1
|
Rayia DMA, Izzularab BM, Harras S, Ghafar MTA, Azzam AR, Harras H, Younis RL, Soliman S, Saad AE. Stem cell biotherapy: A new remedy for Trichinella spiralis-induced inflammatory myopathy. Parasitol Int 2023; 96:102773. [PMID: 37330041 DOI: 10.1016/j.parint.2023.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Trichinella spiralis (T. spiralis)-induced myopathy is an inflammatory myopathy that is difficult to treat unless the parasite is combated in its early intestinal phase before it reaches the muscles. This study aimed to evaluate the effect of local mesenchymal stem cell (MSC) therapy on T. spiralis-induced inflammatory myopathy in rats. Rats were divided into four groups: Group 1 (non-infected non-treated group); Group 2 (infected non-treated group); Group 3 (infected albendazole (ABZ)-treated group); and Group 4 (infected MSC-treated group). Their muscle status was assessed physiologically with the righting reflex and electromyography (EMG), parasitologically with the total muscle larval count, histopathologically with hematoxylin and eosin and Mallory's trichrome stains, as well as immunohistochemically for myogenin as a marker of muscle regeneration. Additionally, serum muscle enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as muscle matrix metalloproteinases MMP1 and MMP9, were assayed. Finally, the immunological response was assessed by measuring the levels of the muscle inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), and interleukin-4 (IL-4). Our findings revealed that MSC therapy markedly improved muscle EMG and righting reflex, as well as the histopathological appearance of the muscles, reduced inflammatory cellular infiltrates, and increased myogenin immunostaining. It also reduced serum CK and LDH levels, as well as muscle INF-γ, TNF-α, IL-4, MMP1, and MMP9 levels. However, it had no effect on the total muscle larval count. Accordingly, due to its anti-inflammatory properties and muscle-regenerative effect, MSC therapy could be a promising new remedy for T. spiralis-induced myopathy.
Collapse
Affiliation(s)
- Dina Moustafa Abou Rayia
- Medical Parasitology Department, Faulty of Medicine, Tanta University, Egypt; Medical Parasitology Subunit, Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Jordan.
| | - Batoul M Izzularab
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Egypt
| | - Samar Harras
- Zoology Department, Faculty of Science, Tanta University, Egypt
| | | | - Asmaa Ramadan Azzam
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Egypt
| | - Heba Harras
- Histopathology Department, Faculty of Medicine, Tanta University, Egypt
| | | | - Shaimaa Soliman
- Biostatistics and Public Health Department, Faculty of Medicine, Menoufia University, Egypt
| | - Abeer Ezzat Saad
- Medical Parasitology Department, Faulty of Medicine, Tanta University, Egypt; Medical Parasitology Subunit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
2
|
Den Hartog L, Asakura A. Implications of notch signaling in duchenne muscular dystrophy. Front Physiol 2022; 13:984373. [PMID: 36237531 PMCID: PMC9553129 DOI: 10.3389/fphys.2022.984373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
This review focuses upon the implications of the Notch signaling pathway in muscular dystrophies, particularly Duchenne muscular dystrophy (DMD): a pervasive and catastrophic condition concerned with skeletal muscle degeneration. Prior work has defined the pathogenesis of DMD, and several therapeutic approaches have been undertaken in order to regenerate skeletal muscle tissue and ameliorate the phenotype. There is presently no cure for DMD, but a promising avenue for novel therapies is inducing muscle regeneration via satellite cells (muscle stem cells). One specific target using this approach is the Notch signaling pathway. The canonical Notch signaling pathway has been well-characterized and it ultimately governs cell fate decision, cell proliferation, and induction of differentiation. Additionally, inhibition of the Notch signaling pathway has been directly implicated in the deficits seen with muscular dystrophies. Here, we explore the connection between the Notch signaling pathway and DMD, as well as how Notch signaling may be targeted to improve the muscle degeneration seen in muscular dystrophies.
Collapse
|
3
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Ebrahimi A, Ahmadi H, Ghasrodashti ZP, Tanideh N, Shahriarirad R, Erfani A, Ranjbar K, Ashkani-Esfahani S. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: A comprehensive review. Bosn J Basic Med Sci 2021; 21:672-701. [PMID: 34255619 PMCID: PMC8554700 DOI: 10.17305/bjbms.2021.5508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
Abstract
Stem cell therapy has been used to treat several types of diseases, and it is expected that its therapeutic uses shall increase as novel lines of evidence begin to appear. Furthermore, stem cells have the potential to make new tissues and organs. Thus, some scientists propose that organ transplantation will significantly rely on stem cell technology and organogenesis in the future. Stem cells and its robust potential to differentiate into specific types of cells and regenerate tissues and body organs, have been investigated by numerous clinician scientists and researchers for their therapeutic effects. Degenerative diseases in different organs have been the main target of stem cell therapy. Neurodegenerative diseases such as Alzheimer's, musculoskeletal diseases such as osteoarthritis, congenital cardiovascular diseases, and blood cell diseases such as leukemia are among the health conditions that have benefited from stem cell therapy advancements. One of the most challenging parts of the process of incorporating stem cells into clinical practice is controlling their division and differentiation potentials. Sometimes, their potential for uncontrolled growth will make these cells tumorigenic. Another caveat in this process is the ability to control the differentiation process. While stem cells can easily differentiate into a wide variety of cells, a paracrine effect controlled activity, being in an appropriate medium will cause abnormal differentiation leading to treatment failure. In this review, we aim to provide an overview of the therapeutic effects of stem cells in diseases of various organ systems. In order to advance this new treatment to its full potential, researchers should focus on establishing methods to control the differentiation process, while policymakers should take an active role in providing adequate facilities and equipment for these projects. Large population clinical trials are a necessary tool that will help build trust in this method. Moreover, improving social awareness about the advantages and adverse effects of stem cell therapy is required to develop a rational demand in the society, and consequently, healthcare systems should consider established stem cell-based therapeutic methods in their treatment algorithms.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanie Ahmadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Pourfraidon Ghasrodashti
- Molecular Pathology and Cytogenetics Laboratory, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Department of Pharmacology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Erfani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keivan Ranjbar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Ashkani-Esfahani
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kostyuk SV, Proskurnina EV, Ershova ES, Kameneva LV, Malinovskaya EM, Savinova EA, Sergeeva VA, Umriukhin PE, Dolgikh OA, Khakina EA, Kraevaya OA, Troshin PA, Kutsev SI, Veiko NN. The Phosphonate Derivative of C 60 Fullerene Induces Differentiation towards the Myogenic Lineage in Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22179284. [PMID: 34502190 PMCID: PMC8431706 DOI: 10.3390/ijms22179284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
Inductors of myogenic stem cell differentiation attract attention, as they can be used to treat myodystrophies and post-traumatic injuries. Functionalization of fullerenes makes it possible to obtain water-soluble derivatives with targeted biochemical activity. This study examined the effects of the phosphonate C60 fullerene derivatives on the expression of myogenic transcription factors and myogenic differentiation of human mesenchymal stem cells (MSCs). Uptake of the phosphonate C60 fullerene derivatives in human MSCs, intracellular ROS visualization, superoxide scavenging potential, and the expression of myogenic, adipogenic, and osteogenic differentiation genes were studied. The prolonged MSC incubation (within 7–14 days) with the C60 pentaphoshonate potassium salt promoted their differentiation towards the myogenic lineage. The transcription factors and gene expressions determining myogenic differentiation (MYOD1, MYOG, MYF5, and MRF4) increased, while the expression of osteogenic differentiation factors (BMP2, BMP4, RUNX2, SPP1, and OCN) and adipogenic differentiation factors (CEBPB, LPL, and AP2 (FABP4)) was reduced or did not change. The stimulation of autophagy may be one of the factors contributing to the increased expression of myogenic differentiation genes in MSCs. Autophagy may be caused by intracellular alkalosis and/or short-term intracellular oxidative stress.
Collapse
Affiliation(s)
- Svetlana V. Kostyuk
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Elena V. Proskurnina
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
- Correspondence:
| | - Elizaveta S. Ershova
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Larisa V. Kameneva
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Elena M. Malinovskaya
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Ekaterina A. Savinova
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Vasilina A. Sergeeva
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Pavel E. Umriukhin
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Mohovaya Str. 11-4, 125009 Moscow, Russia
| | - Olga A. Dolgikh
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Ekaterina A. Khakina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavylova St. 28, B-334, 119991 Moscow, Russia;
| | - Olga A. Kraevaya
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka (Moscow Region), Russia; (O.A.K.); (P.A.T.)
| | - Pavel A. Troshin
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka (Moscow Region), Russia; (O.A.K.); (P.A.T.)
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Natalia N. Veiko
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| |
Collapse
|
6
|
Chitena L, Masisi K, Masisi K, Kwape TE, Gaobotse G. Application of Stem Cell Therapy during the treatment of HIV/AIDS and Duchenne Muscular Dystrophy. Curr Stem Cell Res Ther 2021; 17:633-647. [PMID: 35135463 DOI: 10.2174/1574888x16666210810104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Treating diseases such as Muscular dystrophy (MD) and HIV/AIDS poses several challenges to the rapidly evolving field of regenerative medicine. Previously, stem cell therapy has been said to affect the clinical courses of HIV/AIDS and MD, but, in practice, eradication or control of these diseases was not achievable. The introduction of gene editing into stem cell therapy has stimulated HIV/AIDS and MD cell therapy research studies substantially. Here, we review current methods of treating HIV/AIDS and MD using stem cell therapy. This review also details the use of different types of cells and methods in cell therapy and the modeling of new cell-based therapies to treat Duchenne muscular dystrophy. We speculate that the effective use stem cell therapy in conjunction with other treatment therapies such as steroids and rehabilitation could improve livelihood.
Collapse
Affiliation(s)
- Lorraine Chitena
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Keletso Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Tebogo E Kwape
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| | - Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye. Botswana
| |
Collapse
|
7
|
Inhibition of the Combinatorial Signaling of Transforming Growth Factor-Beta and NOTCH Promotes Myotube Formation of Human Pluripotent Stem Cell-Derived Skeletal Muscle Progenitor Cells. Cells 2021; 10:cells10071649. [PMID: 34209364 PMCID: PMC8303216 DOI: 10.3390/cells10071649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding the signaling pathways that regulate the final differentiation of human myoblasts is essential for successful cell transplantation and drug screening for the treatment of muscular dystrophy. In an effort to improve myotube formation from hiPSC-derived myoblasts, we validated a collection of 13 small molecules in a newly established in vitro screening platform for the assessment of myotube formation. The analysis of myotube formation as measured by the fusion index showed that the combinational inhibition of the TGFβ signaling with NOTCH signaling enhances the ability of multi-nucleated myotube production. Combinational treatment of inhibitors for TGFβ and NOTCH signaling pathways improved myotube formation in a dose-dependent manner. This effect was achieved by inhibiting the combinatorial mechanism of signaling. The combination treatment of small molecules effective in inducing multinucleated myotubes was validated in healthy human primary myoblasts. In addition, it was also applied to DMD patient iPSC-derived myoblasts to enhance the generation of multinucleated myotubes.
Collapse
|
8
|
Sleem A, Saleh F. Mesenchymal stem cells in the fight against viruses: Face to face with the invisible enemy. Curr Res Transl Med 2020; 68:105-110. [PMID: 32616467 PMCID: PMC7252154 DOI: 10.1016/j.retram.2020.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 01/08/2023]
Abstract
The relative ease of isolation of mesenchymal stem cells (MSCs) from different tissues coupled with their culture expansion in vitro and their differentiation capacity to mesodermal, endodermal and ectodermal lineages have made these cells attractive for a large number of therapeutic applications. In recent years, there has been remarkable progress in the utilization of MSCs in diverse clinical indications both in animal models and human clinical trials. However, the potential of MSCs to control or treat viral diseases is still in its infancy. In this study, we report quantitative data on the MSC-based clinical trials over the last ten years as they appear on the online database of clinical research studies from US National Institutes of Health. In particular, we provide comprehensive review of either completed or ongoing clinical trials using MSCs for virus-associated diseases focusing on HIV, hepatitis B virus and COVID-19 virus.
Collapse
Affiliation(s)
- Aleen Sleem
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Lebanon
| | - Fatima Saleh
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Lebanon.
| |
Collapse
|
9
|
Kuo YK, Lin YC, Lee CY, Chen CY, Tani J, Huang TJ, Chang H, Wu MH. Novel Insights into the Pathogenesis of Spinal Sarcopenia and Related Therapeutic Approaches: A Narrative Review. Int J Mol Sci 2020; 21:E3010. [PMID: 32344580 PMCID: PMC7216136 DOI: 10.3390/ijms21083010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Spinal sarcopenia is a complex and multifactorial disorder associated with a loss of strength, increased frailty, and increased risks of fractures and falls. In addition, spinal sarcopenia has been associated with lumbar spine disorders and osteoporosis, which renders making decisions on treatment modalities difficult. Patients with spinal sarcopenia typically exhibit lower cumulative survival, a higher risk of in-hospital complications, prolonged hospital stays, higher postoperative costs, and higher rates of blood transfusion after thoracolumbar spine surgery. Several studies have focused on the relationships between spinal sarcopenia, appendicular muscle mass, and bone-related problems-such as osteoporotic fractures and low bone mineral density-and malnutrition and vitamin D deficiency. Although several techniques are available for measuring sarcopenia, each of them has its advantages and shortcomings. For treating spinal sarcopenia, nutrition, physical therapy, and medication have been proven to be effective; regenerative therapeutic options seem to be promising owing to their repair and regeneration potential. Therefore, in this narrative review, we summarize the characteristics, detection methodologies, and treatment options for spinal sarcopenia, as well as its role in spinal disorders.
Collapse
Affiliation(s)
- Yu-Kai Kuo
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Medicine, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Ching Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung & Chang Gung University, College of Medicine, Keelung 20401, Taiwan;
| | - Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan; (C.-Y.L.)
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Yu Chen
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA;
| | - Jowy Tani
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA;
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Tsung-Jen Huang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan; (C.-Y.L.)
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hsi Chang
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Meng-Huang Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan; (C.-Y.L.)
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
10
|
Tey SR, Robertson S, Lynch E, Suzuki M. Coding Cell Identity of Human Skeletal Muscle Progenitor Cells Using Cell Surface Markers: Current Status and Remaining Challenges for Characterization and Isolation. Front Cell Dev Biol 2019; 7:284. [PMID: 31828070 PMCID: PMC6890603 DOI: 10.3389/fcell.2019.00284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle progenitor cells (SMPCs), also called myogenic progenitors, have been studied extensively in recent years because of their promising therapeutic potential to preserve and recover skeletal muscle mass and function in patients with cachexia, sarcopenia, and neuromuscular diseases. SMPCs can be utilized to investigate the mechanisms of natural and pathological myogenesis via in vitro modeling and in vivo experimentation. While various types of SMPCs are currently available from several sources, human pluripotent stem cells (PSCs) offer an efficient and cost-effective method to derive SMPCs. As human PSC-derived cells often display varying heterogeneity in cell types, cell enrichment using cell surface markers remains a critical step in current procedures to establish a pure population of SMPCs. Here we summarize the cell surface markers currently being used to detect human SMPCs, describing their potential application for characterizing, identifying and isolating human PSC-derived SMPCs. To date, several positive and negative markers have been used to enrich human SMPCs from differentiated PSCs by cell sorting. A careful analysis of current findings can broaden our understanding and reveal potential uses for these surface markers with SMPCs.
Collapse
Affiliation(s)
- Sin-Ruow Tey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Eileen Lynch
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI, United States.,The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
11
|
Potential Therapies Using Myogenic Stem Cells Combined with Bio-Engineering Approaches for Treatment of Muscular Dystrophies. Cells 2019; 8:cells8091066. [PMID: 31514443 PMCID: PMC6769835 DOI: 10.3390/cells8091066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of heterogeneous genetic disorders caused by mutations in the genes encoding the structural components of myofibres. The current state-of-the-art treatment is oligonucleotide-based gene therapy that restores disease-related protein. However, this therapeutic approach has limited efficacy and is unlikely to be curative. While the number of studies focused on cell transplantation therapy has increased in the recent years, this approach remains challenging due to multiple issues related to the efficacy of engrafted cells, source of myogenic cells, and systemic injections. Technical innovation has contributed to overcoming cell source challenges, and in recent studies, a combination of muscle resident stem cells and gene editing has shown promise as a novel approach. Furthermore, improvement of the muscular environment both in cultured donor cells and in recipient MD muscles may potentially facilitate cell engraftment. Artificial skeletal muscle generated by myogenic cells and muscle resident cells is an alternate approach that may enable the replacement of damaged tissues. Here, we review the current status of myogenic stem cell transplantation therapy, describe recent advances, and discuss the remaining obstacles that exist in the search for a cure for MD patients.
Collapse
|
12
|
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019; 10:501-516. [PMID: 30843380 PMCID: PMC6596399 DOI: 10.1002/jcsm.12416] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Winkler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
13
|
Stem-cell therapy for hearing loss: are we there yet? Braz J Otorhinolaryngol 2019; 85:520-529. [PMID: 31186186 PMCID: PMC9443044 DOI: 10.1016/j.bjorl.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/28/2019] [Indexed: 12/04/2022] Open
Abstract
Introduction Mammalian hair cells and auditory neurons do not show regenerative capacity. Hence, damage to these cell types is permanent and leads to hearing loss. However, there is no treatment that re-establishes auditory function. Regenerative therapies using stem cells represent a promising alternative. Objective This article aims to review the current literature about the main types of stem cells with potential for application in cell therapy for sensorineural hearing loss, the most relevant experiments already performed in animals, as well as the advances that have been recently made in the field. Methods Research included the databases PubMed/MEDLINE, Web of Science, Science Direct and SciELO, as well as gray literature. Search strategy included the following main terms: “stem cells”, “hair cells” and “auditory neurons”. Additionally, the main terms were combined with the following secondary terms: “mesenchymal”, “iPS”, “inner ear”, “auditory”. The research was conducted independently by three researchers. Results Differentiation of stem cells into hair cells and auditory neurons has a high success rate, reaching up to 82% for the first and 100% for the latter. Remarkably, these differentiated cells are able to interact with hair cells and auditory neurons of cochlear explants through formation of new synapses. When transplanted into the cochlea of animals with hearing loss, auditory restoration has been documented to date only in deafferented animals. Conclusion Advances have been more prominent in cases of auditory neuropathy, since partial improvement of auditory nerve conditions through cell-based therapy may increase the number of patients who can successfully receive cochlear implants.
Collapse
|
14
|
Abstract
Purpose of Review Muscular dystrophies (MDs) are a spectrum of muscle disorders, which are caused by a number of gene mutations. The studies of MDs are limited due to lack of appropriate models, except for Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1), facioscapulohumeral muscular dystrophy (FSHD), and certain type of limb-girdle muscular dystrophy (LGMD). Human induced pluripotent stem cell (iPSC) technologies are emerging to offer a useful model for mechanistic studies, drug discovery, and cell-based therapy to supplement in vivo animal models. This review will focus on current applications of iPSC as disease models of MDs for studies of pathogenic mechanisms and therapeutic development. Recent Findings Many and more human disease-specific iPSCs have been or being established, which carry the natural mutation of MDs with human genomic background. These iPSCs can be differentiated into specific cell types affected in a particular MDs such as skeletal muscle progenitor cells, skeletal muscle fibers, and cardiomyocytes. Human iPSCs are particularly useful for studies of the pathogenicity at the early stage or developmental phase of MDs. High-throughput screening using disease-specific human iPSCs has become a powerful technology in drug discovery. While MD iPSCs have been generated for cell-based replacement therapy, recent advances in genome editing technologies enabled correction of genetic mutations in these cells in culture, raising hope for in vivo genome therapy, which offers a fundamental cure for these daunting inherited MDs. Summary Human disease-specific iPSC models for MDs are emerging as an additional tool to current disease models for elucidating disease mechanisms and developing therapeutic intervention.
Collapse
Affiliation(s)
- Guangbin Xia
- Department of Neurology, College of Medicine, University of New Mexico, Albuquerque, NM USA
| | - Naohiro Terada
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, Gainesville, FL USA
| | - Tetsuo Ashizawa
- Houston Methodist Neurological Institute and Research Institute, 6670 Bertner Ave R11-117, Houston, TX USA
| |
Collapse
|
15
|
Carrillo N, Malicdan MC, Huizing M. GNE Myopathy: Etiology, Diagnosis, and Therapeutic Challenges. Neurotherapeutics 2018; 15:900-914. [PMID: 30338442 PMCID: PMC6277305 DOI: 10.1007/s13311-018-0671-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GNE myopathy, previously known as hereditary inclusion body myopathy (HIBM), or Nonaka myopathy, is a rare autosomal recessive muscle disease characterized by progressive skeletal muscle atrophy. It has an estimated prevalence of 1 to 9:1,000,000. GNE myopathy is caused by mutations in the GNE gene which encodes the rate-limiting enzyme of sialic acid biosynthesis. The pathophysiology of the disease is not entirely understood, but hyposialylation of muscle glycans is thought to play an essential role. The typical presentation is bilateral foot drop caused by weakness of the anterior tibialis muscles with onset in early adulthood. The disease slowly progresses over the next decades to involve skeletal muscles throughout the body, with relative sparing of the quadriceps until late stages of the disease. The diagnosis of GNE myopathy should be considered in young adults presenting with bilateral foot drop. Histopathologic findings on muscle biopsies include fiber size variation, atrophic fibers, lack of inflammation, and the characteristic "rimmed" vacuoles on modified Gomori trichome staining. The diagnosis is confirmed by the presence of pathogenic (mostly missense) mutations in both alleles of the GNE gene. Although there is no approved therapy for this disease, preclinical and clinical studies of several potential therapies are underway, including substrate replacement and gene therapy-based strategies. However, developing therapies for GNE myopathy is complicated by several factors, including the rare incidence of disease, limited preclinical models, lack of reliable biomarkers, and slow disease progression.
Collapse
Affiliation(s)
- Nuria Carrillo
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, 20892, USA.
| | - May C Malicdan
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
16
|
Smith LR, Barton ER. Regulation of fibrosis in muscular dystrophy. Matrix Biol 2018; 68-69:602-615. [PMID: 29408413 DOI: 10.1016/j.matbio.2018.01.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 02/08/2023]
Abstract
The production of force and power are inherent properties of skeletal muscle, and regulated by contractile proteins within muscle fibers. However, skeletal muscle integrity and function also require strong connections between muscle fibers and their extracellular matrix (ECM). A well-organized and pliant ECM is integral to muscle function and the ability for many different cell populations to efficiently migrate through ECM is critical during growth and regeneration. For many neuromuscular diseases, genetic mutations cause disruption of these cytoskeletal-ECM connections, resulting in muscle fragility and chronic injury. Ultimately, these changes shift the balance from myogenic pathways toward fibrogenic pathways, culminating in the loss of muscle fibers and their replacement with fatty-fibrotic matrix. Hence a common pathological hallmark of muscular dystrophy is prominent fibrosis. This review will cover the salient features of muscular dystrophy pathogenesis, highlight the signals and cells that are important for myogenic and fibrogenic actions, and discuss how fibrosis alters the ECM of skeletal muscle, and the consequences of fibrosis in developing therapies.
Collapse
Affiliation(s)
- Lucas R Smith
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
17
|
Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential. Cell Stem Cell 2018; 22:177-190.e7. [PMID: 29395054 DOI: 10.1016/j.stem.2017.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of β-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.
Collapse
|
18
|
Wang Z, Zhu Q, Wang W, Yi F, Li PL, Boini KM, Li N. Infusion of Valproic Acid Into the Renal Medulla Activates Stem Cell Population and Attenuates Salt-Sensitive Hypertension in Dahl S Rats. Cell Physiol Biochem 2017; 42:1264-1273. [PMID: 28693025 DOI: 10.1159/000478955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Our previous study has detected a stem cell deficiency in the renal medulla in Dahl salt-sensitive (S) rats. This study determined whether infusion of valproic acid (VA), an agent known to stimulate the stem cell function, attenuated salt-sensitive hypertension in Dahl S rats. METHODS Uninephrectomized Dahl S rats were infused with vehicle or VA (50mg/kg/d) into the renal medulla and fed with a low (LS) or high salt diet (HS). Stem cell marker and number were analyzed by immunohistochemistry, Real-time RT-PCR and Western blot. Sodium excretion and blood pressure were measured. RESULTS VA significantly increased the mRNA and protein levels of FGF2, a stem cell niche factor, and CD133, a stem cell marker. The number of CD133+ cells was significantly increased in the renal medulla in VA-treated rats. Meanwhile, high salt-induced increases in the mRNA level of proinflammatory factors interleukin-1β and interleukin-6 were blocked in VA-treated rats. Functionally, sodium excretion in response to the blood pressure increase and acute sodium loading was significantly enhanced, sodium retention attenuated, high salt-induced increase of blood pressure reduced in VA-treated rats. CONCLUSION Activation of stem cell function by VA inhibits the activation of proinflammatory factors and attenuates salt-sensitive hypertension in Dahl S rats.
Collapse
Affiliation(s)
- Zhengchao Wang
- Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qing Zhu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Krishna M Boini
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
19
|
Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells. Cell Tissue Bank 2017; 18:513-525. [DOI: 10.1007/s10561-017-9614-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
20
|
Mothe-Satney I, Piquet J, Murdaca J, Sibille B, Grimaldi PA, Neels JG, Rousseau AS. Peroxisome Proliferator Activated Receptor Beta (PPARβ) activity increases the immune response and shortens the early phases of skeletal muscle regeneration. Biochimie 2016; 136:33-41. [PMID: 27939528 DOI: 10.1016/j.biochi.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022]
Abstract
Peroxisome Proliferator-Activated Receptor Beta (PPARβ) is a transcription factor playing an important role in both muscle myogenesis and remodeling, and in inflammation. However, its role in the coordination of the transient muscle inflammation and reparation process following muscle injury has not yet been fully determined. We postulated that activation of the PPARβ pathway alters the early phase of the muscle regeneration process, i.e. when immune cells infiltrate in injured muscle. Tibialis anteriors of C57BL6/J mice treated or not with the PPARβ agonist GW0742 were injected with cardiotoxin (or with physiological serum for the contralateral muscle). Muscle regeneration was monitored on days 4, 7, and 14 post-injury. We found that treatment of mice with GW0742 increased, at day 4 post-damage, the recruitment of immune cells (M1 and M2 macrophages) and upregulated the expression of the anti-inflammatory cytokine IL-10 and TGF-β mRNA. Those effects were accompanied by a significant increase at day 4 of myogenic regulatory factors (Pax7, MyoD, Myf5, Myogenin) mRNA in GW0742-treated mice. However, we showed an earlier return (7 days vs 14 days) of Myf5 and Myogenin to basal levels in GW0742- compared to DMSO-treated mice. Differential effects of GW0742 observed during the regeneration were associated with variations of PPARβ pathway activity. Collectively, our findings indicate that PPARβ pathway activity shortens the early phases of skeletal muscle regeneration by increasing the immune response.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaap G Neels
- Université Côte d'Azur, Inserm, C3M, Nice, France
| | | |
Collapse
|
21
|
Chal J, Al Tanoury Z, Hestin M, Gobert B, Aivio S, Hick A, Cherrier T, Nesmith AP, Parker KK, Pourquié O. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 2016; 11:1833-50. [PMID: 27583644 DOI: 10.1038/nprot.2016.110] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progress toward finding a cure for muscle diseases has been slow because of the absence of relevant cellular models and the lack of a reliable source of muscle progenitors for biomedical investigation. Here we report an optimized serum-free differentiation protocol to efficiently produce striated, millimeter-long muscle fibers together with satellite-like cells from human pluripotent stem cells (hPSCs) in vitro. By mimicking key signaling events leading to muscle formation in the embryo, in particular the dual modulation of Wnt and bone morphogenetic protein (BMP) pathway signaling, this directed differentiation protocol avoids the requirement for genetic modifications or cell sorting. Robust myogenesis can be achieved in vitro within 1 month by personnel experienced in hPSC culture. The differentiating culture can be subcultured to produce large amounts of myogenic progenitors amenable to numerous downstream applications. Beyond the study of myogenesis, this differentiation method offers an attractive platform for the development of relevant in vitro models of muscle dystrophies and drug screening strategies, as well as providing a source of cells for tissue engineering and cell therapy approaches.
Collapse
Affiliation(s)
- Jérome Chal
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Marie Hestin
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Suvi Aivio
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation, Illkirch-Graffenstaden, France
| | - Thomas Cherrier
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Alexander P Nesmith
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaireet Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch-Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Dayanidhi S, Lieber RL. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 2014; 50:723-32. [PMID: 25186345 DOI: 10.1002/mus.24441] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
Satellite cells (SCs) are the muscle stem cells responsible for longitudinal and cross-sectional postnatal growth and repair after injury and which provide new myonuclei when needed. We review their morphology and contribution to development and their role in sarcomere and myonuclear addition. SCs, similar to other tissue stem cells, cycle through different states, such as quiescence, activation, and self-renewal, and thus we consider the signaling mechanisms involved in maintenance of these states. The role of the SC niche and their interactions with other cells, such as fibroblasts and the extracellular matrix, are all emerging as major factors that affect aging and disease. Interestingly, children with cerebral palsy appear to have a reduced SC number, which could play a role in their reduced muscular development and even in muscular contracture formation. Finally, we review the current information on SC dysfunction in children with muscular dystrophy and emerging therapies that target promotion of myogenesis and reduction of fibrosis.
Collapse
Affiliation(s)
- Sudarshan Dayanidhi
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0863, La Jolla, California, 92093-0863, USA; Department of Veterans Affairs Medical Center, San Diego, California, USA
| | | |
Collapse
|
23
|
Stuelsatz P, Shearer A, Li Y, Muir LA, Ieronimakis N, Shen QW, Kirillova I, Yablonka-Reuveni Z. Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency. Dev Biol 2014; 397:31-44. [PMID: 25236433 DOI: 10.1016/j.ydbio.2014.08.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 12/18/2022]
Abstract
Extraocular muscles (EOMs) are highly specialized skeletal muscles that originate from the head mesoderm and control eye movements. EOMs are uniquely spared in Duchenne muscular dystrophy and animal models of dystrophin deficiency. Specific traits of myogenic progenitors may be determinants of this preferential sparing, but very little is known about the myogenic cells in this muscle group. While satellite cells (SCs) have long been recognized as the main source of myogenic cells in adult muscle, most of the knowledge about these cells comes from the prototypic limb muscles. In this study, we show that EOMs, regardless of their distinctive Pax3-negative lineage origin, harbor SCs that share a common signature (Pax7(+), Ki67(-), Nestin-GFP(+), Myf5(nLacZ+), MyoD-positive lineage origin) with their limb and diaphragm somite-derived counterparts, but are remarkably endowed with a high proliferative potential as revealed in cell culture assays. Specifically, we demonstrate that in adult as well as in aging mice, EOM SCs possess a superior expansion capacity, contributing significantly more proliferating, differentiating and renewal progeny than their limb and diaphragm counterparts. These robust growth and renewal properties are maintained by EOM SCs isolated from dystrophin-null (mdx) mice, while SCs from muscles affected by dystrophin deficiency (i.e., limb and diaphragm) expand poorly in vitro. EOM SCs also retain higher performance in cell transplantation assays in which donor cells were engrafted into host mdx limb muscle. Collectively, our study provides a comprehensive picture of EOM myogenic progenitors, showing that while these cells share common hallmarks with the prototypic SCs in somite-derived muscles, they distinctively feature robust growth and renewal capacities that warrant the title of high performance myo-engines and promote consideration of their properties for developing new approaches in cell-based therapy to combat skeletal muscle wasting.
Collapse
Affiliation(s)
- Pascal Stuelsatz
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew Shearer
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Yunfei Li
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Lindsey A Muir
- Program in Molecular and Cellular Biology and Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicholas Ieronimakis
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Qingwu W Shen
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Irina Kirillova
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
24
|
Pozzobon M, Franzin C, Piccoli M, De Coppi P. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach. Front Aging Neurosci 2014; 6:222. [PMID: 25221507 PMCID: PMC4145352 DOI: 10.3389/fnagi.2014.00222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle-specific stem cells, namely satellite cells. Muscle diseases, in particular chronic degenerative states of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continuous cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is no definitive cure in particular for genetic muscle disease. Keeping this in mind, in this article, we will give special consideration to muscle diseases and the use of fetal derived stem cells as a new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immune-modulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.
Collapse
Affiliation(s)
- Michela Pozzobon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza , Padova , Italy
| | - Chiara Franzin
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza , Padova , Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza , Padova , Italy
| | - Paolo De Coppi
- UCL Institute of Child Health and Great Ormond Street Hospital , London , UK
| |
Collapse
|
25
|
Transplantation of mesenchymal stem cells into the renal medulla attenuated salt-sensitive hypertension in Dahl S rat. J Mol Med (Berl) 2014; 92:1139-45. [PMID: 25131934 DOI: 10.1007/s00109-014-1199-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 07/27/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Adult stem cell deficiency has been implicated in the pathogenic mechanism for various diseases. Renal medullary dysfunction is one of the major mechanisms for the development of hypertension in Dahl salt-sensitive (S) rats. The present study first detected a stem cell deficiency in the renal medulla in Dahl S rats and then tested the hypothesis that transplantation of mesenchymal stem cells (MSCs) into the renal medulla improves salt-sensitive hypertension in Dahl S rats. Immunohistochemistry and flowcytometry analyses showed a significantly reduced number of stem cell marker CD133+ cells in the renal medulla from Dahl S rats compared with controls, suggesting a stem cell deficiency. Rat MSCs or control cells were transplanted into the renal medulla in uninephrectomized Dahl S rats, which were then treated with a low- or high-salt diet for 20 days. High-salt-induced sodium retention and hypertension was significantly attenuated in MSC-treated rats compared with control cell-treated rats. Meanwhile, high-salt-induced increases of proinflammatory factors, monocyte chemoattractant protein-1, and interleukin-1β, in the renal medulla were blocked by MSC treatment. Furthermore, immunostaining showed that high-salt-induced immune cell infiltration into the renal medulla was substantially inhibited by MSC treatment. These results suggested that stem cell defect in the renal medulla may contribute to the hypertension in Dahl S rats and that correction of this stem cell defect by MSCs attenuated hypertension in Dahl S rats through anti-inflammation. KEY MESSAGE Stem cell defect in the renal medulla may contribute to salt-sensitive hypertension Stem cell therapy is a potential therapeutic strategy for salt-sensitive hypertension Normal stem cell inhibits the inflammatory response to high salt in the renal medulla.
Collapse
|
26
|
Hwang Y, Suk S, Lin S, Tierney M, Du B, Seo T, Mitchell A, Sacco A, Varghese S. Directed in vitro myogenesis of human embryonic stem cells and their in vivo engraftment. PLoS One 2013; 8:e72023. [PMID: 23977197 PMCID: PMC3747108 DOI: 10.1371/journal.pone.0072023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/04/2013] [Indexed: 12/27/2022] Open
Abstract
Development of human embryonic stem cell (hESC)-based therapy requires derivation of in vitro expandable cell populations that can readily differentiate to specified cell types and engraft upon transplantation. Here, we report that hESCs can differentiate into skeletal muscle cells without genetic manipulation. This is achieved through the isolation of cells expressing a mesodermal marker, platelet-derived growth factor receptor-α (PDGFRA), following embryoid body (EB) formation. The ESC-derived cells differentiated into myoblasts in vitro as evident by upregulation of various myogenic genes, irrespective of the presence of serum in the medium. This result is further corroborated by the presence of sarcomeric myosin and desmin, markers for terminally differentiated cells. When transplanted in vivo, these pre-myogenically committed cells were viable in tibialis anterior muscles 14 days post-implantation. These hESC-derived cells, which readily undergo myogenic differentiation in culture medium containing serum, could be a viable cell source for skeletal muscle repair and tissue engineering to ameliorate various muscle wasting diseases.
Collapse
Affiliation(s)
- Yongsung Hwang
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Samuel Suk
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Susan Lin
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Matthew Tierney
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Bin Du
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Timothy Seo
- Department of Nanoengineering, University of California San Diego, San Diego, California, United States of America
| | - Aaron Mitchell
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Alessandra Sacco
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Shyni Varghese
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
- Department of Nanoengineering, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|