1
|
Peng CS, Zhang Y, Liu Q, Marti GE, Huang YWA, Südhof TC, Cui B, Chu S. Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms. Nat Chem Biol 2025; 21:648-656. [PMID: 39090313 PMCID: PMC11785820 DOI: 10.1038/s41589-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution. We find that the number of active dynein motors transporting cargo switches stochastically between one and five dynein motors during long-range transport in neuronal axons. Our very bright optical probes allow the observation of individual molecular steps. Strikingly, these measurements reveal that the dwell times between steps are controlled by two temperature-dependent rate constants in which two ATP molecules are hydrolyzed sequentially during each dynein step. Thus, our observations uncover a previously unknown chemomechanical cycle of dynein-mediated cargo transport in living cells.
Collapse
Affiliation(s)
- Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Qian Liu
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - G Edward Marti
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
3
|
Veernala I, Jaffet J, Fried J, Mertsch S, Schrader S, Basu S, Vemuganti G, Singh V. Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocul Surf 2022; 25:129-141. [PMID: 35753665 DOI: 10.1016/j.jtos.2022.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
DED (Dry eye disease) is a common multifactorial disease of the ocular surface and the tear film. DED has gained attention globally, with millions of people affected.. Although treatment strategies for DED have shifted towards Tear Film Oriented Therapy (TFOT), all the existing strategies fall under standard palliative care when addressed as a long-term goal. Therefore, different approaches have been explored by various groups to uncover alternative treatment strategies that can contribute to a full regeneration of the damaged lacrimal gland. For this, multiple groups have investigated the role of lacrimal gland (LG) cells in DED based on their regenerating, homing, and differentiating capabilities. In this review, we discuss in detail therapeutic mechanisms and regenerative strategies that can potentially be applied for lacrimal gland regeneration as well as their therapeutic applications. This review mainly focuses on Aqueous Deficiency Dry Eye Disease (ADDE) caused by lacrimal gland dysfunction and possible future treatment strategies. The current key findings from cell and tissue-based regenerative therapy modalities that could be utilised to achieve lacrimal gland tissue regeneration are summarized. In addition, this review summarises the available literature from in vitro to in vivo animal studies, their limitations in relation to lacrimal gland regeneration and the possible clinical applications. Finally, current issues and unmet needs of cell-based therapies in providing complete lacrimal gland tissue regeneration are discussed.
Collapse
Affiliation(s)
- Induvahi Veernala
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Jilu Jaffet
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jasmin Fried
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Sayan Basu
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India
| | - Geeta Vemuganti
- School of Medical Sciences, University of Hyderabad, Prof C R Rao Road, Gachibowli, Hyderabad, 500046, India.
| | - Vivek Singh
- Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Kallam Anji Reddy Campus, L V Prasad Marg, Hyderabad, 500 034, India.
| |
Collapse
|
4
|
Kusena JWT, Shariatzadeh M, Studd AJ, James JR, Thomas RJ, Wilson SL. The importance of cell culture parameter standardization: an assessment of the robustness of the 2102Ep reference cell line. Bioengineered 2021; 12:341-357. [PMID: 33380247 PMCID: PMC8806261 DOI: 10.1080/21655979.2020.1870074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022] Open
Abstract
Work undertaken using the embryonic carcinoma 2102Ep line, highlighted the requirement for robust, well-characterized and standardized protocols. A systematic approach utilizing 'quick hit' experiments demonstrated variability introduced into culture systems resulting from slight changes to culture conditions (route A). This formed the basis for longitudinal experiments investigating long-term effects of culture parameters including seeding density and feeding regime (route B).Results demonstrated that specific growth rates (SGR) of passage 59 (P59) cells seeded at 20,000 cells/cm2 and subjected to medium exchange after 48h prior to reseeding at 72h (route B2) on average was marginally higher than, P55 cells cultured under equivalent conditions (route A1); whereby SGR values were (0.021±0.004) and (0.019±0.004). Viability was higher in route B2 over 10 passages with average viability reported as (86.3%±8.1) compared to route A1 (83.3±8.8). The metabolite data demonstrated both culture route B1 (P57 cells seeded at 66,667 cells/cm2) and B2 had consistent-specific metabolite rates (SMR) for glucose, but SMR values of route B1 was consistently lower than route B2 (0.00001 mmol, cell-1.d-1 and 0.000025).Results revealed interactions between phenotype, SMR and feeding regime that may not be accurately reflected by growth rate or observed morphology. This implies that current schemes of protocol control do not adequately account for variability, since key cell characteristics, including phenotype and SMR, change regardless of standardized seeding densities. This highlights the need to control culture parameters through defined protocols, for processes that involve culture for therapeutic use, biologics production, and reference lines.
Collapse
Affiliation(s)
- James Willard Tonderai Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Maryam Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Adam James Studd
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Jenna Rebekah James
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Robert James Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Samantha Loiuse Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
5
|
Kusena JWT, Shariatzadeh M, Thomas RJ, Wilson SL. Understanding cell culture dynamics: a tool for defining protocol parameters for improved processes and efficient manufacturing using human embryonic stem cells. Bioengineered 2021; 12:979-996. [PMID: 33757391 PMCID: PMC8806349 DOI: 10.1080/21655979.2021.1902696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Standardization is crucial when culturing cells including human embryonic stem cells (hESCs) which are valuable for therapy development and disease modeling. Inherent issues regarding reproducibility of protocols are problematic as they hinder translation to good manufacturing practice (GMP), thus reducing clinical efficacy and uptake. Pluripotent cultures require standardization to ensure that input material is consistent prior to differentiation, as inconsistency of input cells creates end-product variation. To improve protocols, developers first must understand the cells they are working with and their related culture dynamics. This innovative work highlights key conditions required for optimized and cost-effective bioprocesses compared to generic protocols typically implemented. This entailed investigating conditions affecting growth, metabolism, and phenotype dynamics to ensure cell quality is appropriate for use. Results revealed critical process parameters (CPPs) including feeding regime and seeding density impact critical quality attributes (CQAs) including specific metabolic rate (SMR) and specific growth rate (SGR). This implied that process understanding, and control is essential to maintain key cell characteristics, reduce process variation and retain CQAs. Examination of cell dynamics and CPPs permitted the formation of a defined protocol for culturing H9 hESCs. The authors recommend that H9 seeding densities of 20,000 cells/cm2, four-day cultures or three-day cultures following a recovery passage from cryopreservation and 100% medium exchange after 48 hours are optimal. These parameters gave ~SGR of 0.018 hour-1 ± 1.5x10-3 over three days and cell viabilities ≥95%±0.4, while producing cells which highly expressed pluripotent and proliferation markers, Oct3/4 (>99% positive) and Ki-67 (>99% positive).
Collapse
Affiliation(s)
- J W T Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - M Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - R J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| | - S L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
6
|
Viheriälä T, Sorvari J, Ihalainen TO, Mörö A, Grönroos P, Schlie-Wolter S, Chichkov B, Skottman H, Nymark S, Ilmarinen T. Culture surface protein coatings affect the barrier properties and calcium signalling of hESC-RPE. Sci Rep 2021; 11:933. [PMID: 33441679 PMCID: PMC7806758 DOI: 10.1038/s41598-020-79638-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Human pluripotent stem cell-derived retinal pigment epithelium (RPE) transplantation is currently under evaluation as treatment for macular degeneration. For therapeutic applications, cryostorage during cell production is typically needed with potential consequences to cell functionality. We have previously shown that the culture substrate affects human embryonic stem cell-derived RPE (hESC-RPE) properties in fresh cultures. Here, we aimed to further identify the role of RPE basement membrane proteins type IV collagen (Col-IV), laminin (LN), and nidogen-1 in the maturation and functionality of hESC-RPE after cryopreservation. In addition to cell attachment and morphology, transepithelial electrical resistance, expression of key RPE proteins, phagocytosis capacity and Ca2+ signalling were analysed. After cryostorage, attachment of hESC-RPE on culture surfaces coated with Col-IV alone was poor. Combining Col-IV and LN with or without nidogen-1 significantly improved cell attachment and barrier properties of the epithelium. Furthermore, functional homogeneity of the hESC-RPE monolayer was enhanced in the presence of nidogen-1. Our results suggest that the choice of coating proteins for the cell culture may have implications to the functional properties of these cells after cryostorage cell banking.
Collapse
Affiliation(s)
- Taina Viheriälä
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Juhana Sorvari
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Teemu O Ihalainen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Anni Mörö
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Pyry Grönroos
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Sabrina Schlie-Wolter
- Institute for Multiphase Processes, Leibniz University of Hannover, Hannover, Germany
| | - Boris Chichkov
- Institute of Quantum Optics, Leibniz University of Hannover, Hannover, Germany
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Soile Nymark
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.
| |
Collapse
|
7
|
Truong V, Viken K, Geng Z, Barkan S, Johnson B, Ebeling MC, Montezuma SR, Ferrington DA, Dutton JR. Automating Human Induced Pluripotent Stem Cell Culture and Differentiation of iPSC-Derived Retinal Pigment Epithelium for Personalized Drug Testing. SLAS Technol 2020; 26:287-299. [PMID: 33292045 DOI: 10.1177/2472630320972110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Derivation and differentiation of human induced pluripotent stem cells (hiPSCs) provide the opportunity to generate medically important cell types from individual patients and patient populations for research and the development of potential cell therapies. This technology allows disease modeling and drug screening to be carried out using diverse population cohorts and with more relevant cell phenotypes than can be accommodated using traditional immortalized cell lines. However, technical complexities in the culture and differentiation of hiPSCs, including lack of scale and standardization and prolonged experimental timelines, limit the adoption of this technology for many large-scale studies, including personalized drug screening. The entry of reproducible end-to-end automated workflows for hiPSC culture and differentiation, demonstrated on commercially available platforms, provides enhanced accessibility of this technology for both research laboratories and commercial pharmaceutical testing. Here we have utilized TECAN Fluent automated cell culture workstations to perform hiPSC culture and differentiation in a reproducible and scalable process to generate patient-derived retinal pigment epithelial cells for downstream use, including drug testing. hiPSCs derived from multiple donors with age-related macular degeneration (AMD) were introduced into our automated workflow, and cell lines were cultured and differentiated into retinal pigment epithelium (RPE). Donor hiPSC-RPE lines were subsequently entered in an automated drug testing workflow to measure mitochondrial function after exposure to "mitoactive" compounds. This work demonstrates scalable, reproducible culture and differentiation of hiPSC lines from individuals on the TECAN Fluent platform and illustrates the potential for end-to-end automation of hiPSC-based personalized drug testing.
Collapse
Affiliation(s)
- Vincent Truong
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Kevin Viken
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Zhaohui Geng
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Samantha Barkan
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Blake Johnson
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Mara C Ebeling
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Sandra R Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Deborah A Ferrington
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Bagheri-Hosseinabadi Z, Seyedi F, Mollaei HR, Moshrefi M, Seifalian A. Combination of 5-azaytidine and hanging drop culture convert fat cell into cardiac cell. Biotechnol Appl Biochem 2020; 68:92-101. [PMID: 32028539 DOI: 10.1002/bab.1897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
One of the promising approaches for the treatment of cardiac disease is stem cell therapy. In this study, we compared the cardiomyogenic differentiation rate, from human adipose-derived stem cells (hADSCs) in a three-dimensional (3D) hanging drop (HD) spheroid culture system, versus a two-dimensional (2D) culture condition at different concentrations of 5-azacytidine (5-Aza). 5-Azaytidine (5-Aza) is a pyrimidine nucleoside analogue of cytidine that initiates cell differentiation programs through DNA demethylation. The hADSCs were isolated and cultured both in 2D and 3D HD conditions, with either 10 or 50 μM concentrations of 5-Aza. Then DNA content, gene expression, and protein content were analyzed. 3D HD culture resulted in a higher percentage of cells in G0/G1 and S phase in the cell division cycle, whereas 2D culture led to a greater percentage of cells in the G2/M phase. A significantly higher gene expression rate of HAND1, HAND2, cTnI, Cx43, βMHC, GATA4, NKX2.5, and MLC2V was observed in HD treated with 50 μM 5-Aza. This was confirmed by immunocytochemistry. These findings suggest that 50 μM concentration of 5-Aza can induce hADSCs to differentiate into cardiomyocytes. The differentiation rate was significantly higher when accompanied by the 3D HD culture system. This work provides a new culture system for cell differentiation for cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Seyedi
- Department of Anatomy, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hamid Reza Mollaei
- Department of Medical Microbiology, Afzalipour Medical Faculty, Kerman University of Medical Science, Kerman, Iran
| | - Mojgan Moshrefi
- Medical Nanotechnology & Tissue Engineering Research Centre, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
9
|
Kusena JWT, Thomas RJ, McCall MJ, Wilson SL. From protocol to product: ventral midbrain dopaminergic neuron differentiation for the treatment of Parkinson's disease. Regen Med 2019; 14:1057-1069. [DOI: 10.2217/rme-2019-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Current cell therapy product limitations include the need for in-depth product understanding to ensure product potency, safety and purity. New technologies require development and validation to address issues of production scale-up to meet clinical need; assays are required for process control, validation and release. Prior to clinical realization, an understanding of production processes is required to implement process changes that are essential for process control. Identification of key parameters forms the basis of process tolerances, allowing for validated, adaptive manufacturing processes. This enables greater process control and yield while withstanding regulatory scrutiny. This report summaries key milestones in specifically for ventral midbrain dopaminergic neuroprogenitor differentiation and key translational considerations and recommendations to enable successful, robust and reproducible current cell therapy product-manufacturing.
Collapse
Affiliation(s)
- James WT Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Robert J Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Mark J McCall
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| | - Samantha L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical & Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
10
|
Vattulainen M, Ilmarinen T, Koivusalo L, Viiri K, Hongisto H, Skottman H. Modulation of Wnt/BMP pathways during corneal differentiation of hPSC maintains ABCG2-positive LSC population that demonstrates increased regenerative potential. Stem Cell Res Ther 2019; 10:236. [PMID: 31383008 PMCID: PMC6683518 DOI: 10.1186/s13287-019-1354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background The differentiation of corneal limbal stem cells (LSCs) from human pluripotent stem cells (hPSCs) has great power as a novel treatment for ocular surface reconstruction and for modeling corneal epithelial renewal. However, the lack of profound understanding of the true LSC population identity and the regulation of LSC homeostasis is hindering the full therapeutic potential of hPSC-derived LSCs as well as primary LSCs. Methods The differentiation trajectory of two distinct hPSC lines towards LSCs was characterized extensively using immunofluorescence labeling against pluripotency, putative LSC, and mature corneal epithelium markers. Cell counting, flow cytometry, and qRT-PCR were used to quantify the differences between distinct populations observed at day 11 and day 24 time points. Initial differentiation conditions were thereafter modified to support the maintenance and expansion of the earlier population expressing ABCG2. Immunofluorescence, qRT-PCR, population doubling analyses, and transplantation into an ex vivo porcine cornea model were used to analyze the phenotype and functionality of the cell populations cultured in different conditions. Results The detailed characterization of the hPSC differentiation towards LSCs revealed only transient expression of a cell population marked by the universal stemness marker and proposed LSC marker ABCG2. Within the ABCG2-positive population, we further identified two distinct subpopulations of quiescent ∆Np63α-negative and proliferative ∆Np63α-positive cells, the latter of which also expressed the acknowledged intestinal stem cell marker and suggested LSC marker LGR5. These populations that appeared early during the differentiation process had stem cell phenotypes distinct from the later arising ABCG2-negative, ∆Np63α-positive third cell population. Importantly, novel culture conditions modulating the Wnt and BMP signaling pathways allowed efficient maintenance and expansion of the ABCG2-positive populations. In comparison to ∆Np63α-positive hPSC-LSCs cultured in the initial culture conditions, ABCG2-positive hPSC-LSCs in the novel maintenance condition contained quiescent stem cells marked by p27, demonstrated notably higher population doubling capabilities and clonal growth in an in vitro colony-forming assay, and increased regenerative potential in the ex vivo transplantation model. Conclusions The distinct cell populations identified during the hPSC-LSC differentiation and ABCG2-positive LSC maintenance may represent functionally different limbal stem/progenitor cells with implications for regenerative efficacy. Electronic supplementary material The online version of this article (10.1186/s13287-019-1354-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meri Vattulainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Laura Koivusalo
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Keijo Viiri
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.,Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| |
Collapse
|
11
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Kurtz A, Seltmann S, Bairoch A, Bittner MS, Bruce K, Capes-Davis A, Clarke L, Crook JM, Daheron L, Dewender J, Faulconbridge A, Fujibuchi W, Gutteridge A, Hei DJ, Kim YO, Kim JH, Kokocinski AK, Lekschas F, Lomax GP, Loring JF, Ludwig T, Mah N, Matsui T, Müller R, Parkinson H, Sheldon M, Smith K, Stachelscheid H, Stacey G, Streeter I, Veiga A, Xu RH. A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells. Stem Cell Reports 2018; 10:1-6. [PMID: 29320760 PMCID: PMC5768986 DOI: 10.1016/j.stemcr.2017.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023] Open
Abstract
Unambiguous cell line authentication is essential to avoid loss of association between data and cells. The risk for loss of references increases with the rapidity that new human pluripotent stem cell (hPSC) lines are generated, exchanged, and implemented. Ideally, a single name should be used as a generally applied reference for each cell line to access and unify cell-related information across publications, cell banks, cell registries, and databases and to ensure scientific reproducibility. We discuss the needs and requirements for such a unique identifier and implement a standard nomenclature for hPSCs, which can be automatically generated and registered by the human pluripotent stem cell registry (hPSCreg). To avoid ambiguities in PSC-line referencing, we strongly urge publishers to demand registration and use of the standard name when publishing research based on hPSC lines.
Collapse
Affiliation(s)
- Andreas Kurtz
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany.
| | - Stefanie Seltmann
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany.
| | - Amos Bairoch
- CALIPHO group, University of Geneva and Swiss Institute of Bioinformatics, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | - Marie-Sophie Bittner
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany
| | - Kevin Bruce
- Roslin Cells Limited and EBiSC, Edinburgh BioQuarter, Edinburgh EH16 4UX, UK
| | - Amanda Capes-Davis
- CellBank Australia, Children's Medical Research Institute (CMRI), Wentworthville, NSW 2145, Australia
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jeremy M Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; Department of Surgery, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | | | - Johannes Dewender
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany
| | - Adam Faulconbridge
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Wataru Fujibuchi
- Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | | | - Derek J Hei
- Waisman Biomanufacturing, Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53705, USA
| | - Yong-Ou Kim
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health and Korea Centers for Diseases Control and Prevention, Chungcheongbuk-do 363-951, Republic of Korea
| | - Jung-Hyun Kim
- Division of Intractable Diseases, Center for Biomedical Sciences, National Institute of Health and Korea Centers for Diseases Control and Prevention, Chungcheongbuk-do 363-951, Republic of Korea
| | | | - Fritz Lekschas
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany
| | - Geoffrey P Lomax
- California Institute for Regenerative Medicine, Lake Merritt Plaza, 1999 Harrison Street STE 1650, Oakland, CA 94612, USA
| | - Jeanne F Loring
- Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road SP30-3021, La Jolla, CA 92037, USA
| | - Tenneille Ludwig
- WiCell Research Institute (WiCell Stem Cell Bank), Madison, WI 53719, USA
| | - Nancy Mah
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany
| | - Tohru Matsui
- Keio University School of Medicine, the Center for Medical Genetics, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582, Japan
| | - Robert Müller
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michael Sheldon
- Department of Genetics, Rutgers, The State University of New Jersey, Life Sciences Building, Piscataway, NJ 08854-8009, USA
| | - Kelly Smith
- University of Massachusetts Medical School, International Stem Cell Registry, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Harald Stachelscheid
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburg Center for Regenerative Therapies, Berlin 13353, Germany; Berlin Institute of Health, Stem Cell Core Unit, Berlin 13353, Germany
| | - Glyn Stacey
- National Institute for Biological Standards and Control a Centre of the MHRA, South Mimms, South Mimms, Hertfordshire EN6 3QG, UK; International Stem Cell Banking Initiative, Barley, Hertfordshire EN6 3QG, UK
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Anna Veiga
- Barcelona Stem Cell Bank, Center of Regenerative Medicine in Barcelona, 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| |
Collapse
|
13
|
Hébert JM, Vijg J. Cell Replacement to Reverse Brain Aging: Challenges, Pitfalls, and Opportunities. Trends Neurosci 2018; 41:267-279. [PMID: 29548515 DOI: 10.1016/j.tins.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022]
Abstract
Current antiaging strategies focusing on druggable targets have met with relatively limited success to date. Replacement of cells, tissues, and organs could provide an alternative means for targeting age-induced damage and potentially eliminating some of it. However, before this is a viable option, numerous challenges need to be addressed. Most notably, whether the brain, which defines our self-identity, is amenable to replacement therapies is unclear. Here, we consider whether progressive cell replacement is a potential approach to reverse brain aging without grossly altering function. We focus mainly on the neocortex, seat of our highest cognitive functions, because of abundant knowledge on neocortical development, plasticity, and how the neocortex can functionally incorporate new neurons. We outline the primary challenges for brain cell replacement, and key areas that require further investigation.
Collapse
Affiliation(s)
- Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
14
|
Toms D, Deardon R, Ungrin M. Climbing the mountain: experimental design for the efficient optimization of stem cell bioprocessing. J Biol Eng 2017; 11:35. [PMID: 29213303 PMCID: PMC5712411 DOI: 10.1186/s13036-017-0078-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/27/2017] [Indexed: 12/26/2022] Open
Abstract
"To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of." - R.A. Fisher While this idea is relevant across research scales, its importance becomes critical when dealing with the inherently large, complex and expensive process of preparing material for cell-based therapies (CBTs). Effective and economically viable CBTs will depend on the establishment of optimized protocols for the production of the necessary cell types. Our ability to do this will depend in turn on the capacity to efficiently search through a multi-dimensional problem space of possible protocols in a timely and cost-effective manner. In this review we discuss approaches to, and illustrate examples of the application of statistical design of experiments to stem cell bioprocess optimization.
Collapse
Affiliation(s)
- Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
| | - Rob Deardon
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
- Department of Mathematics and Statistics, Faculty of Science, University of Calgary, 612 Campus Place NW, Calgary, T2N 4N1 Canada
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4 Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1 Canada
- Alberta Diabetes Institute, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, T6G 2E1 Canada
- Centre for Bioengineering Research and Education, University of Calgary, 2500 University Drive NW, Calgary, T2N 1N4 Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, 3280 Hospital Drive NW, Calgary, T2N 4Z6 Canada
| |
Collapse
|
15
|
Mahmoudi M, Yu M, Serpooshan V, Wu JC, Langer R, Lee RT, Karp JM, Farokhzad OC. Multiscale technologies for treatment of ischemic cardiomyopathy. NATURE NANOTECHNOLOGY 2017; 12:845-855. [PMID: 28875984 PMCID: PMC5717755 DOI: 10.1038/nnano.2017.167] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/13/2017] [Indexed: 05/02/2023]
Abstract
The adult mammalian heart possesses only limited capacity for innate regeneration and the response to severe injury is dominated by the formation of scar tissue. Current therapy to replace damaged cardiac tissue is limited to cardiac transplantation and thus many patients suffer progressive decay in the heart's pumping capacity to the point of heart failure. Nanostructured systems have the potential to revolutionize both preventive and therapeutic approaches for treating cardiovascular disease. Here, we outline recent advancements in nanotechnology that could be exploited to overcome the major obstacles in the prevention of and therapy for heart disease. We also discuss emerging trends in nanotechnology affecting the cardiovascular field that may offer new hope for patients suffering massive heart attacks.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Mikyung Yu
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts 02138, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Omid C. Farokhzad
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
16
|
Perestrelo T, Chen W, Correia M, Le C, Pereira S, Rodrigues AS, Sousa MI, Ramalho-Santos J, Wirtz D. Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through an Image-Based Analysis Software. Stem Cell Reports 2017; 9:697-709. [PMID: 28712847 PMCID: PMC5549834 DOI: 10.1016/j.stemcr.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Image-based assays, such as alkaline phosphatase staining or immunocytochemistry for pluripotent markers, are common methods used in the stem cell field to assess pluripotency. Although an increased number of image-analysis approaches have been described, there is still a lack of software availability to automatically quantify pluripotency in large images after pluripotency staining. To address this need, we developed a robust and rapid image processing software, Pluri-IQ, which allows the automatic evaluation of pluripotency in large low-magnification images. Using mouse embryonic stem cells (mESC) as a model, we combined an automated segmentation algorithm with a supervised machine-learning platform to classify colonies as pluripotent, mixed, or differentiated. In addition, Pluri-IQ allows the automatic comparison between different culture conditions. This efficient user-friendly open-source software can be easily implemented in images derived from pluripotent cells or cells that express pluripotent markers (e.g., OCT4-GFP) and can be routinely used, decreasing image assessment bias. Open-source software to evaluate pluripotency in low-magnification images Automatic colony detection and segmentation Supervised machine-learning platform with high characterization accuracy Software tools for easy data validation, visualization, and data analysis comparison
Collapse
Affiliation(s)
- Tânia Perestrelo
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3030-789, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Institute for Nanobiotechnology at Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Weitong Chen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marcelo Correia
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra 3030-789, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal
| | - Christopher Le
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sandro Pereira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal
| | - Ana S Rodrigues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal
| | - Maria I Sousa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - João Ramalho-Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal.
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
17
|
Liu CY, Hirayama M, Ali M, Shah D, Aakalu VK. Strategies for Regenerating the Lacrimal Gland. CURRENT OPHTHALMOLOGY REPORTS 2017; 5:193-198. [PMID: 29098122 DOI: 10.1007/s40135-017-0142-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of review Aqueous deficient dry eye disease, a significant cause of morbidity worldwide, is due to dysfunction of the main and accessory lacrimal glands. Recent advances in efforts to regenerate lacrimal gland are reviewed. Recent findings Several strategies are being explored: ex vivo culture models of human and non-human lacrimal gland epithelial and myoepithelial cells, isolation and characterization of adult precursor cells within lacrimal glands, directed differentiation of stem cells to lacrimal gland cells, and organogenesis and engraftment techniques. Summary Conditions for primary cell culture and expansion are being established and will help in the characterization of lacrimal cells. Presumed adult precursor cells have been isolated, laying down foundations for regeneration. Stem cells have been induced to express features of lacrimal gland cells. Engraftment of ex vivo cultured lacrimal tissue is proof of concept that lacrimal gland regeneration and repopulation is possible.
Collapse
Affiliation(s)
- Catherine Y Liu
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, USA
| | - Masatoshi Hirayama
- Regulatory Biology Laboratory, Salk Institute for biological studies, San Diego, CA, USA
| | - Marwan Ali
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, USA
| | - Dhara Shah
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, USA
| | - Vinay K Aakalu
- Lacrimal Cell Biology Laboratory, University of Illinois at Chicago, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, USA
| |
Collapse
|
18
|
Millman JR, Pagliuca FW. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy. Diabetes 2017; 66:1111-1120. [PMID: 28507211 DOI: 10.2337/db16-1406] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/10/2017] [Indexed: 11/13/2022]
Abstract
Development of stem cell technologies for cell replacement therapy has progressed rapidly in recent years. Diabetes has long been seen as one of the first applications for stem cell-derived cells because of the loss of only a single cell type-the insulin-producing β-cell. Recent reports have detailed strategies that overcome prior hurdles to generate functional β-like cells from human pluripotent stem cells in vitro, including from human induced pluripotent stem cells (hiPSCs). Even with this accomplishment, addressing immunological barriers to transplantation remains a major challenge for the field. The development of clinically relevant hiPSC derivation methods from patients and demonstration that these cells can be differentiated into β-like cells presents a new opportunity to treat diabetes without immunosuppression or immunoprotective encapsulation or with only targeted protection from autoimmunity. This review focuses on the current status in generating and transplanting autologous β-cells for diabetes cell therapy, highlighting the unique advantages and challenges of this approach.
Collapse
Affiliation(s)
- Jeffrey R Millman
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine in St. Louis, and Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University in St. Louis, St. Louis, MO
| | | |
Collapse
|
19
|
Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS One 2017; 12:e0173575. [PMID: 28282420 PMCID: PMC5345835 DOI: 10.1371/journal.pone.0173575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Fidelity in pluripotent stem cell differentiation protocols is necessary for the therapeutic and commercial use of cells derived from embryonic and induced pluripotent stem cells. Recent advances in stem cell technology, especially the widespread availability of a range of chemically defined media, substrates and differentiation components, now allow the design and implementation of fully defined derivation and differentiation protocols intended for replication across multiple research and manufacturing locations. In this report we present an application of these criteria to the generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. Primary conjunctival cells from human donors aged 70–85 years were reprogrammed to derive multiple iPSC lines that were differentiated into functional RPE using a rapid and defined differentiation protocol. The combination of defined iPSC derivation and culture with a defined RPE differentiation protocol, reproducibly generated functional RPE from each donor without requiring protocol adjustments for each individual. This successful validation of a standardized, iPSC derivation and RPE differentiation process demonstrates a practical approach for applications requiring the cost-effective generation of RPE from multiple individuals such as drug testing, population studies or for therapies requiring patient-specific RPE derivations. In addition, conjunctival cells are identified as a practical source of somatic cells for deriving iPSCs from elderly individuals.
Collapse
|
20
|
Hotaling NA, Jeon J, Wade MB, Luong D, Palmer XL, Bharti K, Simon CG. Training to Improve Precision and Accuracy in the Measurement of Fiber Morphology. PLoS One 2016; 11:e0167664. [PMID: 27907145 PMCID: PMC5132175 DOI: 10.1371/journal.pone.0167664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/17/2016] [Indexed: 11/19/2022] Open
Abstract
An estimated $7.1 billion dollars a year is spent due to irreproducibility in pre-clinical data from errors in data analysis and reporting. Therefore, developing tools to improve measurement comparability is paramount. Recently, an open source tool, DiameterJ, has been deployed for the automated analysis of scanning electron micrographs of fibrous scaffolds designed for tissue engineering applications. DiameterJ performs hundreds to thousands of scaffold fiber diameter measurements from a single micrograph within a few seconds, along with a variety of other scaffold morphological features, which enables a more rigorous and thorough assessment of scaffold properties. Herein, an online, publicly available training module is introduced for educating DiameterJ users on how to effectively analyze scanning electron micrographs of fibers and the large volume of data that a DiameterJ analysis yields. The end goal of this training was to improve user data analysis and reporting to enhance reproducibility of analysis of nanofiber scaffolds. User performance was assessed before and after training to evaluate the effectiveness of the training modules. Users were asked to use DiameterJ to analyze reference micrographs of fibers that had known diameters. The results showed that training improved the accuracy and precision of measurements of fiber diameter in scanning electron micrographs. Training also improved the precision of measurements of pore area, porosity, intersection density, and characteristic fiber length between fiber intersections. These results demonstrate that the DiameterJ training module improves precision and accuracy in fiber morphology measurements, which will lead to enhanced data comparability.
Collapse
Affiliation(s)
- Nathan A. Hotaling
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, Maryland
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
- * E-mail:
| | - Jun Jeon
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Beth Wade
- Integrated Biosciences PhD Student, Department of Polymer Science, The University of Akron, Akron, Ohio
| | - Derek Luong
- Department of Polymer Science, The University of Akron, Akron, Ohio
| | - Xavier-Lewis Palmer
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, Maryland
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Carl G. Simon
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, Maryland
| |
Collapse
|
21
|
Shimizu Y, Satou M, Hayashi K, Nakamura Y, Fujimaki M, Horibata Y, Ando H, Watanabe T, Shiobara T, Chibana K, Takemasa A, Sugimoto H, Anzai N, Ishii Y. Matrix-assisted laser desorption/ionization imaging mass spectrometry reveals changes of phospholipid distribution in induced pluripotent stem cell colony differentiation. Anal Bioanal Chem 2016; 409:1007-1016. [PMID: 27815610 DOI: 10.1007/s00216-016-0015-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are opening up new possibilities for medicine. Understanding the regulation of iPSC biology is important when attempting to apply these cells to disease models or therapy. Changes of lipid metabolism in iPSCs were investigated by matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF-IMS). Analysis revealed changes of the intensity and distribution of peaks at m/z 782.5 and 798.5 in iPSC colonies during spontaneous differentiation. Two phosphatidylcholines (PCs) were identified: C44H81NO8P, PC(36:4)[M+H]+ at m/z 782.5 and C42H82NO8P, PC(34:1)[M+K]+ at m/z 798.5. The intensity of PC(36:4) showed an inverse relation between undifferentiated and differentiated iPSC colonies. PC(34:1) displayed a diffuse distribution in undifferentiated iPSC colonies, while it showed a concentric distribution in differentiated iPSC colonies, and was localized at the border of the differentiated and undifferentiated areas or the border between undifferentiated iPSC and feeder cells. These findings suggested that the distribution of lipids changes during the growth and differentiation of iPSCs and that MALDI-TOF-IMS was useful for analyzing these changes. PC(36:4) might play a role in maintaining pluripotency, while PC(34:1) might play a role in the differentiation and spread of iPSCs. Graphical Abstract MALDI Imaging for phosphatidylcholine distribution changes during sponteneous differentiaton of induced pluiripotent stem cells colonies.
Collapse
Affiliation(s)
- Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Motoyasu Satou
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Mio Fujimaki
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiromi Ando
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.,Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8670, Japan
| | - Yoshiki Ishii
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
22
|
Altman RB, Khuri N, Salit M, Giacomini KM. Unmet needs: Research helps regulators do their jobs. Sci Transl Med 2016; 7:315ps22. [PMID: 26606966 DOI: 10.1126/scitranslmed.aac4369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A plethora of innovative new medical products along with the need to apply modern technologies to medical-product evaluation has spurred seminal opportunities in regulatory sciences. Here, we provide eight examples of regulatory science research for diverse products. Opportunities abound, particularly in data science and precision health.
Collapse
Affiliation(s)
- Russ B Altman
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Natalia Khuri
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA 94305, USA. Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA 94143-2911, USA
| | - Marc Salit
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA 94305, USA. Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA 94143-2911, USA. Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
23
|
Miyagishima KJ, Wan Q, Corneo B, Sharma R, Lotfi MR, Boles NC, Hua F, Maminishkis A, Zhang C, Blenkinsop T, Khristov V, Jha BS, Memon OS, D'Souza S, Temple S, Miller SS, Bharti K. In Pursuit of Authenticity: Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for Clinical Applications. Stem Cells Transl Med 2016; 5:1562-1574. [PMID: 27400791 PMCID: PMC5070511 DOI: 10.5966/sctm.2016-0037] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
For effective treatment, induced pluripotent stem cell (iPSC)-retinal pigment epithelium (RPE) must recapitulate the physiology of native human RPE cells. A set of physiologically relevant functional assays that assess the polarized functional activity and maturation state of the intact RPE monolayer is provided. The study data show that donor-to-donor variability exceeds the tissue-to-tissue variability for a given donor and provides, for the first time, criteria necessary to identify iPSC-RPE cells most suitable for clinical application. Induced pluripotent stem cells (iPSCs) can be efficiently differentiated into retinal pigment epithelium (RPE), offering the possibility of autologous cell replacement therapy for retinal degeneration stemming from RPE loss. The generation and maintenance of epithelial apical-basolateral polarity is fundamental for iPSC-derived RPE (iPSC-RPE) to recapitulate native RPE structure and function. Presently, no criteria have been established to determine clonal or donor based heterogeneity in the polarization and maturation state of iPSC-RPE. We provide an unbiased structural, molecular, and physiological evaluation of 15 iPSC-RPE that have been derived from distinct tissues from several different donors. We assessed the intact RPE monolayer in terms of an ATP-dependent signaling pathway that drives critical aspects of RPE function, including calcium and electrophysiological responses, as well as steady-state fluid transport. These responses have key in vivo counterparts that together help determine the homeostasis of the distal retina. We characterized the donor and clonal variation and found that iPSC-RPE function was more significantly affected by the genetic differences between different donors than the epigenetic differences associated with different starting tissues. This study provides a reference dataset to authenticate genetically diverse iPSC-RPE derived for clinical applications. Significance The retinal pigment epithelium (RPE) is essential for maintaining visual function. RPE derived from human induced pluripotent stem cells (iPSC-RPE) offer a promising cell-based transplantation therapy for slowing or rescuing RPE-induced visual function loss. For effective treatment, iPSC-RPE must recapitulate the physiology of native human RPE. A set of physiologically relevant functional assays are provided that assess the polarized functional activity and maturation state of the intact RPE monolayer. The present data show that donor-to-donor variability exceeds the tissue-to-tissue variability for a given donor and provides, for the first time, criteria necessary to identify iPSC-RPE most suitable for clinical application.
Collapse
Affiliation(s)
- Kiyoharu J Miyagishima
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Qin Wan
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Barbara Corneo
- Columbia Stem Cell Core Facility, Columbia University Medical Center, New York, New York, USA
| | - Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mostafa R Lotfi
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Fang Hua
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arvydas Maminishkis
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Congxiao Zhang
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy Blenkinsop
- Department of Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vladimir Khristov
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Balendu S Jha
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Omar S Memon
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sunita D'Souza
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, USA
| | - Sheldon S Miller
- Section on Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Gagliano O, Elvassore N, Luni C. Microfluidic technology enhances the potential of human pluripotent stem cells. Biochem Biophys Res Commun 2016; 473:683-7. [DOI: 10.1016/j.bbrc.2015.12.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 01/02/2023]
|
25
|
Stace ET, Dakin SG, Mouthuy PA, Carr AJ. Translating Regenerative Biomaterials Into Clinical Practice. J Cell Physiol 2015; 231:36-49. [DOI: 10.1002/jcp.25071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Edward T. Stace
- National Institute of Health Research Musculoskeletal Biomedical Research Unit; Oxford United Kingdom
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences; University of Oxford; Oxford United Kingdom
| | - Stephanie G. Dakin
- National Institute of Health Research Musculoskeletal Biomedical Research Unit; Oxford United Kingdom
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences; University of Oxford; Oxford United Kingdom
| | - Pierre-Alexis Mouthuy
- National Institute of Health Research Musculoskeletal Biomedical Research Unit; Oxford United Kingdom
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences; University of Oxford; Oxford United Kingdom
| | - Andrew J. Carr
- National Institute of Health Research Musculoskeletal Biomedical Research Unit; Oxford United Kingdom
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences; University of Oxford; Oxford United Kingdom
| |
Collapse
|
26
|
Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci U S A 2015; 112:12705-10. [PMID: 26417073 DOI: 10.1073/pnas.1508073112] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Single cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity. We analyzed the effects of cell shape and substrate stiffness on the shortening and movement of labeled sarcomeres and the translation of sarcomere activity to mechanical output (contractility) in live engineered hPSC-CMs. Single hPSC-CMs were cultured on polyacrylamide substrates of physiological stiffness (10 kPa), and Matrigel micropatterns were used to generate physiological shapes (2,000-µm(2) rectangles with length:width aspect ratios of 5:1-7:1) and a mature alignment of myofibrils. Translation of sarcomere shortening to mechanical output was highest in 7:1 hPSC-CMs. Increased substrate stiffness and applied overstretch induced myofibril defects in 7:1 hPSC-CMs and decreased mechanical output. Inhibitors of nonmuscle myosin activity repressed the assembly of myofibrils, showing that subcellular tension drives the improved contractile activity in these engineered hPSC-CMs. Other factors associated with improved contractility were axially directed calcium flow, systematic mitochondrial distribution, more mature electrophysiology, and evidence of transverse-tubule formation. These findings support the potential of these engineered hPSC-CMs as powerful models for studying myocardial contractility at the cellular level.
Collapse
|