tract. Sci Rep 2022; 12:8862. [PMID: 35614092 PMCID: PMC9133042 DOI: 10.1038/s41598-022-12806-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Mouse models are commonly used to study the colonisation profiles of microorganisms introduced to the gastrointestinal tract. Three commonly used mouse models include conventional, germ-free, and antibiotic-treated mice. However, colonisation resistance in conventional mice and specialised equipment for germ-free mice are usually limiting factors in their applications. In this study, we sought to establish a robust colonisation model for Saccharomyces boulardii, a probiotic yeast that has caught attention in the field of probiotics and advanced microbiome therapeutics. We characterised the colonisation of S. boulardii in conventional mice and mice treated with a cocktail of broad-spectrum antibiotics, including ampicillin, kanamycin, metronidazole and vancomycin. We found colonisation levels increased up to 10,000-fold in the antibiotic-treated mice compared to nonantibiotic-treated mice. Furthermore, S. boulardii was detected continuously in more than 75% of mice for 10 days after the last administration in antibiotic-treated mice, in contrast to in nonantibiotic-treated mice where S. boulardii was undetectable in less than 2 days. Finally, we demonstrated that this antibiotic cocktail can be used in two commonly used mouse strains, C57BL/6 and ob/ob mice, both achieving ~ 108 CFU/g of S. boulardii in faeces. These findings highlight that the antibiotic cocktail used in this study is an advantageous tool to study S. boulardii based probiotic and advanced microbiome therapeutics.
Collapse
|
24
|
Uhlig E, Elli G, Nurminen N, Oscarsson E, Canaviri-Paz P, Burri S, Rohrstock AM, Rahman M, Alsanius B, Molin G, Zeller KS, Håkansson Å. Comparative immunomodulatory effects in mice and in human dendritic cells of five bacterial strains selected for biocontrol of leafy green vegetables. Food Chem Toxicol 2022; 165:113064. [PMID: 35561874 DOI: 10.1016/j.fct.2022.113064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
The market for ready-to eat vegetables is increasing, but unfortunately so do the numbers of food-borne illness outbreaks related to these products. A previous study has identified bacterial strains suitable for biocontrol of leafy green vegetables to reduce the exposure to pathogens in these products. As a tentative safety evaluation, five selected strains (Rhodococcus cerastii MR5x, Bacillus coagulans LMG P-32205, Bacillus coagulans LMG P-32206, Pseudomonas cedrina LMG P-32207 and Pseudomonas punonensis LMG P-32204) were individually compared for immunomodulating effects in mice and in human monocyte-derived dendritic cells (MoDCs). Mice receiving the two B. coagulans strains consistently resemble the immunological response of the normal control, and no, or low, cell activation and pro-inflammatory cytokine expression was observed in MoDCs exposed to B. coagulans strains. However, different responses were seen in the two models for the Gram-negative P. cedrina and the Gram-positive R. cerastii. Moreover, P. punonensis and B. coagulans increased the microbiota diversity in mice as seen by the Shannon-Wiener index. In conclusion, the two strains of B. coagulans showed an immunological response that indicate that they lack pathogenic abilities, thus encouraging further safety evaluation and showing great potential to be used as biocontrol agents on leafy green vegetables.
Collapse
Affiliation(s)
- Elisabeth Uhlig
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden.
| | - Giulia Elli
- Department of Immunotechnology, Lund University, Medicon Village Bldg 406, 223 81, Lund, Sweden
| | - Noora Nurminen
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Elin Oscarsson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Pamela Canaviri-Paz
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Stina Burri
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Anne-Marie Rohrstock
- Department of Clinical Sciences, Surgery Research Unit, Faculty of Medicine, Lund University, Inga Marie Nilssons Gata 47, 205 022, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Surgery Research Unit, Faculty of Medicine, Lund University, Inga Marie Nilssons Gata 47, 205 022, Malmö, Sweden
| | - Beatrix Alsanius
- Department of Biosystems and Technology, Microbial Horticulture Laboratory, Swedish University of Agricultural Sciences, P.O. Box 103, SE-230 53, Alnarp, Sweden
| | - Göran Molin
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | | | - Åsa Håkansson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
25
|
Iglesias-Carres L, Neilson AP. Utilizing preclinical models of genetic diversity to improve translation of phytochemical activities from rodents to humans and inform personalized nutrition. Food Funct 2021; 12:11077-11105. [PMID: 34672309 DOI: 10.1039/d1fo02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| | - Andrew P Neilson
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA.
| |
Collapse
|
26
|
Joelsson JP, Ingthorsson S, Kricker J, Gudjonsson T, Karason S. Ventilator-induced lung-injury in mouse models: Is there a trap? Lab Anim Res 2021; 37:30. [PMID: 34715943 PMCID: PMC8554750 DOI: 10.1186/s42826-021-00108-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Ventilator-induced lung injury (VILI) is a serious acute injury to the lung tissue that can develop during mechanical ventilation of patients. Due to the mechanical strain of ventilation, damage can occur in the bronchiolar and alveolar epithelium resulting in a cascade of events that may be fatal to the patients. Patients requiring mechanical ventilation are often critically ill, which limits the possibility of obtaining patient samples, making VILI research challenging. In vitro models are very important for VILI research, but the complexity of the cellular interactions in multi-organ animals, necessitates in vivo studies where the mouse model is a common choice. However, the settings and duration of ventilation used to create VILI in mice vary greatly, causing uncertainty in interpretation and comparison of results. This review examines approaches to induce VILI in mouse models for the last 10 years, to our best knowledge, summarizing methods and key parameters presented across the studies. The results imply that a more standardized approach is warranted.
Collapse
Affiliation(s)
- Jon Petur Joelsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland. .,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland. .,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland.
| | - Saevar Ingthorsson
- Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,Faculty of Nursing, University of Iceland, Reykjavik, Iceland
| | | | - Thorarinn Gudjonsson
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland.,EpiEndo Pharmaceuticals, Seltjarnarnes, Iceland
| | - Sigurbergur Karason
- Stem Cell Research Unit, BioMedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Intensive Care Unit, Landspitali-University Hospital, Reykjavik, Iceland
| |
Collapse
|
27
|
Makin DF, Agra E, Prasad M, Brown JS, Elkabets M, Menezes JFS, Sargunaraj F, Kotler BP. Using Free-Range Laboratory Mice to Explore Foraging, Lifestyle, and Diet Issues in Cancer. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.741389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As cancer progresses, its impact should manifest in the foraging behavior of its host much like the effects of endo-parasites that hinder foraging aptitudes and risk management abilities. Furthermore, the lifestyle of the host can impact tumor growth and quality of life. To approach these questions, we conducted novel experiments by letting C57BL/6 laboratory mice, with or without oral squamous cell carcinoma, free range in a large outdoor vivarium. Our goals were to: (1) determine whether one could conduct experiments with a mouse model under free range conditions, (2) measure effects of cancer burden on foraging metrics, (3) compare tumor growth rates with laboratory housed mice, and (4) begin to sort out confounding factors such as diet. With or without cancer, the C57BL/6 laboratory mice dealt with natural climatic conditions and illumination, found shelter or dug burrows, sought out food from experimental food patches, and responded to risk factors associated with microhabitat by foraging more thoroughly in food patches under bush (safe) than in the open (risky). We quantified foraging using giving-up densities of food left behind in the food patches. The mice’s patch use changed over time, and was affected by disease status, sex, and microhabitat. Males, which were larger, consumed more food and had lower giving-up densities than females. Relative to cancer-free mice, mice with growing tumors lost weight, harvested more food, and increasingly relied on patches in the bush microhabitat. The tumors of free-ranging mice in the vivarium grew slower than those of their cohort that were housed in mouse cages in animal facilities. Numerous interesting factors could explain the difference in tumor growth rates: activity levels, stress, weather, food intake, diet, and more. To tease apart one of these intertwined factors, we found that tumors grew faster when mice in the laboratory were fed on millet rather than laboratory mouse chow. While just a start, these novel experiments and framework show how free-ranging mice provide a model that can test a broader range of hypotheses and use a broader range of metrics regarding cancer progression and its consequences for the host.
Collapse
|
28
|
Pérez-Rodríguez S, Huang SA, Borau C, García-Aznar JM, Polacheck WJ. Microfluidic model of monocyte extravasation reveals the role of hemodynamics and subendothelial matrix mechanics in regulating endothelial integrity. BIOMICROFLUIDICS 2021; 15:054102. [PMID: 34548891 PMCID: PMC8443302 DOI: 10.1063/5.0061997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 05/08/2023]
Abstract
Extravasation of circulating cells is an essential process that governs tissue inflammation and the body's response to pathogenic infection. To initiate anti-inflammatory and phagocytic functions within tissues, immune cells must cross the vascular endothelial barrier from the vessel lumen to the subluminal extracellular matrix. In this work, we present a microfluidic approach that enables the recreation of a three-dimensional, perfused endothelial vessel formed by human endothelial cells embedded within a collagen-rich matrix. Monocytes are introduced into the vessel perfusate, and we investigate the role of luminal flow and collagen concentration on extravasation. In vessels conditioned with the flow, increased monocyte adhesion to the vascular wall was observed, though fewer monocytes extravasated to the collagen hydrogel. Our results suggest that the lower rates of extravasation are due to the increased vessel integrity and reduced permeability of the endothelial monolayer. We further demonstrate that vascular permeability is a function of collagen hydrogel mass concentration, with increased collagen concentrations leading to elevated vascular permeability and increased extravasation. Collectively, our results demonstrate that extravasation of monocytes is highly regulated by the structural integrity of the endothelial monolayer. The microfluidic approach developed here allows for the dissection of the relative contributions of these cues to further understand the key governing processes that regulate circulating cell extravasation and inflammation.
Collapse
Affiliation(s)
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
29
|
Watson Y, Nelson B, Kluesner JH, Tanzy C, Ramesh S, Patel Z, Kluesner KH, Singh A, Murthy V, Mitchell CS. Aggregate Trends of Apolipoprotein E on Cognition in Transgenic Alzheimer's Disease Mice. J Alzheimers Dis 2021; 83:435-450. [PMID: 34334405 PMCID: PMC8461675 DOI: 10.3233/jad-210492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Apolipoprotein E (APOE) genotypes typically increase risk of amyloid-β deposition and onset of clinical Alzheimer’s disease (AD). However, cognitive assessments in APOE transgenic AD mice have resulted in discord. Objective: Analysis of 31 peer-reviewed AD APOE mouse publications (n = 3,045 mice) uncovered aggregate trends between age, APOE genotype, gender, modulatory treatments, and cognition. Methods: T-tests with Bonferroni correction (significance = p < 0.002) compared age-normalized Morris water maze (MWM) escape latencies in wild type (WT), APOE2 knock-in (KI2), APOE3 knock-in (KI3), APOE4 knock-in (KI4), and APOE knock-out (KO) mice. Positive treatments (t+) to favorably modulate APOE to improve cognition, negative treatments (t–) to perturb etiology and diminish cognition, and untreated (t0) mice were compared. Machine learning with random forest modeling predicted MWM escape latency performance based on 12 features: mouse genotype (WT, KI2, KI3, KI4, KO), modulatory treatment (t+, t–, t0), mouse age, and mouse gender (male = g_m; female = g_f, mixed gender = g_mi). Results: KI3 mice performed significantly better in MWM, but KI4 and KO performed significantly worse than WT. KI2 performed similarly to WT. KI4 performed significantly worse compared to every other genotype. Positive treatments significantly improved cognition in WT, KI4, and KO compared to untreated. Interestingly, negative treatments in KI4 also significantly improved mean MWM escape latency. Random forest modeling resulted in the following feature importance for predicting superior MWM performance: [KI3, age, g_m, KI4, t0, t+, KO, WT, g_mi, t–, g_f, KI2] = [0.270, 0.094, 0.092, 0.088, 0.077, 0.074, 0.069, 0.061, 0.058, 0.054, 0.038, 0.023]. Conclusion: APOE3, age, and male gender was most important for predicting superior mouse cognitive performance.
Collapse
Affiliation(s)
- Yassin Watson
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Brenae Nelson
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Hernandez Kluesner
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline Tanzy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Shreya Ramesh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Zoey Patel
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Kaci Hernandez Kluesner
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Anita Singh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Vibha Murthy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Cassie S Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.,Institute for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
30
|
Akkoc T, O'Mahony L, Ferstl R, Akdis C, Akkoc T. Mouse Models of Asthma: Characteristics, Limitations and Future Perspectives on Clinical Translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:119-133. [PMID: 34398449 DOI: 10.1007/5584_2021_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma is a complex and heterogeneous inflammatory airway disease primarily characterized by airway obstruction, which affects up to 15% of the population in Westernized countries with an increasing prevalence. Descriptive laboratory and clinical studies reveal that allergic asthma is due to an immunological inflammatory response and is significantly influenced by an individual's genetic background and environmental factors. Due to the limitations associated with human experiments and tissue isolation, direct mouse models of asthma provide important insights into the disease pathogenesis and in the discovery of novel therapeutics. A wide range of asthma models are currently available, and the correct model system for a given experimental question needs to be carefully chosen. Despite recent advances in the complexity of murine asthma models, for example humanized murine models and the use of clinically relevant allergens, the limitations of the murine system should always be acknowledged, and it remains to be seen if any single murine model can accurately replicate all the clinical features associated with human asthmatic disease.
Collapse
Affiliation(s)
- Tolga Akkoc
- Genetic Engineering and Biotechnology Institute, Tubitak Marmara Research Center, Kocaeli, Turkey.
| | - Liam O'Mahony
- Department of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ruth Ferstl
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Tunc Akkoc
- Department of Pediatric Allergy-Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
31
|
Ouranidis A, Choli-Papadopoulou T, Papachristou ET, Papi R, Kostomitsopoulos N. Biopharmaceutics 4.0, Advanced Pre-Clinical Development of mRNA-Encoded Monoclonal Antibodies to Immunosuppressed Murine Models. Vaccines (Basel) 2021; 9:890. [PMID: 34452015 PMCID: PMC8402437 DOI: 10.3390/vaccines9080890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Administration of mRNA against SARS-CoV-2 has demonstrated sufficient efficacy, tolerability and clinical potential to disrupt the vaccination field. A multiple-arm, cohort randomized, mixed blind, placebo-controlled study was designed to investigate the in vivo expression of mRNA antibodies to immunosuppressed murine models to conduct efficacy, safety and bioavailability evaluation. Enabling 4.0 tools we reduced animal sacrifice, while interventions were designed compliant to HARRP and SPIRIT engagement: (a) Randomization, blinding; (b) pharmaceutical grade formulation, monitoring; (c) biochemical and histological analysis; and (d) theoretic, statistical analysis. Risk assessment molded the study orientations, according to the ARRIVE guidelines. The primary target of this protocol is the validation of the research hypothesis that autologous translation of Trastuzumab by in vitro transcribed mRNA-encoded antibodies to immunosuppressed animal models, is non-inferior to classical treatments. The secondary target is the comparative pharmacokinetic assessment of the novel scheme, between immunodeficient and healthy subjects. Herein, the debut clinical protocol, investigating the pharmacokinetic/pharmacodynamic impact of mRNA vaccination to immunodeficient organisms. Our design, contributes novel methodology to guide the preclinical development of RNA antibody modalities by resolving efficacy, tolerability and dose regime adjustment for special populations that are incapable of humoral defense.
Collapse
Affiliation(s)
- Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Chemical Engineering, Polytechnic School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Choli-Papadopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.C.-P.); (E.T.P.); (R.P.)
| | - Eleni T. Papachristou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.C.-P.); (E.T.P.); (R.P.)
| | - Rigini Papi
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.C.-P.); (E.T.P.); (R.P.)
| | - Nikolaos Kostomitsopoulos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
32
|
Shouman Z, Marei HE, Abd-Elmaksoud A, Kassab M, Namba T, Masum MA, Elewa YHA, Ichii O, Kon Y. Morphological Features of the Testis among Autoimmune Mouse Model and Healthy Strains. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-9. [PMID: 34351254 DOI: 10.1017/s1431927621012411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autoimmune diseases play a critical role in the progression of infertility in both sexes and their severity has been reported to increase with age. However, few reports have discussed their effect on the morphological features of the testis. Therefore, we compared the morphological alterations in the testes of autoimmune model mice (MRL/MpJ-Faslpr) and the control strain (MRL/MpJ) with those of their background strain (C57BL/6N) at 3 and 6 months. Furthermore, we analyzed the changes in spermatocytes, Sertoli cells, immune cells, and Zonula occludens-1 junctional protein by immunohistochemical staining. The MRL/MpJ-Faslpr mice showed a significant increase in the serum Anti-double stranded DNA antibody level, relative spleen weight, and seminiferous luminal area when compared with other studied two strains. In contrast, a significant decrease in the relative testis weight, and numbers of both Sertoli, meiotic spermatocyte was observed in MRL/MpJ-Faslpr and MRL/MpJ mice compared with C57BL/6N mice especially at 6 months. Similarly, Zonula occludens-1 junctional protein positive cells showed a significant decrease in the same strains at 6 months. However, no immune cell infiltration could be observed among the studied three strains. Our findings suggest that the increase in autoimmune severity especially with age could lead to infertility through loss of spermatogenic and Sertoli cells, rather than the disturbance of the blood-testis barrier.
Collapse
Affiliation(s)
- Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura35516, Egypt
- Laboratory of Anatomy, Department of Biomedical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo060-0818, Japan
| | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura35516, Egypt
| | - Ahmed Abd-Elmaksoud
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura35516, Egypt
| | - Mohamed Kassab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, kafrelsheikh33516, Egypt
| | - Takashi Namba
- Laboratory of Anatomy, Department of Biomedical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo060-0818, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Biomedical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo060-0818, Japan
| | - Yasser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Biomedical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo060-0818, Japan
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig44519, Egypt
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo060-0818, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Biomedical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo060-0818, Japan
| |
Collapse
|
33
|
Sena IFG, Rocha BGS, Picoli CC, Santos GSP, Costa AC, Gonçalves BOP, Garcia APV, Soltani-Asl M, Coimbra-Campos LMC, Silva WN, Costa PAC, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Heller D, Cassali GD, Mintz A, Birbrair A. C(3)1-TAg in C57BL/6 J background as a model to study mammary tumor development. Histochem Cell Biol 2021; 156:165-182. [PMID: 34003355 DOI: 10.1007/s00418-021-01995-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 02/06/2023]
Abstract
Diagnosis and prognosis of breast cancer is based on disease staging identified through histopathological and molecular biology techniques. Animal models are used to gain mechanistic insights into the development of breast cancer. C(3)1-TAg is a genetically engineered mouse model that develops mammary cancer. However, carcinogenesis caused by this transgene was characterized in the Friend Virus B (FVB) background. As most genetic studies are done in mice with C57BL/6 J background, we aimed to define the histological alterations in C3(1)-TAg C57BL/6 J animals. Our results showed that C3(1)-TAg animals with C57BL/6 J background develop solid-basaloid adenoid cystic carcinomas with increased fibrosis, decreased area of adipocytes, and a high proliferative index, which are triple-negative for progesterone, estrogen, and human epidermal growth factor receptor 2 (HER2) receptors. Our results also revealed that tumor development is slower in the C57BL/6 J background when compared with the FVB strain, providing a better model to study the different stages in breast cancer progression.
Collapse
Affiliation(s)
- Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula V Garcia
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maryam Soltani-Asl
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Debora Heller
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Cruzeiro Do Sul University, São Paulo, Brazil
| | - Geovanni D Cassali
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
34
|
Mallya K, Gautam SK, Aithal A, Batra SK, Jain M. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim Biophys Acta Rev Cancer 2021; 1876:188554. [PMID: 33945847 DOI: 10.1016/j.bbcan.2021.188554] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy that is characterized by early metastasis, low resectability, high recurrence, and therapy resistance. The experimental mouse models have played a central role in understanding the pathobiology of PDAC and in the preclinical evaluation of various therapeutic modalities. Different mouse models with targetable pathological hallmarks have been developed and employed to address the unique challenges associated with PDAC progression, metastasis, and stromal heterogeneity. Over the years, mouse models have evolved from simple cell line-based heterotopic and orthotopic xenografts in immunocompromised mice to more complex and realistic genetically engineered mouse models (GEMMs) involving multi-gene manipulations. The GEMMs, mostly driven by KRAS mutation(s), have been widely accepted for therapeutic optimization due to their high penetrance and ability to recapitulate the histological, molecular, and pathological hallmarks of human PDAC, including comparable precursor lesions, extensive metastasis, desmoplasia, perineural invasion, and immunosuppressive tumor microenvironment. Advanced GEMMs modified to express fluorescent proteins have allowed cell lineage tracing to provide novel insights and a new understanding about the origin and contribution of various cell types in PDAC pathobiology. The syngeneic mouse models, GEMMs, and target-specific transgenic mice have been extensively used to evaluate immunotherapies and study therapy-induced immune modulation in PDAC yielding meaningful results to guide various clinical trials. The emerging mouse models for parabiosis, hepatic metastasis, cachexia, and image-guided implantation, are increasingly appreciated for their high translational significance. In this article, we describe the contribution of various experimental mouse models to the current understanding of PDAC pathobiology and their utility in evaluating and optimizing therapeutic modalities for this lethal malignancy.
Collapse
Affiliation(s)
- Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
35
|
Singhal G, Morgan J, Corrigan F, Toben C, Jawahar MC, Jaehne EJ, Manavis J, Hannan AJ, Baune BT. Short-Term Environmental Enrichment is a Stronger Modulator of Brain Glial Cells and Cervical Lymph Node T Cell Subtypes than Exercise or Combined Exercise and Enrichment. Cell Mol Neurobiol 2021; 41:469-486. [PMID: 32451728 PMCID: PMC7920895 DOI: 10.1007/s10571-020-00862-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/05/2020] [Indexed: 12/25/2022]
Abstract
Physical exercise (PE) and environmental enrichment (EE) can modulate immunity. However, the differential effects of short-term PE, EE, and PE + EE on neuroimmune mechanisms during normal aging has not been elucidated. Hence, a cohort of 3-, 8-, and 13-month-old immunologically unchallenged C57BL/6 wild-type mice were randomly assigned to either Control, PE, EE, or PE + EE groups and provided with either no treatment, a running wheel, a variety of plastic and wooden objects alone or in combination with a running wheel for seven weeks, respectively. Immunohistochemistry and 8-color flow cytometry were used to determine the numbers of dentate gyrus glial cells, and the proportions of CD4+ and CD8+ T cell numbers and their subsets from cervical lymph nodes, respectively. An increase in the number of IBA1+ microglia in the dentate gyrus at 5 and 10 months was observed after EE, while PE and PE + EE increased it only at 10 months. No change in astroglia number in comparison to controls were observed in any of the treatment groups. Also, all treatments induced significant differences in the proportion of specific T cell subsets, i.e., CD4+ and CD8+ T naïve (TN), central memory (TCM), and effector memory (TEM) cells. Our results suggest that in the short-term, EE is a stronger modulator of microglial and peripheral T cell subset numbers than PE and PE + EE, and the combination of short-term PE and EE has no additive effects.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, Australia
| | - Julie Morgan
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Division of Health Sciences, The University of South Australia, Adelaide, Australia
| | - Catherine Toben
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, Australia
| | - Magdalene C. Jawahar
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, Australia
| | - Emily J. Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, Australia
- School of Psychology and Public Health, La Trobe University, Bundoora, Melbourne, Australia
| | - Jim Manavis
- Centre for Neurological Diseases, School of Medicine, Faculty of Health, The University of Adelaide, Adelaide, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Bernhard T. Baune
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
- Department of Psychiatry, The University of Münster, Münster, Germany
| |
Collapse
|
36
|
Hicks WH, Bird CE, Traylor JI, Shi DD, El Ahmadieh TY, Richardson TE, McBrayer SK, Abdullah KG. Contemporary Mouse Models in Glioma Research. Cells 2021; 10:cells10030712. [PMID: 33806933 PMCID: PMC8004772 DOI: 10.3390/cells10030712] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding of the molecular pathogenesis of glioma, outcomes remain dismal. Developing successful treatments for glioma requires faithful in vivo disease modeling and rigorous preclinical testing. Murine models, including xenograft, syngeneic, and genetically engineered models, are used to study glioma-genesis, identify methods of tumor progression, and test novel treatment strategies. Since the discovery of highly recurrent isocitrate dehydrogenase (IDH) mutations in lower-grade gliomas, there is increasing emphasis on effective modeling of IDH mutant brain tumors. Improvements in preclinical models that capture the phenotypic and molecular heterogeneity of gliomas are critical for the development of effective new therapies. Herein, we explore the current status, advancements, and challenges with contemporary murine glioma models.
Collapse
Affiliation(s)
- William H. Hicks
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Cylaina E. Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Diana D. Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Tarek Y. El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Timothy E. Richardson
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 75229, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| |
Collapse
|
37
|
Arroyo J, Escobar-Zarate D, Wells HH, Constans MM, Thao K, Smith JM, Sieben CJ, Martell MR, Kline TL, Irazabal MV, Torres VE, Hopp K, Harris PC. The genetic background significantly impacts the severity of kidney cystic disease in the Pkd1 RC/RC mouse model of autosomal dominant polycystic kidney disease. Kidney Int 2021; 99:1392-1407. [PMID: 33705824 DOI: 10.1016/j.kint.2021.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), primarily due to PKD1 or PKD2 mutations, causes progressive kidney cyst development and kidney failure. There is significant intrafamilial variability likely due to the genetic background and environmental/lifestyle factors; variability that can be modeled in PKD mice. Here, we characterized mice homozygous for the PKD1 hypomorphic allele, p.Arg3277Cys (Pkd1RC/RC), inbred into the BALB/cJ (BC) or the 129S6/SvEvTac (129) strains, plus F1 progeny bred with the previously characterized C57BL/6J (B6) model; F1(BC/B6) or F1(129/B6). By one-month cystic disease in both the BC and 129 Pkd1RC/RC mice was more severe than in B6 and continued with more rapid progression to six to nine months. Thereafter, the expansive disease stage plateaued/declined, coinciding with increased fibrosis and a clear decline in kidney function. Greater severity correlated with more inter-animal and inter-kidney disease variability, especially in the 129-line. Both F1 combinations had intermediate disease severity, more similar to B6 but progressive from one-month of age. Mild biliary dysgenesis, and an early switch from proximal tubule to collecting duct cysts, was seen in all backgrounds. Preclinical testing with a positive control, tolvaptan, employed the F1(129/B6)-Pkd1RC/RC line, which has moderately progressive disease and limited isogenic variability. Magnetic resonance imaging was utilized to randomize animals and provide total kidney volume endpoints; complementing more traditional data. Thus, we show how genetic background can tailor the Pkd1RC/RC model to address different aspects of pathogenesis and disease modification, and describe a possible standardized protocol for preclinical testing.
Collapse
Affiliation(s)
- Jennifer Arroyo
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Harrison H Wells
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Megan M Constans
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Ka Thao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica M Smith
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Madeline R Martell
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy L Kline
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
38
|
Kim SH, Kwon D, Son SW, Jeong TB, Lee S, Kwak JH, Cho JY, Hwang DY, Seo MS, Kim KS, Jung YS. Inflammatory responses of C57BL/6NKorl mice to dextran sulfate sodium-induced colitis: comparison between three C57BL/6 N sub-strains. Lab Anim Res 2021; 37:8. [PMID: 33509279 PMCID: PMC7841915 DOI: 10.1186/s42826-021-00084-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background Inflammatory bowel disease (IBD), including both Crohn’s disease and ulcerative colitis, are chronic human diseases that are challenging to cure and are often unable to be resolved. The inbred mouse strain C57BL/6 N has been used in investigations of IBD as an experimental animal model. The purpose of the current study was to compare the inflammatory responsiveness of C57BL/6NKorl mice, a sub-strain recently established by the National Institute of Food and Drug Safety Evaluation (NIFDS), with those of C57BL/6 N mice from two different sources using a dextran sulfate sodium (DSS)-induced colitis model. Results Male mice (8 weeks old) were administered DSS (0, 1, 2, or 3%) in drinking water for 7 days. DSS significantly decreased body weight and colon length and increased the colon weight-to-length ratio. Moreover, severe colitis-related clinical signs including diarrhea and rectal bleeding were observed beginning on day 4 in mice administered DSS at a concentration of 3%. DSS led to edema, epithelial layer disruption, inflammatory cell infiltration, and cytokine induction (tumor necrosis factor-α, interleukin-6, and interleukin-1β) in the colon tissues. However, no significant differences in DSS-promoted abnormal symptoms or their severity were found between the three sub-strains. Conclusions These results indicate that C57BL/6NKorl mice responded to DSS-induced colitis similar to the generally used C57BL6/N mice, thus this newly developed mouse sub-strain provides a useful animal model of IBD.
Collapse
Affiliation(s)
- Sou Hyun Kim
- College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Doyoung Kwon
- College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Seung Won Son
- College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Tae Bin Jeong
- College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Seunghyun Lee
- College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Brain Busan 21 Plus Program, Kyungsung University, Busan, South Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, South Korea
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Kil Soo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.,College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
39
|
Benedé S, Berin MC. Applications of Mouse Models to the Study of Food Allergy. Methods Mol Biol 2021; 2223:1-17. [PMID: 33226583 DOI: 10.1007/978-1-0716-1001-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mouse models of allergic disease offer numerous advantages when compared to the models of other animals. However, selection of appropriate mouse models is critical to advance the field of food allergy by revealing mechanisms of allergy and for testing novel therapeutic approaches. All current mouse models for food allergy have weaknesses that may limit their applicability to human disease. Aspects such as the genetic predisposition to allergy or tolerance from the strain of mouse used, allergen dose, route of exposure (oral, intranasal, intraperitoneal, or epicutaneous), damage of the epithelial barrier, use of adjuvants, food matrix effects, or composition of the microbiota should be considered prior to the selection of a specific murine model and contemplated according to the intended purpose of the study. This chapter reviews our current knowledge on the application of mouse models to food allergy research and the variables that may influence the successful development of each type of model.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
40
|
Abstract
AbstractMucositis is an inflammation of the gastrointestinal mucosa resulting from high doses of radio/chemotherapy treatment and may lead to interruption of antineoplasic therapy. Soluble fibres, like pectin, increase SCFA production, which play a role in gut homoeostasis and inflammation suppression. Due to the properties of pectin, the aim of the present study was to evaluate the effect of a high-fibre (HF) diet on chemotherapy-induced mucositis in a murine model. C57/BL6 mice received control (AIN93M), HF, low/zero fibre (LF) diets for 10 d prior to mucositis challenging with irinotecan (75 mg/kg), or they were treated with acetate added to drinking water 5 d prior to and during the mucositis induction. Mice that received the HF diet showed decreased immune cells influx and improved histopathological parameters in the intestine, compared with mice that received the normal diet. Furthermore, the HF diet decreased intestinal permeability induced in the mucositis model when compared with the control group. This effect was not observed for acetate alone, which did not improve gut permeability. For instance, mice that received the LF diet had worsened gut permeability, compared with mice that received the normal diet and mucositis. The effects of the HF and LF diets were shown to modulate the intestinal microbiota, in which the LF diet increased the levels of Enterobacteriaceae, a group associated with gut inflammation, whereas the HF diet decreased this group and increased Lactobacillus and Bifidobacterium (SCFA producers) levels. In conclusion, the results demonstrated the importance of dietary fibre intake in the modulation of gut microbiota composition and homoeostasis maintenance during mucositis in this model.
Collapse
|
41
|
Lundin A, Porritt MJ, Jaiswal H, Seeliger F, Johansson C, Bidar AW, Badertscher L, Wimberger S, Davies EJ, Hardaker E, Martins CP, James E, Admyre T, Taheri-Ghahfarokhi A, Bradley J, Schantz A, Alaeimahabadi B, Clausen M, Xu X, Mayr LM, Nitsch R, Bohlooly-Y M, Barry ST, Maresca M. Development of an ObLiGaRe Doxycycline Inducible Cas9 system for pre-clinical cancer drug discovery. Nat Commun 2020; 11:4903. [PMID: 32994412 PMCID: PMC7525522 DOI: 10.1038/s41467-020-18548-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.
Collapse
Affiliation(s)
- Anders Lundin
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michelle J Porritt
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Himjyot Jaiswal
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Cellink AB, Gothenburg, Sweden
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Camilla Johansson
- Clinical Pharmacology and Safety Sciences, Sweden Imaging Hub, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Abdel Wahad Bidar
- Clinical Pharmacology and Safety Sciences, Sweden Imaging Hub, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lukas Badertscher
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandra Wimberger
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma J Davies
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
- Healx, Cambridge, UK
| | - Elizabeth Hardaker
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
| | - Carla P Martins
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
| | - Emily James
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
| | - Therese Admyre
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Amir Taheri-Ghahfarokhi
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenna Bradley
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge Science Park, Cambridge, UK
| | - Anna Schantz
- Pharmaceutical Sciences, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Babak Alaeimahabadi
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maryam Clausen
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiufeng Xu
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lorenz M Mayr
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roberto Nitsch
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Simon T Barry
- Early Oncology TDE, Oncology R&D, AstraZeneca, Li KaShing Centre, Cambridge, UK
| | - Marcello Maresca
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
42
|
Comparative analysis of restraint stress-induced depressive-like phenotypes in C57BL/6N mice derived from three different sources. Lab Anim Res 2020; 36:29. [PMID: 32874958 PMCID: PMC7448453 DOI: 10.1186/s42826-020-00062-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
C57BL/6NKorl mice are a novel mouse stock recently developed by the National Institute of Food and Drug Safety Evaluation in Korea. Extensive research into the nature of C57BL/6NKorl mice is being conducted. However, there is no scientific evidence for the phenotypic response to restraint stress (RST), a stress paradigm for modeling depressive disorders, in rodents. In this study, we investigated the repeated RST-induced depressive-like phenotypes in C57BL/6 N mouse substrains (viz., C57BL/6NKorl mice from Korea, C57BL/6NA mice from the United States, and C57BL/6NB mice from Japan) obtained from different sources. The results showed that C57BL/6 N mice derived from various sources exposed to repeated RST resulted in depressive-like phenotypes reflected by a similar degree of behavioral modification and susceptibility to oxidative stress in a duration-dependent manner, except for the distinctive features (increased body weight (BW) and tolerance to the suppression of BW gain by exposure to repeated RST) in C57BL/6NKorl mice. Taken together, the duration-dependent alteration in depressive-like phenotypes by repeated exposure to RST observed in this study may provide valuable insights into the nature of C57BL/6NKorl mice as an alternative animal resource for better understanding of the etiology of depressive disorders and the mechanisms of antidepressant actions.
Collapse
|
43
|
Tam WY, Cheung KK. Phenotypic characteristics of commonly used inbred mouse strains. J Mol Med (Berl) 2020; 98:1215-1234. [PMID: 32712726 DOI: 10.1007/s00109-020-01953-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
The laboratory mouse is the most commonly used mammalian model for biomedical research. An enormous number of mouse models, such as gene knockout, knockin, and overexpression transgenic mice, have been created over the years. A common practice to maintain a genetically modified mouse line is backcrossing with standard inbred mice over several generations. However, the choice of inbred mouse for backcrossing is critical to phenotypic characterization because phenotypic variabilities are often observed between mice with different genetic backgrounds. In this review, the major features of commonly used inbred mouse lines are discussed. The aim is to provide information for appropriate selection of inbred mouse lines for genetic and behavioral studies.
Collapse
Affiliation(s)
- Wing Yip Tam
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
44
|
Wei Z, Chen L, Hou X, van Zijl PCM, Xu J, Lu H. Age-Related Alterations in Brain Perfusion, Venous Oxygenation, and Oxygen Metabolic Rate of Mice: A 17-Month Longitudinal MRI Study. Front Neurol 2020; 11:559. [PMID: 32595596 PMCID: PMC7304368 DOI: 10.3389/fneur.2020.00559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Characterization of physiological parameters of the aging brain, such as perfusion and brain metabolism, is important for understanding brain function and diseases. Aging studies on human brain have mostly been based on the cross-sectional design, while the few longitudinal studies used relatively short follow-up time compared to the lifespan. Objectives: To determine the longitudinal time courses of cerebral physiological parameters across the adult lifespan in mice. Methods: The present work examined longitudinal changes in cerebral blood flow (CBF), cerebral venous oxygenation (Yv), and cerebral metabolic rate of oxygen (CMRO2) using MRI in healthy C57BL/6 mice from 3 to 20 months of age. Each mouse received 16 imaging sessions at an ~1-month interval. Results: Significant increases with age were observed in CBF (p = 0.017) and CMRO2 (p < 0.001). Meanwhile, Yv revealed a significant decrease (p = 0.002) with a non-linear pattern (p = 0.013). The rate of change was 0.87, 2.26, and -0.24% per month for CBF, CMRO2, and Yv, respectively. On the other hand, systemic parameters such as heart rate did not show a significant age dependence (p = 0.47). No white-matter-hyperintensities (WMH) were observed on the T2-weighted image at any age of the mice. Conclusion: With age, the mouse brain revealed an increase in oxygen consumption. This observation is consistent with previous findings in humans using a cross-sectional design and suggests a degradation of the brain's energy production or utilization machinery. Cerebral perfusion remains relatively intact in aged mice, at least until 20 months of age, consistent with the absence of WMH in mice.
Collapse
Affiliation(s)
- Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MA, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MA, United States
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MA, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MA, United States
| | - Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MA, United States
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MA, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MA, United States
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MA, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MA, United States
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MA, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MA, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MA, United States
| |
Collapse
|
45
|
Tonelli Gombalová Z, Košuth J, Alexovič Matiašová A, Zrubáková J, Žežula I, Giallongo T, Di Giulio AM, Carelli S, Tomašková L, Daxnerová Z, Ševc J. Majority of cerebrospinal fluid‐contacting neurons in the spinal cord of
C57Bl/6N
mice is present in ectopic position unlike in other studied experimental mice strains and mammalian species. J Comp Neurol 2020; 528:2523-2550. [DOI: 10.1002/cne.24909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Zuzana Tonelli Gombalová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ján Košuth
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Anna Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Jarmila Zrubáková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ivan Žežula
- Institute of Mathematics, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Toniella Giallongo
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Anna Maria Di Giulio
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Stephana Carelli
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Lenka Tomašková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Zuzana Daxnerová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Juraj Ševc
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| |
Collapse
|
46
|
Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Manavis J, Hannan AJ, Baune BT. Duration of Environmental Enrichment Determines Astrocyte Number and Cervical Lymph Node T Lymphocyte Proportions but Not the Microglial Number in Middle-Aged C57BL/6 Mice. Front Cell Neurosci 2020; 14:57. [PMID: 32256319 PMCID: PMC7094170 DOI: 10.3389/fncel.2020.00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/27/2020] [Indexed: 11/13/2022] Open
Abstract
Environmental enrichment (EE) has been shown to modulate behavior and immunity. We recently reported that both short and long-term EE enhance baseline locomotion and alleviate depressive-like behavior, but only long-term EE affects locomotion adversely in a threatening environment and enhances anxiety-like behavior in middle-age mice. We have now investigated whether the observed changes in behavior after short- and long-term EE were associated with underlying immune changes. Hence, at the end of behavioral testing, mice were sacrificed, and brains and cervical lymph nodes were collected to investigate the differential effects of the duration of EE (short- and long-term) on the number of immunopositive glial cells in the dentate gyrus, CA1, CA2, and CA3 regions of the hippocampus and proportions of T cell subsets in the cervical lymph nodes using immunohistochemistry and flow cytometry, respectively. EE, regardless of duration, caused an increase in microglia number within the dentate gyrus, CA1 and CA3 hippocampal regions, but only long-term EE increased astrocytes number within the dentate gyrus and CA3 hippocampal regions. A significantly higher proportion of CD8+ naive T cells was observed after long-term EE vs. short-term EE. No significant differences were observed in the proportion of central memory and effector memory T cells or early activated CD25+ cells between any of the test groups. Our results suggest that EE, irrespective of duration, enhances the numbers of microglia, but long-term EE is required to modify astrocyte number and peripheral T cell proportions in middle-aged mice. Our findings provide new insights into the therapeutic effects of EE on various brain disorders, which may be at least partly mediated by glial and neuroimmune modulation.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - Julie Morgan
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - Magdalene C Jawahar
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - Frances Corrigan
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia
| | - Emily J Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.,School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Catherine Toben
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - Jim Manavis
- Faculty of Health, Centre for Neurological Diseases, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Bernhard T Baune
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
47
|
Stankov S, Obradović N, Vujin D, Vranješ N. Possibility of Immediate Introduction of a Single-Dose Antibody Induction Test as a Refinement of the NIH Test for Inactivated Rabies Vaccine Potency Determination. Viral Immunol 2020; 33:367-377. [PMID: 32159457 DOI: 10.1089/vim.2019.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibody induction test (AIT) is a promising candidate as a refinement of the troublesome National institutes of Health (NIH) test in the sense of animal welfare 3R approach for determination of potency of inactivated rabies vaccines for veterinary and human use. In this study, we initially try to develop AIT as a suitable alternative to NIH test, to achieve a reduction of test duration and diminish animal suffering by omitting intracerebral CVS infection and measuring humoral immunity upon vaccination. Designs of both multi-dose and single-dose AIT were examined. Biological reference preparation, batch 5 with assigned titer of 10 IU/vial, was taken as both standard and test vaccine. Six consecutive AITs were performed and eight pools of sera in each AIT were tested in triplicate by rapid fluorescent focus inhibition test. We estimated the upper detection limit and calculated test variability for individual dilutions. For multi-dose AIT, we estimated the dose-response function and performed calculations of final test results and statistical validity parameters for both linear and sigmoidal model using CombiStats program. Sigmoidal 4-parameter dose-response model was found optimal. Presented design of multi-dose AIT showed a satisfactory detection limit for testing of inactivated rabies vaccines for both veterinary and human use. However, due to nonconformity of obtained results with statistical validity criteria, we concluded that the presented model of multi-dose AIT was unsuitable for introduction in routine practice. However, we concluded that there was a realistic option for introduction of two versions of single-dose AIT. The first version would be with two standard vaccine controls and could be introduced immediately, while the second version would include testing of the sample only and rely on comparison of the induced rabies antibody level with absolute cut-off limits set in advance.
Collapse
Affiliation(s)
- Srđan Stankov
- Department of Microbiology, Pasteur Institute Novi Sad, Novi Sad, Republic of Serbia
| | - Nemanja Obradović
- Department of Microbiology, Pasteur Institute Novi Sad, Novi Sad, Republic of Serbia
| | - Dragana Vujin
- Department of Microbiology, Pasteur Institute Novi Sad, Novi Sad, Republic of Serbia
| | - Nenad Vranješ
- Department of Research and Monitoring of Rabies and Other Zoonoses, Pasteur Institute Novi Sad, Novi Sad, Republic of Serbia
| |
Collapse
|
48
|
Park JW, Kim JE, Kang MJ, Choi HJ, Bae SJ, Hwang DY. Compensatory role of C3 convertase on the strain difference for C3 protein expression in FVB/N, C3H/HeN and C57BL/6N mice. Lab Anim Res 2020; 36:4. [PMID: 32206611 PMCID: PMC7081674 DOI: 10.1186/s42826-020-0036-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/03/2020] [Indexed: 11/29/2022] Open
Abstract
To investigate the role of complement C3 (C3) convertase on the strain difference for C3 protein expression in three inbred mice strains, we compared the levels of C2, C3 and C4 mRNA, as well as C3 protein and C3 convertase activity in the serum and liver tissue of FVB/N, C3H/HeN and C57BL/6N mice. The level of mRNA, inactive form (InACF) and active form (ACF) for C3 showed a regular pattern, which they were higher in the FVB/N and C57BL/6N mice than C3H/HeN mice. However, the level of C3b fragments (C3bα and β) derived from C3 protein were constantly maintained in the liver of FVB/N, C3H/HeN and C57BL/6N mice in spite of the strain difference on the transcriptional and translation level of C3. Especially, a reverse pattern of the level of mRNA, InACF and ACF for C3 was observed on the activity level of C3 convertase activity. The highest level of C3 convertase activity was measured in C3H/HeN mice, followed by C57BL/6N and FVB/N mice. In case of C3 convertase components, the level of C2 mRNA was higher in C3H/HeN mice than FVB/N and C57BL/6 N mice, while levels of C4 mRNA were higher in FVB/N and C57BL/6N mice than C3H/HeN mice. The current study results provide the first scientific evidence that C3 convertase may play complementary role to overcome the strain difference on the C3 protein expression in FVB/N, C3H/HeN and C57BL/6N mice.
Collapse
Affiliation(s)
- Ji Won Park
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea.,2Laboratory Animals Resources Center, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Ji Eun Kim
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea.,2Laboratory Animals Resources Center, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Mi Ju Kang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Hyeon Jun Choi
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Su Ji Bae
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| | - Dae Youn Hwang
- 1Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea.,2Laboratory Animals Resources Center, Pusan National University, 1268-50, Samnangjin-ro, Miryang-si, Gyeongsangnam-do South Korea
| |
Collapse
|
49
|
Effects of Inbreeding on Genetic Characteristic, Growth, Survival Rates, and Immune Responses of a New Inbred Line of Exopalaemon carinicauda. Int J Genomics 2020; 2020:5735968. [PMID: 31998771 PMCID: PMC6964724 DOI: 10.1155/2020/5735968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/16/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
The Exopalaemon carinicauda could be a useful crustacean laboratory animal in many research fields. We newly established an inbred line of Exopalaemon carinicauda named EC4 inbred line by brother×sister mating and keeping to F11 generation. Trends in heterozygosity in the process of producing EC4 inbred line were examined through the characterization of polymorphisms based on gene frequencies of SNP and EST-SSR loci. The results demonstrated that the number of alleles (N), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC) gradually decreased with the increase of inbreeding generations. The genetic detection results indicated that 9 (29.03%, 9/31) of the SNP loci and 15 (32.61%, 15/46) of the EST-SSR loci were homozygous in F11 generation of EC4 inbred line. The variation of the growth-related traits, the immune responses, and antioxidant status were described in experimental full-sibling inbred populations of E. carinicauda at five levels of inbreeding coefficient (F = 0.785, F = 0.816, F = 0.859, F = 0.886, F = 0.908) under controlled laboratory conditions. The body weight, body length, and survival rate in EC4 inbred line of all generations were less than the control population. Inbreeding affected the antibacterial activity, phenoloxidase (PO) activity, and superoxide dismutase (SOD) which decreased at the eleventh generation of EC4 inbred line. This study demonstrated that inbreeding had a negative effect on the economic traits and immune response, but our inbred line was established successfully until F11 and confirmed by genetic detection using SNP and EST-SSR loci.
Collapse
|
50
|
Meester I, Rivera-Silva GF, González-Salazar F. Immune System Sex Differences May Bridge the Gap Between Sex and Gender in Fibromyalgia. Front Neurosci 2020; 13:1414. [PMID: 32009888 PMCID: PMC6978848 DOI: 10.3389/fnins.2019.01414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The fibromyalgia syndrome (FMS) is characterized by chronic widespread pain, sleep disturbances, fatigue, and cognitive alterations. A limited efficacy of targeted treatment and a high FMS prevalence (2–5% of the adult population) sums up to high morbidity. Although, altered nociception has been explained with the central sensitization hypothesis, which may occur after neuropathy, its molecular mechanism is not understood. The marked female predominance among FMS patients is often attributed to a psychosocial predisposition of the female gender, but here we will focus on sex differences in neurobiological processes, specifically those of the immune system, as various immunological biomarkers are altered in FMS. The activation of innate immune sensors is compatible with a neuropathy or virus-induced autoimmune diseases. Considering sex differences in the immune system and the clustering of FMS with autoimmune diseases, we hypothesize that the female predominance in FMS is due to a neuropathy-induced autoimmune pathophysiology. We invite the scientific community to verify the autoimmune hypothesis for FMS.
Collapse
Affiliation(s)
- Irene Meester
- Laboratory of Tissue Engineering and Regenerative Medicine, Basic Sciences Department, University of Monterrey, San Pedro Garza García, Mexico
| | - Gerardo Francisco Rivera-Silva
- Laboratory of Tissue Engineering and Regenerative Medicine, Basic Sciences Department, University of Monterrey, San Pedro Garza García, Mexico
| | - Francisco González-Salazar
- Laboratory of Tissue Engineering and Regenerative Medicine, Basic Sciences Department, University of Monterrey, San Pedro Garza García, Mexico.,Laboratory of Cellular Physiology, Northeast Center of Research, Mexican Institute of Social Security, Monterrey, Mexico
| |
Collapse
|