1
|
Jiang M, Li H, Zhang Q, Xu T, Huang L, Zhang J, Yu H, Zhang J. The role of RGS12 in tissue repair and human diseases. Genes Dis 2025; 12:101480. [PMID: 40271194 PMCID: PMC12017852 DOI: 10.1016/j.gendis.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 04/25/2025] Open
Abstract
Regulator of G protein signaling 12 (RGS12) belongs to the superfamily of RGS proteins defined by a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. As the largest family member, RGS12 is widely expressed in many cells and tissues. In the past few decades, it has been found that RGS12 affects the activity of various cells in the human body, participates in many physiological and pathological processes, and plays an important role in the pathogenesis of many diseases. Here, we set out to comprehensively review the role of RGS12 in human diseases and its mechanisms, highlighting the possibility of RGS12 as a therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Min Jiang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tongtong Xu
- General Department of Critical Care Medicine, Zhenjiang Traditional Chinese Medicine Hospital, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Zhenjiang, Jiangsu 212003, China
| | - Le Huang
- Army 72nd Group Military Hospital, Huzhou, Zhejiang 313000, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huiqing Yu
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Mühle J, Alenfelder J, Rodrigues MJ, Jürgenliemke L, Guixà-González R, Grätz L, Andres F, Bacchin A, Hennig M, Schihada H, Crüsemann M, König GM, Schertler G, Kostenis E, Deupi X. Cyclic peptide inhibitors function as molecular glues to stabilize Gq/11 heterotrimers. Proc Natl Acad Sci U S A 2025; 122:e2418398122. [PMID: 40333756 PMCID: PMC12088423 DOI: 10.1073/pnas.2418398122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Heterotrimeric Gα:Gβγ G proteins function as molecular switches downstream of G protein-coupled receptors (GPCRs). They alternate between a heterotrimeric GDP-bound OFF-state and a GTP-bound ON-state in which GαGTP is separated from the Gβγ dimer. Consequently, pharmacological tools to securely prevent the OFF-ON transition are of utmost importance to investigate their molecular switch function, specific contribution to GPCR signal transduction, and potential as drug targets. FR900359 (FR) and YM-254890 (YM), two natural cyclic peptides and highly specific inhibitors of Gq/11 heterotrimers, are exactly such tools. To date, their efficient and long-lasting inhibition of Gq/11 signaling has been attributed solely to a wedge-like binding to Gα, thereby preventing separation of the GTPase and α-helical domains and thus GDP release. Here, we use X-ray crystallography, biochemical and signaling assays, and BRET-based biosensors to show that FR and YM also function as stabilizers of the Gα:Gβγ subunit interface. Our high-resolution structures reveal a network of residues in Gα and two highly conserved amino acids in Gβ that are targeted by FR and YM to glue the Gβγ complex to the inactive GαGDP subunit. Unlike all previously developed nucleotide-state specific inhibitors that sequester Gα in its OFF-state but compete with Gβγ, FR and YM actively promote the inhibitory occlusion of GαGDP by Gβγ. In doing so, they securely lock the entire heterotrimer, not just Gα, in its inactive state. Our results identify FR and YM as molecular glues for Gα and Gβγ that combine simultaneous binding to both subunits with inhibition of G protein signaling.
Collapse
Affiliation(s)
- Jonas Mühle
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Matthew J. Rodrigues
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
| | - Lars Jürgenliemke
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
- Research Training Group RTG 2873, University of Bonn, Bonn, Germany
| | - Ramon Guixà-González
- Condensed Matter Theory Group, PSI Center for Scientific Computing, Theory and Data, Villigen5232, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia-Spanish National Research Council (IQAC-CSIC), Barcelona08034, Spain
| | - Lukas Grätz
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Fabio Andres
- LeadXpro AG, Park Innovaare, Villigen5234, Switzerland
| | | | | | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg35032, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt60438, Germany
| | - Gabriele M. König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Gebhard Schertler
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn53115, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research, PSI Center for Life Sciences, Villigen5232, Switzerland
- Condensed Matter Theory Group, PSI Center for Scientific Computing, Theory and Data, Villigen5232, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| |
Collapse
|
3
|
Philibert CE, Garcia-Marcos M. Smooth operator(s): dialing up and down neurotransmitter responses by G-protein regulators. Trends Cell Biol 2025; 35:330-340. [PMID: 39054106 PMCID: PMC11757802 DOI: 10.1016/j.tcb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
G-protein-coupled receptors (GPCRs) are essential mediators of neuromodulation and prominent pharmacological targets. While activation of heterotrimeric G-proteins (Gαβɣ) by GPCRs is essential in this process, much less is known about the postreceptor mechanisms that influence G-protein activity. Neurons express G-protein regulators that shape the amplitude and kinetics of GPCR-mediated synaptic responses. Although many of these operate by directly altering how G-proteins handle guanine-nucleotides enzymatically, recent discoveries have revealed alternative mechanisms by which GPCR-stimulated G-protein responses are modulated at the synapse. In this review, we cover the molecular basis for, and consequences of, the action of two G-protein regulators that do not affect the enzymatic activity of G-proteins directly: Gα inhibitory interacting protein (GINIP), which binds active Gα subunits, and potassium channel tetramerization domain-containing 12 (KCTD12), which binds active Gβγ subunits.
Collapse
Affiliation(s)
- Clementine E Philibert
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts and Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Adelizzi E, Rhea L, Mitvalsky C, Pek S, Doolittle B, Dunnwald M. The ectodermal loss of ARHGAP29 alters epithelial morphology and organization and disrupts murine palatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642653. [PMID: 40161602 PMCID: PMC11952475 DOI: 10.1101/2025.03.11.642653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Orofacial clefts, including cleft palate (CP), are among the most common types of birth defects. CP specifically, results from a failure of palatal shelf fusion during development. Previous studies have shown that mutations in RhoA GTPase Activating Protein 29 ( ARHGAP29) are linked to CP, yet the role and tissue-specific requirements for ARHGAP29 during palatogenesis remain unknown. Here, we use tissue-specific deletion of Arhgap29 in mice to provide the first direct evidence that ARHGAP29 is essential for proper palatal elevation and fusion. We demonstrate that ectodermal conditional loss of Arhgap29 induces a significant delay in the fusion of palatal shelves at embryonic (E) day 14.5 and an incomplete yet significantly penetrant cleft palate at E18.5 - neither of which are observed when Arhgap29 is lost later in development using K14-Cre. Phenotypic analyses of palatal shelves at E14.5 reveal a disorganized and thicker epithelium at the tip of the shelves. Loss of Arhgap29 increases palate epithelial cell area and upregulates alpha-smooth muscle actin and phospho-myosin regulatory light chain implicating cell morphology and contractility as drivers of CP. Summary statement This study in mice is the first direct evidence that ARHGAP29 is essential for proper palatal elevation and fusion. Loss of Arhgap29 alters oral epithelial morphology and upregulates contractility proteins.
Collapse
|
5
|
Park Y, Matsumoto S, Ogata K, Ma B, Kanada R, Isaka Y, Arichi N, Liang X, Maki R, Kozasa T, Okuno Y, Ohno H, Ishihama Y, Toyoshima F. Receptor-independent regulation of Gα13 by alpha-1-antitrypsin C-terminal peptides. J Biol Chem 2025; 301:108136. [PMID: 39730062 PMCID: PMC11815680 DOI: 10.1016/j.jbc.2024.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
Alpha-1-antitrypsin (AAT), a circulating serine protease inhibitor, is an acute inflammatory response protein with anti-inflammatory functions. The C-terminal peptides of AAT are found in various tissues and have been proposed as putative bioactive peptides with multiple functions, but its mechanism of action remains unclear. We previously reported that a mouse AAT C-terminal peptide of 35 amino acids (mAAT-C1-35) penetrates plasma membrane and associates guanine nucleotide-binding protein subunit alpha 13 (Gα13). Here, we show that mAAT-C1-35 binds directly to the guanosine diphosphate (GDP)-bound form of Gα13 through the N-terminal region (mAAT-C1-17), thereby facilitating the interaction of Gα13・GDP with its effector proteins. The minimal sequence (mAAT-C3-16) and essential amino acid residue (Phe11) of mAAT-C1-17 were identified as being necessary for this effect. A molecular dynamics simulation for the Gα13・GDP-mAAT-C1-17 complex model showed that binding of mAAT-C1-17 to the region surrounded by switch regions of Gα13 stabilizes the flexible switch II and III regions, thereby maintaining their active conformation. In addition, mAAT-C1-35 activates the Gα13 signaling pathway in cells where Phe11 is required. Our study reveals the structure-based mechanism of action of AAT-C peptides in the regulation of Gα13 and demonstrates that AAT-C peptides represent a biological peptide capable of activating G protein signals in a manner that is independent of G-protein-coupled receptors.
Collapse
Affiliation(s)
- Yonghak Park
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shigeyuki Matsumoto
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kosuke Ogata
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Biao Ma
- HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, Kobe, Hyogo, Japan
| | - Ryo Kanada
- HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, Kobe, Hyogo, Japan
| | - Yuta Isaka
- HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, Kobe, Hyogo, Japan
| | - Norihito Arichi
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Xiaowen Liang
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ritsuko Maki
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tohru Kozasa
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yasushi Okuno
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan; HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, Kobe, Hyogo, Japan
| | - Hiroaki Ohno
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan; Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Homeostatic Medicine, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Wei J, Li Y, Jiao F, Wang X, Zhou H, Qiao Y, Yuan Z, Qian C, Tian Y, Fang Y. DLGAP3 suppresses malignant behaviors of glioma cells via inhibiting RGS12-mediated MAPK/ERK signaling. Brain Res 2025; 1848:149334. [PMID: 39551229 DOI: 10.1016/j.brainres.2024.149334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Glioma is the most common malignant tumor of the central nervous system, and is characterized by high recurrence, poor prognosis and especially complex pathogenesis. The synaptic plasticity-related protein DLGAP3 is mainly involved in the assembly and function of postsynaptic density complex. It's widely known that DLGAP3 participating in the occurrence of various neuropsychiatric diseases, but its role in glioma tumorigenesis remains largely unclear. METHODS We ectopically expressed and knocked down DLGAP3 in glioma cells to perform a series of functional studies in vitro. Meanwhile, western blot analysis, co-immunoprecipitation, enrichment analysis and dual-luciferase reporter system assays were performed to explore the mechanism of DLGAP3 suppressing glioma tumorigenesis and progression. RESULTS We found that DLGAP3 was low expressed in gliomas, and decreased DLGAP3 expression was strongly correlated with poor survival of glioma patients. Ectopic expression of DLGAP3 in glioma cell lines dramatically inhibited cell proliferation, invasion and migration. In addition, our data also showed that DLGAP3 can tightly connected with RGS12, and DLGAP3 overexpression significantly increased the expression of RGS12 and inhibited the phosphorylation levels of MEK and ERK. Furthermore, the RGS12 inhibited transcription and translation of BRAF, which further decreased the activity of MAPK/ERK signaling pathway. This suggests that DLGAP3 may act as a tumor suppressor in gliomas and inhibits glioma tumorigenesis by regulating RGS12 and the downstream MAPK/ERK signals axis. CONCLUSION Our data indicates that DLGAP3 is a potential tumor suppressor and valuable prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Jing Wei
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Yuan Li
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fangzheng Jiao
- Department of Clinical Medicine, Yan'an University School of Medicine, Yan'an 716000, China
| | - Xiaoya Wang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Han Zhou
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yifan Qiao
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Zihan Yuan
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Chao Qian
- No.215 Hospital of Shaanxi Nuclear Industry, Xianyang 712000, China
| | - Yanlong Tian
- No.215 Hospital of Shaanxi Nuclear Industry, Xianyang 712000, China
| | - Yan Fang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
7
|
Zhang Y, MacKinnon R. Higher-order transient structures and the principle of dynamic connectivity in membrane signaling. Proc Natl Acad Sci U S A 2025; 122:e2421280121. [PMID: 39739805 PMCID: PMC11725812 DOI: 10.1073/pnas.2421280121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 01/02/2025] Open
Abstract
We examine the role of higher-order transient structures (HOTS) in M2R regulation of GIRK channels. Electron microscopic membrane protein location maps show that both proteins form HOTS that exhibit a statistical bias to be near each other. Theoretical calculations and electrophysiological measurements suggest that channel activity is isolated near larger M2R HOTS. By invoking weak interactions that permit transient binding of M2R to M2R and GIRK to GIRK (i-i interactions) and M2R to GIRK (i-j interactions), the distribution patterns and electrophysiological properties of HL-1 cells are replicated in a reaction-diffusion simulation. We propose the principle of dynamic connectivity to explain communication between protein components of a membrane signaling pathway. Dynamic connectivity is mediated by weak, transient interactions between proteins. HOTS created by weak i-i interactions, and statistical biases created by weak i-j interactions promoted by the multivalence of HOTS, are the key elements of dynamic connectivity.
Collapse
Affiliation(s)
- Yuxi Zhang
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
8
|
Salinas E, Ruano-Rivadeneira F, Leal JI, Caprile T, Torrejón M, Arriagada C. Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications. Front Cell Dev Biol 2025; 12:1457506. [PMID: 39834387 PMCID: PMC11743681 DOI: 10.3389/fcell.2024.1457506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling. The main cellular mechanisms that sustain this migration include contact inhibition of locomotion, co-attraction, chemotaxis and mechanical cues from the surrounding environment, all regulated by proteins that orchestrate cell polarity and motility. In this review we highlight the molecular mechanisms involved in neural crest cell migration and polarity, focusing on the role of small GTPases, Heterotrimeric G proteins and planar cell polarity complex. Here, we also discuss different congenital diseases caused by altered NC cell migration.
Collapse
Affiliation(s)
- Esteban Salinas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francis Ruano-Rivadeneira
- Developmental Biology Laboratory 116, School of Biological Sciences, Faculty of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan Ignacio Leal
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Teresa Caprile
- Laboratory of Axonal Guidance, Group for the Study of Developmental Processes (GDeP), Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Cecilia Arriagada
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
9
|
Choudhury SR, Pandey S. SymRK Regulates G-Protein Signaling During Nodulation in Soybean ( Glycine max) by Modifying RGS Phosphorylation and Activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024:MPMI04240036R. [PMID: 39167823 DOI: 10.1094/mpmi-04-24-0036-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Molecular interspecies dialogue between leguminous plants and nitrogen-fixing rhizobia results in the development of symbiotic root nodules. This is initiated by several nodulation-related receptors present on the surface of root hair epidermal cells. We have shown previously that specific subunits of heterotrimeric G-proteins and their associated regulator of G-protein signaling (RGS) proteins act as molecular links between the receptors and downstream components during nodule formation in soybeans. Nod factor receptor 1 (NFR1) interacts with and phosphorylates RGS proteins to regulate the G-protein cycle. Symbiosis receptor-like kinases (SymRK) phosphorylate Gα to make it inactive and unavailable for Gβγ. We now show that like NFR1, SymRK also interacts with the RGS proteins to phosphorylate them. Phosphorylated RGS has higher activity for accelerating guanosine triphosphate (GTP) hydrolysis by Gα, which favors conversion of active Gα to its inactive form. Phosphorylation of RGS proteins is physiologically relevant, as overexpression of a phospho-mimic version of the RGS protein enhances nodule formation in soybean. These results reveal an intricate fine-tuning of the G-protein signaling during nodulation, where a negative regulator (Gα) is effectively deactivated by RGS due to the concerted efforts of several receptor proteins to ensure adequate nodulation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
- Department of Biology, Indian Institute of Science Education and Research, Tirupati 517619, India
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| |
Collapse
|
10
|
Bair A, Printy N, Choi SH, Wilkinson J, O'Brien J, Myers B, Roman D, Mahfouz TM. In Silico Design of Novel RGS2-G alpha-q Interaction Inhibitors with Anticancer Activity. J Chem Inf Model 2024; 64:8052-8062. [PMID: 39401155 DOI: 10.1021/acs.jcim.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Regulators of G-protein signaling (RGS) are a family of approximately 30 proteins that bind to and deactivate the alpha subunits of G-proteins (Gα) by accelerating their GTP hydrolysis rates, which terminates G-protein coupled receptor (GPCR) signaling. Thus, RGS proteins are essential in regulating GPCR signaling, and most members are implicated as critical nodes in human diseases such as hypertension, depression, and others. Regulator of G-protein signaling 2 (RGS2), a member of the R4 family of RGS proteins, is overexpressed in many solid breast cancers, and its levels in prostate cancer significantly correlate with the metastatic stage and poor prognosis. We sought to develop RGS2 inhibitors as potential chemotherapeutic agents utilizing structure-based drug design approaches. Available structures of the RGS2-Gα complex were used to extract a pharmacophore model for searching chemical databases. Docking of identified hits to RGS2 as well as other RGS structures was used to screen the hits for potent and selective RGS2 inhibitors. Whole cell assays showed the top 10 ranking compounds, AJ-1-AJ-10, to inhibit RGS2-Gαq interactions. Differential scanning fluorimetry showed AJ-3 to bind RGS2 but not Gαq. All 10 compounds inhibited the growth of several RGS2 expressing cancers in cell culture assays. In addition, AJ-3 inhibited the migration of LNCaP prostate cancer cells in wound healing assays. This is the first group of RGS2 inhibitors identified by structure-based approaches and that show anticancer activity. These results highlight the potential RGS2 inhibitors have to be a new class of chemotherapeutic agents.
Collapse
Affiliation(s)
- Adam Bair
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| | - Natalie Printy
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| | - So Hee Choi
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| | - Joshua Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Joseph O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brian Myers
- Department of Chemistry and Biochemistry, Getty College of Arts and Sciences, Ohio Northern University, Ada, Ohio 45817, United States
| | - David Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Tarek M Mahfouz
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio 45810-1599, United States
| |
Collapse
|
11
|
Lasa-Aranzasti A, Larasati YA, da Silva Cardoso J, Solis GP, Koval A, Cazurro-Gutiérrez A, Ortigoza-Escobar JD, Miranda MC, De la Casa-Fages B, Moreno-Galdó A, Tizzano EF, Gómez-Andrés D, Verdura E, Katanaev VL, Pérez-Dueñas B. Clinical and Molecular Profiling in GNAO1 Permits Phenotype-Genotype Correlation. Mov Disord 2024; 39:1578-1591. [PMID: 38881224 DOI: 10.1002/mds.29881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Defects in GNAO1, the gene encoding the major neuronal G-protein Gαo, are related to neurodevelopmental disorders, epilepsy, and movement disorders. Nevertheless, there is a poor understanding of how molecular mechanisms explain the different phenotypes. OBJECTIVES We aimed to analyze the clinical phenotype and the molecular characterization of GNAO1-related disorders. METHODS Patients were recruited in collaboration with the Spanish GNAO1 Association. For patient phenotyping, direct clinical evaluation, analysis of homemade-videos, and an online questionnaire completed by families were analyzed. We studied Gαo cellular expression, the interactions of the partner proteins, and binding to guanosine triphosphate (GTP) and G-protein-coupled receptors (GPCRs). RESULTS Eighteen patients with GNAO1 genetic defects had a complex neurodevelopmental disorder, epilepsy, central hypotonia, and movement disorders. Eleven patients showed neurological deterioration, recurrent hyperkinetic crisis with partial recovery, and secondary complications leading to death in three cases. Deep brain stimulation improved hyperkinetic crisis, but had inconsistent benefits in dystonia. The molecular defects caused by pathogenic Gαo were aberrant GTP binding and hydrolysis activities, an inability to interact with cellular binding partners, and reduced coupling to GPCRs. Decreased localization of Gαo in the plasma membrane was correlated with the phenotype of "developmental and epileptic encephalopathy 17." We observed a genotype-phenotype correlation, pathogenic variants in position 203 were related to developmental and epileptic encephalopathy, whereas those in position 209 were related to neurodevelopmental disorder with involuntary movements. Milder phenotypes were associated with other molecular defects such as del.16q12.2q21 and I344del. CONCLUSION We highlight the complexity of the motor phenotype, which is characterized by fluctuations throughout the day, and hyperkinetic crisis with a distinct post-hyperkinetic crisis state. We confirm a molecular-based genotype-phenotype correlation for specific variants. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Department of Pediatrics, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Paris, France
| | - Yonika A Larasati
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juliana da Silva Cardoso
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Serviço de Pediatria do Centro Materno infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Gonzalo P Solis
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexey Koval
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ana Cazurro-Gutiérrez
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Department of Pediatrics, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Department of Child Neurology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- U-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Maria Concepción Miranda
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Department of Pediatrics Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Beatriz De la Casa-Fages
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Movement Disorders Unit, Neurology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Moreno-Galdó
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Paris, France
| | - David Gómez-Andrés
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Department of Neurology, Vall Hebron University Hospital Barcelona, Barcelona, Spain
| | - Edgard Verdura
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Vladimir L Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain
- Department of Pediatrics, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- European Reference Network-Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- Department of Pediatrics, Universitat Autónoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- CIBER of Rare diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
12
|
Shewani K, Madhu MK, Murarka RK. Mechanistic insights into G-protein activation via phosphorylation mediated non-canonical pathway. Biophys Chem 2024; 309:107234. [PMID: 38603989 DOI: 10.1016/j.bpc.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Activation of heterotrimeric G-proteins (Gαβγ) downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of Gα that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce Gα activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the Gαi3, a subtype of Gα-protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix αF, which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated Gαi3. Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.
Collapse
Affiliation(s)
- Kunal Shewani
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Midhun K Madhu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India
| | - Rajesh K Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
13
|
Zou W, Yu Q, Ma Y, Sun G, Feng X, Ge L. Pivotal role of heterotrimeric G protein in the crosstalk between sugar signaling and abiotic stress response in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108567. [PMID: 38554538 DOI: 10.1016/j.plaphy.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Heterotrimeric G-proteins are key modulators of multiple signaling and developmental pathways in plants, in which they act as molecular switches to engage in transmitting various stimuli signals from outside into the cells. Substantial studies have identified G proteins as essential components of the organismal response to abiotic stress, leading to adaptation and survival in plants. Meanwhile, sugars are also well acknowledged key players in stress perception, signaling, and gene expression regulation. Connections between the two significant signaling pathways in stress response are of interest to a general audience in plant biology. In this article, advances unraveling a pivotal role of G proteins in the process of sugar signals outside the cells being translated into the operation of autophagy in cells during stress are reviewed. In addition, we have presented recent findings on G proteins regulating the response to drought, salt, alkali, cold, heat and other abiotic stresses. Perspectives on G-protein research are also provided in the end. Since G protein signaling regulates many agronomic traits, elucidation of detailed mechanism of the related pathways would provide useful insights for the breeding of abiotic stress resistant and high-yield crops.
Collapse
Affiliation(s)
- Wenjiao Zou
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qian Yu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guoning Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Ge
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, 257300, China.
| |
Collapse
|
14
|
Torres-Rodriguez MD, Lee SG, Roy Choudhury S, Paul R, Selvam B, Shukla D, Jez JM, Pandey S. Structure-function analysis of plant G-protein regulatory mechanisms identifies key Gα-RGS protein interactions. J Biol Chem 2024; 300:107252. [PMID: 38569936 PMCID: PMC11061236 DOI: 10.1016/j.jbc.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of Gα and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of Gα:RGS regulation in plants has been shaped by Arabidopsis Gα, (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa Gα, which has no RGS, and Selaginella moellendorffi (a lycophyte) Gα that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these Gα are similar to AtGPA1 and metazoan Gα. Molecular dynamic simulation of the Gα-RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound Gα, crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of Gα:RGS proteins in plants.
Collapse
Affiliation(s)
| | - Soon Goo Lee
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, St Louis, Missouri, USA; Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Rabindranath Paul
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, Missouri, USA.
| |
Collapse
|
15
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
16
|
Garcia-Marcos M. Heterotrimeric G protein signaling without GPCRs: The Gα-binding-and-activating (GBA) motif. J Biol Chem 2024; 300:105756. [PMID: 38364891 PMCID: PMC10943482 DOI: 10.1016/j.jbc.2024.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Heterotrimeric G proteins (Gαβγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
17
|
Beckers P, Doyen PJ, Hermans E. Modulation of Type 5 Metabotropic Glutamate Receptor-Mediated Intracellular Calcium Mobilization by Regulator of G Protein Signaling 4 (RGS4) in Cultured Astrocytes. Cells 2024; 13:291. [PMID: 38391904 PMCID: PMC10886878 DOI: 10.3390/cells13040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Acting as GTPase activating proteins promoting the silencing of activated G-proteins, regulators of G protein signaling (RGSs) are generally considered negative modulators of cell signaling. In the CNS, the expression of RGS4 is altered in diverse pathologies and its upregulation was reported in astrocytes exposed to an inflammatory environment. In a model of cultured cortical astrocytes, we herein investigate the influence of RGS4 on intracellular calcium signaling mediated by type 5 metabotropic glutamate receptor (mGluR5), which is known to support the bidirectional communication between neurons and glial cells. RGS4 activity was manipulated by exposure to the inhibitor CCG 63802 or by infecting the cells with lentiviruses designed to achieve the silencing or overexpression of RGS4. The pharmacological inhibition or silencing of RGS4 resulted in a decrease in the percentage of cells responding to the mGluR5 agonist DHPG and in the proportion of cells showing typical calcium oscillations. Conversely, RGS4-lentivirus infection increased the percentage of cells showing calcium oscillations. While the physiological implication of cytosolic calcium oscillations in astrocytes is still under investigation, the fine-tuning of calcium signaling likely determines the coding of diverse biological events. Indirect signaling modulators such as RGS4 inhibitors, used in combination with receptor ligands, could pave the way for new therapeutic approaches for diverse neurological disorders with improved efficacy and selectivity.
Collapse
Affiliation(s)
| | | | - Emmanuel Hermans
- Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium; (P.B.); (P.J.D.)
| |
Collapse
|
18
|
Pandey S. Agronomic potential of plant-specific Gγ proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:337-347. [PMID: 38623166 PMCID: PMC11016034 DOI: 10.1007/s12298-024-01428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132 USA
| |
Collapse
|
19
|
Sun B, Smith N, Dixon AJ, Osei-Owusu P. Phosphodiesterases Mediate the Augmentation of Myogenic Constriction by Inhibitory G Protein Signaling and is Negatively Modulated by the Dual Action of RGS2 and 5. FUNCTION 2024; 5:zqae003. [PMID: 38486977 PMCID: PMC10935470 DOI: 10.1093/function/zqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 03/17/2024] Open
Abstract
G protein regulation by regulators of G protein signaling (RGS) proteins play a key role in vascular tone maintenance. The loss of Gi/o and Gq/11 regulation by RGS2 and RGS5 in non-pregnant mice is implicated in augmented vascular tone and decreased uterine blood flow (UBF). RGS2 and 5 are closely related and co-expressed in uterine arteries (UA). However, whether and how RGS2 and 5 coordinate their regulatory activities to finetune G protein signaling and regulate vascular tone are unclear. Here, we determined how the integrated activity of RGS2 and 5 modulates vascular tone to promote UBF. Using ultrasonography and pressure myography, we examined uterine hemodynamics and myogenic tone (MT) of UA of wild type (WT), Rgs2-/-, Rgs5-/-, and Rgs2/5 dbKO mice. We found that MT was reduced in Rgs5-/- relative to WT or Rgs2-/- UA. Activating Gi/o with dopamine increased, whereas exogenous cAMP decreased MT in Rgs5-/- UA to levels in WT UA. Dual deletion of Rgs2 and 5 abolished the reduced MT due to the absence of Rgs5 and enhanced dopamine-induced Gi/o effects in Rgs2/5 dbKO UA. Conversely, and as in WT UA, Gi/o inhibition with pertussis toxin or exogenous cAMP decreased MT in Rgs2/5 dbKO to levels in Rgs5-/- UA. Inhibition of phosphodiesterases (PDE) concentration-dependently decreased and normalized MT in all genotypes, and blocked dopamine-induced MT augmentation in Rgs2-/-, Rgs5-/-, and Rgs2/5 dbKO UA. We conclude that Gi/o augments UA MT in the absence of RGS2 by a novel mechanism involving PDE-mediated inhibition of cAMP-dependent vasodilatation..
Collapse
Affiliation(s)
- Bo Sun
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nia Smith
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alethia J Dixon
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Patrick Osei-Owusu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Kim DM, Sakamoto I, Arioka M. Class VI G protein-coupled receptors in Aspergillus oryzae regulate sclerotia formation through GTPase-activating activity. Appl Microbiol Biotechnol 2024; 108:141. [PMID: 38231240 PMCID: PMC10794492 DOI: 10.1007/s00253-023-12862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in eukaryotes that sense and transduce extracellular signals into cells. In Aspergillus oryzae, 16 canonical GPCR genes are identified and classified into nine classes based on the sequence similarity and proposed functions. Class VI GPCRs (AoGprK-1, AoGprK-2, and AoGprR in A. oryzae), unlike other GPCRs, feature a unique hybrid structure containing both the seven transmembrane (7-TM) and regulator of G-protein signaling (RGS) domains, which is not found in animal GPCRs. We report here that the mutants with double or triple deletion of class VI GPCR genes produced significantly increased number of sclerotia compared to the control strain when grown on agar plates. Interestingly, complementation analysis demonstrated that the expression of the RGS domain without the 7-TM domain is sufficient to restore the phenotype. In line with this, among the three Gα subunits in A. oryzae, AoGpaA, AoGpaB, and AoGanA, forced expression of GTPase-deficient mutants of either AoGpaA or AoGpaB caused an increase in the number of sclerotia formed, suggesting that RGS domains of class VI GPCRs are the negative regulators of these two GTPases. Finally, we measured the expression of velvet complex genes and sclerotia formation-related genes and found that the expression of velB was significantly increased in the multiple gene deletion mutants. Taken together, these results demonstrate that class VI GPCRs negatively regulate sclerotia formation through their GTPase-activating activity in the RGS domains. KEY POINTS: • Class VI GPCRs in A. oryzae regulate sclerotia formation in A. oryzae • RGS function of class VI GPCRs is responsible for regulation of sclerotia formation • Loss of class VI GPCRs resulted in increased expression of sclerotia-related genes.
Collapse
Affiliation(s)
- Dong Min Kim
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Itsuki Sakamoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Manabu Arioka
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
21
|
Yang C, Zhang X, Yang X, Lian F, Sun Z, Huang Y, Shen W. Function and regulation of RGS family members in solid tumours: a comprehensive review. Cell Commun Signal 2023; 21:316. [PMID: 37924113 PMCID: PMC10623796 DOI: 10.1186/s12964-023-01334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 11/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.
Collapse
Affiliation(s)
- Chenglong Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaowen Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Fuming Lian
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Zongrun Sun
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China.
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
22
|
Xu Q, Yao M, Tang C. RGS2 and female common diseases: a guard of women's health. J Transl Med 2023; 21:583. [PMID: 37649067 PMCID: PMC10469436 DOI: 10.1186/s12967-023-04462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Currently, women around the world are still suffering from various female common diseases with the high incidence, such as ovarian cancer, uterine fibroids and preeclampsia (PE), and some diseases are even with the high mortality rate. As a negative feedback regulator in G Protein-Coupled Receptor signaling (GPCR), the Regulator of G-protein Signaling (RGS) protein family participates in regulating kinds of cell biological functions by destabilizing the enzyme-substrate complex through the transformation of hydrolysis of G Guanosine Triphosphate (GTP). Recent work has indicated that, the Regulator of G-protein Signaling 2 (RGS2), a member belonging to the RGS protein family, is closely associated with the occurrence and development of certain female diseases, providing with the evidence that RGS2 functions in sustaining women's health. In this review paper, we summarize the current knowledge of RGS2 in female common diseases, and also tap and discuss its therapeutic potential by targeting multiple mechanisms.
Collapse
Affiliation(s)
- Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China
| | - Mukun Yao
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
23
|
Yu Q, Zou W, Liu K, Sun J, Chao Y, Sun M, Zhang Q, Wang X, Wang X, Ge L. Lipid transport protein ORP2A promotes glucose signaling by facilitating RGS1 degradation. PLANT PHYSIOLOGY 2023; 192:3170-3188. [PMID: 37073508 DOI: 10.1093/plphys/kiad238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Heterotrimeric GTP-binding proteins (G proteins) are a group of regulators essential for signal transmission into cells. Regulator of G protein signaling 1 (AtRGS1) possesses intrinsic GTPase-accelerating protein (GAP) activity and could suppress G protein and glucose signal transduction in Arabidopsis (Arabidopsis thaliana). However, how AtRGS1 activity is regulated is poorly understood. Here, we identified a knockout mutant of oxysterol binding protein-related protein 2A, orp2a-1, which exhibits similar phenotypes to the arabidopsis g-protein beta 1-2 (agb1-2) mutant. Transgenic lines overexpressing ORP2A displayed short hypocotyls, a hypersensitive response to sugar, and lower intracellular AtRGS1 levels than the control. Consistently, ORP2A interacted with AtRGS1 in vitro and in vivo. Tissue-specific expression of 2 ORP2A alternative splicing isoforms implied functions in controlling organ size and shape. Bioinformatic data and phenotypes of orp2a-1, agb1-2, and the orp2a-1 agb1-2 double mutant revealed the genetic interactions between ORP2A and Gβ in the regulation of G protein signaling and sugar response. Both alternative protein isoforms of ORP2A localized in the endoplasmic reticulum (ER), plasma membrane (PM), and ER-PM contact sites and interacted with vesicle-associated membrane protein-associated protein 27-1 (VAP27-1) in vivo and in vitro through their two phenylalanines in an acidic track-like motif. ORP2A also displayed differential phosphatidyl phosphoinositide binding activity mediated by the pleckstrin homology domain in vitro. Taken together, the Arabidopsis membrane protein ORP2A interacts with AtRGS1 and VAP27-1 to positively regulate G protein and sugar signaling by facilitating AtRGS1 degradation.
Collapse
Affiliation(s)
- Qian Yu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenjiao Zou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Kui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jialu Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanru Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Mengyao Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianqian Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaodong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaofei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Lei Ge
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
24
|
Park JC, Luebbers A, Dao M, Semeano A, Nguyen AM, Papakonstantinou MP, Broselid S, Yano H, Martemyanov KA, Garcia-Marcos M. Fine-tuning GPCR-mediated neuromodulation by biasing signaling through different G protein subunits. Mol Cell 2023; 83:2540-2558.e12. [PMID: 37390816 PMCID: PMC10527995 DOI: 10.1016/j.molcel.2023.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
G-protein-coupled receptors (GPCRs) mediate neuromodulation through the activation of heterotrimeric G proteins (Gαβγ). Classical models depict that G protein activation leads to a one-to-one formation of Gα-GTP and Gβγ species. Each of these species propagates signaling by independently acting on effectors, but the mechanisms by which response fidelity is ensured by coordinating Gα and Gβγ responses remain unknown. Here, we reveal a paradigm of G protein regulation whereby the neuronal protein GINIP (Gα inhibitory interacting protein) biases inhibitory GPCR responses to favor Gβγ over Gα signaling. Tight binding of GINIP to Gαi-GTP precludes its association with effectors (adenylyl cyclase) and, simultaneously, with regulator-of-G-protein-signaling (RGS) proteins that accelerate deactivation. As a consequence, Gαi-GTP signaling is dampened, whereas Gβγ signaling is enhanced. We show that this mechanism is essential to prevent the imbalances of neurotransmission that underlie increased seizure susceptibility in mice. Our findings reveal an additional layer of regulation within a quintessential mechanism of signal transduction that sets the tone of neurotransmission.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Maria Dao
- U.F. Scripps Biomedical Research, University of Florida, Jupiter, FL 33458, USA
| | - Ana Semeano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Anh Minh Nguyen
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | - Maria P Papakonstantinou
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Stefan Broselid
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hideaki Yano
- Department of Pharmaceutical Sciences, Center for Drug Discovery, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Ahn D, Provasi D, Duc NM, Xu J, Salas-Estrada L, Spasic A, Yun MW, Kang J, Gim D, Lee J, Du Y, Filizola M, Chung KY. Gαs slow conformational transition upon GTP binding and a novel Gαs regulator. iScience 2023; 26:106603. [PMID: 37128611 PMCID: PMC10148139 DOI: 10.1016/j.isci.2023.106603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
G proteins are major signaling partners for G protein-coupled receptors (GPCRs). Although stepwise structural changes during GPCR-G protein complex formation and guanosine diphosphate (GDP) release have been reported, no information is available with regard to guanosine triphosphate (GTP) binding. Here, we used a novel Bayesian integrative modeling framework that combines data from hydrogen-deuterium exchange mass spectrometry, tryptophan-induced fluorescence quenching, and metadynamics simulations to derive a kinetic model and atomic-level characterization of stepwise conformational changes incurred by the β2-adrenergic receptor (β2AR)-Gs complex after GDP release and GTP binding. Our data suggest rapid GTP binding and GTP-induced dissociation of Gαs from β2AR and Gβγ, as opposed to a slow closing of the Gαs α-helical domain (AHD). Yeast-two-hybrid screening using Gαs AHD as bait identified melanoma-associated antigen D2 (MAGE D2) as a novel AHD-binding protein, which was also shown to accelerate the GTP-induced closing of the Gαs AHD.
Collapse
Affiliation(s)
- Donghoon Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun Xu
- Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aleksandar Spasic
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Min Woo Yun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juyeong Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dongmin Gim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yang Du
- School of Life and Health Sciences, Kobilka Institute of Innovative Drug Discovery, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Zhao J, DiGiacomo V, Ferreras-Gutierrez M, Dastjerdi S, Ibáñez de Opakua A, Park JC, Luebbers A, Chen Q, Beeler A, Blanco FJ, Garcia-Marcos M. Small-molecule targeting of GPCR-independent noncanonical G-protein signaling in cancer. Proc Natl Acad Sci U S A 2023; 120:e2213140120. [PMID: 37098067 PMCID: PMC10160980 DOI: 10.1073/pnas.2213140120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 03/06/2023] [Indexed: 04/26/2023] Open
Abstract
Activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class small-molecule inhibitor of noncanonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking noncanonical G-protein signaling in tumor cells and inhibiting proinvasive traits of metastatic cancer cells. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable noncanonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.
Collapse
Affiliation(s)
- Jingyi Zhao
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | - Vincent DiGiacomo
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | | | - Shiva Dastjerdi
- Department of Chemistry, Boston University, College of Arts & Sciences, Boston, MA02115
| | | | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | - Qingyan Chen
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
| | - Aaron Beeler
- Department of Chemistry, Boston University, College of Arts & Sciences, Boston, MA02115
| | - Francisco J. Blanco
- Centro de Investigaciones Biológicas-Centro Superior de Investigaciones Cientificas, Madrid, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA02118
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA02115
| |
Collapse
|
27
|
Xu J, Liu X, Zhang W, Feng W, Liu M, Yang L, Yang Z, Zhang H, Zhang Z, Wang P. Hydrophobic cue-induced appressorium formation depends on MoSep1-mediated MoRgs7 phosphorylation and internalization in Magnaporthe oryzae. PLoS Genet 2023; 19:e1010748. [PMID: 37186579 PMCID: PMC10184898 DOI: 10.1371/journal.pgen.1010748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
The rice blast fungus Magnaporthe oryzae forms specialized infectious structures called appressoria that breach host cells to initiate infection. Previous studies demonstrated that the regulator of G-protein signaling (RGS)-like protein MoRgs7 undergoes endocytosis upon fungal sensing of hydrophobic environmental cues to activate cAMP signaling required for appressorium formation. However, the mechanism by which MoRgs7 internalizes and its fate remains undetermined. We here show that MoSep1, a conserved protein kinase of Mitotic Exit Network (MEN), phosphorylates MoRgs7 to regulate its function. MoRgs7 phosphorylation determines its interaction with MoCrn1, a coronin-like actin-binding protein homolog that also modulates the internalization of MoRgs7. Importantly, the endocytic transport of MoRgs7 is critical for its GTPase-activating protein (GAP) function important in cAMP signaling. Together, our findings revealed a novel mechanism by which M. oryzae activates MoRgs7-mediated hydrophobic cue-sensing signal transduction involving protein phosphorylation and endocytic transport to govern appressorium formation and fungal pathogenicity.
Collapse
Affiliation(s)
- Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wanzhen Feng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhixiang Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
28
|
The Potential Role of R4 Regulators of G Protein Signaling (RGS) Proteins in Type 2 Diabetes Mellitus. Cells 2022; 11:cells11233897. [PMID: 36497154 PMCID: PMC9739376 DOI: 10.3390/cells11233897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and heterogeneous disease that primarily results from impaired insulin secretion or insulin resistance (IR). G protein-coupled receptors (GPCRs) are proposed as therapeutic targets for T2DM. GPCRs transduce signals via the Gα protein, playing an integral role in insulin secretion and IR. The regulators of G protein signaling (RGS) family proteins can bind to Gα proteins and function as GTPase-activating proteins (GAP) to accelerate GTP hydrolysis, thereby terminating Gα protein signaling. Thus, RGS proteins determine the size and duration of cellular responses to GPCR stimulation. RGSs are becoming popular targeting sites for modulating the signaling of GPCRs and related diseases. The R4 subfamily is the largest RGS family. This review will summarize the research progress on the mechanisms of R4 RGS subfamily proteins in insulin secretion and insulin resistance and analyze their potential value in the treatment of T2DM.
Collapse
|
29
|
Kanwal A, Pardo JV, Naz S. RGS3 and IL1RAPL1 missense variants implicate defective neurotransmission in early-onset inherited schizophrenias. J Psychiatry Neurosci 2022; 47:E379-E390. [PMID: 36318984 PMCID: PMC9633053 DOI: 10.1503/jpn.220070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Schizophrenia is characterized by hallucinations, delusions and disorganized behaviour. Recessive or X-linked transmissions are rarely described for common psychiatric disorders. We examined the genetics of psychosis to identify rare large-effect variants in patients with extreme schizophrenia. METHODS We recruited 2 consanguineous families, each with patients affected by early-onset, severe, treatment-resistant schizophrenia. We performed exome sequencing for all participants. We checked variant rarity in public databases and with ethnically matched controls. We performed in silico analyses to assess the effects of the variants on proteins. RESULTS Structured clinical evaluations supported diagnoses of schizophrenia in all patients and phenotypic absence in the unaffected individuals. Data analyses identified multiple variants. Only 1 variant per family was predicted as pathogenic by prediction tools. A homozygous c.649C > T:p.(Arg217Cys) variant in RGS3 and a hemizygous c.700A > G:p.(Thr234Ala) variant in IL1RAPL1 affected evolutionary conserved amino acid residues and were the most likely causes of phenotype in the patients of each family. Variants were ultra-rare in publicly available databases and absent from the DNA of 400 ethnically matched controls. RGS3 is implicated in modulating sensory behaviour in Caenorhabditis elegans. Variants of IL1RAPL1 are known to cause nonsyndromic X-linked intellectual disability with or without human behavioural dysfunction. LIMITATIONS Each variant is unique to a particular family's patients, and findings may not be replicated. CONCLUSION Our work suggests that some rare variants may be involved in causing inherited psychosis or schizophrenia. Variant-specific functional studies will elucidate the pathophysiology relevant to schizophrenias and motivate translation to personalized therapeutics.
Collapse
Affiliation(s)
- Ambreen Kanwal
- From the School of Biological Sciences, University of the Punjab, Lahore, Pakistan (Kanwal, Naz); the Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA (Pardo); the Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn., USA (Pardo)
| | - José V Pardo
- From the School of Biological Sciences, University of the Punjab, Lahore, Pakistan (Kanwal, Naz); the Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA (Pardo); the Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn., USA (Pardo)
| | - Sadaf Naz
- From the School of Biological Sciences, University of the Punjab, Lahore, Pakistan (Kanwal, Naz); the Department of Psychiatry, University of Minnesota, Minneapolis, Minn., USA (Pardo); the Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn., USA (Pardo)
| |
Collapse
|
30
|
Ma M, Wang W, Fei Y, Cheng HY, Song B, Zhou Z, Zhao Y, Zhang X, Li L, Chen S, Wang J, Liang X, Zhou JM. A surface-receptor-coupled G protein regulates plant immunity through nuclear protein kinases. Cell Host Microbe 2022; 30:1602-1614.e5. [DOI: 10.1016/j.chom.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
31
|
Villaseca S, Romero G, Ruiz MJ, Pérez C, Leal JI, Tovar LM, Torrejón M. Gαi protein subunit: A step toward understanding its non-canonical mechanisms. Front Cell Dev Biol 2022; 10:941870. [PMID: 36092739 PMCID: PMC9449497 DOI: 10.3389/fcell.2022.941870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric G protein family plays essential roles during a varied array of cellular events; thus, its deregulation can seriously alter signaling events and the overall state of the cell. Heterotrimeric G-proteins have three subunits (α, β, γ) and are subdivided into four families, Gαi, Gα12/13, Gαq, and Gαs. These proteins cycle between an inactive Gα-GDP state and active Gα-GTP state, triggered canonically by the G-protein coupled receptor (GPCR) and by other accessory proteins receptors independent also known as AGS (Activators of G-protein Signaling). In this review, we summarize research data specific for the Gαi family. This family has the largest number of individual members, including Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαg, and Gαz, and constitutes the majority of G proteins α subunits expressed in a tissue or cell. Gαi was initially described by its inhibitory function on adenylyl cyclase activity, decreasing cAMP levels. Interestingly, today Gi family G-protein have been reported to be importantly involved in the immune system function. Here, we discuss the impact of Gαi on non-canonical effector proteins, such as c-Src, ERK1/2, phospholipase-C (PLC), and proteins from the Rho GTPase family members, all of them essential signaling pathways regulating a wide range of physiological processes.
Collapse
|
32
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|
33
|
Sweet Taste Signaling: The Core Pathways and Regulatory Mechanisms. Int J Mol Sci 2022; 23:ijms23158225. [PMID: 35897802 PMCID: PMC9329783 DOI: 10.3390/ijms23158225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Sweet taste, a proxy for sugar-derived calories, is an important driver of food intake, and animals have evolved robust molecular and cellular machinery for sweet taste signaling. The overconsumption of sugar-derived calories is a major driver of obesity and other metabolic diseases. A fine-grained appreciation of the dynamic regulation of sweet taste signaling mechanisms will be required for designing novel noncaloric sweeteners with better hedonic and metabolic profiles and improved consumer acceptance. Sweet taste receptor cells express at least two signaling pathways, one mediated by a heterodimeric G-protein coupled receptor encoded by taste 1 receptor members 2 and 3 (TAS1R2 + TAS1R3) genes and another by glucose transporters and the ATP-gated potassium (KATP) channel. Despite these important discoveries, we do not fully understand the mechanisms regulating sweet taste signaling. We will introduce the core components of the above sweet taste signaling pathways and the rationale for having multiple pathways for detecting sweet tastants. We will then highlight the roles of key regulators of the sweet taste signaling pathways, including downstream signal transduction pathway components expressed in sweet taste receptor cells and hormones and other signaling molecules such as leptin and endocannabinoids.
Collapse
|
34
|
Mohanasundaram B, Dodds A, Kukshal V, Jez JM, Pandey S. Distribution and the evolutionary history of G-protein components in plant and algal lineages. PLANT PHYSIOLOGY 2022; 189:1519-1535. [PMID: 35377452 PMCID: PMC9237705 DOI: 10.1093/plphys/kiac153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/08/2022] [Indexed: 05/25/2023]
Abstract
Heterotrimeric G-protein complexes comprising Gα-, Gβ-, and Gγ-subunits and the regulator of G-protein signaling (RGS) are conserved across most eukaryotic lineages. Signaling pathways mediated by these proteins influence overall growth, development, and physiology. In plants, this protein complex has been characterized primarily from angiosperms with the exception of spreading-leaved earth moss (Physcomitrium patens) and Chara braunii (charophytic algae). Even within angiosperms, specific G-protein components are missing in certain species, whereas unique plant-specific variants-the extra-large Gα (XLGα) and the cysteine-rich Gγ proteins-also exist. The distribution and evolutionary history of G-proteins and their function in nonangiosperm lineages remain mostly unknown. We explored this using the wealth of available sequence data spanning algae to angiosperms representing extant species that diverged approximately 1,500 million years ago, using BLAST, synteny analysis, and custom-built Hidden Markov Model profile searches. We show that a minimal set of components forming the XLGαβγ trimer exists in the entire land plant lineage, but their presence is sporadic in algae. Additionally, individual components have distinct evolutionary histories. The XLGα exhibits many lineage-specific gene duplications, whereas Gα and RGS show several instances of gene loss. Similarly, Gβ remained constant in both number and structure, but Gγ diverged before the emergence of land plants and underwent changes in protein domains, which led to three distinct subtypes. These results highlight the evolutionary oddities and summarize the phyletic patterns of this conserved signaling pathway in plants. They also provide a framework to formulate pertinent questions on plant G-protein signaling within an evolutionary context.
Collapse
Affiliation(s)
| | - Audrey Dodds
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Vandna Kukshal
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University, St Louis, Missouri 63130, USA
| | | |
Collapse
|
35
|
Interacting partners of Brassica juncea Regulator of G-protein Signaling protein suggest its role in cell wall metabolism and cellular signaling. Biosci Rep 2022; 42:231472. [PMID: 35737296 PMCID: PMC9284343 DOI: 10.1042/bsr20220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Heterotrimeric G-proteins interact with various upstream and downstream effectors to regulate various aspects of plant growth and development. G-protein effectors have been recently reported in Arabidopsis thaliana; however, less information is available from polyploid crop species having complex networks of G-protein components. Regulator of G-protein signaling (RGS) is a well-characterized GTPase accelerating protein, which plays an important role in the regulation of the G-protein cycle in plants. In the present study, four homologs encoding RGS proteins were isolated from the allotetraploid Brassica juncea, a globally important oilseed, vegetable, and condiment crop. The B. juncea RGS proteins were grouped into distinct BjuRGS1 and BjuRGS2 orthologous clades, and the expression of BjuRGS1 homologs was predominantly higher than BjuRGS2 homologs across the tested tissue types of B. juncea. Utilizing B. juncea Y2H library screening, a total of 30 nonredundant interacting proteins with the RGS-domain of the highly expressed BjuA.RGS1 was identified. Gene ontology analysis indicated that these effectors exerted various molecular, cellular, and physiological functions. Many of them were known to regulate cell wall metabolism (BjuEXP6, Bju-α-MAN, BjuPGU4, BjuRMS3) and phosphorylation-mediated cell signaling (BjuMEK4, BjuDGK3, and BjuKinase). Furthermore, transcript analysis indicated that the identified interacting proteins have a coexpression pattern with the BjuRGS homologs. These findings increase our knowledge about the novel targets of G-protein components from a globally cultivated Brassica crop and provide an important resource for developing a plant G-protein interactome network.
Collapse
|
36
|
Bosch DE, Jeck WR, Siderovski DP. Self-activating G protein α subunits engage seven-transmembrane Regulator of G protein Signaling (RGS) proteins and a Rho guanine nucleotide exchange factor effector in the amoeba Naegleria fowleri. J Biol Chem 2022; 298:102167. [PMID: 35738399 PMCID: PMC9283941 DOI: 10.1016/j.jbc.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The free-living amoeba Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis and is highly resistant to current therapies, resulting in mortality rates >97%. As many therapeutics target G protein-centered signal transduction pathways, further understanding the functional significance of G protein signaling within N. fowleri should aid future drug discovery against this pathogen. Here, we report that the N. fowleri genome encodes numerous transcribed G protein signaling components, including G protein-coupled receptors (GPCRs), heterotrimeric G protein subunits, Regulator of G protein Signaling (RGS) proteins, and candidate Gα effector proteins. We found N. fowleri Gα subunits have diverse nucleotide cycling kinetics; Nf Gα5 and Gα7 exhibit more rapid nucleotide exchange than GTP hydrolysis (i.e. "self-activating" behavior). A crystal structure of Nf Gα7 highlights the stability of its nucleotide-free state, consistent with its rapid nucleotide exchange. Variations in the phosphate binding loop (P-loop) also contribute to nucleotide cycling differences among Gα subunits. Similar to plant G protein signaling pathways, N. fowleri Gα subunits selectively engage members of a large seven-transmembrane RGS protein family, resulting in acceleration of GTP hydrolysis. We show Nf Gα2 and Gα3 directly interact with a candidate Gα effector protein, RGS-RhoGEF, similar to mammalian Gα12/13 signaling pathways. We demonstrate Nf Gα2 and Gα3 each engage RGS-RhoGEF through a canonical Gα/RGS domain interface, suggesting a shared evolutionary origin with G protein signaling in the enteric pathogen Entamoeba histolytica. These findings further illuminate the evolution of G protein signaling and identify potential targets of pharmacological manipulation in Naegleria fowleri.
Collapse
Affiliation(s)
- Dustin E Bosch
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | - William R Jeck
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David P Siderovski
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
37
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
38
|
Shen M, Li T, Feng Y, Chen Z, Dou T, Wu P, Wang K, Lu J, Qu L. Exploring the expression and preliminary function of chicken regulator of G protein signalling 3 ( RGS3) gene in follicular development. Br Poult Sci 2022; 63:613-620. [PMID: 35522181 DOI: 10.1080/00071668.2022.2071597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The following study explored the expression and preliminary function of RGS3. The spatial and temporal expression patterns of the RGS3 gene were analysed in the ovarian stroma of Shendan No. 6 Green shell hens and Hy-line Brown hens at four time points (6, 28, 40 and 52 weeks old), as well as in various organs and follicles of Hy-line Brown hens.2. Based on the genomic and protein sequences of RGS3 in NCBI database, phylogenetic trees were constructed using MEGA-X. The protein interaction network was analysed using STRING. According to the results of protein-protein interaction network and pathways, the mRNA expression levels of RGS3 and three interaction proteins were explored by qRT-PCR in vitro.3. Spatio-temporal expression data revealed that RGS3 mRNA was expressed in all the organs tested, being highest in the hypothalamus. In different follicles, RGS3 mRNA was highly expressed in post-ovulatory follicles, followed by ovarian stroma and large white follicles. The expression levels of RGS3 mRNA in the ovarian stroma were significantly higher in Shendan No. 6 Green shell hens than that in the Hy-line Brown hens at all egg-laying stages.4. The phylogenetic tree results showed that ducks, geese and chickens had higher homology based on the genomic and protein sequence of RGS3. Moreover, chicken RGS3 interacted with GSK3B, RAF1 and BRAF based on STRING prediction. In vitro follicle stimulating hormone (FSH) treatment showed that mRNA expression levels of RGS3 and those of its predicted interacting proteins BRAF and GSK3B decreased with increasing FSH concentration. The results suggested that RGS3 responds to FSH and may play an important role in the regulation follicular development in chicken.
Collapse
Affiliation(s)
- Manman Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China.,Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China.,Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tao Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China
| | - Yuan Feng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China
| | - Zikang Chen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China
| | - Taocun Dou
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China
| | - Ping Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 225108, China
| | - Kehua Wang
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China
| | - Jian Lu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China
| | - Liang Qu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, China
| |
Collapse
|
39
|
Pandey S, Harline K, Choudhury SR. Modification of G-protein biochemistry and its effect on plant/environment interaction. Methods Enzymol 2022; 676:307-324. [DOI: 10.1016/bs.mie.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Karki P, Birukova AA. Microtubules as Major Regulators of Endothelial Function: Implication for Lung Injury. Front Physiol 2021; 12:758313. [PMID: 34777018 PMCID: PMC8582326 DOI: 10.3389/fphys.2021.758313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Endothelial dysfunction has been attributed as one of the major complications in COVID-19 patients, a global pandemic that has already caused over 4 million deaths worldwide. The dysfunction of endothelial barrier is characterized by an increase in endothelial permeability and inflammatory responses, and has even broader implications in the pathogenesis of acute respiratory syndromes such as ARDS, sepsis and chronic illnesses represented by pulmonary arterial hypertension and interstitial lung disease. The structural integrity of endothelial barrier is maintained by cytoskeleton elements, cell-substrate focal adhesion and adhesive cell junctions. Agonist-mediated changes in endothelial permeability are directly associated with reorganization of actomyosin cytoskeleton leading to cell contraction and opening of intercellular gaps or enhancement of cortical actin cytoskeleton associated with strengthening of endothelial barrier. The role of actin cytoskeleton remodeling in endothelial barrier regulation has taken the central stage, but the impact of microtubules in this process remains less explored and under-appreciated. This review will summarize the current knowledge on the crosstalk between microtubules dynamics and actin cytoskeleton remodeling, describe the signaling mechanisms mediating this crosstalk, discuss epigenetic regulation of microtubules stability and its nexus with endothelial barrier maintenance, and overview a role of microtubules in targeted delivery of signaling molecules regulating endothelial permeability and inflammation.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
41
|
Maruta N, Trusov Y, Jones AM, Botella JR. Heterotrimeric G Proteins in Plants: Canonical and Atypical Gα Subunits. Int J Mol Sci 2021; 22:11841. [PMID: 34769272 PMCID: PMC8584482 DOI: 10.3390/ijms222111841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterotrimeric GTP-binding proteins (G proteins), consisting of Gα, Gβ and Gγ subunits, transduce signals from a diverse range of extracellular stimuli, resulting in the regulation of numerous cellular and physiological functions in Eukaryotes. According to the classic G protein paradigm established in animal models, the bound guanine nucleotide on a Gα subunit, either guanosine diphosphate (GDP) or guanosine triphosphate (GTP) determines the inactive or active mode, respectively. In plants, there are two types of Gα subunits: canonical Gα subunits structurally similar to their animal counterparts and unconventional extra-large Gα subunits (XLGs) containing a C-terminal domain homologous to the canonical Gα along with an extended N-terminal domain. Both Gα and XLG subunits interact with Gβγ dimers and regulator of G protein signalling (RGS) protein. Plant G proteins are implicated directly or indirectly in developmental processes, stress responses, and innate immunity. It is established that despite the substantial overall similarity between plant and animal Gα subunits, they convey signalling differently including the mechanism by which they are activated. This review emphasizes the unique characteristics of plant Gα subunits and speculates on their unique signalling mechanisms.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Yuri Trusov
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Alan M. Jones
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Departments of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| |
Collapse
|
42
|
Research Advances in Heterotrimeric G-Protein α Subunits and Uncanonical G-Protein Coupled Receptors in Plants. Int J Mol Sci 2021; 22:ijms22168678. [PMID: 34445383 PMCID: PMC8395518 DOI: 10.3390/ijms22168678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
As crucial signal transducers, G-proteins and G-protein-coupled receptors (GPCRs) have attracted increasing attention in the field of signal transduction. Research on G-proteins and GPCRs has mainly focused on animals, while research on plants is relatively rare. The mode of action of G-proteins is quite different from that in animals. The G-protein α (Gα) subunit is the most essential member of the G-protein signal cycle in animals and plants. The G-protein is activated when Gα releases GDP and binds to GTP, and the relationships with the GPCR and the downstream signal are also achieved by Gα coupling. It is important to study the role of Gα in the signaling pathway to explore the regulatory mechanism of G-proteins. The existence of a self-activated Gα in plants makes it unnecessary for the canonical GPCR to activate the G-protein by exchanging GDP with GTP. However, putative GPCRs have been found and proven to play important roles in G-protein signal transduction. The unique mode of action of G-proteins and the function of putative GPCRs in plants suggest that the same definition used in animal research cannot be used to study uncanonical GPCRs in plants. This review focuses on the different functions of the Gα and the mode of action between plants and animals as well as the functions of the uncanonical GPCR. This review employs a new perspective to define uncanonical GPCRs in plants and emphasizes the role of uncanonical GPCRs and Gα subunits in plant stress resistance and agricultural production.
Collapse
|
43
|
Fuentes N, McCullough M, Panettieri RA, Druey KM. RGS proteins, GRKs, and beta-arrestins modulate G protein-mediated signaling pathways in asthma. Pharmacol Ther 2021; 223:107818. [PMID: 33600853 PMCID: PMC8192426 DOI: 10.1016/j.pharmthera.2021.107818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Asthma is a highly prevalent disorder characterized by chronic lung inflammation and reversible airways obstruction. Pathophysiological features of asthma include episodic and reversible airway narrowing due to increased bronchial smooth muscle shortening in response to external and host-derived mediators, excessive mucus secretion into the airway lumen, and airway remodeling. The aberrant airway smooth muscle (ASM) phenotype observed in asthma manifests as increased sensitivity to contractile mediators (EC50) and an increase in the magnitude of contraction (Emax); collectively these attributes have been termed "airways hyper-responsiveness" (AHR). This defining feature of asthma can be promoted by environmental factors including airborne allergens, viruses, and air pollution and other irritants. AHR reduces airway caliber and obstructs airflow, evoking clinical symptoms such as cough, wheezing and shortness of breath. G-protein-coupled receptors (GPCRs) have a central function in asthma through their impact on ASM and airway inflammation. Many but not all treatments for asthma target GPCRs mediating ASM contraction or relaxation. Here we discuss the roles of specific GPCRs, G proteins, and their associated signaling pathways, in asthma, with an emphasis on endogenous mechanisms of GPCR regulation of ASM tone and lung inflammation including regulators of G-protein signaling (RGS) proteins, G-protein coupled receptor kinases (GRKs), and β-arrestin.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States of America
| | - Morgan McCullough
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States of America
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University School of Medicine, New Brunswick, NJ, United States of America
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH, Bethesda, MD, United States of America.
| |
Collapse
|
44
|
Nubbemeyer B, Pepanian A, Paul George AA, Imhof D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem 2021; 16:1696-1715. [PMID: 33615736 PMCID: PMC8252600 DOI: 10.1002/cmdc.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Heterotrimeric G proteins are classified into four subfamilies and play a key role in signal transduction. They transmit extracellular signals to intracellular effectors subsequent to the activation of G protein-coupled receptors (GPCRs), which are targeted by over 30 % of FDA-approved drugs. However, addressing G proteins as drug targets represents a compelling alternative, for example, when G proteins act independently of the corresponding GPCRs, or in cases of complex multifunctional diseases, when a large number of different GPCRs are involved. In contrast to Gαq, efforts to target Gαi/s by suitable chemical compounds has not been successful so far. Here, a comprehensive analysis was conducted examining the most important interface regions of Gαi/s with its upstream and downstream interaction partners. By assigning the existing compounds and the performed approaches to the respective interfaces, the druggability of the individual interfaces was ranked to provide perspectives for selective targeting of Gαi/s in the future.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | | | - Diana Imhof
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
45
|
Zhu X, Luo X, Song Z, Jiang S, Long X, Gao X, Xie X, Zheng L, Wang H. miR-188-5p promotes oxaliplatin resistance by targeting RASA1 in colon cancer cells. Oncol Lett 2021; 21:481. [PMID: 33968197 DOI: 10.3892/ol.2021.12742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
The efficacy of chemotherapy for colon cancer is limited due to the development of chemoresistance. MicroRNA (miR)-188-5p is downregulated in various types of cancer. The aim of the present study was to explore the molecular role of miR-188 in oxaliplatin (OXA) resistance. An OXA-resistant colon cancer cell line, SW480/OXA, was used to examine the effects of miR-188-5p on the sensitivity of colon cancer cells to OXA. The target of miR-188-5p was identified using a luciferase assay. Cell cycle distribution was also assessed using flow cytometry. The measurement of p21 protein expression, Hoechst 33342 staining and Annexin V/propidium iodide staining was used to evaluate apoptosis. The expression of miR-188-5p significantly increased in SW480/OXA compared with wild-type SW480 cells. The luciferase assay demonstrated that miR-188-5p inhibited Ras GTPase-activating protein 1 (RASA1; also known as p120/RasGAP) luciferase activity by binding to the 3'-untranslated region of RASA1 mRNA, suggesting that miR-188-5p could target RASA1. In addition, miR-188-5p downregulation or RASA1 overexpression promoted the chemosensitivity of SW480/OXA, as evidenced by increased apoptosis and G1/S cell cycle arrest. Moreover, RASA1 silencing abrogated the increase in cell apoptosis induced by the miR-188-5p inhibitor. The findings of the present study suggested that miR-188-5p could enhance colon cancer cell chemosensitivity by promoting the expression of RASA1.
Collapse
Affiliation(s)
- Xijia Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xishun Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Zhike Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Shiyu Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xiangkai Long
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| | - Xueyuan Gao
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Xinyang Xie
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Laijian Zheng
- Department of Gastrointestinal Surgery, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China
| | - Haipeng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China
| |
Collapse
|
46
|
Miske R, Scharf M, Stark P, Dietzel H, Bien CI, Borchers C, Kermer P, Ott A, Denno Y, Rochow N, Borowski K, Finke C, Teegen B, Probst C, Komorowski L. Autoantibodies Against the Purkinje Cell Protein RGS8 in Paraneoplastic Cerebellar Syndrome. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/3/e987. [PMID: 33782191 PMCID: PMC8009278 DOI: 10.1212/nxi.0000000000000987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Objective To describe the identification of regulator of G-protein signaling 8 (RGS8) as an autoantibody target in patients with cerebellar syndrome associated with lymphoma. Methods Sera of 4 patients with a very similar unclassified reactivity against cerebellar Purkinje cells were used in antigen identification experiments. Immunoprecipitations with cerebellar lysates followed by mass spectrometry identified the autoantigen, which was verified by recombinant immunofluorescence assay, immunoblot, and ELISA with the recombinant protein. Results The sera and CSF of 4 patients stained the Purkinje cells and molecular layer of the cerebellum. RGS8 was identified as the target antigen in all 4 sera. In a neutralization experiment, recombinant human RGS8 was able to neutralize the autoantibodies' tissue reaction. Patient sera and CSF showed a specific reactivity against recombinant RGS8 in ELISA and immunoblot, whereas no such reactivity was detectable in the controls. Clinical data were available for 2 of the 4 patients, remarkably both presented with cerebellar syndrome accompanied by B-cell lymphoma of the stomach (patient 1, 53 years) or Hodgkin lymphoma (patient 2, 74 years). Conclusion Our results indicate that autoantibodies against the intracellular Purkinje cell protein RGS8 represent new markers for paraneoplastic cerebellar syndrome associated with lymphoma. Classification of Evidence This study provided Class IV evidence that autoantibodies against the intracellular Purkinje cell protein RGS8 are associated with paraneoplastic cerebellar syndrome in lymphoma.
Collapse
Affiliation(s)
- Ramona Miske
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Madeleine Scharf
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Stark
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Dietzel
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Corinna I Bien
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Borchers
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Kermer
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anthonina Ott
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yvonne Denno
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Rochow
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Borowski
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Finke
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bianca Teegen
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Probst
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Komorowski
- From the Institute for Experimental Immunology (R.M., M.S., A.O., Y.D., N.R., C.P., L.K.), Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Luebeck; Department of Neurology (P.S., H.D.), Krankenhaus St. Elisabeth, Damme; Laboratory Krone (C.I.B.), Bad Salzuflen; Department of Neurology (C.B., P.K.), Nordwest-Krankenhaus Sanderbusch, Sande; Clinical Immunological Laboratory Prof. Dr. Med. Winfried Stöcker (K.B., B.T.), Luebeck; and Department of Neurology (C.F.), Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Garcia-Marcos M. Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activators. eLife 2021; 10:65620. [PMID: 33787494 PMCID: PMC8034979 DOI: 10.7554/elife.65620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
It has become evident that activation of heterotrimeric G-proteins by cytoplasmic proteins that are not G-protein-coupled receptors (GPCRs) plays a role in physiology and disease. Despite sharing the same biochemical guanine nucleotide exchange factor (GEF) activity as GPCRs in vitro, the mechanisms by which these cytoplasmic proteins trigger G-protein-dependent signaling in cells have not been elucidated. Heterotrimeric G-proteins can give rise to two active signaling species, Gα-GTP and dissociated Gβγ, with different downstream effectors, but how non-receptor GEFs affect the levels of these two species in cells is not known. Here, a systematic comparison of GPCRs and three unrelated non-receptor proteins with GEF activity in vitro (GIV/Girdin, AGS1/Dexras1, and Ric-8A) revealed high divergence in their contribution to generating Gα-GTP and free Gβγ in cells directly measured with live-cell biosensors. These findings demonstrate fundamental differences in how receptor and non-receptor G-protein activators promote signaling in cells despite sharing similar biochemical activities in vitro.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
48
|
Molecular switch architecture determines response properties of signaling pathways. Proc Natl Acad Sci U S A 2021; 118:2013401118. [PMID: 33688042 DOI: 10.1073/pnas.2013401118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many intracellular signaling pathways are composed of molecular switches, proteins that transition between two states-on and off Typically, signaling is initiated when an external stimulus activates its cognate receptor that, in turn, causes downstream switches to transition from off to on using one of the following mechanisms: activation, in which the transition rate from the off state to the on state increases; derepression, in which the transition rate from the on state to the off state decreases; and concerted, in which activation and derepression operate simultaneously. We use mathematical modeling to compare these signaling mechanisms in terms of their dose-response curves, response times, and abilities to process upstream fluctuations. Our analysis elucidates several operating principles for molecular switches. First, activation increases the sensitivity of the pathway, whereas derepression decreases sensitivity. Second, activation generates response times that decrease with signal strength, whereas derepression causes response times to increase with signal strength. These opposing features allow the concerted mechanism to not only show dose-response alignment, but also to decouple the response time from stimulus strength. However, these potentially beneficial properties come at the expense of increased susceptibility to upstream fluctuations. We demonstrate that these operating principles also hold when the models are extended to include additional features, such as receptor removal, kinetic proofreading, and cascades of switches. In total, we show how the architecture of molecular switches govern their response properties. We also discuss the biological implications of our findings.
Collapse
|
49
|
Jin YN, Cui ZH, Ma K, Yao JL, Ruan YY, Guo ZF. Characterization of ZmCOLD1, novel GPCR-Type G Protein genes involved in cold stress from Zea mays L. and the evolution analysis with those from other species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:619-632. [PMID: 33854288 PMCID: PMC7981359 DOI: 10.1007/s12298-021-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Maize is one of the most vital staple crops worldwide. G proteins modulate plentiful signaling pathways, and G protein-coupled receptor-type G proteins (GPCRs) are highly conserved membrane proteins in plants. However, researches on maize G proteins and GPCRs are scarce. In this study, we identified three novel GPCR-Type G Protein (GTG) genes from chromosome 10 (Chr 10) in maize, designated as ZmCOLD1-10A, ZmCOLD1-10B and ZmCOLD1-10C. Their amino acid sequences had high similarity to TaCOLD1 from wheat and OsCOLD1 from rice. They contained the basic characteristics of GTG/COLD1 proteins, including GPCR-like topology, the conserved hydrophilic loop (HL) domain, DUF3735 (domain of unknown function 3735) domain, GTPase-activating domain, and ATP/GTP-binding domain. Subcellular localization analyses of ZmCOLD1 proteins suggested that ZmCOLD1 proteins localized on plasma membrane (PM) and endoplasmic reticulum (ER). Furthermore, amino acid sequence alignment verified the conservation of the key 187th amino acid T in maize and other wild maize-relative species. Evolutionary relationship among plants GTG/COLD1 proteins family displayed strong group-specificity. Expression analysis indicated that ZmCOLD1-10A was cold-induced and inhibited by light. Together, these results suggested that ZmCOLD1 genes had potential value to improve cold tolerance and to contribute crops growth and molecular breeding.
Collapse
Affiliation(s)
- Ya-Nan Jin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
- College of Life Science, Inner Mongolia University for the Nationalities, Tongliao, 028000 China
| | - Zhen-hai Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Ke Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Jia-Lu Yao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Yan-Ye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| | - Zhi-Fu Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
50
|
Stolerman LM, Ghosh P, Rangamani P. Stability Analysis of a Signaling Circuit with Dual Species of GTPase Switches. Bull Math Biol 2021; 83:34. [PMID: 33609194 PMCID: PMC8378325 DOI: 10.1007/s11538-021-00864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
GTPases are molecular switches that regulate a wide range of cellular processes, such as organelle biogenesis, position, shape, function, vesicular transport between organelles, and signal transduction. These hydrolase enzymes operate by toggling between an active ("ON") guanosine triphosphate (GTP)-bound state and an inactive ("OFF") guanosine diphosphate (GDP)-bound state; such a toggle is regulated by GEFs (guanine nucleotide exchange factors) and GAPs (GTPase activating proteins). Here we propose a model for a network motif between monomeric (m) and trimeric (t) GTPases assembled exclusively in eukaryotic cells of multicellular organisms. We develop a system of ordinary differential equations in which these two classes of GTPases are interlinked conditional to their ON/OFF states within a motif through coupling and feedback loops. We provide explicit formulae for the steady states of the system and perform classical local stability analysis to systematically investigate the role of the different connections between the GTPase switches. Interestingly, a coupling of the active mGTPase to the GEF of the tGTPase was sufficient to provide two locally stable states: one where both active/inactive forms of the mGTPase can be interpreted as having low concentrations and the other where both m- and tGTPase have high concentrations. Moreover, when a feedback loop from the GEF of the tGTPase to the GAP of the mGTPase was added to the coupled system, two other locally stable states emerged. In both states the tGTPase is inactivated and active tGTPase concentrations are low. Finally, the addition of a second feedback loop, from the active tGTPase to the GAP of the mGTPase, gives rise to a family of steady states that can be parametrized by a range of inactive tGTPase concentrations. Our findings reveal that the coupling of these two different GTPase motifs can dramatically change their steady-state behaviors and shed light on how such coupling may impact signaling mechanisms in eukaryotic cells.
Collapse
Affiliation(s)
- Lucas M Stolerman
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|