1
|
Zhang G, Fu Y, Yang L, Ye F, Zhang P, Zhang S, Ma L, Li J, Wu H, Han X, Wang J, Guo G. Construction of single-cell cross-species chromatin accessibility landscapes with combinatorial-hybridization-based ATAC-seq. Dev Cell 2024; 59:793-811.e8. [PMID: 38330939 DOI: 10.1016/j.devcel.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Despite recent advances in single-cell genomics, the lack of maps for single-cell candidate cis-regulatory elements (cCREs) in non-mammal species has limited our exploration of conserved regulatory programs across vertebrates and invertebrates. Here, we developed a combinatorial-hybridization-based method for single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) named CH-ATAC-seq, enabling the construction of single-cell accessible chromatin landscapes for zebrafish, Drosophila, and earthworms (Eisenia andrei). By integrating scATAC censuses of humans, monkeys, and mice, we systematically identified 152 distinct main cell types and around 0.8 million cell-type-specific cCREs. Our analysis provided insights into the conservation of neural, muscle, and immune lineages across species, while epithelial cells exhibited a higher organ-origin heterogeneity. Additionally, a large-scale gene regulatory network (GRN) was constructed in four vertebrates by integrating scRNA-seq censuses. Overall, our study provides a valuable resource for comparative epigenomics, identifying the evolutionary conservation and divergence of gene regulation across different species.
Collapse
Affiliation(s)
- Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Lei Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Peijing Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuang Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Lifeng Ma
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jiaqi Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiaoping Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou 310058, China.
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China.
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Zhejiang Provincial Key Laboratory for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Wang Z, Zhang Z. Single-cell analysis reveals ADGRL4+ renal tubule cells as a highly aggressive cell type in clear cell renal cell carcinoma. Sci Rep 2024; 14:2407. [PMID: 38287102 PMCID: PMC10824758 DOI: 10.1038/s41598-024-52928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a highly heterogeneous cancer that poses great challenge to clinical treatment and prognostic prediction. Characterizing the cellular landscape of ccRCC in a single-cell dimension can help better understand the tumor heterogeneity and molecular mechanisms of ccRCC. This study analyzed single-cell profiles in ccRCC samples and para-tumor samples from Gene Expression Omnibus and identified a highly heterogeneous subcluster of renal tubule cells. Single-cell regulatory network inference and clustering analyses and cell communication analysis were performed to develop transcription factor-target gene regulatory networks and cell-cell interactions. Additionally, the distribution and prognostic risk of renal tubule cells from spatial transcriptome data (GSM6415706) and The Cancer Genome Atlas-Kidney Clear Cell Carcinoma data were analyzed. A total of 10 cell types were identified in ccRCC and para-tumor samples. The ccRCC renal tubule cells showed a high expression of the oncogene nicotinamide N-methyltransferase and a significantly high degree of tumor heterogeneity. We further identified 6 cell subclusters with specific expression of BEX2, PTHLH, SFRP2, KLRB1, ADGRL4, and HGF from the ccRCC renal tubule cells. ADGRL4+ renal tubule cells had highly metastatic and angiogenesis-inducing characteristics, with more ADGRL4+ renal tubule cells indicating a worse survival. ADGRL4+ renal tubule cells regulated the metastasis of other renal tubule cells through metastasis-related receptor-ligand communication. We also found that ADGRL4+ renal tubule cells clustered around the glomeruli but the rest of the renal tubule cell subclusters rarely localized in ccRCC tissues. ETS1 and ELK3 -dominant GRNs were remarkably activated in ADGRL4+ renal tubule cells, functionally, knockdown of ELK3 in A498 significantly disturbedaffected the cell migration and invasion. ADGRL4+ renal tubule cells, which were highly metastatic and invasive, might be an essential cell subcluster for ccRCC, and ADGRL4 could be used a novel therapeutic target.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhongxiao Zhang
- Department of Urology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China.
| |
Collapse
|
3
|
Zhang Q, Liu J, Shen J, Ou J, Wong YK, Xie L, Huang J, Zhang C, Fu C, Chen J, Chen J, He X, Shi F, Luo P, Gong P, Liu X, Wang J. Single-cell RNA sequencing reveals the effects of capsaicin in the treatment of sepsis-induced liver injury. MedComm (Beijing) 2023; 4:e395. [PMID: 37808269 PMCID: PMC10556204 DOI: 10.1002/mco2.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Sepsis is a difficult-to-treat systemic condition in which liver dysfunction acts as both regulator and target. However, the dynamic response of diverse intrahepatic cells to sepsis remains poorly characterized. Capsaicin (CAP), a multifunctional chemical derived from chilli peppers, has recently been shown to potentially possess anti-inflammatory effects, which is also one of the main approaches for drug discovery against sepsis. We performed single-cell RNA transcriptome sequencing on 86,830 intrahepatic cells isolated from normal mice, cecal ligation and puncture-induced sepsis model mice and CAP-treated mice. The transcriptional atlas of these cells revealed dynamic changes in hepatocytes, macrophages, neutrophils, and endothelial cells in response to sepsis. Among the extensive crosstalk across these major subtypes, KC_Cxcl10 shared strong potential interaction with other cells when responding to sepsis. CAP mitigated the severity of inflammation by partly reversing these pathophysiologic processes. Specific cell subpopulations in the liver act collectively to escalate inflammation, ultimately causing liver dysfunction. CAP displays its health-promoting function by ameliorating liver dysfunction induced by sepsis. Our study provides valuable insights into the pathophysiology of sepsis and suggestions for future therapeutic gain.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Jing Liu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jing Shen
- Department of OncologyShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jinhuan Ou
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Yin Kwan Wong
- Department of PhysiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lulin Xie
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jingnan Huang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Chunting Zhang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Chunjin Fu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Junhui Chen
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Fei Shi
- Department of Infectious DiseaseShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Piao Luo
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ping Gong
- Department of EmergencyShenzhen People's HospitalThe First Affiliated HospitalSouthern University of Science and TechnologyShenzhen CityGuangdong ProvinceChina
| | - Xueyan Liu
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
| | - Jigang Wang
- Department of Critical Medicine, and Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medicine College of Jinan UniversityShenzhenGuangdongChina
- Institute of Basic Integrative Medicine ,School of Traditional Chinese Medicine, and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
4
|
Guo G, Fan L, Yan Y, Xu Y, Deng Z, Tian M, Geng Y, Xia Z, Xu Y. Shared metabolic shifts in endothelial cells in stroke and Alzheimer's disease revealed by integrated analysis. Sci Data 2023; 10:666. [PMID: 37775708 PMCID: PMC10542331 DOI: 10.1038/s41597-023-02512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Since metabolic dysregulation is a hallmark of both stroke and Alzheimer's disease (AD), mining shared metabolic patterns in these diseases will help to identify their possible pathogenic mechanisms and potential intervention targets. However, a systematic integration analysis of the metabolic networks of the these diseases is still lacking. In this study, we integrated single-cell RNA sequencing datasets of ischemic stroke (IS), hemorrhagic stroke (HS) and AD models to construct metabolic flux profiles at the single-cell level. We discovered that the three disorders cause shared metabolic shifts in endothelial cells. These altered metabolic modules were mainly enriched in the transporter-related pathways and were predicted to potentially lead to a decrease in metabolites such as pyruvate and fumarate. We further found that Lef1, Elk3 and Fosl1 may be upstream transcriptional regulators causing metabolic shifts and may be possible targets for interventions that halt the course of neurodegeneration.
Collapse
Affiliation(s)
- Guangyu Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yingxue Yan
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yunhao Xu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miaomiao Tian
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaoqi Geng
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, Zhengzhou, China.
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, Zhengzhou, China.
| |
Collapse
|
5
|
Trinh LT, Osipovich AB, Liu B, Shrestha S, Cartailler JP, Wright CVE, Magnuson MA. Single-Cell RNA Sequencing of Sox17-Expressing Lineages Reveals Distinct Gene Regulatory Networks and Dynamic Developmental Trajectories. Stem Cells 2023; 41:643-657. [PMID: 37085274 PMCID: PMC10465087 DOI: 10.1093/stmcls/sxad030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
During early embryogenesis, the transcription factor SOX17 contributes to hepato-pancreato-biliary system formation and vascular-hematopoietic emergence. To better understand Sox17 function in the developing endoderm and endothelium, we developed a dual-color temporal lineage-tracing strategy in mice combined with single-cell RNA sequencing to analyze 6934 cells from Sox17-expressing lineages at embryonic days 9.0-9.5. Our analyses showed 19 distinct cellular clusters combined from all 3 germ layers. Differential gene expression, trajectory and RNA-velocity analyses of endothelial cells revealed a heterogenous population of uncommitted and specialized endothelial subtypes, including 2 hemogenic populations that arise from different origins. Similarly, analyses of posterior foregut endoderm revealed subsets of hepatic, pancreatic, and biliary progenitors with overlapping developmental potency. Calculated gene-regulatory networks predict gene regulons that are dominated by cell type-specific transcription factors unique to each lineage. Vastly different Sox17 regulons found in endoderm versus endothelial cells support the differential interactions of SOX17 with other regulatory factors thereby enabling lineage-specific regulatory actions.
Collapse
Affiliation(s)
- Linh T Trinh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Bryan Liu
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, USA
| | - Shristi Shrestha
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Ali MK, Zhao L, de Jesus Perez V, Nicolls MR, Spiekerkoetter EF. Decreasing ELK3 expression improves Bone Morphogenetic Protein Receptor 2 signaling and pulmonary vascular cell function in PAH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.14.524023. [PMID: 36711443 PMCID: PMC9882174 DOI: 10.1101/2023.01.14.524023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ELK3 is upregulated in blood and pulmonary vascular cells of PAH patients and may play a significant role in PAH potentially through modulating BMPR2 signaling.
Collapse
Affiliation(s)
- Md Khadem Ali
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Lan Zhao
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Vinicio de Jesus Perez
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Mark R. Nicolls
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| | - Edda F. Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Yu X, Du C, Cui Y, Jiang Y, Feng D. ELK3 Targeting AEG1 Promotes Migration and Invasion of Ovarian Cancer Cells under Hypoxia. Biol Pharm Bull 2023; 46:883-892. [PMID: 37394639 DOI: 10.1248/bpb.b22-00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Ovarian cancer (OC) is one of the most common tumors in female reproductive organs with a five-year survival rate of less than 45%. Metastasis is a crucial contributor to OC development. ETS transcription factor (ELK3), as a transcriptional factor, have been involved in multiple tumor development. However, its role in OC remains elusive. In this study, we observed high expression of ELK3 and AEG1 in human OC tissues. OVCAR-3 and SKOV3 cells were treated with hypoxia to mimic tumor microenvironment in vivo. We found that the expression of ELK3 was significantly increased in cells under hypoxia compared with normoxia. ELK3 knockdown inhibited cell migration and invasion abilities under hypoxia. Moreover, ELK3 knockdown decreased β-catenin expression and inhibited the activation of Wnt/β-catenin pathway in SKOV3 cells under hypoxia. Astrocyte-elevated gene-1 (AEG1) has been reported to promote OC progression. Our results showed that the mRNA level of AEG1 was decreased when ELK3 knockdown under hypoxia. Dural luciferase assay confirmed that ELK3 bound to gene AEG1 promoter (-2005-+15) and enhanced its transcriptional activity under hypoxia. Overexpression of AEG1 increased the migration and invasion abilities of SKOV3 cell with ELK3 knockdown. In the absence of ELK3, the activation of β-catenin was recovered by AEG1 overexpression. To sum up, we conclude that ELK3 promotes AEG1 expression by binding to its promoter. ELK3 could promote migration and invasion of OC cells by targeting AEG1, which provides a potential basis for therapeutic approaches to OC.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Department of Pathology, Harbin Medical University Cancer Hospital
| | - Chun Du
- Department of Pathology, Harbin Medical University Cancer Hospital
| | - Yifei Cui
- Department of Pathology, Harbin Medical University Cancer Hospital
| | - Yang Jiang
- Department of Pathology, Harbin Medical University Cancer Hospital
| | - Di Feng
- Department of Pathology, Harbin Medical University Cancer Hospital
| |
Collapse
|
8
|
Chu Y, Zuo J, Zhang Y, Gao G, Hu X, Han R, Liu C, Zhou H, Li M, Peng W, Wang Y. Co-culture with chorionic villous mesenchymal stem cells promotes endothelial cell proliferation and angiogenesis via ABCA9-AKT pathway. FASEB J 2022; 36:e22568. [PMID: 36165221 DOI: 10.1096/fj.202101316rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
Human chorionic villous mesenchymal stem cells (CV-MSCs) are a promising and effective therapeutic option for tissue injury. Vascular dysfunction during pregnancies is significantly involved in the pathogenesis of preeclampsia (PE). This work aims to investigate how CV-MSCs regulate the function of vascular endothelial cells. In this study, RNA-seq analysis was used to examine the changes in HUVECs treated with CV-MSC conditioned medium (CM). We examined the levels of ABCA9 and AKT signaling in human umbilical vein endothelial cells (HUVECs) by immunohistochemistry, western blotting, and qRT-PCR assays. CCK-8, colony formation, and tube formation assays were used to understand the role of ABCA9 in HUVEC proliferation and angiogenesis mediated by CV-MSCs. The CV-MSC treatment significantly enhanced the HUVEC proliferation and angiogenesis. Furthermore, a significant increase in the ABCA9 expression and AKT pathway activation was observed in CV-MSCs -treated HUVECs. Consistent with these findings, ABCA9 overexpression exhibited the same proliferation-and angiogenesis-promoting effect in HUVECs as induced by CV-MSC CM, also accompanied the AKT signaling activation. In addition, inhibition of ABCA9 inactivated the AKT signaling in HUVECs and reduced the HUVEC proliferation and angiogenesis. Importantly, the elevation of proliferation and angiogenesis induced by ABCA9 overexpression in HUVECs could be reversed by AKT pathway inhibition. Our results suggest that ABCA9-dependent AKT signaling activation mediated by CV-MSCs could promote HUVEC proliferation and angiogenesis.
Collapse
Affiliation(s)
- Yijing Chu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxin Zuo
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqiang Gao
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyu Hu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rendong Han
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Liu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huansheng Zhou
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Peng
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Seo SH, Hwang S, Hwang S, Han S, Park H, Lee Y, Rho SB, Kwon Y. Hypoxia‐induced ELF3 promotes tumor angiogenesis through IGF1/IGF1R. EMBO Rep 2022; 23:e52977. [PMID: 35695065 PMCID: PMC9346469 DOI: 10.15252/embr.202152977] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/09/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal gynecological cancers despite a relatively low incidence. Angiogenesis, one of the hallmarks of cancer, is essential for the pathogenesis of EOC, which is related to the induction of angiogenic factors. We found that ELF3 was highly expressed in EOCs under hypoxia and functioned as a transcription factor for IGF1. The ELF3‐mediated increase in the secretion of IGF1 and VEGF promoted endothelial cell proliferation, migration, and EOC angiogenesis. Although this situation was much exaggerated under hypoxia, ELF3 silencing under hypoxia significantly attenuated angiogenic activity in endothelial cells by reducing the expression and secretion of IGF1 and VEGF. ELF3 silencing attenuated angiogenesis and tumorigenesis in ex vivo and xenograft mouse models. Consequently, ELF3 plays an important role in the induction of angiogenesis and tumorigenesis in EOC as a transcription factor of IGF1. A detailed understanding of the biological mechanism of ELF3 may both improve current antiangiogenic therapies and have anticancer effects for EOC.
Collapse
Affiliation(s)
- Seung Hee Seo
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Soo‐Yeon Hwang
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Seohui Hwang
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Sunjung Han
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Hyojin Park
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Yun‐Sil Lee
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| | - Seung Bae Rho
- Research Institute National Cancer Center Goyang‐si Gyeonggi‐do Korea
| | - Youngjoo Kwon
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul Korea
| |
Collapse
|
10
|
Integrative epigenomic and transcriptomic analysis reveals the requirement of JUNB for hematopoietic fate induction. Nat Commun 2022; 13:3131. [PMID: 35668082 PMCID: PMC9170695 DOI: 10.1038/s41467-022-30789-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Human pluripotent stem cell differentiation towards hematopoietic progenitor cell can serve as an in vitro model for human embryonic hematopoiesis, but the dynamic change of epigenome and transcriptome remains elusive. Here, we systematically profile the chromatin accessibility, H3K4me3 and H3K27me3 modifications, and the transcriptome of intermediate progenitors during hematopoietic progenitor cell differentiation in vitro. The integrative analyses reveal sequential opening-up of regions for the binding of hematopoietic transcription factors and stepwise epigenetic reprogramming of bivalent genes. Single-cell analysis of cells undergoing the endothelial-to-hematopoietic transition and comparison with in vivo hemogenic endothelial cells reveal important features of in vitro and in vivo hematopoiesis. We find that JUNB is an essential regulator for hemogenic endothelium specialization and endothelial-to-hematopoietic transition. These studies depict an epigenomic roadmap from human pluripotent stem cells to hematopoietic progenitor cells, which may pave the way to generate hematopoietic progenitor cells with improved developmental potentials.
Collapse
|
11
|
Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, Slyper M, Wang J, Van Wittenberghe N, Rouhana JM, Waldman J, Ashenberg O, Lek M, Dionne D, Win TS, Cuoco MS, Kuksenko O, Tsankov AM, Branton PA, Marshall JL, Greka A, Getz G, Segrè AV, Aguet F, Rozenblatt-Rosen O, Ardlie KG, Regev A. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022; 376:eabl4290. [PMID: 35549429 PMCID: PMC9383269 DOI: 10.1126/science.abl4290] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular, metabolic, and immune components of monogenic diseases and the biological processes involved in their pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex traits analyzed by genome-wide association studies.
Collapse
Affiliation(s)
- Gökcen Eraslan
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eugene Drokhlyansky
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shankara Anand
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evgenij Fiskin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiali Wang
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - John M. Rouhana
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thet Su Win
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michael S. Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olena Kuksenko
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Philip A. Branton
- The Joint Pathology Center Gynecologic/Breast Pathology, Silver Spring, MD 20910, USA
| | | | - Anna Greka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ayellet V. Segrè
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - François Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Lee M, Cho HJ, Park KS, Jung HY. ELK3 Controls Gastric Cancer Cell Migration and Invasion by Regulating ECM Remodeling-Related Genes. Int J Mol Sci 2022; 23:ijms23073709. [PMID: 35409069 PMCID: PMC8998440 DOI: 10.3390/ijms23073709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Current therapeutic strategies for gastric cancer, including surgery and chemotherapy improve patient survival; however, the survival rate of patients with metastatic gastric cancer is very low. The molecular mechanisms underlying the dissemination of gastric cancer cells to distant organs are currently unknown. Here, we demonstrate that the E26 transformation-specific (ETS) transcription factor ELK3 (ELK3) gene is required for the migration and invasion of gastric cancer cells. The ELK3 gene modulates the expression of extracellular matrix (ECM) remodeling-related genes, such as bone morphogenetic protein (BMP1), lysyl oxidase like 2 (LOXL2), Snail family transcriptional repressor 1 (SNAI1), serpin family F member 1 (SERPINF1), decorin (DCN), and nidogen 1 (NID1) to facilitate cancer cell dissemination. Our in silico analyses indicated that ELK3 expression was positively associated with these ECM remodeling-related genes in gastric cancer cells and patient samples. The high expressions of ELK3 and other ECM remodeling-related genes were also closely associated with a worse prognosis of patients with gastric cancer. Collectively, these findings suggest that ELK3 acts as an important regulator of gastric cancer cell dissemination by regulating ECM remodeling.
Collapse
Affiliation(s)
| | | | - Kyung-Soon Park
- Correspondence: (K.-S.P.); (H.-Y.J.); Tel.: +82-31-881-7144 (K.-S.P.); Fax: +82-31-881-7249 (K.-S.P.)
| | - Hae-Yun Jung
- Correspondence: (K.-S.P.); (H.-Y.J.); Tel.: +82-31-881-7144 (K.-S.P.); Fax: +82-31-881-7249 (K.-S.P.)
| |
Collapse
|
13
|
The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks. Cells 2022; 11:cells11040595. [PMID: 35203246 PMCID: PMC8870065 DOI: 10.3390/cells11040595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/05/2022] Open
Abstract
Biomineralization is the process in which organisms use minerals to generate hard structures like teeth, skeletons and shells. Biomineralization is proposed to have evolved independently in different phyla through the co-option of pre-existing developmental programs. Comparing the gene regulatory networks (GRNs) that drive biomineralization in different species could illuminate the molecular evolution of biomineralization. Skeletogenesis in the sea urchin embryo was extensively studied and the underlying GRN shows high conservation within echinoderms, larval and adult skeletogenesis. The organic scaffold in which the calcite skeletal elements form in echinoderms is a tubular compartment generated by the syncytial skeletogenic cells. This is strictly different than the organic cartilaginous scaffold that vertebrates mineralize with hydroxyapatite to make their bones. Here I compare the GRNs that drive biomineralization and tubulogenesis in echinoderms and in vertebrates. The GRN that drives skeletogenesis in the sea urchin embryo shows little similarity to the GRN that drives bone formation and high resemblance to the GRN that drives vertebrates’ vascular tubulogenesis. On the other hand, vertebrates’ bone-GRNs show high similarity to the GRNs that operate in the cells that generate the cartilage-like tissues of basal chordate and invertebrates that do not produce mineralized tissue. These comparisons suggest that biomineralization in deuterostomes evolved through the phylum specific co-option of GRNs that control distinct organic scaffolds to mineralization.
Collapse
|
14
|
Zhang J, Song H, Chen C, Chen L, Dai Y, Sun PH, Zou C, Wang X. Methyltransferase-like protein 11A promotes migration of cervical cancer cells via up-regulating ELK3. Pharmacol Res 2021; 172:105814. [PMID: 34450313 DOI: 10.1016/j.phrs.2021.105814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/05/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Cervical cancer is one of the common malignancies in women, which is characterized with high invasion and metastatic tendency in its advanced stage. Increasing evidence indicates that methyltransferase-like (METTL) gene family is involved in the progression of various cancers. However, the functional role of methyltransferase-like gene family in cervical cancer remains unclear. In the present study, we found that METTL11A, a member of the methyltransferase-like gene family, was significantly over-expressed in cervical carcinoma by analyzing TCGA database. This finding was further validated in clinical tissue samples. Moreover, ectopic expression of METTL11A in cervical cancer cell lines promoted cell proliferation and migration both in vitro and in vivo. Differential gene expression analysis in the transcriptomic sequencing data indicated that ELK3 was down-regulated in METTL11A-silenced cervical cancer cells, which was further verified at both protein and mRNA levels. Functional experiments identified that METTL11A promoted migration of cervical cancer cells in an ELK3-dependent manner. This study will promote understanding the mechanism of cervical cancer progression and the functional role of methyltransferase-like gene families in cancers.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Gynaecology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Huibin Song
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China; China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics Guangdong Medical University, Dongguan, China
| | - Lipeng Chen
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yong Dai
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ping-Hui Sun
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Chang Zou
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Xiaoyu Wang
- Department of Gynaecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Wu G, Lee YY, Gulla EM, Potter A, Kitzmiller J, Ruben MD, Salomonis N, Whitsett JA, Francey LJ, Hogenesch JB, Smith DF. Short-term exposure to intermittent hypoxia leads to changes in gene expression seen in chronic pulmonary disease. eLife 2021; 10:63003. [PMID: 33599610 PMCID: PMC7909952 DOI: 10.7554/elife.63003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Obstructive sleep apnea (OSA) results from episodes of airway collapse and intermittent hypoxia (IH) and is associated with a host of health complications. Although the lung is the first organ to sense changes in oxygen levels, little is known about the consequences of IH to the lung hypoxia-inducible factor-responsive pathways. We hypothesized that exposure to IH would lead to cell-specific up- and downregulation of diverse expression pathways. We identified changes in circadian and immune pathways in lungs from mice exposed to IH. Among all cell types, endothelial cells showed the most prominent transcriptional changes. Upregulated genes in myofibroblast cells were enriched for genes associated with pulmonary hypertension and included targets of several drugs currently used to treat chronic pulmonary diseases. A better understanding of the pathophysiologic mechanisms underlying diseases associated with OSA could improve our therapeutic approaches, directing therapies to the most relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Gang Wu
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Evelyn M Gulla
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Andrew Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Joseph Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Marc D Ruben
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Nathan Salomonis
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jeffery A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Lauren J Francey
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Center for Circadian Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - David F Smith
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Division of Pulmonary Medicine and the Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,The Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
16
|
Epac1 Is Crucial for Maintenance of Endothelial Barrier Function through A Mechanism Partly Independent of Rac1. Cells 2020; 9:cells9102170. [PMID: 32992982 PMCID: PMC7601253 DOI: 10.3390/cells9102170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
Epac1 (exchange protein activated by cAMP) stabilizes the endothelial barrier, but detailed studies are limited by the side effects of pharmacological Epac1 modulators and transient transfections. Here, we compare the key properties of barriers between endothelial cells derived from wild-type (WT) and Epac1-knockout (KO) mice myocardium. We found that KO cell layers, unlike WT layers, had low and cAMP-insensitive trans-endothelial resistance (TER). They also had fragmented VE-cadherin staining despite having augmented cAMP levels and increased protein expression of Rap1, Rac1, RhoA, and VE-cadherin. The simultaneous direct activation of Rac1 and RhoA by CN04 compensated Epac1 loss, since TER was increased. In KO-cells, inhibition of Rac1 activity had no additional effect on TER, suggesting that other mechanisms compensate the inhibition of the Rac1 function to preserve barrier properties. In summary, Epac1 is crucial for baseline and cAMP-mediated barrier stabilization through mechanisms that are at least partially independent of Rac1.
Collapse
|
17
|
Elia LP, Reisine T, Alijagic A, Finkbeiner S. Approaches to develop therapeutics to treat frontotemporal dementia. Neuropharmacology 2020; 166:107948. [PMID: 31962288 DOI: 10.1016/j.neuropharm.2020.107948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Frontotemporal degeneration (FTD) is a complex disease presenting as a spectrum of clinical disorders with progressive degeneration of frontal and temporal brain cortices and extensive neuroinflammation that result in personality and behavior changes, and eventually, death. There are currently no effective therapies for FTD. While 60-70% of FTD patients are sporadic cases, the other 30-40% are heritable (familial) cases linked to mutations in several known genes. We focus here on FTD caused by mutations in the GRN gene, which encodes a secreted protein, progranulin (PGRN), that has diverse roles in regulating cell survival, immune responses, and autophagy and lysosome function in the brain. FTD-linked mutations in GRN reduce brain PGRN levels that lead to autophagy and lysosome dysfunction, TDP43 accumulation, excessive microglial activation, astrogliosis, and neuron death through still poorly understood mechanisms. PGRN insufficiency has also been linked to Alzheimer's disease (AD), and so the development of therapeutics for GRN-linked FTD that restore PGRN levels and function may have broader application for other neurodegenerative diseases. This review focuses on a strategy to increase PGRN to functional, healthy levels in the brain by identifying novel genetic and chemical modulators of neuronal PGRN levels. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Amela Alijagic
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA; Departments of Neurology and Physiology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
18
|
Zhu F, Cheng SR, Yang YZ, Hao JP, Yang FX, Hou ZC. Genome-Wide Association Study of Growth and Feeding Traits in Pekin Ducks. Front Genet 2019; 10:702. [PMID: 31404312 PMCID: PMC6676418 DOI: 10.3389/fgene.2019.00702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Growth rate and feeding efficiency are the most important economic traits for meat animals. Pekin duck is one of the major global breeds of meat-type duck. This study aims to identify QTL for duck growth and feeding efficiency traits in order to assist artificial selection. In this study, the growth and feeding related phenotypes of 639 Pekin ducks were recorded, and each individual genotype was evaluated using a genotyping-by-sequencing (GBS) protocol. The genetic parameters for growth and feeding efficiency related traits were estimated. Genome-wide association analysis (GWAS) was then performed for these traits. In total, 15 non-overlapping QTLs for the measured traits and 12 significant SNPs for feed efficiency traits were discovered using a mixed linear model. The most significant loci of feed intake (FI) is located in a 182Mb region on Chr1, which is downstream of gene RNF17, and can explain 2.3% of the phenotypic variation. This locus is also significantly associated with residual feed intake (RFI), and can explain 3% of this phenotypic variation. Among 12 SNPs associated with the feed conversion ratio (FCR), the most significant SNP (P-value = 1.65E-06), which was located in the region between the 3rd and 4th exon of the SORCS1 gene on Chr6, explained 3% of the phenotypic variance. Using gene-set analysis, a total of two significant genes were detected be associated with RFI on Chr1. This study is the first GWAS for growth and feeding efficiency related traits in ducks. Our results provide a list of candidate genes for marker assisted selection for growth and feeding efficiency, and also help to better understand the genetic mechanisms of feed efficiency and growth in ducks.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Si-Rui Cheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Yu-Ze Yang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Jin-Ping Hao
- Duck Industry Center, Beijing Golden Star Duck Inc., Beijing, China
| | - Fang-Xi Yang
- Duck Industry Center, Beijing Golden Star Duck Inc., Beijing, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Elia LP, Mason AR, Alijagic A, Finkbeiner S. Genetic Regulation of Neuronal Progranulin Reveals a Critical Role for the Autophagy-Lysosome Pathway. J Neurosci 2019; 39:3332-3344. [PMID: 30696728 PMCID: PMC6788815 DOI: 10.1523/jneurosci.3498-17.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Deficient progranulin levels cause dose-dependent neurological syndromes: haploinsufficiency leads to frontotemporal lobar degeneration (FTLD) and nullizygosity produces adult-onset neuronal ceroid lipofuscinosis. Mechanisms controlling progranulin levels are largely unknown. To better understand progranulin regulation, we performed a genome-wide RNAi screen using an ELISA-based platform to discover genes that regulate progranulin levels in neurons. We identified 830 genes that raise or lower progranulin levels by at least 1.5-fold in Neuro2a cells. When inhibited by siRNA or some by submicromolar concentrations of small-molecule inhibitors, 33 genes of the druggable genome increased progranulin levels in mouse primary cortical neurons; several of these also raised progranulin levels in FTLD model mouse neurons. "Hit" genes regulated progranulin by transcriptional or posttranscriptional mechanisms. Pathway analysis revealed enrichment of hit genes from the autophagy-lysosome pathway (ALP), suggesting a key role for this pathway in regulating progranulin levels. Progranulin itself regulates lysosome function. We found progranulin deficiency in neurons increased autophagy and caused abnormally enlarged lysosomes and boosting progranulin levels restored autophagy and lysosome size to control levels. Our data link the ALP to neuronal progranulin: progranulin levels are regulated by autophagy and, in turn, progranulin regulates the ALP. Restoring progranulin levels by targeting genetic modifiers reversed FTLD functional deficits, opening up potential opportunities for future therapeutics development.SIGNIFICANCE STATEMENT Progranulin regulates neuron and immune functions and is implicated in aging. Loss of one functional allele causes haploinsufficiency and leads to frontotemporal lobar degeneration (FTLD), the second leading cause of dementia. Progranulin gene polymorphisms are linked to Alzheimer's disease (AD) and complete loss of function causes neuronal ceroid lipofuscinosis. Despite the critical role of progranulin levels in neurodegenerative disease risk, almost nothing is known about their regulation. We performed an unbiased screen and identified specific pathways controlling progranulin levels in neurons. Modulation of these pathways restored levels in progranulin-deficient neurons and reversed FTLD phenotypes. We provide a new comprehensive understanding of the genetic regulation of progranulin levels and identify potential targets to treat FTLD and other neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Amanda R Mason
- Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, and
| | - Amela Alijagic
- The J. David Gladstone Institutes, San Francisco, California 94158
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, California,
- The J. David Gladstone Institutes, San Francisco, California 94158
- Departments of Neurology and Physiology, University of California, San Francisco, California 94143
| |
Collapse
|
20
|
Son Y, Kwon SM, Cho JY. CD276 (B7-H3) Maintains Proliferation and Regulates Differentiation in Angiogenic Function in Late Endothelial Progenitor Cells. Stem Cells 2018; 37:382-394. [PMID: 30379377 DOI: 10.1002/stem.2944] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/22/2018] [Accepted: 10/16/2018] [Indexed: 12/24/2022]
Abstract
Endothelial progenitor cells (EPCs) provide an important source of recovery from blood vessel dysfunction. Late EPCs (LEPCs) are circulating blood cells that are capable of promoting vascular repair. Using transcriptome analysis, we identified distinctive LEPC profiles and found that CD276 (B7-H3) mRNA is strongly expressed in LEPCs. CD276 protein is present abundantly on the cell surface of LEPC when analyzed by fluorescence-activated cell sorter and immunocytochemistry. CD276, a B7 family member, is a type I transmembrane glycoprotein. The role of CD276 in LEPCs remains unknown. CD276 knockdown by lentivirus transduction in LEPCs significantly decreased proliferation and increased apoptosis of LEPCs in vitro. After CD276 silencing, the cell cycle of LEPCs was prone to remain at the G0/G1 phase, and the cell migration rates as well as transwell and wound-healing migration were decreased. CD276 knockdown in LEPCs increased the G1 phase regulators cyclin D2/D3/E1-cyclin-dependent kinases (CDK2/4/6), but decreased the S-G2-M phase regulators cyclin A/B-CDK1. However, LEPCs with CD276 knockdown resulted in increased tube formation in vitro and angiogenesis in a Matrigel plug assay in vivo. FoxC1/C2, an upstream signal of Notch in arterial cell proliferation, and Hey1/2, which is known to promote arterial differentiation in the vasculature, were upregulated in CD276 knockdown LEPCs. In LEPCS, CD276 has a positive effect on proliferation and migration of endothelial cells, but negative effects on angiogenesis, particularly endothelial cell differentiation. Our data indicate, for therapeutic purpose, that CD276 can be used to acquire and maintain cell populations of LEPCs and blocking CD276 will promote angiogenetic differentiation. We found that CD276 (B7-H3) is enriched on the cell membrane of LEPCs. CD276 knockdown reduced proliferation and migration of LEPCs by increasing cell cycle inhibitors such as p21cip1 and pRb and decreasing pErk1/2 and pAkt but promoted angiogenesis and endothelial cell differentiation by elevating vascular endothelial growth factor-vascular endothelial growth factor receptor 1 and p-p38. Stem Cells 2019;37:382-394.
Collapse
Affiliation(s)
- YeonSung Son
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Park JI, Kim KS, Kong SY, Park KS. Novel function of E26 transformation-specific domain-containing protein ELK3 in lymphatic endothelial cells. Oncol Lett 2018; 15:55-60. [PMID: 29375705 PMCID: PMC5766059 DOI: 10.3892/ol.2017.7308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
Lymphatic endothelial cells (LEC) are major components of the tumor microenvironment and, due to the relative leakiness of lymphatic vessels compared with blood vessels, are essential for tumor dissemination and metastasis. In the present study, small interfering RNA-mediated suppression of E26 transformation-specific domain-containing protein Elk-3 (ELK3) inhibited the proliferation, migration and tube-forming ability of LEC. Suppression of ELK3 decreased vascular endothelial-cadherin expression levels and increased the phosphorylation of β-catenin. Furthermore, vascular endothelial growth factor receptor-3 (VEGFR-3) mRNA and protein expression levels were suppressed by the transfection of LEC with siELK3. As VEGFR-3 serves a major role in lymphangiogenesis, ELK3 may be a novel therapeutic target to inhibit tumor dissemination through the lymphatic system.
Collapse
Affiliation(s)
- Ji-In Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 13488, Republic of Korea
| | - Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 13488, Republic of Korea
| | - Sun-Young Kong
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Seoul 10408, Republic of Korea.,Translational Epidemiology Branch, Research Institute and Hospital, National Cancer Center, Goyang, Seoul 10408, Republic of Korea.,Department of Laboratory Medicine, Research Institute and Hospital, National Cancer Center, Goyang, Seoul 10408, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 13488, Republic of Korea
| |
Collapse
|
22
|
Sheehy S, Annabi B. A Transcriptional Regulatory Role for the Membrane Type-1 Matrix Metalloproteinase in Carcinogen-Induced Inflammasome Gene Expression. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [PMID: 28634425 PMCID: PMC5467917 DOI: 10.1177/1177625017713996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal-transducing functions driven by the cytoplasmic domain of membrane type-1 matrix metalloproteinase (MT1-MMP) are believed to regulate many inflammation-associated cancer cell functions including migration, proliferation, and survival. Aside from upregulation of the inflammation biomarker cyclooxygenase-2 (COX-2) expression, MT1-MMP’s role in relaying intracellular signals triggered by extracellular pro-inflammatory cues remains poorly understood. Here, we triggered inflammation in HT1080 fibrosarcoma cells with phorbol-12-myristate-13-acetate (PMA), an inducer of COX-2 and of MT1-MMP. To assess the global transcriptional regulatory role that MT1-MMP may exert on inflammation biomarkers, we combined gene array screens with a transient MT1-MMP gene silencing strategy. Expression of MT1-MMP was found to exert both stimulatory and repressive transcriptional control of several inflammasome-related biomarkers such as interleukin (IL)-1B, IL-6, IL-12A, and IL-33, as well as of transcription factors such as EGR1, ELK1, and ETS1/2 in PMA-treated cells. Among the signal-transducing pathways explored, the silencing of MT1-MMP prevented PMA from phosphorylating extracellular signal–regulated kinase, inhibitor of κB, and p105 nuclear factor κB (NF-κB) intermediates. We also found a signaling axis linking MT1-MMP to MMP-9 transcriptional regulation. Altogether, our data indicate a significant involvement of MT1-MMP in the transcriptional regulation of inflammatory biomarkers consolidating its contribution to signal transduction functions in addition to its classical hydrolytic activity.
Collapse
Affiliation(s)
- Samuel Sheehy
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de recherche BIOMED, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
23
|
PI3K/Akt/mTOR activation by suppression of ELK3 mediates chemosensitivity of MDA-MB-231 cells to doxorubicin by inhibiting autophagy. Biochem Biophys Res Commun 2016; 477:277-82. [DOI: 10.1016/j.bbrc.2016.06.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022]
|
24
|
Semenchenko K, Wasylyk C, Cheung H, Tourrette Y, Maas P, Schalken JA, van der Pluijm G, Wasylyk B. XRP44X, an Inhibitor of Ras/Erk Activation of the Transcription Factor Elk3, Inhibits Tumour Growth and Metastasis in Mice. PLoS One 2016; 11:e0159531. [PMID: 27427904 PMCID: PMC4948895 DOI: 10.1371/journal.pone.0159531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023] Open
Abstract
Transcription factors have an important role in cancer but are difficult targets for the development of tumour therapies. These factors include the Ets family, and in this study Elk3 that is activated by Ras oncogene /Erk signalling, and is involved in angiogenesis, malignant progression and epithelial-mesenchymal type processes. We previously described the identification and in-vitro characterisation of an inhibitor of Ras / Erk activation of Elk3 that also affects microtubules, XRP44X. We now report an initial characterisation of the effects of XRP44X in-vivo on tumour growth and metastasis in three preclinical models mouse models, subcutaneous xenografts, intra-cardiac injection-bone metastasis and the TRAMP transgenic mouse model of prostate cancer progression. XRP44X inhibits tumour growth and metastasis, with limited toxicity. Tumours from XRP44X-treated animals have decreased expression of genes containing Elk3-like binding motifs in their promoters, Elk3 protein and phosphorylated Elk3, suggesting that perhaps XRP44X acts in part by inhibiting the activity of Elk3. Further studies are now warranted to develop XRP44X for tumour therapy.
Collapse
Affiliation(s)
- Kostyantyn Semenchenko
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Henry Cheung
- Leiden University Medical Center, Leiden, The Netherlands
| | - Yves Tourrette
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Peter Maas
- SPECS, Kluyverweg 6, 2629 HT Delft, The Netherlands
| | - Jack A Schalken
- Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | | | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
25
|
Chen L, Huang Z, Yang B, Cai B, Su Z, Wang L. Association of E26 Transformation Specific Sequence 1 Variants with Rheumatoid Arthritis in Chinese Han Population. PLoS One 2015; 10:e0134875. [PMID: 26241881 PMCID: PMC4524679 DOI: 10.1371/journal.pone.0134875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE E26 transformation specific sequence 1 (ETS-1) belongs to the ETS family of transcription factors that regulate the expression of various immune-related genes. Increasing evidence indicates that ETS-1 could contribute to the pathogenesis of autoimmune disease. Recent research has provided evidence that ETS-1 might correlate with rheumatoid arthritis (RA), but it's not clearly defined. In this study, we aimed to identify whether polymorphisms of ETS-1 play a role in Rheumatoid arthritis (RA) susceptibility and development in Chinese Han population. METHODS Four single nucleotide polymorphisms (SNPs) within ETS-1 were selected based on HapMap data and previous associated studies. Whole blood and serum samples were obtained from 158 patients with RA and 192 healthy subjects. Genotyping was performed with polymerase chain reaction-high resolution melting (PCR-HRM) assay and the data was analyzed using SPSS17.0. RESULTS A significantly positive correlation was observed between the SNP rs73013527 of ETS-1 and RA susceptibility, DAS28 and CRP (P<0.001, P = 0.001, and P = 0.028, respectively). Carriers of the haplotype CCT or TCT for rs4937333, rs11221332 and rs73013527 were associated with decreased risk of RA as compared to controls. No statistical significant difference was observed in the distribution of rs10893872, rs4937333 and rs11221332 genotypes between RA patients and controls. CONCLUSIONS Our data further supports that ETS-1 has a relevant role in the pathogenesis and development of RA. Allele T of rs73013527 plays a protective role in occurrence of RA but a risk factor in the high disease activity. Rs10893872, rs11221332 and rs4937333 are not associated with RA susceptibility and clinical features.
Collapse
Affiliation(s)
- Lin Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Su
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
26
|
Heo SH, Lee JY, Yang KM, Park KS. ELK3 Expression Correlates With Cell Migration, Invasion, and Membrane Type 1-Matrix Metalloproteinase Expression in MDA-MB-231 Breast Cancer Cells. Gene Expr 2015; 16:197-203. [PMID: 26637400 PMCID: PMC8750191 DOI: 10.3727/105221615x14399878166276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ELK3 is a member of the Ets family of transcription factors. Its expression is associated with angiogenesis, vasculogenesis, and chondrogenesis. ELK3 inhibits endothelial migration and tube formation through the regulation of MT1-MMP transcription. This study assessed the function of ELK3 in breast cancer (BC) cells by comparing its expression between basal and luminal cells in silico and in vitro. In silico analysis showed that ELK3 expression was higher in the more aggressive basal BC cells than in luminal BC cells. Similarly, in vitro analysis showed that ELK3 mRNA and protein expression was higher in basal BC cells than in normal cells and luminal BC cells. To investigate whether ELK3 regulates basal cell migration or invasion, knockdown was achieved by siRNA in the basal BC cell line MDA-MB-231. Inhibition of ELK3 expression decreased cell migration and invasion and downregulated MT1-MMP, the expression of which is positively correlated with tumor cell invasion. In silico analysis revealed that ELK3 expression was associated with that of MT1-MMP in several BC cell lines (0.98 Pearson correlation coefficient). Though MT1-MMP expression was upregulated upon ELK3 nuclear translocation, ELK3 did not directly bind to the 1.3-kb promoter region of the MT1-MMP gene. These results suggest that ELK3 plays a positive role in the metastasis of BC cells by indirectly regulating MT1-MMP expression.
Collapse
Affiliation(s)
- Sun-Hee Heo
- *Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
- †CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Je-Yong Lee
- *Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
- †CHA Stem Cell Institute, CHA University, Seoul, Korea
| | | | - Kyung-Soon Park
- *Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea
- †CHA Stem Cell Institute, CHA University, Seoul, Korea
| |
Collapse
|
27
|
Weinl C, Wasylyk C, Garcia Garrido M, Sothilingam V, Beck SC, Riehle H, Stritt C, Roux MJ, Seeliger MW, Wasylyk B, Nordheim A. Elk3 deficiency causes transient impairment in post-natal retinal vascular development and formation of tortuous arteries in adult murine retinae. PLoS One 2014; 9:e107048. [PMID: 25203538 PMCID: PMC4159304 DOI: 10.1371/journal.pone.0107048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/06/2014] [Indexed: 12/03/2022] Open
Abstract
Serum Response Factor (SRF) fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A and -B, but not the Ternary Complex Factors (TCFs) Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal vasculature. In Elk3(−/−) mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded normally. Interestingly, tortuous arteries developed in Elk3(−/−) mice from the age of four weeks, and persisted into late adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were linked to altered activities of vascular endothelial growth factor (VEGF) in the affected eyes. However, in Elk3(−/−) mice, we did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed. Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced. Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse is presented as a new animal model to study retinal artery tortuousity in mice and human patients.
Collapse
MESH Headings
- Angiopoietins/genetics
- Angiopoietins/metabolism
- Animals
- Arteries/abnormalities
- Arteries/metabolism
- Arteries/pathology
- Disease Models, Animal
- Female
- Joint Instability/genetics
- Joint Instability/metabolism
- Joint Instability/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Proto-Oncogene Proteins c-ets/deficiency
- Proto-Oncogene Proteins c-ets/genetics
- Receptors, TIE/genetics
- Receptors, TIE/metabolism
- Retina/metabolism
- Retina/pathology
- Retinal Neovascularization/genetics
- Retinal Neovascularization/metabolism
- Retinal Neovascularization/pathology
- Retinal Vessels/metabolism
- Retinal Vessels/pathology
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Signal Transduction/physiology
- Skin Diseases, Genetic/genetics
- Skin Diseases, Genetic/metabolism
- Skin Diseases, Genetic/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vascular Endothelial Growth Factors/genetics
- Vascular Endothelial Growth Factors/metabolism
- Vascular Malformations/genetics
- Vascular Malformations/metabolism
- Vascular Malformations/pathology
Collapse
Affiliation(s)
- Christine Weinl
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Heidemarie Riehle
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Christine Stritt
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Michel J. Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|