1
|
Aoki Y, Wakamatsu M, Sono N, Xiao W, Ishii E, Nagai T, Nagai Y, Fujiwara Y, Kunieda T, Otsuki J. Impact of aging on spermatogenic function and reproductive outcomes in repro57 heterozygous male mice: A model for age-related infertility. J Assist Reprod Genet 2025:10.1007/s10815-025-03481-x. [PMID: 40257706 DOI: 10.1007/s10815-025-03481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 04/08/2025] [Indexed: 04/22/2025] Open
Abstract
PURPOSE This study aims to investigate the histological changes, sperm parameters, and their impact on embryo development rates and offspring numbers in advanced-age male repro57 heterozygous mice, corresponding to approximately 40 years of age in humans. METHODS Sperm parameters were assessed in both young and advanced-age repro57 heterozygous mice, as well as in young and advanced-age wild-type mice. Additionally, testis weight and histological analysis of seminiferous tubules were conducted to identify degenerative changes. Male mice from each group were mated with young wild-type females to compare offspring numbers, and in vitro fertilization (IVF) was used to evaluate fertilization and blastocyst formation rates. RESULTS No significant differences in sperm concentration and motility were observed between young and aged wild-type mice or between young wild-type and young repro57 heterozygous mice. However, advanced-age repro57 heterozygous mice exhibited significantly lower sperm parameters and testis weight compared to advanced-age wild-type mice. Histological analysis revealed increased Sertoli cell vacuolation in the seminiferous tubules of advanced-age repro57 heterozygous mice. Additionally, these advanced-age mice exhibited significantly lower blastocyst formation rates and produced fewer offspring compared to advanced-age wild-type mice. CONCLUSION Advanced reproductive aging in repro57 heterozygous male mice is associated with marked senescence-like degenerative changes, leading to a decline in offspring numbers, attributed to increased Sertoli cell vacuolation and diminished sperm quality.
Collapse
Affiliation(s)
- Yuto Aoki
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, 1 - 1- 1 Tsushimanaka, Kita, Okayama, 700 - 8530, Japan
| | - Misaki Wakamatsu
- Department of Animal Science, Faculty of Agriculture, Okayama University, 1 - 1- 1 Tsushimanaka, Tsushimanaka, KitaKita, OkayamaOkayama, 700 - 8530, Japan
| | - Nanami Sono
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, 1 - 1- 1 Tsushimanaka, Kita, Okayama, 700 - 8530, Japan
| | - Wei Xiao
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, 1 - 1- 1 Tsushimanaka, Kita, Okayama, 700 - 8530, Japan
| | - Emi Ishii
- Nagai Mother's Hospital, Kamihikona, Misato, Saitama, 341 - 0004, Japan
| | - Takeshi Nagai
- Nagai Mother's Hospital, Kamihikona, Misato, Saitama, 341 - 0004, Japan
| | - Yasushi Nagai
- Nagai Mother's Hospital, Kamihikona, Misato, Saitama, 341 - 0004, Japan
| | - Yasuhiro Fujiwara
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, YayoiTokyo, Bunkyo, 113 - 0032, Japan
| | - Tetsuo Kunieda
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, 1 - 1- 1 Tsushimanaka, Kita, Okayama, 700 - 8530, Japan
| | - Junko Otsuki
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, 1 - 1- 1 Tsushimanaka, Kita, Okayama, 700 - 8530, Japan.
- Assisted Reproductive Technology Center, Okayama University, 1 - 1- 1 Tsushimanaka, Kita, Okayama, 700 - 8530, Japan.
| |
Collapse
|
2
|
Wang Y, Li H, Hu M, Liu X, Li L. Abnormal sperm tails correlate with the sperm DNA fragmentation index, irrespective of progressive motility, according to an analysis of 5125 semen reports. J Assist Reprod Genet 2025:10.1007/s10815-025-03452-2. [PMID: 40131680 DOI: 10.1007/s10815-025-03452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
PURPOSE Sperm progressive motility (PR) is correlated with the sperm DNA fragmentation index (SDF). Moreover, abnormalities in sperm tails are closely associated with the quality of sperm PR. However, the correlation of abnormal sperm tails with the SDF remains unknown. METHODS Routine semen examination was performed according to the World Health Organization guidelines with a computer-assisted semen analysis system. SDF analysis was conducted via the sperm chromatin structure assay method. Spearman correlation was used to test the correlation of the SDF with age and conventional semen parameters. The relationship between the SDF and abnormal tails was explored by binary logistic regression analysis, restricted cubic spline (RCS) analyses and subgroup analysis. ROC curves were used to assess the predictive capacity of age, abnormal tails and PR for the SDF. RESULTS The SDF was associated with sperm morphology, with a significant correlation observed with abnormal sperm tails (r = 0.491, P < 0.001). Binary regression analysis revealed that abnormal sperm tails were an independent influencing factor of the SDF. RCS analyses and Trend analysis suggested that as the number of abnormal sperm tails increased, the risk of an abnormal SDF also increased, and the trend was statistically significant (P for trend < 0.001). The ROC curve demonstrated that abnormal sperm tails had good discriminatory ability for the SDF (AUC: 0.757, P < 0.001). CONCLUSION Abnormal sperm tails are an independent influencing factor of the SDF, and a higher number of abnormal tails is associated with an increased risk of an abnormal SDF.
Collapse
Affiliation(s)
- Yanjing Wang
- Department of Reproductive Endocrinology, Women'S Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
- Yongkang Maternal and Child Health Care Hospital, Jinhua, Zhejiang Province, China
| | - Hongping Li
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Women'S Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Xiaozhen Liu
- Department of Reproductive Endocrinology, Women'S Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Lejun Li
- Department of Reproductive Endocrinology, Women'S Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, 310006, Zhejiang, China.
- Women'S Reproductive Health Laboratory of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Amoah BY, Yao Bayamina S, Gborsong C, Owusu H, Asare GA, Yeboah EK, Ablakwa J, Hammond G. Modifiable life style factors and male reproductive health: a cross-sectional study in IVF clinic attendees in Ghana. FRONTIERS IN REPRODUCTIVE HEALTH 2025; 7:1520938. [PMID: 40008399 PMCID: PMC11850308 DOI: 10.3389/frph.2025.1520938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background Male infertility is a significant global public health issue, with modifiable lifestyle factors such as smoking, obesity, and psychological stress contributing to impaired semen quality and hormonal dysregulation. This study investigates the relationships between modifiable lifestyle factors, reproductive hormones, and semen quality in Ghanaian males attending an IVF clinic. Methods A cross-sectional study was conducted with 212 male participants recruited from a fertility clinic in Ghana. Lifestyle factors were assessed using standardized questionnaires, and semen samples were analyzed following WHO guidelines. Hormonal profiles (LH, FSH, testosterone, estradiol) were measured using the enzyme-linked fluorescent assay (ELFA). Statistical analyses included Pearson's product-moment correlation and Bonferroni correction. Results Smoking and psychological stress were significantly associated with reduced sperm motility, viability, and concentration (p < 0.05). Elevated BMI correlated negatively with sperm concentration and testosterone levels (p < 0.05). Alcoholic bitters was linked to decreased semen quality, while caffeine consumption showed a positive association with progressive sperm motility. Conclusion Modifiable lifestyle factors, such as smoking, psychological stress, and increased body mass index (BMI), play a crucial role in male reproductive health by adversely affecting semen parameters and hormonal balance. These findings emphasize the need for public health interventions targeting modifiable behaviors to improve fertility outcomes.
Collapse
Affiliation(s)
- Brodrick Yeboah Amoah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Saliah Yao Bayamina
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Cosmos Gborsong
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hubert Owusu
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - George Awuku Asare
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Kwabena Yeboah
- Department of Medical Sciences, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Josephine Ablakwa
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Georgina Hammond
- Department of Anatomy and Physiology, Institute for Cardiovascular Prevention, IPEK, University of Munich, Munich, Germany
| |
Collapse
|
4
|
Hamim FM, Durairajanayagam D, Daud SB, Singh HJ. Physical activity and male reproductive function. Reprod Fertil Dev 2025; 37:RD24196. [PMID: 39903601 DOI: 10.1071/rd24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Fecundity is declining in humans, which is partly due to male infertility. Poor sperm parameters, the main contributors to male infertility, are associated with sedentary, unhealthy lifestyle and poor dietary habits. Long periods of sedentary work lead to visceral adiposity and persistently elevated scrotal temperatures, which adversely affect spermatogenesis. Apart from increasing scrotal temperatures, excessive visceral adiposity exacerbates adipocyte dysfunction with increased pro-inflammatory adipokine release, like leptin. These, together with the increased scrotal temperature, are responsible for the poor sperm quality. The importance of regular physical activity in male fertility remains a matter of debate, as not all forms of exercises have been found to benefit sperm function. Sperm parameters are, nevertheless, somewhat better in active than in sedentary men. It now appears that low-to-moderate intensity exercises are more beneficial for male reproductive health than high-intensity exercises, which have a negative effect on spermatozoa. Low-to-moderate intensity exercises, in general, improve the overall organ-system function in the body, improve the management of body weight and oxidative stress, consequently improving sperm parameters. The detrimental effects of high-intensity exercises on spermatozoa result from disruption in the hypothalamus-pituitary-gonadal-axis, raised testicular temperature and increased oxidative stress. It, therefore, seems that not all types of exercises are beneficial for male reproductive health. Although some low-to-moderate intensity exercises improve male reproductive function, there remains a need to identify the best form of low-to-moderate intensity exercises, particularly those that do not increase testicular temperature or oxidative stress, to help maintain normal body weight and male reproductive health.
Collapse
Affiliation(s)
- Farhanah Mohd Hamim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Suzanna Binti Daud
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Harbindar Jeet Singh
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| |
Collapse
|
5
|
Zarei S, Molavi F, Abasnezhad FA, Majidi B, Mohammadihosseinabad S, Ranjbar FE, Vatanparast M. The effects of vitamin E supplementation on sperm parameters, chromatin integrity, and gene expression before and after freezing in aged mice. Clin Exp Reprod Med 2024; 51:213-224. [PMID: 38853131 PMCID: PMC11372309 DOI: 10.5653/cerm.2023.06632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/06/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE Some age-related testicular changes, such as Sertoli cell vacuolization and blood-testis barrier breakdown, reduce total sperm production and male fertility. Therefore, this study investigated the effect of vitamin E on restoring testicular function in aged mice. Sperm cryo-resistance was also assessed. METHODS Twenty-eight 48-week-old male Naval Medical Research Institute mice were divided into four groups for a daily gavage of vitamin E: the control group received distilled water, while the three treatment groups were administered 100, 200, and 400 mg/kg, respectively, for 4 weeks. Subsequently, semen analyses, DNA fragmentation index (DFI), and protamine deficiency tests were conducted. Testicular histology, tissue antioxidant enzyme activity, and gene expression levels were also assessed. RESULTS The two higher dosages of vitamin E were associated with a higher sperm count, greater progressive motility, and improved sperm morphology (p<0.05). These benefits were also evident after sperm freezing (p<0.05). Although chromatin abnormalities increased following vitrification, the treatment groups showed better outcomes (p<0.05). The tubular diameter, epithelium height, and luminal diameters remained unchanged with age. The tissue antioxidant capacity was greater in the groups receiving the high doses of vitamin E. Additionally, significant increases in inhibitor of DNA binding protein-4 (Id4) and GDNF family receptor alpha-1 (Gfra1) expression were observed in the higher vitamin E dosage groups, and promyelocytic leukemia zinc finger protein (Plzf) expression was notably present in the 400 mg/kg treatment group compared to the control group (p<0.05). CONCLUSION Antioxidant supplementation might enhance reproductive outcomes in aging males. The observed effects included improved sperm cryo-resistance, which is advantageous for future applications such as sperm freezing or fertility preservation.
Collapse
Affiliation(s)
- Sadegh Zarei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farnoosh Molavi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farzaneh Abbas Abasnezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Behanaz Majidi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Saeed Mohammadihosseinabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Faezeh Esmaeili Ranjbar
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahboubeh Vatanparast
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
6
|
Gao X, Li X, Wang F, Cai W, Sun S, Lu S. Effect of paternal age on clinical outcomes of in vitro fertilization-embryo transfer cycles. Front Endocrinol (Lausanne) 2024; 15:1325523. [PMID: 39268240 PMCID: PMC11390372 DOI: 10.3389/fendo.2024.1325523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Purpose This study aimed to investigate the impact of paternal age > 40 years on clinical pregnancy and perinatal outcomes among patients undergoing in vitro fertilization treatment. Methods We selected 75 male patients (aged > 40 years) based on predefined inclusion and exclusion criteria. Propensity score matching was performed in a 1:3 ratio, resulting in a control group (aged ≤ 40 years) of 225 individuals. Various statistical tests, including the Mann-Whitney U test, Chi-square test, Fisher's exact test, and binary logistic regression, were used to analyze the association between paternal age and clinical outcomes. Results We found no statistically significant differences in semen routine parameters, clinical pregnancy outcomes, and perinatal outcomes between paternal aged > 40 and ≤ 40 years. However, in the subgroup analysis, the live birth rate significantly decreased in those aged ≥ 45 compared to those aged 41-42 and 43-44 years (31.25% vs. 69.23% and 65%, respectively; all p < 0.05). Additionally, the clinical pregnancy rate was significantly lower among those aged ≥ 45 than among those aged 41-42 (43.75% vs. 74.36%; p=0.035). Conclusion Paternal age ≥ 45 years was associated with lower live birth and clinical pregnancy rates.
Collapse
Affiliation(s)
- Xinyan Gao
- School of Clinical Medicine, Qingdao University, Qingdao, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Fanfan Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Wen Cai
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Shihu Sun
- Tengzhou Maternal and Child Health Hospital, Zaozhuang, Shandong, China
| | - Shaoming Lu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
7
|
Elahwany A, Alahwany H, Torad H, Ramzy D, Aboelkomsan EAF, GamalEl Din SF. Secondary azoospermia after a successful natural pregnancy: a primary prospective study. Basic Clin Androl 2024; 34:12. [PMID: 39103792 DOI: 10.1186/s12610-024-00227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND To date, there is a lack of studies conducted on males with secondary azoospermia as a potential cause of male infertility who had previously fathered children through natural conception. The current study aims to investigate the potential causes of secondary azoospermia as a presentation of male infertility as well as the prognostic factors that can impact sperm retrieval rate (SRR) while undergoing microdissection testicular sperm extraction (microTESE). RESULTS Thirty two patients were recruited from the andrology outpatient clinic from August 2023 till January 2024. The mean age of the patients was sixty-two years old. All patients had varicoceles. Twenty seven patients (84%) had palpable varicocele grade 2 and 3 on both sides. Further multivariate logistic regression analysis of the significant factors in the univariate regression revealed that younger age (OR 0.7, 95% C.I. 0.7-1.0, p = 0.03) and having a history of coronary artery disease (CAD) were predictable factors for negative TESE outcome (OR 123.1, 95% C.I. 3.2-4748.5, P = 0.01). CONCLUSION It appears that the etiopathogenesis of secondary azoospermia are multifactorial. Varicocele and CAD are major factors to be considered. Future studies should be implemented deploying larger pools of patients suffering from the same condition to affirm the findings of this primary study.
Collapse
Affiliation(s)
- Amr Elahwany
- Department of Andrology and STDs Kasr Al-Ainy, Sexual medicine and STIs department, Faculty of Medicine, Cairo University, Al-Saray Street, El Manial, Cairo, 11956, Egypt
- Nile center for IVF, Cairo, Egypt
| | | | - Hesham Torad
- Department of Urology, Faculty of medicine, Cairo University, Cairo, Egypt
| | - David Ramzy
- Department of Andrology and STDs Kasr Al-Ainy, Sexual medicine and STIs department, Faculty of Medicine, Cairo University, Al-Saray Street, El Manial, Cairo, 11956, Egypt
| | | | - Sameh Fayek GamalEl Din
- Department of Andrology and STDs Kasr Al-Ainy, Sexual medicine and STIs department, Faculty of Medicine, Cairo University, Al-Saray Street, El Manial, Cairo, 11956, Egypt.
| |
Collapse
|
8
|
Budihastuti UR, Melinawati E, Prakosa T, Angelia Ratnasari A, Hadi C, Laqif A, Pangestu M, Oktadiani Putri L, Murti B, Nurwati I. Influence of Age, Obesity, Smoking, Sleep duration, and Sleep Quality on Concentration, Morphology, and Sperm Motility: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:240-247. [PMID: 38973277 PMCID: PMC11245581 DOI: 10.22074/ijfs.2023.1983273.1413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/30/2023] [Accepted: 11/07/2023] [Indexed: 07/09/2024]
Abstract
BACKGROUND Age, smoking, sleep duration, sleep quality, and obesity are risk factors that can affect the amount of sperm concentration, morphology, and motility. The aim of this study is to assess the lifestyle effects: of age, smoking, sleep duration, sleep quality, and obesity on the amount of concentration, morphology, and motility of sperm. MATERIALS AND METHODS The study utilized an analytical observational approach with a cross-sectional design. The study subjects comprised 70 male partners of infertile couples admitted to the Sekar Fertility Clinic at the Dr. Moewardi General Hospital between March and August 2022. The study assessed variables including age, body mass index (BMI), smoking status, sleep duration, sleep quality, sperm concentration, sperm morphology, and sperm motility. Furthermore, the data were analyzed using univariate, bivariate, and multivariate methods with SPSS 25 software. RESULTS The research findings demonstrate that obesity is significantly associated with abnormal sperm concentration [odds ratio (OR)=40.07, confidence interval (CI)=3.90-411.67, P=0.002]. Furthermore, moderate or heavy smoking is significantly associated with abnormal sperm concentration (OR=17.45, CI=1.83-166.15, P=0.013) and sleep quality with severe disorders (OR=5.73, CI=1.12-29.21, P=0.036). Moreover, obesity is significantly associated with abnormal sperm motility (OR=12.97, CI=2.66-63.15, P=0.002), while moderate or heavy smoking (OR=5.89, CI=1.23- 28.20, P=0.026) and poor sleep duration (OR=6.21, CI=1.43-26.92, P=0.015) also exhibit significant associations with abnormal sperm motility. However, no significant findings were observed regarding sperm morphology. CONCLUSION The findings of this study indicate that obesity, moderate or heavy smoking, and sleep quality have statistically significant effects on sperm concentration, while obesity, moderate or heavy smoking, and sleep duration have statistically significant effects on sperm motility. However, no statistically significant influence was observed on sperm morphology. Further research with larger sample sizes and more diverse populations is needed to validate these findings and explore other potential factors that may impact male fertility.
Collapse
Affiliation(s)
- Uki Retno Budihastuti
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia.
- Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Eriana Melinawati
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Teguh Prakosa
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Affi Angelia Ratnasari
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Cahyono Hadi
- Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Abdurahman Laqif
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
- Dr. Moewardi General Hospital, Jawa Tengah, Indonesia
| | - Mulyoto Pangestu
- Education Program in Reproduction and Development, Department Obstetrics and Gynecology, Monash Clinical School, Monash University, Clayton, VIC, Australia
| | | | - Bhisma Murti
- Public Health Science Study Program, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
| | - Ida Nurwati
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Jawa Tengah, Indonesia
| |
Collapse
|
9
|
Alharbi B, Alqossayir F, Moalwi A, Alwashmi E, Alharbi AH, Aloraini A, Aljumah A, Alhomaidhi M, Almansour M. The Correlation of Paternal Age on Semen Parameters in Assisted Reproduction: A Retrospective Study in Qassim, Saudi Arabia. Cureus 2024; 16:e61632. [PMID: 38966445 PMCID: PMC11222903 DOI: 10.7759/cureus.61632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION In the past, fertility concerns have predominantly revolved around the effect of a woman's age on the quality of her eggs and the success of her pregnancy. While men generally retain their ability to father children throughout their lives, there is evidence suggesting a decline in natural conception rates as paternal age increases. A growing body of research indicates a potential link between advanced paternal age (APA) and various adverse outcomes, including changes in sperm genetics, reduced conception rates, higher rates of miscarriage, lower live birth rates, and even long-term health consequences in offspring. However, it remains unclear whether there is an association between APA and the effectiveness of assisted reproductive technology (ART). This study aims to shed light on the relationship between APA and semen parameters. METHODOLOGY This is a retrospective, descriptive study analyzing data from electronic medical records of men undergoing ART at a fertility clinic in Saudia Arabia (2017-2022). Men aged 21-60 with at least one semen analysis and no missing data/hormonal treatment were included. Data on age and semen parameters (count, motility, and morphology) were extracted and analyzed using Jeffreys's Amazing Statistics Program (JASP; University of Amsterdam, Amsterdam, Netherlands) (descriptive statistics, Spearman's rank correlation). RESULTS Analysis of 1506 men undergoing ART revealed a mean age of 37 years (SD=6.94) and a mean sperm count of 55.0 million/mL (SD=46.05). The correlation between age and sperm count indicates a minimal association (r=0.075, p<0.01); moderate positive correlations were observed between sperm count and motility (r=0.406); count and morphology (r=0.543); and motility and morphology (r=0.458). CONCLUSION Age may not be a major factor in overall sperm parameters for this population, but a strong positive correlation was observed between sperm count, motility, and normal morphology. These findings suggest that these semen parameters are interconnected, with higher sperm counts potentially indicating better overall sperm quality.
Collapse
Affiliation(s)
- Badr Alharbi
- Department of Surgery, College of Medicine, Qassim University, Buraydah, SAU
| | - Fuhaid Alqossayir
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraydah, SAU
| | - Adel Moalwi
- Department of Surgery, College of Medicine, Najran University, Najran, SAU
| | - Emad Alwashmi
- Department of Surgery, College of Medicine, Qassim University, Buraydah, SAU
| | - Adel H Alharbi
- Department of Internal Medicine, College of Medicine, Qassim University, Buraydah, SAU
| | - Abdullah Aloraini
- Department of Surgery, College of Medicine, Qassim University, Buraydah, SAU
| | - Arwa Aljumah
- Department of Reproductive Medicine, Prince Faisal Bin Mishaal Fertility Center, Buraydah, SAU
| | - Manahil Alhomaidhi
- Department of Reproductive Medicine, Prince Faisal Bin Mishaal Fertility Center, Buraydah, SAU
| | - Mohammed Almansour
- Department of Urology, Imperial College London, London, GBR
- Department of Urology, King Fahd Specialist Hospital, Buraydah, SAU
| |
Collapse
|
10
|
Chen X, Luo Y, Zhu Q, Zhang J, Huang H, Kan Y, Li D, Xu M, Liu S, Li J, Pan J, Zhang L, Guo Y, Wang B, Qi G, Zhou Z, Zhang CY, Fang L, Wang Y, Chen X. Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. NATURE AGING 2024; 4:814-838. [PMID: 38627524 PMCID: PMC11186790 DOI: 10.1038/s43587-024-00612-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/15/2024] [Indexed: 05/31/2024]
Abstract
Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Xiaorui Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Luo
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing Zhu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Huan Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansheng Kan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Dian Li
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Ming Xu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Shuohan Liu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianxiao Li
- Institute of Systems, Molecular and Integrative Biology, School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Jinmeng Pan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Binghao Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Guantong Qi
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen Zhou
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Yanbo Wang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Xi Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Fatmila DT, Pardede BP, Maulana T, Said S, Yudi Y, Purwantara B. Sperm HSP70: may not be an age-dependent gene but is associated with field fertility in Bali bulls ( Bos sondaicus). Anim Reprod 2024; 21:e20230048. [PMID: 38756622 PMCID: PMC11095850 DOI: 10.1590/1984-3143-ar2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
This study aimed to analyze the characteristics of the HSP70 gene and protein in spermatozoa of Bali bulls of different age groups and to examine its potential as a biomarker determining bull fertility. This study used frozen semen produced from six Bali bulls divided into two groups based on age (≤ 9 years and ≥ 12 years). Parameters of frozen semen quality analyzed included sperm motility and kinetics using computer-assisted semen analysis, sperm morphological defects using Diff-Quick staining, acrosome integrity using FITC-PNA staining, and DNA fragmentation using acridine orange staining. HSP70 gene expression characterization was analyzed using qRT-PCR, and HSP70 protein abundance was analyzed using enzyme immunoassays. Fertility field data were obtained by analyzing the percentage conception rate for each bull based on the artificial insemination service data contained in the Indonesian-integrated system of the National Animal Health Information System (iSIKHNAS). The results showed significant differences (P<0.05) in total and progressive motility, morphological defects of the neck and midpiece, and tail of sperm, and acrosome integrity between the age groups of Bali bulls. HSP70 gene expression and protein abundance showed no significant differences (P>0.05) in different age groups. HSP70 gene expression correlated with fertility rate (P<0.05). Age affected several semen quality parameters but did not affect HSP70 gene expression and protein abundance. The HSP70 gene molecule could be a biomarker that determines the fertility of Bali bulls.
Collapse
Affiliation(s)
- Dian Tria Fatmila
- Study Program of Animal Science, Faculty of Agriculture, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Tulus Maulana
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | - Syahruddin Said
- Research Center for Applied Zoology, National Research and Innovation Agency, Bogor, Indonesia
| | - Yudi Yudi
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Bambang Purwantara
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
12
|
Fu W, Cui Q, Bu Z, Shi H, Yang Q, Hu L. Elevated sperm DNA fragmentation is correlated with an increased chromosomal aneuploidy rate of miscarried conceptus in women of advanced age undergoing fresh embryo transfer cycle. Front Endocrinol (Lausanne) 2024; 15:1289763. [PMID: 38650716 PMCID: PMC11033384 DOI: 10.3389/fendo.2024.1289763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024] Open
Abstract
Background Male sperm DNA fragmentation (SDF) may be associated with assisted reproductive technology (ART) outcomes, but the impact of SDF on the occurrence of aneuploid-related miscarriage remains controversial. Methods Genome-wide single-nucleotide polymorphism-based chromosomal microarray analysis was performed on 495 miscarried chorionic villus samples undergone IVF/ICSI treatment from the Reproductive Medicine Center of the First Affiliated Hospital of Zhengzhou University. SDF was assessed using sperm chromatin structure assay. Patients were divided into four groups according to embryo transfer cycle type and maternal age, and the correlation between SDF and chromosome aberration was analyzed. A receiver operating characteristic (ROC) curve was utilized to find the optimal threshold. Results Total chromosomal aneuploidy rate was 54.95%, and trisomy was the most common abnormality (71.32%). The chromosomally abnormal group had higher SDF than the normal group (11.42% [6.82%, 16.54%] vs. 12.95% [9.61%, 20.58%], P = 0.032). After grouping, elevated SDF was significantly correlated with an increasing chromosome aneuploidy rate only in women of advanced age who underwent fresh embryo transfer (adjusted odds ratio:1.14 [1.00-1.29], adjusted-P = 0.045). The receiver operating characteristic curve showed that SDF can predict the occurrence of chromosomal abnormality of miscarried conceptus in this group ((area under the curve = 0.76 [0.60-0.91], P = 0.005), and 8.5% was the optimum threshold. When SDF was ≥ 8.5%, the risk of such patients increased by 5.76 times (adjusted odds ratio: 6.76 [1.20-37.99], adjusted-P = 0.030). Conclusion For women of advanced maternal age undergoing fresh embryo transfer, older oocytes fertilized using sperm with high SDF in IVF/ICSI treatment might increase the risk of chromosomal abnormality in miscarried conceptus.
Collapse
Affiliation(s)
- Wanting Fu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiuying Cui
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiqin Bu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linli Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Cascales A, Morales R, Castro A, Ortiz JA, Lledo B, Ten J, Bernabeu A, Bernabeu R. Factors associated with embryo mosaicism: a systematic review and meta-analysis. J Assist Reprod Genet 2023; 40:2317-2324. [PMID: 37592098 PMCID: PMC10504166 DOI: 10.1007/s10815-023-02914-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
PURPOSE Evaluate which factors are involved in the increased rate of mosaicism in embryos. METHODS A systematic review and meta-analysis was performed. After an exhaustive search of the literature, a total of seven papers were included in the analysis. In addition, data collected from IVF cycles performed in our fertility clinic were also analysed. Day of biopsy, embryo quality, maternal and paternal age and seminal quality were the chosen factors to be studied. RESULTS The results of the meta-analysis show that neither embryo quality nor seminal quality were related to mosaic embryo rate (OR: 1.09; 95% CI: 0.94-1.28 and OR: 1.10; 95% CI: 0.87-1.37, respectively). A positive association was observed for the variable "biopsy day" with embryos biopsied at day 6 or 7 having the highest rate of mosaicism (OR: 1.06; 95% CI: 1.01-1.11). In opposite to what happens with aneuploidy rate, which increases with maternal age, embryo mosaicism is higher in younger women (<34 years) rather than in older ones (≥34 years) (OR: 0.95; 95% CI: 0.92-0.98). However, for the "paternal age" factor, no association with mosaicism was found (OR: 1.04; 95% CI: 0.90-1.21). CONCLUSIONS With the present study, we can conclude that the factors related to the presence of mosaicism in embryos are the embryo biopsy day and maternal age. The rest of the studied factors showed no significant relationship with mosaicism. These results are of great importance as knowing the possible causes leading to mosaicism helps to improve the clinical results of reproductive treatments.
Collapse
Affiliation(s)
- A Cascales
- Molecular Biology Department, Instituto Bernabeu, Avda. Albufereta 31, 03016, Alicante, Spain
| | - R Morales
- Molecular Biology Department, Instituto Bernabeu, Avda. Albufereta 31, 03016, Alicante, Spain.
| | - A Castro
- Molecular Biology Department, Instituto Bernabeu, Avda. Albufereta 31, 03016, Alicante, Spain
| | - J A Ortiz
- Molecular Biology Department, Instituto Bernabeu, Avda. Albufereta 31, 03016, Alicante, Spain
| | - B Lledo
- Molecular Biology Department, Instituto Bernabeu, Avda. Albufereta 31, 03016, Alicante, Spain
| | - J Ten
- Reproductive Biology, Instituto Bernabeu, Alicante, Spain
| | - A Bernabeu
- Reproductive Medicine, Instituto Bernabeu, Alicante, Spain
| | - R Bernabeu
- Reproductive Medicine, Instituto Bernabeu, Alicante, Spain
| |
Collapse
|
14
|
Zhuang J, Li X, Yao J, Sun X, Liu J, Nie H, Hu Y, Tu X, Liu H, Qin W, Xie Y. Single-cell RNA sequencing reveals the local cell landscape in mouse epididymal initial segment during aging. Immun Ageing 2023; 20:21. [PMID: 37170325 PMCID: PMC10173474 DOI: 10.1186/s12979-023-00345-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Morphological and functional alterations in aging reproductive organs result in decreased male fertility. The epididymis functions as the transition region for post-testicular sperm maturation. And we have previously demonstrated that the epididymal initial segment (IS), a region of the reproductive tract essential for sperm maturation and capacitation, undergoes considerable histological changes and chronic immune activation in mice during aging. However, the local aging-associated cellular and molecular changes in the aged epididymal IS are poorly understood. RESULTS We conducted single-cell RNA sequencing analysis on the epididymal IS of young (3-month-old) and old (21-month-old) mice. In total, 10,027 cells from the epididymal IS tissues of young and old mice were obtained and annotated. The cell composition, including the expansion of a principal cell subtype and Ms4a4bHiMs4a6bHi T cells, changed with age. Aged principal cells displayed multiple functional gene expression changes associated with acrosome reaction and sperm maturation, suggesting an asynchronous process of sperm activation and maturation during epididymal transit. Meanwhile, aging-related altered pathways in immune cells, especially the "cell chemotaxis" in Cx3cr1Hi epididymal dendritic cells (eDCs), were identified. The monocyte-specific expression of chemokine Ccl8 increased with age in eDCs. And the aged epididymal IS showed increased inflammatory cell infiltration and cytokine secretion. Furthermore, cell-cell communication analysis indicated that age increased inflammatory signaling in the epididymal IS. CONCLUSION Contrary to the general pattern of lower immune responses in the male proximal genital tract, we revealed an inflammaging status in mouse epididymal initial segment. These findings will allow future studies to enable the delay of male reproductive aging via immune regulation.
Collapse
Affiliation(s)
- Jintao Zhuang
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiangping Li
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China
| | - Yang Hu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China
| | - Xiangan Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huang Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China.
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Human Sperm Bank of Guangdong Province, Guangzhou, 510600, China.
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
16
|
Akang EN, Opuwari CS, Enyioma-Alozie S, Moungala LW, Amatu TE, Wada I, Ogbeche RO, Ajayi OO, Aderonmu MM, Shote OB, Akinola LA, Ashiru OA, Henkel R. Trends in semen parameters of infertile men in South Africa and Nigeria. Sci Rep 2023; 13:6819. [PMID: 37100822 PMCID: PMC10133443 DOI: 10.1038/s41598-023-33648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
There are conflicting reports on trends of semen parameters from different parts of the globe. However, in recent times there is dearth of information on the trend in Sub-Saharan countries. Therefore, in this study we aimed at determining the trends in semen parameters in Nigeria and South Africa between 2010 and 2019. A retrospective study of semen analyses of 17,292 men attending fertility hospitals in Nigeria and South Africa in 2010, 2015 and 2019. Patients who had undergone vasectomy and those who had a pH less than 5 or greater than 10 were excluded from this study. The following variables were assessed: ejaculate volume, sperm concentration, progressive motility, total progressively motile sperm count (TPMSC), total sperm count, and normal sperm morphology. Between 2010 and 2019, significant trends of decreasing values were observed in normal sperm morphology (- 50%), and the ejaculatory volume (- 7.4%), indicating a progressive deterioration of the values in both countries. In Nigeria, there were significant decreases in progressive motility (- 87%), TPMSC (- 78%), and sperm morphology (- 55%) between 2010 and 2019 (P < 0.001). Spearman`s rank correlation revealed significant negative associations between age and morphology (ρ = - 0.24, P < 0.001), progressive motility (ρ = - 0.31. P < 0.001), and TPMSC (ρ = - 0.32, P < 0.001). Patients in South Africa were younger than those from Nigeria, with also a significantly higher sperm morphology, sperm concentration, progressive motility, total sperm count and TPMSC. Our findings provide a quantitative evidence of an alarming decreasing trend in semen parameters in Nigeria and South Africa from 2010 to 2019. It also proves that astheno- and teratozoospermia are the leading causes of male infertility in these regions. In addition to this, it also shows empirically that semen parameters decrease with advancement in age. These findings are the first report of temporal trends in semen parameters in Sub-Saharan countries, necessitating a thorough investigation on the underlying factors promoting this worrisome decline.
Collapse
Affiliation(s)
- Edidiong Nnamso Akang
- Department of Anatomy, College of Medicine, University of Lagos, Idi-Araba, Lagos, Nigeria.
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.
| | - Chinyerum Sylvia Opuwari
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | | | | | | | | | | | | | | | | | - Lateef Adekunle Akinola
- Department of Obstetrics and Gynaecology, Medison Specialist Women's Hospital, Lagos, Nigeria
| | | | - Ralf Henkel
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- LogixX Pharma, Theale, Berkshire, UK.
| |
Collapse
|
17
|
Ulubay M, Bahaettin Ulu M, Akdeniz E. The effect of aging on semen parameters in normozoospermic men: A cross-sectional study. Int J Reprod Biomed 2022; 20:955-962. [PMID: 36618832 PMCID: PMC9806242 DOI: 10.18502/ijrm.v20i11.12363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Semen parameters change with age and are reported differently worldwide. Objective This retrospective cross-sectional study aimed to investigate the semen quality pattern among aging men and the age thresholds for semen parameters. Materials and Methods The records of men who had normal semen parameters from January 2015-June 2020 were retrospectively evaluated for andrological outpatient at Samsun Training and Research hospital and Gazi hospital in Samsun, Turkey. Adult men meeting the inclusion criteria were divided into 3 groups of I) 18-29 yr (n = 629), II) 30-39 yr (n = 775), and III) 40-49 yr (n = 190). Correlations between age and sperm parameters were then analyzed. Results A total of 1594 men were enrolled in the study. Significant differences were observed in total sperm numbers, total motility rates, progressive motility rates, nonprogressive motility rates, normal morphology rates, mean semen volume, and sperm concentrations. The parameters of total sperm number, progressive motility rate, and normal morphology rate were significantly higher in group I than in the other 2 groups (p < 0.001, p < 0.001, and p < 0.001, respectively) and in group II compared to group III (p = 0.001, p = 0.003, and p < 0.001), respectively. Mean semen volume and total motility rate were significantly higher in group I than in the other groups (p = 0.001 and p < 0.001, respectively). However, no difference was observed between group II and group III (p = 0.61 and p = 0.04, respectively). Conclusion Age has a significant impact on semen parameters capable of affecting male fertility, particularly total sperm numbers, the progressive motility rate, and the normal morphology rate.
Collapse
Affiliation(s)
- Mahmut Ulubay
- Department of Urology, School of Medicine, Samsun University, Samsun, Turkey
| | | | - Ekrem Akdeniz
- Department of Urology, Samsun Training and Research Hospital, Samsun, Turkey
| |
Collapse
|
18
|
Gordon CE, Hammer KC, James K, Lanes A, Vagios S, Starosta A, Hornstein M, Souter I. Optimizing pregnancy outcomes in intrauterine insemination cycles by stratifying pre-wash total motile count and patient-specific factors: a patient counseling tool. J Assist Reprod Genet 2022; 39:2811-2818. [PMID: 36342575 PMCID: PMC9790824 DOI: 10.1007/s10815-022-02636-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this study is to clarify which pre-wash total motile count are associated with improved clinical pregnancy rate (CPR) and live birth rate (LBR) based on maternal age, AMH level, stimulation regimen, and infertility diagnosis. METHODS This was a retrospective cohort study of first completed IUI cycles at two academic fertility centers from 5/2015 to 9/2019. Cycles were stratified by pre-wash TMC, maternal age, AMH level, stimulation regimen, and infertility diagnosis. The primary outcome was CPR and secondary outcomes were live birth and miscarriage. RESULTS One thousand one hundred fifty-four cycles were analyzed. Of the 162 cycles that resulted in a CPR (14.0%), most had an insemination TMC > 20 million. Compared to TMC > 20 million, there was no difference in CPR or LBR for lower TMC categories, excluding the TMC < 2 million group, in which there were no pregnancies. When TMC was stratified by deciles, there was also no difference in CPR and LBR, including within the lowest decile (TMC 0.09-8.6 million). Younger age and higher ovarian reserve parameters were associated with higher pregnancy and LBR when stratified by TMC. There was no difference in pregnancy and LBR when considering different stimulation protocols. CONCLUSIONS Our data suggest that pregnancy and LBR are equivalent above a TMC of 2 million. Data stratified by TMC and patient parameters can be used to counsel patients pursuing ART.
Collapse
Affiliation(s)
- Catherine E. Gordon
- Brigham and Women’s Hospital Center for Infertility and Reproductive Surgery, 75 Francis St, Boston, MA 02115 USA
| | - Karissa C. Hammer
- Division of Reproductive Endocrinology and Infertility, Massachusetts General Hospital, Yawkey Suite 10a, 55 Fruit St, Boston, MA 02114 USA
| | - Kaitlyn James
- Division of Reproductive Endocrinology and Infertility, Massachusetts General Hospital, Yawkey Suite 10a, 55 Fruit St, Boston, MA 02114 USA
| | - Andrea Lanes
- Brigham and Women’s Hospital Center for Infertility and Reproductive Surgery, 75 Francis St, Boston, MA 02115 USA
| | - Stylianos Vagios
- Division of Reproductive Endocrinology and Infertility, Massachusetts General Hospital, Yawkey Suite 10a, 55 Fruit St, Boston, MA 02114 USA
| | - Anabel Starosta
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale New Haven Hospital, 20 York St, New Haven, CT 06510 USA
| | - Mark Hornstein
- Brigham and Women’s Hospital Center for Infertility and Reproductive Surgery, 75 Francis St, Boston, MA 02115 USA
| | - Irene Souter
- Division of Reproductive Endocrinology and Infertility, Massachusetts General Hospital, Yawkey Suite 10a, 55 Fruit St, Boston, MA 02114 USA
| |
Collapse
|
19
|
Dong S, Chen C, Zhang J, Gao Y, Zeng X, Zhang X. Testicular aging, male fertility and beyond. Front Endocrinol (Lausanne) 2022; 13:1012119. [PMID: 36313743 PMCID: PMC9606211 DOI: 10.3389/fendo.2022.1012119] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Normal spermatogenesis and sperm function are crucial for male fertility. The effects of healthy testicular aging and testicular premature aging on spermatogenesis, sperm function, and the spermatogenesis microenvironment cannot be ignored. Compared with younger men, the testis of older men tends to have disturbed spermatogenic processes, sperm abnormalities, sperm dysfunction, and impaired Sertoli and Leydig cells, which ultimately results in male infertility. Various exogenous and endogenous factors also contribute to pathological testicular premature aging, such as adverse environmental stressors and gene mutations. Mechanistically, Y-chromosomal microdeletions, increase in telomere length and oxidative stress, accumulation of DNA damage with decreased repair ability, alterations in epigenetic modifications, miRNA and lncRNA expression abnormalities, have been associated with impaired male fertility due to aging. In recent years, the key molecules and signaling pathways that regulate testicular aging and premature aging have been identified, thereby providing new strategies for diagnosis and treatment. This review provides a comprehensive overview of the underlying mechanisms of aging on spermatogenesis. Furthermore, potential rescue measures for reproductive aging have been discussed. Finally, the inadequacy of testicular aging research and future directions for research have been envisaged to aid in the diagnosis and treatment of testicular aging and premature aging.
Collapse
Affiliation(s)
- Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jiali Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Yuan Gao
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
20
|
Paternal age impairs in vitro embryo and in vivo fetal development in murine. Sci Rep 2022; 12:13031. [PMID: 35906367 PMCID: PMC9338298 DOI: 10.1038/s41598-022-16469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The association between advanced paternal age and impaired reproductive outcomes is still controversial. Several studies relate decrease in semen quality, impaired embryo/fetal development and offspring health to increased paternal age. However, some retrospective studies observed no alterations on both seminal status and reproductive outcomes in older men. Such inconsistency may be due to the influence of intrinsic and external factors, such as genetics, race, diet, social class, lifestyle and obvious ethical issues that may bias the assessment of reproductive status in humans. The use of the murine model enables prospective study and owes the establishment of homogeneous and controlled groups. This study aimed to evaluate the effect of paternal age on in vitro embryo development at 4.5 day post conception and on in vivo fetal development at 16 days of gestation. Murine females (2–4 months of age) were mated with young (4–6 months of age) or senile (18–24 months of age) males. We observed decreased in vitro cleavage, blastocyst, and embryo development rates; lighter and shorter fetuses in the senile compared to the young group. This study indicated that advanced paternal age negatively impacts subsequent embryo and fetal development.
Collapse
|
21
|
Farkouh A, Salvio G, Kuroda S, Saleh R, Vogiatzi P, Agarwal A. Sperm DNA integrity and male infertility: a narrative review and guide for the reproductive physicians. Transl Androl Urol 2022; 11:1023-1044. [PMID: 35958895 PMCID: PMC9360512 DOI: 10.21037/tau-22-149] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Conventional semen analysis (SA) remains an essential tool in the initial male fertility evaluation and subsequent follow-up. However, it neither provides information about the functional status of spermatozoa nor addresses disorders such as idiopathic or unexplained infertility (UI). Recently, assessment of sperm DNA fragmentation (SDF) has been proposed as an extended sperm test that may help overcome these inherent limitations of basic SA. In this review, we aim to: (I) discuss the pathophysiological aspects of SDF, including natural repair mechanisms, causes, and impact on reproductive outcomes; (II) explain different assessment tools of SDF, and describe potential therapeutic options to manage infertile men with high SDF; and (III) analyse the strengths, weaknesses, opportunities and threats (SWOT) of current research on the topic. Methods This review was constructed from original studies, systematic reviews and meta-analyses that were published over the years up until August 2021, related to the various aspects of SDF. Key Content and Findings Different mechanisms lead to high SDF, including defective chromatin packaging, apoptosis, and seminal oxidative stress. The relevance of sperm DNA integrity to male fertility/infertility has been supported by the frequent observation of high levels of SDF in infertile men, and in association with risk factors for infertility. Additionally, high SDF levels have been inversely correlated with the outcomes of natural pregnancy and assisted reproduction. Terminal deoxynucleotidyl transferase dUTP nick end labelling, sperm chromatin structure assay, sperm chromatin dispersion, and Comet assay are four commonly used assays for measurement of SDF. Addressing lifestyle risks and underlying conditions, antioxidants, hormonal therapy, and advanced sperm selection techniques have all been proposed as potential therapeutic options to lower SDF. Conclusions The sum of literature provides evidence of detrimental effects of high SDF on both natural and assisted fertility outcomes. Standardization of the techniques used for assessment of SDF and their incorporation into the work up of infertile couples may have significant implications on the future management of a selected category of infertile men with high SDF.
Collapse
Affiliation(s)
- Ala’a Farkouh
- Global Andrology Forum, American Center for Reproductive Medicine, Moreland Hills, Ohio, USA
| | - Gianmaria Salvio
- Division of Endocrinology, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy
| | | | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
- Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Paraskevi Vogiatzi
- Andromed Health & Reproduction, Fertility Diagnostics Laboratory, Athens, Greece
| | - Ashok Agarwal
- Global Andrology Forum, American Center for Reproductive Medicine, Moreland Hills, Ohio, USA
| |
Collapse
|
22
|
Shanthi DT, Gopinath P, Kumar KD, Iyer RP, Kesavaramanujam R, Karunakaran GK. Evaluating the Contribution of Oocyte, Sperm, and Uterus in Determining the Outcome of Intracytoplasmic Sperm Injection - A Retrospective Observational Comparative Study on Intracytoplasmic Sperm Injection using Own Oocytes and Donor Oocytes. J Hum Reprod Sci 2021; 14:281-287. [PMID: 34759618 PMCID: PMC8527072 DOI: 10.4103/jhrs.jhrs_20_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 11/04/2022] Open
Abstract
Context Several studies have assessed the contribution of oocyte, sperm, and endometrium on the outcome of intracytoplasmic sperm injection (ICSI) separately. This study assesses the relative contribution of oocyte, sperm, and uterus in achieving clinical pregnancy (CP) through ICSI by comparing own and third-party ICSI cycles. Aim The aim of the study is to evaluate and compare the strength of contribution of oocyte, sperm, and uterus in achieving CP through ICSI. Settings and Design This retrospective observational study of ICSI cycles for 20 months including 1000 embryo transfers (ETs). Methodology Subjects were divided into two groups, Group 1 - ICSI with own oocytes (550 ETs) and Group 2 - ICSI with donor oocytes (450 ETs). Both the groups had 3 subgroups - a (husband sperm, transferred to self), b (donor sperm, transferred to self), c (husband sperm, transferred to a gestational surrogate). CP rate (CPR) as a major outcome was studied in the groups and subgroups. Statistical Analysis CPR was compared between various subgroups using Z-test and Chi-square of significance of difference between proportions. A P < 0.05 was taken as the level of statistical significance. Results CPR in subgroup 1a < 35 years, 1a ≥35 years, and 2a was 42.98%, 26.21%, and 40.92%, respectively (P = 0.001). CPR was compared between 2a and 2c (40.92%, 56.5%, P = 0.044) and between 2a and 2b (40.92%, 42.11%, P = 0.866). Implantation rate was highest in Group 2c (34.88%) compared to other subgroups. Conclusion The higher CPR in women <35 years undergoing ICSI with own oocytes than older women and a comparable CPR as that of recipients of donor oocytes suggests that age thereby oocyte quality is the strongest determining factor in achieving clinical pregnancy. Among oocyte recipients, higher CPR in surrogate uterus than patient uterus suggests that uterus/endometrium plays a considerable role, and comparable CPR between ICSI using husband sperm and donor sperm indicates that sperm quality might not play a major role in achieving CP.
Collapse
Affiliation(s)
- Deepeka Thangamani Shanthi
- Department of Reproductive Medicine, Centre for Infertility Management and Assisted Reproduction (A Unit of Edappal Hospitals Private Limited), Kochi, Kerala, India.,Guhan Hospital and Infertility Centre, Mayiladuthurai, Tamil Nadu, India
| | - Parasuram Gopinath
- Department of Reproductive Medicine, Centre for Infertility Management and Assisted Reproduction (A Unit of Edappal Hospitals Private Limited), Kochi, Kerala, India
| | - Karthika D Kumar
- Department of Reproductive Medicine, Centre for Infertility Management and Assisted Reproduction (A Unit of Edappal Hospitals Private Limited), Kochi, Kerala, India
| | - Ramesh Parameswara Iyer
- Department of Obstetrics and Gynecology and Reproductive Medicine, IQRAA International Hospital and Research Centre, Kozhikode, Kerala India
| | - Revathi Kesavaramanujam
- Department of Reproductive Medicine, Centre for Infertility Management and Assisted Reproduction (A Unit of Edappal Hospitals Private Limited), Kochi, Kerala, India
| | - Gopinathan Kannoly Karunakaran
- Department of Reproductive Medicine, Centre for Infertility Management and Assisted Reproduction (A Unit of Edappal Hospitals Private Limited), Kochi, Kerala, India
| |
Collapse
|
23
|
Evans EPP, Scholten JTM, Mzyk A, Reyes-San-Martin C, Llumbet AE, Hamoh T, Arts EGJM, Schirhagl R, Cantineau AEP. Male subfertility and oxidative stress. Redox Biol 2021; 46:102071. [PMID: 34340027 PMCID: PMC8342954 DOI: 10.1016/j.redox.2021.102071] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
To date 15% of couples are suffering from infertility with 45-50% of males being responsible. With an increase in paternal age as well as various environmental and lifestyle factors worsening these figures are expected to increase. As the so-called free radical theory of infertility suggests, free radicals or reactive oxygen species (ROS) play an essential role in this process. However, ROS also fulfill important functions for instance in sperm maturation. The aim of this review article is to discuss the role reactive oxygen species play in male fertility and how these are influenced by lifestyle, age or disease. We will further discuss how these ROS are measured and how they can be avoided during in-vitro fertilization.
Collapse
Affiliation(s)
- Emily P P Evans
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Jorien T M Scholten
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Aldona Mzyk
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands; Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059, Krakow, Poland
| | - Claudia Reyes-San-Martin
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Arturo E Llumbet
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands; Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile. Independencia, 1027, Independencia Santiago, Chile
| | - Thamir Hamoh
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands
| | - Eus G J M Arts
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, Groningen University University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW, Groningen, the Netherlands.
| | - Astrid E P Cantineau
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
24
|
Cafe SL, Nixon B, Ecroyd H, Martin JH, Skerrett-Byrne DA, Bromfield EG. Proteostasis in the Male and Female Germline: A New Outlook on the Maintenance of Reproductive Health. Front Cell Dev Biol 2021; 9:660626. [PMID: 33937261 PMCID: PMC8085359 DOI: 10.3389/fcell.2021.660626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/07/2023] Open
Abstract
For fully differentiated, long lived cells the maintenance of protein homeostasis (proteostasis) becomes a crucial determinant of cellular function and viability. Neurons are the most well-known example of this phenomenon where the majority of these cells must survive the entire course of life. However, male and female germ cells are also uniquely dependent on the maintenance of proteostasis to achieve successful fertilization. Oocytes, also long-lived cells, are subjected to prolonged periods of arrest and are largely reliant on the translation of stored mRNAs, accumulated during the growth period, to support meiotic maturation and subsequent embryogenesis. Conversely, sperm cells, while relatively ephemeral, are completely reliant on proteostasis due to the absence of both transcription and translation. Despite these remarkable, cell-specific features there has been little focus on understanding protein homeostasis in reproductive cells and how/whether proteostasis is "reset" during embryogenesis. Here, we seek to capture the momentum of this growing field by highlighting novel findings regarding germline proteostasis and how this knowledge can be used to promote reproductive health. In this review we capture proteostasis in the context of both somatic cell and germline aging and discuss the influence of oxidative stress on protein function. In particular, we highlight the contributions of proteostasis changes to oocyte aging and encourage a focus in this area that may complement the extensive analyses of DNA damage and aneuploidy that have long occupied the oocyte aging field. Moreover, we discuss the influence of common non-enzymatic protein modifications on the stability of proteins in the male germline, how these changes affect sperm function, and how they may be prevented to preserve fertility. Through this review we aim to bring to light a new trajectory for our field and highlight the potential to harness the germ cell's natural proteostasis mechanisms to improve reproductive health. This manuscript will be of interest to those in the fields of proteostasis, aging, male and female gamete reproductive biology, embryogenesis, and life course health.
Collapse
Affiliation(s)
- Shenae L. Cafe
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Heath Ecroyd
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Hughes JR, Soto-Heras S, Muller CH, Miller DJ. Phthalates in Albumin from Human Serum: Implications for Assisted Reproductive Technology. F&S REVIEWS 2021; 2:160-168. [PMID: 36268475 PMCID: PMC9580017 DOI: 10.1016/j.xfnr.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Albumin, a vital protein in cell culture systems, is derived from whole blood or blood products. The culture of human gametes and developing embryos for assisted reproduction (ART) uses albumin of human origin. Human serum albumin (HSA) is derived from expired blood obtained from blood banks. This blood has been stored in polyvinyl chloride bags made clear and flexible with di-2-ethylhexyl phthalate (DEHP). But DEHP can leach from the bags into stored blood and co-fractionate with HSA during albumin isolation. DEHP and its metabolite mono-ethylhexyl phthalate (MEHP), are known endocrine disruptors that are reported to have negative effects when directly supplemented in media for IVF using gametes from a variety of animals. Therefore, the contamination of ART media with DEHP and MEHP through HSA supplementation may have effects on the outcomes of ART procedures. While the embryology laboratory is strictly monitored to prevent a wide variety of contamination, phthalate contamination of HSA has not been broadly examined. This review outlines the function of HSA in ART procedures and the production of HSA from whole blood. Finally, the review highlights the effects of acute phthalate exposures on gametes during in vitro procedures.
Collapse
Affiliation(s)
- Jennifer R. Hughes
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, Phone 217-333-3408
| | - Sandra Soto-Heras
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, Phone 217-333-3408
| | | | - David J. Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, Phone 217-333-3408
| |
Collapse
|
26
|
Vidaki A, Montiel González D, Planterose Jiménez B, Kayser M. Male-specific age estimation based on Y-chromosomal DNA methylation. Aging (Albany NY) 2021; 13:6442-6458. [PMID: 33744870 PMCID: PMC7993701 DOI: 10.18632/aging.202775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Although DNA methylation variation of autosomal CpGs provides robust age predictive biomarkers, no male-specific age predictor exists based on Y-CpGs yet. Since sex chromosomes play an important role in aging, a Y-chromosome-based age predictor would allow studying male-specific aging effects and would also be useful in forensics. Here, we used blood-based DNA methylation microarray data of 1,057 males from six cohorts aged 15-87 and identified 75 Y-CpGs with an interquartile range of ≥0.1. Of these, 22 and six were significantly hyper- and hypomethylated with age (p(cor)<0.05, Bonferroni), respectively. Amongst several machine learning algorithms, a model based on support vector machines with radial kernel performed best in male-specific age prediction. We achieved a mean absolute deviation (MAD) between true and predicted age of 7.54 years (cor=0.81, validation) when using all 75 Y-CpGs, and a MAD of 8.46 years (cor=0.73, validation) based on the most predictive 19 Y-CpGs. The accuracies of both age predictors did not worsen with increased age, in contrast to autosomal CpG-based age predictors that are known to predict age with reduced accuracy in the elderly. Overall, we introduce the first-of-its-kind male-specific epigenetic age predictor for future applications in aging research and forensics.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| | - Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| |
Collapse
|
27
|
Sperm DNA fragmentation and male fertility: a retrospective study of 5114 men attending a reproductive center. J Assist Reprod Genet 2021; 38:1133-1141. [PMID: 33656621 DOI: 10.1007/s10815-021-02120-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/16/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE The sperm DNA fragmentation index (DFI) was quantitatively measured and its relationship with age, semen quality, and infertility conditions was investigated. METHODS Semen routine test and sperm DFI were performed in 2760 infertile male and 2354 male whose spouse experienced at least one unexplained miscarriage to analyze the correlation between sperm DNA damage, semen routine parameters, and age. RESULTS Sperm DFI was significantly lower from patients whose wife experienced unexplained miscarriage compared to infertility males (p = 0.000). An inverse correlation between sperm DFI and sperm progressive motility was observed (rs = - 0.465, p = 0.000) and sperm DFI was positively correlated with age (rs = 0.255, p = 0.000). However, the correlation between sperm DFI and sperm concentration, semen volume, total sperm count, and motile sperm count were not proved. CONCLUSIONS Sperm DFI is an important indicator for evaluating the quality of semen. Sperm DNA integrity testing is preferentially recommended to those who have decreased sperm progressive motility, especially older men. An integrative analysis of sperm DFI, sperm progressive motility, age, and infertility conditions can provide a more comprehensive assessment of male fertility.
Collapse
|
28
|
Halvaei I, Litzky J, Esfandiari N. Advanced paternal age: effects on sperm parameters, assisted reproduction outcomes and offspring health. Reprod Biol Endocrinol 2020; 18:110. [PMID: 33183337 PMCID: PMC7664076 DOI: 10.1186/s12958-020-00668-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023] Open
Abstract
Many factors, including postponement of marriage, increased life expectancy, and improved success with assisted reproductive technologies have been contributing to increased paternal age in developed nations. This increased average paternal age has led to concerns about adverse effects of advanced paternal age on sperm quality, assisted reproductive outcomes, and the health of the offspring conceived by older fathers. This review discusses the association between advanced paternal age and sperm parameters, assisted reproduction success rates, and offspring health.
Collapse
Affiliation(s)
- Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Julia Litzky
- Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Navid Esfandiari
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Medical Center, Larner College of Medicine, 111 Colchester Ave, Burlington, VT, 05401, USA.
| |
Collapse
|
29
|
Agarwal A, Majzoub A, Baskaran S, Panner Selvam MK, Cho CL, Henkel R, Finelli R, Leisegang K, Sengupta P, Barbarosie C, Parekh N, Alves MG, Ko E, Arafa M, Tadros N, Ramasamy R, Kavoussi P, Ambar R, Kuchakulla M, Robert KA, Iovine C, Durairajanayagam D, Jindal S, Shah R. Sperm DNA Fragmentation: A New Guideline for Clinicians. World J Mens Health 2020; 38:412-471. [PMID: 32777871 PMCID: PMC7502318 DOI: 10.5534/wjmh.200128] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sperm DNA integrity is crucial for fertilization and development of healthy offspring. The spermatozoon undergoes extensive molecular remodeling of its nucleus during later phases of spermatogenesis, which imparts compaction and protects the genetic content. Testicular (defective maturation and abortive apoptosis) and post-testicular (oxidative stress) mechanisms are implicated in the etiology of sperm DNA fragmentation (SDF), which affects both natural and assisted reproduction. Several clinical and environmental factors are known to negatively impact sperm DNA integrity. An increasing number of reports emphasizes the direct relationship between sperm DNA damage and male infertility. Currently, several assays are available to assess sperm DNA damage, however, routine assessment of SDF in clinical practice is not recommended by professional organizations. This article provides an overview of SDF types, origin and comparative analysis of various SDF assays while primarily focusing on the clinical indications of SDF testing. Importantly, we report four clinical cases where SDF testing had played a significant role in improving fertility outcome. In light of these clinical case reports and recent scientific evidence, this review provides expert recommendations on SDF testing and examines the advantages and drawbacks of the clinical utility of SDF testing using Strength-Weaknesses-Opportunities-Threats (SWOT) analysis.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Ahmad Majzoub
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Chak Lam Cho
- Department of Surgery, Union Hospital, Hong Kong
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Kristian Leisegang
- School of Natural Medicine, Faculty of Community and Health Sciences, University of the Western Cape, Bellville, South Africa
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Catalina Barbarosie
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Neel Parekh
- Department of Urology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology & Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Edmund Ko
- Department of Urology, Loma Linda University, Loma Linda, CA, USA
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Andrology Department, Cairo University, Giza, Egypt
| | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Rafael Ambar
- Urology Department of Centro Universitario em Saude do ABC, Santo André, Brazil
| | | | - Kathy Amy Robert
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| |
Collapse
|
30
|
Abstract
With the increasing incidence of male infertility, routine detection of semen is insufficient to accurately assess male fertility. Infertile men, who have lower odds of conceiving naturally, exhibit high levels of sperm DNA fragmentation (SDF). The mechanisms driving SDF include abnormal spermatogenesis, oxidative stress damage, and abnormal sperm apoptosis. As these factors can induce SDF and subsequent radical changes leading to male infertility, detection of the extent of SDF has become an efficient routine method for semen analysis. Although it is still debated, SDF detection has become a research hotspot in the field of reproductive medicine as a more accurate indicator for assessing sperm quality and male fertility. SDF may be involved in male infertility, reproductive assisted outcomes, and growth and development of offspring. The effective detection methods of SDF are sperm chromatin structure analysis (SCSA), terminal transferase-mediated dUTP end labeling (TUNEL) assay, single-cell gel electrophoresis (SCGE) assay, and sperm chromatin dispersion (SCD) test, and all of these methods are valuable for assisted reproductive techniques. Currently, the preferred method for detecting sperm DNA integrity is SCSA. However, the regulation network of SDF is very complex because the sperm DNA differs from the somatic cell DNA with its unique structure. A multitude of molecular factors, including coding genes, non-coding genes, or methylated DNA, participate in the complex physiological regulation activities associated with SDF. Studying SDF occurrence and the underlying mechanisms may effectively improve its clinical treatments. This review aimed to outline the research status of SDF mechanism and detection technology-related issues, as well as the effect of increased SDF rate, aiming to provide a basis for clinical male infertility diagnosis and treatment.
Collapse
Affiliation(s)
- Ying Qiu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Hua Yang
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Chunyuan Li
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Changlong Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| |
Collapse
|
31
|
Condorelli RA, La Vignera S, Barbagallo F, Alamo A, Mongioì LM, Cannarella R, Aversa A, Calogero AE. Bio-Functional Sperm Parameters: Does Age Matter? Front Endocrinol (Lausanne) 2020; 11:558374. [PMID: 33362711 PMCID: PMC7761869 DOI: 10.3389/fendo.2020.558374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
The evaluation of biofunctional sperm parameters can explain some cases of idiopathic male infertility. Among these, sperm DNA fragmentation (fDNA) is the most studied biofunctional sperm parameter. Mitochondrial membrane potential (MMP) correlates positively with sperm motility, the evaluation of sperm apoptosis by flow cytometry allows us to identify a population of spermatozoa not recognizable at the optical microscopy and finally, lipid peroxidation (LP) and mitochondrial superoxide levels measurements are rational oxidative stress indices. Male age seems to affect sperm concentration and sperm fDNA. For these reasons, this study was undertaken to evaluate the correlation, if any, between male age and biofunctional sperm parameters evaluating their possible impact on fDNA. To accomplish this, MMP, degree of chromatin compactness, sperm apoptosis/vitality, fDNA, LP, and mitochondrial superoxide levels were evaluated by flow cytometry in a cohort of 874 men. A significant negative correlation was found between age and the percentage of alive spermatozoa (r = -0.75, p < 0.05). The percentage of spermatozoa with low MMP (L-MMP) correlated positively with the percentage of spermatozoa with abnormal chromatin compactness (r = 0.24, p < 0.05). Spermatozoa with abnormal chromatin compactness and L-MMP correlated negatively with the percentage of alive spermatozoa (r = 0.83, p < 0.05) and positively with spermatozoa with PS externalization (r = 0.13, p < 0.01). The percentage of alive spermatozoa correlated negatively with both the percentage of spermatozoa with PS externalization (r = 0.24, p < 0.01) and of the spermatozoa with fDNA (r = 0.10, p < 0.05). Spermatozoa with PS externalization correlated positively with the percentage of spermatozoa with fDNA (r = 0.09, p < 0.05). Spermatozoa with LP correlated positively with the percentage of spermatozoa with increased mitochondrial superoxide (r = 0.11, p < 0.01) In conclusion, these findings in a large number of men suggest that age, mitochondrial damage, and alteration of chromatin compactness could activate the apoptotic cascade which could result in an increased fDNA rate.
Collapse
Affiliation(s)
- Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- *Correspondence: Sandro La Vignera,
| | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angela Alamo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M. Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|