1
|
Wang R, Jiang J, Song P, Peng Q, Jin X, Li B, Shen J, Han X, Ni J, Hu G. Kinsenoside alleviates experimental acute pancreatitis by suppressing M1 macrophage polarization via the TLR4/STAT1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119551. [PMID: 39999939 DOI: 10.1016/j.jep.2025.119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute pancreatitis (AP) is an inflammatory disease that can progress to systemic immune responses and multi-organ damage in its severe forms. Anoectochilus roxburghii (Wall.) Lindl. (AR), a traditional Chinese medicinal plant, has been reported to exhibit anti-inflammatory, hypoglycemic, hepatoprotective, and analgesic properties. Kinsenoside (KD), the primary bioactive glycoside in AR, is responsible for many of its therapeutic effects. Given its anti-inflammatory and immunomodulatory properties, KD may have the potential to mitigate pancreatic inflammation in AP. However, its protective role in AP has not yet been investigated. AIM OF THE STUDY This study aimed to investigate the protective effects of the natural active compound KD against acute pancreatitis (AP) and its associated molecular mechanisms. MATERIALS AND METHODS Two AP mouse models were established: one by intraperitoneal injection of caerulein combined with lipopolysaccharide (LPS) and the other by retrograde injection of sodium taurocholate (NaT) into the biliopancreatic duct. KD (2.5, 5, 10 mg/kg) was administered as a pre-treatment 1 h before the induction of AP. The severity of AP was evaluated through histopathological analysis, while macrophage infiltration and phenotypic changes in pancreatic tissues were examined using immunofluorescence staining and flow cytometry. Bone marrow-derived macrophages (BMDMs) were polarized into the M1 phenotype through two distinct methods: stimulation with LPS and interferon-γ (IFNγ) and indirect co-culture with pancreatic acinar cells. Changes in macrophage phenotype after KD supplementation (100, 200, and 400 μM) were analyzed using quantitative Reverse Transcription PCR (qRT-PCR) and flow cytometry. Network pharmacology and transcriptomic sequencing were utilized to identify potential targets and pathways affected by KD, with validation of key signaling pathways performed through qPCR and Western blot analysis. RESULTS In two models of AP mice, KD at a high dose (10 mg/kg) significantly alleviated pancreatic damage. It reduced pancreatic edema, necrosis, and inflammatory cell infiltration, with a notable decrease in macrophage infiltration. Furthermore, KD (10 mg/kg) administration significantly reduced serum lipase by 53.62% in the Caerulein + LPS model and 41.14% in the NaT model, as well as amylase by 28.13% and 27.99%, respectively. Additionally, KD (10 mg/kg) administration mitigated systemic inflammation and lung injury during AP. Both in vivo and in vitro experiments demonstrated that KD (400 μM) significantly reduced the proportion of M1 macrophages. Furthermore, KD (400 μM) downregulated the mRNA expression of M1-associated genes, including Nos2, Tnf, Il1b, and Il6, in macrophages stimulated by both LPS + IFNγ and pancreatic acinar cell-conditioned media. Network pharmacology and transcriptomic analyses identified toll-like receptor 4 (TLR4) as a potential target of KD in the context of AP. KD (400 μM) was shown to inhibit the activation of the TLR4/STAT1 signaling pathway in macrophages exposed to inflammatory stimuli. CONCLUSIONS KD administration mitigated experimental AP induced by diverse etiologies through the inhibition of M1 macrophage polarization via the TLR4/STAT1 signaling pathway. These findings highlight KD as a promising therapeutic candidate with potential clinical applications in the management of AP.
Collapse
Affiliation(s)
- Ruiyan Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Pengli Song
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qi Peng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xuerui Jin
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Wang Y, Ni Q, Xu S, Cui M, Wang R, Liu R. MiR-486-5p predicts the progression of severe acute pancreatitis by mediating the inflammatory response and ATG7/p38 MAPK pathway. Am J Med Sci 2025:S0002-9629(25)00982-6. [PMID: 40169118 DOI: 10.1016/j.amjms.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/30/2024] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Acute pancreatitis (AP) is a serious disorder, and is frequently accompanied by shock or organ failure. The study aimed to investigate the predictive value of serum miR-486-5p for the prognosis of SAP patients and the underlying mechanism. METHODS The concentration of mRNAs was detected by Real-Time PCR reaction. The correlation between miRNA and each scoring system was analyzed via Pearson's correlation analysis. ROC curve was performed for diagnostic value evaluation. The predictive value of miRNA expression in the severity of AP was estimated by logistic regression analysis. HPDE6-C7 cells were treated with cerulein (Cer) to mimic AP in vitro. The cell apoptosis, viability, and inflammatory response were detected by flow cytometry, CCK-8, and ELISA, respectively. The targeting relationship was verified by DLR assay and RIP assay. RESULTS The expression of miR-486-5p was elevated in the serum of non-SAP and SAP groups (P < 0.001), which was interconnected with APACHE II, SOFA, and Ranson scores. MiR-486-5p can differentiate SAP patients from non-SAP with the AUC of 0.916, and it was an independent risk for the severity of AP patients. The miR-486-5p/ATG7 axis affected the apoptosis, viability, and inflammatory response of HPDE6-C7 cell models by the p38 MAPK pathway, thus involving the progression of AP. CONCLUSIONS Serum miR-486-5p may have a certain predictive value for the severity of AP and influence AP development through mediating cell inflammatory response via targeting ATG7.
Collapse
Affiliation(s)
- Yang Wang
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Qi Ni
- Department of Endocrinology, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Shuying Xu
- Department of Emergency, Binzhou Medical University Hospital, Binzhou, Shandong 256600, PR China
| | - Mingli Cui
- Department of Cardiovascular Medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256600, PR China
| | - Ruixia Wang
- Department of Emergency, Binzhou Medical University Hospital, Binzhou, Shandong 256600, PR China.
| | - Rong Liu
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China.
| |
Collapse
|
4
|
Swetha K, Indumathi MC, Kishan R, Siddappa S, Chen CH, Marathe GK. Selenium Mitigates Caerulein and LPS-induced Severe Acute Pancreatitis by Inhibiting MAPK, NF-κB, and STAT3 Signaling via the Nrf2/HO-1 Pathway. Biol Trace Elem Res 2025:10.1007/s12011-025-04531-2. [PMID: 39907886 DOI: 10.1007/s12011-025-04531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Severe acute pancreatitis (SAP) leads to systemic inflammation, resulting in multiorgan damage. Acute lung injury and acute respiratory distress syndrome develop in one-third of SAP patients, with a high mortality rate of 60% due to secondary complications. Patients with pancreatitis often have selenium deficiency, and selenium supplements may provide beneficial effects. This study examined the protective role of selenium in a model of SAP induced by caerulein + lipopolysaccharide (cae + LPS). Mice were administered selenium (1 mg/kg) before being challenged with caerulein (6 injections of 50 μg/kg) and LPS (10 mg/kg). At 3 h after the last caerulein injection, blood was collected for estimating pancreatic enzymes and cytokine levels, and the mice were euthanized. We performed morphological and histological studies, measured levels of protease and oxidative stress markers and conducted western blot, ELISA, and RT-qPCR analyses. We examined lung tissue histologically and estimated myeloperoxidase levels. Selenium pretreatment significantly reduced pancreatic enzyme levels such as amylase, lipase, and proteases (specifically MMPs) and reversed tissue injury in the pancreas and lungs caused by cae + LPS. In addition, selenium-treated mice showed decreased levels of inflammatory markers and chemokines. Examination of the downstream inflammatory pathways confirmed the protective effect of selenium, which mediates its anti-inflammatory and antioxidant action by inhibiting the major inflammatory signaling pathways (MAPKs, NF-κB, and STAT3) and activating the phosphorylation of Nrf2 via Nrf2/HO-1 pathways. These findings suggest that selenium may be a potential therapeutic option for treating SAP-associated secondary complications.
Collapse
Affiliation(s)
- Kamatam Swetha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India
| | | | - Raju Kishan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India
| | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri Mysore, 570006, India.
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri Mysore, 570006, India.
| |
Collapse
|
5
|
Bertola L, Pepe G, Dolce A, Lecchi C, Borroni EM, Savino B, Canesi S, Sala L, Moretti P, Giordano A, Ressel L, Scanziani E, Vegeto E, Recordati C. Sex-dependent modulation of caerulein-induced acute pancreatitis in C57BL/6J mice. Vet Pathol 2025:3009858241312606. [PMID: 39878085 DOI: 10.1177/03009858241312606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Acute pancreatitis (AP) is a life-threatening condition, with a higher mortality rate in men than women and in which estrogens might play a protective role. This study aimed to investigate sex-dependent differences in a mouse model of caerulein-induced AP. Thirty-six C57BL/6J mice (19 females and 17 males) were treated intraperitoneally with phosphate-buffered saline or caerulein, and sacrificed 12 hours, 2 days, or 7 days after the last injection. Blood was collected for amylase, lipase, and glucose determination. Severity and extent of inflammation, apoptosis, and acinar to ductal metaplasia (ADM) in pancreatic tissue were scored histologically and total macrophages, major histocompatibility complex (MHC)-II+ cells, M2 macrophages, T and B cells, neutrophils, apoptosis, and ADM were marked immunohistochemically and quantified by digital image analysis. Serum amylase had a peak at 12 hours, without differences between the sexes. In females, pancreatitis reached a peak at 12 hours with a fast recovery while, in males, the peak was delayed to day 2 with residual apoptosis still present. Macrophages were the main inflammatory cell population, followed by T cells, B cells and neutrophils, without differences between sexes. In males, CD206+ cells and apoptosis were higher at both days 2 and 7, and cytokeratin-19+ (CK19+) ADM was higher at day 7 compared with females. The results of this study revealed a faster onset and resolution of caerulein-induced AP in female mice compared with male mice, supporting a sex-dependent modulation of acute pancreatitis.
Collapse
Affiliation(s)
- Luca Bertola
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | | | | | | | - Elena Monica Borroni
- University of Milan, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Benedetta Savino
- University of Milan, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Simone Canesi
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | - Laura Sala
- University of Milan, Lodi, Italy
- Fondazione UNIMI, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Liu Q, Ruan K, An Z, Li L, Ding C, Xu D, Yang J, Zhang X. Updated review of research on the role of the gut microbiota and microbiota-derived metabolites in acute pancreatitis progression and inflammation-targeted therapy. Int J Biol Sci 2025; 21:1242-1258. [PMID: 39897025 PMCID: PMC11781165 DOI: 10.7150/ijbs.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Acute pancreatitis (AP) is characterized by autodigestion of the pancreas, and some patients may rapidly progress to systemic inflammation, pancreatic necrosis, and multi-organ failure. Numerous studies have detailed the bidirectional communication networks between the pancreas and the intestinal microbiota, as well as its metabolites. Such crosstalk affects the progression of AP and recovery through intestinal barrier disruption. Furthermore, advances in experimental research and clinical studies have indicated that gut microorganisms exhibit distinct alterations in response to different levels of severity and etiologies of AP. This information has greatly expanded our knowledge of the role of the gut microflora and microbial metabolites in the pathology of disease and has reinforced the basis of therapeutic approaches that target candidate intestinal microbiota. In this review, we aim to provide an overview of the composition and diversity of the gut microbial community, to highlight the candidate bacteria and microbiota-derived metabolites responsible for AP, and to elucidate their interactions with and regulation of immune-relevant receptors in intestinal epithelial cells (IECs) in the host. Future research should focus on identifying and characterizing AP-associated bacterial strains, elucidating their distinct pathogenic mechanisms across different etiologies and stages of AP, and leveraging these insights to develop preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Hangzhou 310006, China
| | - Kaiyi Ruan
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zihui An
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Hangzhou 310006, China
| | - Lingyun Li
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Hangzhou 310006, China
| | - Cong Ding
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Dongchao Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Hangzhou 310006, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Hangzhou 310006, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Hangzhou 310006, China
| |
Collapse
|
7
|
Mititelu A, Grama A, Colceriu MC, Pop TL. Overview of the cellular and immune mechanisms involved in acute pancreatitis: In search of new prognosis biomarkers. Expert Rev Mol Med 2025; 27:e9. [PMID: 39757373 PMCID: PMC11879381 DOI: 10.1017/erm.2024.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
Acute pancreatitis (AP) is an acute-onset gastrointestinal disease characterized by a significant inflammation of the pancreas. Most of the time, AP does not leave substantial changes in the pancreas after the resolution of the symptoms but the severe forms are associated with local or systemic complications. The pathogenesis of AP has long been investigated and, lately, the importance of intracellular mechanisms and the immune system has been described. The initial modifications in AP take place in the acinar cell. There are multiple mechanisms by which cellular homeostasis is impaired, one of the most important being calcium overload. Necrotic pancreatic cells initiate the inflammatory response by secreting inflammatory mediators and attracting immune cells. From this point on, the inflammation is sustained by the involvement of innate and adaptive immune systems. Multiple studies have demonstrated the importance of the first 48 h for identifying patients at risk for developing severe forms. For this reason, there is a need to find new, easy-to-use and reliable markers for accurate predictions of these forms. This review provides an overview of the main pathogenetic mechanisms involved in AP development and the most promising biomarkers for severity stratification.
Collapse
Affiliation(s)
- Alexandra Mititelu
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Grama
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2 Pediatric Clinic, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| | - Marius-Cosmin Colceriu
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tudor L. Pop
- 2 Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2 Pediatric Clinic, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Gezer A, Üstündağ H, Özkaraca M, Sari EK, Gür C. Therapeutic effects of resveratrol and β-carotene on L-arginine-induced acute pancreatitis through oxidative stress and inflammatory pathways in rats. Sci Rep 2024; 14:32068. [PMID: 39738464 PMCID: PMC11686160 DOI: 10.1038/s41598-024-83764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition affecting the pancreas, often leading to systemic inflammation and organ dysfunction. This study evaluated the effects of resveratrol (RES) and β-carotene (βC) on L-arginine-induced AP in rats. Forty-eight male Sprague Dawley rats were divided into six groups: Control (C), RES (20 mg/kg), βC (50 mg/kg), AP, AP + RES, and AP + βC. The AP model was induced with 250 mg/100 g L-arginine intraperitoneally twice daily with a 1-h interval. The AP group showed significantly elevated oxidative stress (MDA) and reduced GSH levels (p < 0.001). Immunohistochemical (IHC) staining with anti-insulin antibody revealed reduced β + langerhans islet size in the AP group. qPCR analysis indicated significant upregulation of inflammatory genes NF-κB, TNF-α, and IL-1β (p < 0.001), and apoptotic genes Bax and Caspase-3, with downregulation of Bcl-2 (p < 0.001). RES and βC treatments significantly reduced MDA levels and increased GSH levels (p < 0.01 for both) compared to the AP group. The AP + RES and AP + βC groups exhibited preserved β + Langerhans islet size (p < 0.01), suppressed NF-κB, TNF-α, and IL-1β expression, reduced Bax and Caspase-3 levels, and increased Bcl-2 levels (p < 0.01). Histopathological findings supported these results. RES and βC confer significant effects against L-arginine-induced acute pancreatitis by reducing oxidative stress, preserving pancreatic islet integrity, suppressing inflammatory responses, and modulating apoptotic pathways. RES demonstrated a slightly superior efficacy in reducing inflammation and oxidative stress markers, suggesting it may be more effective in treating acute pancreatitis.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Atatürk University, Erzurum, Turkey
- Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Hilal Üstündağ
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yıldırım University, Erzincan, Turkey.
| | - Mustafa Özkaraca
- Faculty of Veterinary, Department of Pathology, Cumhuriyet University, Sivas, Turkey
| | - Ebru Karadağ Sari
- Faculty of Veterinary, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Cihan Gür
- Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Hong YP, Yan X, Ding QZ, Zhang ZB. ATP citrate lyase ablation hampers exocrine regeneration via TLR4/NF-kappaB signaling after acute pancreatitis in mice. Int Immunopharmacol 2024; 143:113485. [PMID: 39486178 DOI: 10.1016/j.intimp.2024.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND ATP citrate lyase (Acly) is widely expressed in many tissues, has been proved to be involved in the pathogenesis of many inflammatory diseases. So far, the importance of Acly in acute pancreatitis(AP) has not been clearly determined. The purpose of this study is to clarify whether Acly can evoke inflammatory cascades in the progression of AP and hamper the subsequent regeneration process of pancreas. METHODS Experimental pancreatitis in mice with a specific deficiency of Acly in the pancreas and in control mice through repetitive cerulein injections in vivo. The pancreas pathological grading, cell proliferative potential and the formation of acinar-to-ductal metaplasia (ADM) were evaluated. The levels of inflammatory cytokines in plasma were qualified by enzyme-linked immuno sorbent assay (ELISA). Pancreatic malondialdehyde (MDA), superoxide dismutase (SOD) activity and reduced glutathione (GSH) contents were measured for oxidative stress. The infiltration of macrophages and neutrophils, the expression of Toll like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and the activation of nuclear factor kappaB (NF-κB) and cleaved Caspase-3, were measured using immunostaining. The mRNA transcription levels of TLR4, TNF-α, and IL-1β in pancreatic tissues were detected by quantitative real-time PCR as well. Additionally, inhibition of TLR4 signaling by TAK-242 in AP mice with a pancreas-specific deletion of Acly was conducted in vivo. RESULTS The results demonstrated that the elimination of pancreatic Acly not only exacerbated the severity of pancreatitis in mice during the initial inflammatory phase, as evidenced by more severe pathological damage, but also impeded the healing process of the exocrine pancreas by enhancing the formation of ADM and decreasing the ability of acinar cells to proliferate. In addition, deficiency of Acly increased the circulating TNF-α, IL-1β and IL-6, the infiltration of macrophages and neutrophils, agumented the activation of nuclear factor kappaB (NF-κB) p65, the expression of TLR4, TNF-α, IL-1β and cleaved Caspase-3, and exacerbated excessive oxidative stress in the pancreas at specific time points of AP mice. However, TLR4 inhibition significantly attenuated the structural and functional damage of the pancreas induced by AP in mice with a pancreas-specific deletion of Acly, as indicated by improvement of the above indexes. CONCLUSIONS The present study demonstrated that ablation of pancreatic Acly intensified inflammatory reaction and cell death, and dampened exocrine regeneration following AP, due to the positive regulation of TLR4/NF-κB signaling activation.
Collapse
Affiliation(s)
- Yu-Pu Hong
- Department of Hepatopancreatobiliary Surgery, Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Hepatopancreatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Xin Yan
- Department of Hepatopancreatobiliary Surgery, Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qing-Zhu Ding
- Department of Hepatopancreatobiliary Surgery, Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhi-Bo Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Abdominal Surgery Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Hepatopancreatobiliary Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
10
|
Yang Y, Sun Z, Li J, Song Y, Xu W. Neutrophil-derived IL-10 increases CVB3-induced acute pancreatitis pathology via suppressing CD8 +T cell activation while increasing macrophage STAT3-IL-6 cascade. Cytokine 2024; 184:156784. [PMID: 39437614 DOI: 10.1016/j.cyto.2024.156784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Acute pancreatitis (AP) is a lethal inflammatory disease of the pancreas. Its pathogenesis remains obscure and specific treatments are lacking. An increase in Interleukin-10 (IL-10) in the early stage of AP patients is closely related to AP severity. In Coxsackievirus B3 (CVB3) induced murine AP model, we found early IL-10 increased viral replication and pancreatic inflammation, yet the cellular source of IL-10 and the immunomodulatory role of neutrophils during viral infection remains unknown. Here we show that CVB3 infection enhanced neutrophil infiltration and IL-10 expression in the pancreas at day3 post infection (p.i.). Neutrophils served as an important early source of pancreatic IL-10 at the initiation of infection. Day3 pancreas extracts (D3P) also induced bone-marrow derived neutrophils (BMneu) to secrete IL-10. Adoptive transfer of D3P-pretreated BMneu into IL-10 KO mice increased viral replication and pancreas histopathology, which effect was blunted by the absence of IL-10 in BMneu. Mechanically, IL-10+ neutrophil increased IL-10R1 expression on MΦs and activated STAT3-IL-6/IL-10 signaling cascade while decreased IL-12 and MHC II expression in MΦs, thus impairing IFN-γ+Granzyme B+CD8+T cell activation and viral clearance. Adoptive transferring infected mice with activated CD8+T cells 4 days p.i. attenuated viral load and AP pathology indicating an AP-protective effect. Our findings document a novel immunoregulatory function of neutrophils in acute CVB3 infection, in which neutrophil-derived IL-10 impairs anti-viral CD8+T activation, and amplifies intrapancreatic inflammation via activating MΦ STAT3-IL-6 signaling cascade. An IL-10-targeting option is suggested for the future treatment of viral AP.
Collapse
Affiliation(s)
- Yue Yang
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China
| | - Zhirong Sun
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China
| | - Jingrou Li
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China
| | - Yahui Song
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China
| | - Wei Xu
- Institutes of Biology and Medical Sciences, Soochow University, Jiangsu Key Labotrary of Infection and Immunity, Suzhou 215123, China.
| |
Collapse
|
11
|
Mihoc T, Latcu SC, Secasan CC, Dema V, Cumpanas AA, Selaru M, Pirvu CA, Valceanu AP, Zara F, Dumitru CS, Novacescu D, Pantea S. Pancreatic Morphology, Immunology, and the Pathogenesis of Acute Pancreatitis. Biomedicines 2024; 12:2627. [PMID: 39595191 PMCID: PMC11591934 DOI: 10.3390/biomedicines12112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disorder with significant morbidity and mortality. This review aims to integrate the current knowledge of pancreatic morphology and immunology with the pathogenesis of acute pancreatitis, providing a comprehensive understanding of this critical condition. We conducted an extensive literature review, synthesizing data from recent studies and authoritative sources on pancreatic anatomy, histology, immunology, and the pathophysiology of acute pancreatitis. We also incorporated epidemiological data, clinical features, diagnostic criteria, and prognostic factors. The pancreas exhibits a complex morphology with intricate interactions between its exocrine and endocrine components. Its unique immunological landscape plays a crucial role in maintaining homeostasis and orchestrating responses to pathological conditions. In acute pancreatitis, the disruption of intracellular calcium signaling leads to premature enzyme activation, triggering a cascade of events including mitochondrial dysfunction, ATP depletion, and the release of proinflammatory mediators. This process can escalate from localized inflammation to systemic complications. The interplay between pancreatic morphology, immune responses, and pathophysiological mechanisms contributes to the varied clinical presentations and outcomes observed in acute pancreatitis. Understanding the intricate relationships between pancreatic morphology, immunology, and the pathogenesis of acute pancreatitis is crucial for developing more effective diagnostic and therapeutic strategies. This integrated approach provides new insights into the complex nature of acute pancreatitis and may guide future research directions in pancreatic disorders.
Collapse
Affiliation(s)
- Tudorel Mihoc
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Cosmin-Ciprian Secasan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Vlad Dema
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (T.M.); (V.D.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (C.-C.S.); (A.A.C.)
| | - Mircea Selaru
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Catalin Alexandru Pirvu
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Andrei Paul Valceanu
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| | - Flavia Zara
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Dorin Novacescu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.Z.); (C.-S.D.); (D.N.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stelian Pantea
- Department X, General Surgery II, Discipline of Surgical Emergencies, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (M.S.); (C.A.P.); (A.P.V.); (S.P.)
| |
Collapse
|
12
|
Yue X, Lai L, Wang R, Tan L, Wang Y, Xie Q, Li Y. DGA ameliorates severe acute pancreatitis through modulating macrophage pyroptosis. Inflamm Res 2024; 73:1803-1817. [PMID: 39231819 DOI: 10.1007/s00011-024-01931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Severe acute pancreatitis (SAP) is an inflammatory disease with varying severity, ranging from mild local inflammation to severe systemic disease, with a high incidence rate and mortality. Current drug treatments are not ideal. Therefore, safer and more effective therapeutic drugs are urgently needed. 7α,14β-dihydroxy-ent-kaur-17-dimethylamino-3,15-dione DGA, a diterpenoid compound derivatized from glaucocalyxin A, exhibits anti-inflammatory activity. In this study, we demonstrated the therapeutic potential of DGA against SAP and elucidated the underlying mechanisms. Treatment with DGA markedly (1) inhibited death of RAW264.7 and J774a.1 cells induced by Nigericin and lipopolysaccharide, (2) alleviated edema, acinar cell vacuolation, necrosis, and inflammatory cell infiltration of pancreatic tissue in mice, and (3) inhibited the activity of serum lipase and the secretion of inflammatory factor IL-1β. DGA significantly reduced the protein expression of IL-1β and NLRP3 and inhibited the phosphorylation of NF-κB. However, DGA exhibited no inhibitory effect on the expression of caspase-1, gasdermin D (GSDMD), NF-κB, TNF-α, or apoptosis-associated speck-like protein (ASC) and on the cleavage of caspase-1 or GSDMD. Molecular docking simulation confirmed that DGA can bind to TLR4 and IL-1 receptor. In conclusion, DGA may effectively alleviate the symptoms of SAP in mice and macrophages by inhibiting the binding of TLR4 and IL-1 receptor to their ligands; therefore, DGA is a promising drug candidate for the treatment of patients with SAP.
Collapse
Affiliation(s)
- Xiyue Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Lunmeng Lai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Ruina Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Lulu Tan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Yanping Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China
| | - Qing Xie
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China.
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, 199 Ren Ai Road, Suzhou, 215123, China.
| |
Collapse
|
13
|
Wu Z, Wang S, Wu Z, Tao J, Li L, Zheng C, Xu Z, Du Z, Zhao C, Liang P, Xu A, Wang Z. Altered immune cell in human severe acute pancreatitis revealed by single-cell RNA sequencing. Front Immunol 2024; 15:1354926. [PMID: 39372399 PMCID: PMC11449708 DOI: 10.3389/fimmu.2024.1354926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Background Severe acute pancreatitis (SAP) is characterized by inflammation, with inflammatory immune cells playing a pivotal role in disease progression. This study aims to understand variations in specific immune cell subtypes in SAP, uncover their mechanisms of action, and identify potential biological markers for predicting Acute Pancreatitis (AP) severity. Methods We collected peripheral blood from 7 untreated SAP patients and employed single-cell RNA sequencing for the first time to construct a transcriptome atlas of peripheral blood mononuclear cells (PBMCs) in SAP. Integrating SAP transcriptomic data with 6 healthy controls from the GEO database facilitated the analysis of immune cell roles in SAP. We obtained comprehensive transcriptomic datasets from AP samples in the GEO database and identified potential biomarkers associated with AP severity using the "Scissor" tool in single-cell transcriptomic data. Results This study presents the inaugural construction of a peripheral blood single-cell atlas for SAP patients, identifying 20 cell subtypes. Notably, there was a significant decrease in effector T cell subsets and a noteworthy increase in monocytes compared to healthy controls. Moreover, we identified a novel monocyte subpopulation expressing high levels of PPBP and PF4 which was significantly elevated in SAP. The proportion of monocyte subpopulations with high CCL3 expression was also markedly increased compared to healthy controls, as verified by flow cytometry. Additionally, cell communication analysis revealed insights into immune and inflammation-related signaling pathways in SAP patient monocytes. Finally, our findings suggest that the subpopulation with high CCL3 expression, along with upregulated pro-inflammatory genes such as S100A12, IL1B, and CCL3, holds promise as biomarkers for predicting AP severity. Conclusion This study reveals monocytes' crucial role in SAP initiation and progression, characterized by distinct pro-inflammatory features intricately linked to AP severity. A monocyte subpopulation with elevated PPBP and CCL3 levels emerges as a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zheyi Wu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of General Surgery, Huangshan City People’s Hospital, Huangshan, China
| | - Shijie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhiheng Wu
- Department of General Surgery, Huangshan City People’s Hospital, Huangshan, China
| | - Junjie Tao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lei Li
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chuanming Zheng
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhipeng Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhaohui Du
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chengpu Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Pengzhen Liang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Aman Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Institute of Acute and Critical Care, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
14
|
Jiang W, Li X, Zhang Y, Zhou W. Natural Compounds for the Treatment of Acute Pancreatitis: Novel Anti-Inflammatory Therapies. Biomolecules 2024; 14:1101. [PMID: 39334867 PMCID: PMC11430608 DOI: 10.3390/biom14091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/11/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Acute pancreatitis remains a serious public health problem, and the burden of acute pancreatitis is increasing. With significant morbidity and serious complications, appropriate and effective therapies are critical. Great progress has been made in understanding the pathophysiology of acute pancreatitis over the past two decades. However, specific drugs targeting key molecules and pathways involved in acute pancreatitis still require further study. Natural compounds extracted from plants have a variety of biological activities and can inhibit inflammation and oxidative stress in acute pancreatitis by blocking several signaling pathways, such as the nuclear factor kappa-B and mitogen-activated protein kinase pathways. In this article, we review the therapeutic effects of various types of phytochemicals on acute pancreatitis and discuss the mechanism of action of these natural compounds in acute pancreatitis, aiming to provide clearer insights into the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Wenkai Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| | - Yi Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China;
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (W.J.); (X.L.)
| |
Collapse
|
15
|
Mititelu A, Grama A, Colceriu MC, Benţa G, Popoviciu MS, Pop TL. Role of Interleukin 6 in Acute Pancreatitis: A Possible Marker for Disease Prognosis. Int J Mol Sci 2024; 25:8283. [PMID: 39125854 PMCID: PMC11311934 DOI: 10.3390/ijms25158283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Acute pancreatitis (AP) is a significant cause of morbidity, even in children, and is frequently associated with systemic manifestations. There are many cytokines involved in the inflammatory response characteristic of this disease. Interleukin 6 (IL-6) is one of the most important cytokines involved in AP, beginning from cellular injury and continuing to the systemic inflammatory response and distant organ involvement. IL-6 is a multifunctional cytokine that regulates acute-phase response and inflammation. It is produced by various cells and exerts its biological role on many cells through its high-affinity complex receptor. IL-6 has been investigated as a predicting maker for severe forms of AP. Many studies have validated the use of IL-6 serum levels in the first 48 h as a reliable marker for severe evolution and multisystemic involvement. Still, it has not been used in daily practice until now. This review discusses the main binding mechanisms by which IL-6 triggers cellular response and the AP pathogenetic mechanisms in which IL-6 is involved. We then emphasize the promising role of IL-6 as a prognostic marker, which could be added as a routine marker at admission in children with AP.
Collapse
Affiliation(s)
- Alexandra Mititelu
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.M.); (M.-C.C.); (G.B.); (T.L.P.)
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.M.); (M.-C.C.); (G.B.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Marius-Cosmin Colceriu
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.M.); (M.-C.C.); (G.B.); (T.L.P.)
| | - Gabriel Benţa
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.M.); (M.-C.C.); (G.B.); (T.L.P.)
| | | | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.M.); (M.-C.C.); (G.B.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Hong W, Zippi M, Wang G, Jin X, He W, Goyal H. Editorial: Immune dysfunction in acute pancreatitis: from bench to bedside research. Front Immunol 2024; 15:1462563. [PMID: 39100664 PMCID: PMC11294211 DOI: 10.3389/fimmu.2024.1462563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Affiliation(s)
- Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua He
- Pancreatic Disease Centre, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hemant Goyal
- Department of Surgery, University of Texas Health Sciences Center, Houston, TX, United States
| |
Collapse
|
17
|
Mei W, Zhang X, Niu M, Li L, Guo X, Wang G, Pandol S, Wen L, Cao F. Deletion of myeloid-specific Orai1 calcium channel does not affect pancreatic tissue damage in experimental acute pancreatitis. Pancreatology 2024; 24:528-537. [PMID: 38637233 DOI: 10.1016/j.pan.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Store-operated Ca2+ entry (SOCE) mediated by ORAI1 channel plays a crucial role in acute pancreatitis (AP). Macrophage is an important regulator in amplifying pancreatic tissue damage, but little is known about the role of ORAI1 in macrophages. In this study, we examined the effects of macrophage-specific ORAI1 on pancreatic tissue damage in AP. METHOD Myeloid-specific Orai1 deficient mice was generated by crossing a LysM-Cre mouse line with Orai1f/f mice. Bone marrow-derived macrophages (BMDMs) were isolated, cultured, and stimulated to induce M1 or M2 macrophage polarization. Intracellular Ca2+ signals were measured by time-lapse confocal microscope imaging, with a Ca2+ indicator (Fluo 4). Experimental AP was induced by hourly intraperitoneal injections of caerulein or retrograde biliopancreatic infusion of sodium taurocholate. Pancreatic tissue damage was assessed by histopathological scoring and immunostaining. Sepsis was induced by intraperitoneal injection of lipopolysaccharide; organ damage and serum pro-inflammatory cytokines were measured. RESULT Myeloid-specific Orai1 deletion exhibited minimal effect on SOCE in M0 macrophages and promoted M2 macrophage polarization ex vivo. Myeloid-specific Orai1 deletion did not affect pancreatic tissue damage, nor neutrophil or macrophage infiltration in two models of AP. Similarly, myeloid-specific Orai1 deletion did not influence overall survival rate in a model of sepsis, nor lung, kidney, and liver damage; while serum pro-inflammatory cytokines, including IL-6, TNF-α, and IL-1β were higher in Orai1ΔLysM mice, but were largely reduced in mice with Orai1 inhibitor. CONCLUSION Our data suggest that ORAI1 may not be a predominant SOCE channel in macrophages and play a limited role in mediating pancreatic tissue damage in AP.
Collapse
Affiliation(s)
- Wentong Mei
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xiuli Zhang
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China; Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Mengya Niu
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Liang Li
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Xiaoyu Guo
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China; Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China; Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China; Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Stephen Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angel, CA, 90048, USA
| | - Li Wen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| |
Collapse
|
18
|
Dao YHT, Huynh TM, Tran DT, Ho PT, Vo TD. Clinical value of the Systemic Inflammatory Response Index for predicting acute pancreatitis severity in Vietnamese setting. JGH Open 2024; 8:e13101. [PMID: 38882631 PMCID: PMC11177285 DOI: 10.1002/jgh3.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND AND AIM Accurate prediction of severe acute pancreatitis (SAP) is crucial for timely intervention. This study focuses on the Systemic Inflammatory Response Index (SIRI) to assess its clinical value in predicting the severity of AP in the Vietnamese context. METHODS A cross-sectional prospective study was conducted with acute pancreatitis patients at a national hospital in Ho Chi Minh City. The patients were classified into nonsevere and severe groups, and the clinical characteristics were analyzed. The predictive abilities of SIRI, calculated using neutrophil × monocyte/lymphocyte, was assessed for predictive abilities. Multivariate regression and receiver operating characteristics (ROC) curves evaluated the prognostic factors and predictive accuracy. RESULTS Among 207 patients, 78.7% had nonsevere AP, and 21.3% had SAP. The severe group exhibited a significantly higher median SIRI (12.0) than the nonsevere group (4.9) (P < 0.001). Multivariate regression identified SIRI (odds ratio [OR] = 1.623) as an independent predictor of SAP. The ROC curve determined a SIRI cutoff of 7.82 with an area under the curve (AUC) of 0.737. Combining the SIRI and Bedside Index for Severity in Acute Pancreatitis (BISAP) score improved the predictive ability (AUC = 0.820) with increased sensitivity (90.91%) (P < 0.001). CONCLUSION SIRI, particularly when combined with the BISAP score, shows significant potential to predict SAP severity in the Vietnamese clinical setting, providing valuable information for effective patient management.
Collapse
Affiliation(s)
- Yen H T Dao
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Tien M Huynh
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
- University Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| | | | - Phat T Ho
- Cho Ray HospitalHo Chi Minh CityVietnam
| | - Thong D Vo
- University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
- University Medical Center Ho Chi Minh CityHo Chi Minh CityVietnam
| |
Collapse
|
19
|
Milivojcevic Bevc I, Tasic-Uros D, Stojanovic BS, Jovanovic I, Dimitrijevic Stojanovic M, Gajovic N, Jurisevic M, Radosavljevic G, Pantic J, Stojanovic B. Redefining Immune Dynamics in Acute Pancreatitis: The Protective Role of Galectin-3 Deletion and Treg Cell Enhancement. Biomolecules 2024; 14:642. [PMID: 38927046 PMCID: PMC11201657 DOI: 10.3390/biom14060642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Acute pancreatitis (AP) is a complex inflammatory condition that can lead to systemic inflammatory responses and multiple organ dysfunction. This study investigates the role of Galectin-3 (Gal-3), a β-galactoside-binding lectin, in modulating acquired immune responses in AP. Acute pancreatitis was induced by ligation of the bile-pancreatic duct in wild-type and Galectin-3-deficient C57BL/6 mice. We determined the phenotypic and molecular features of inflammatory cells, serum concentrations of amylase, pancreatic trypsin activity, and pancreatic and lung pathology. Galectin-3 deficiency decreased the total number of CD3+CD49- T cells and CD4+ T helper cells, downregulated the production of inflammatory cytokine and IFN-γ, and increased the accumulation of IL-10-producing Foxp3+ T regulatory cells and regulatory CD4+ T cells in the pancreata of diseased animals. The deletion of Galectin-3 ameliorates acute pancreatitis characterized by lowering serum amylase concentration and pancreatic trypsin activity, and attenuating of the histopathology of the lung. These findings shed light on the role of Galectin-3 in acquired immune response in acute pancreatitis and identify Galectin-3 as an attractive target for investigation of the immunopathogenesis of disease and for consideration as a potential therapeutic target for patients with acute inflammatory disease of the pancreas.
Collapse
Affiliation(s)
| | - Danijela Tasic-Uros
- City Medical Emergency Department, 11000 Belgrade, Serbia; (I.M.B.); (D.T.-U.)
| | - Bojana S. Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
| | - Milena Jurisevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gordana Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (I.J.); (N.G.); (M.J.); (G.R.); (J.P.); (B.S.)
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
20
|
Zhang C, Shi Y, Liu C, Sudesh SM, Hu Z, Li P, Liu Q, Ma Y, Shi A, Cai H. Therapeutic strategies targeting mechanisms of macrophages in diabetic heart disease. Cardiovasc Diabetol 2024; 23:169. [PMID: 38750502 PMCID: PMC11097480 DOI: 10.1186/s12933-024-02273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.
Collapse
Affiliation(s)
- Chaoyue Zhang
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Changzhi Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shivon Mirza Sudesh
- Faculty of Medicine, St. George University of London, London, UK
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus
| | - Zhao Hu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Qi Liu
- Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yiming Ma
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ao Shi
- Faculty of Medicine, St. George University of London, London, UK.
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus.
| | - Hongyan Cai
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
21
|
Yang H, Cao R, Zhou F, Wang B, Xu Q, Li R, Zhang C, Xu H. The role of Interleukin-22 in severe acute pancreatitis. Mol Med 2024; 30:60. [PMID: 38750415 PMCID: PMC11097471 DOI: 10.1186/s10020-024-00826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.
Collapse
Affiliation(s)
- Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Ruofan Cao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Feifei Zhou
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Ben Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Qianqian Xu
- Department of Gastroenterology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Ji'nan, Shandong, 250021, P.R. China
| | - Rui Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - ChunHua Zhang
- Shandong First Medical University, Ji'nan, Shandong, 250117, P.R. China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
22
|
Sun Y, Xie J, Zhu J, Yuan Y. Bioinformatics and Machine Learning Methods Identified MGST1 and QPCT as Novel Biomarkers for Severe Acute Pancreatitis. Mol Biotechnol 2024; 66:1246-1265. [PMID: 38236462 DOI: 10.1007/s12033-023-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
Severe acute pancreatitis (SAP) is a life-threatening gastrointestinal emergency. The study aimed to identify biomarkers and investigate molecular mechanisms of SAP. The GSE194331 dataset from GEO database was analyzed using bioinformatics. Differentially expressed genes (DEGs) associated with SAP were identified, and a protein-protein interaction network (PPI) was constructed. Machine learning algorithms were used to determine potential biomarkers. Gene set enrichment analysis (GSEA) explored molecular mechanisms. Immune cell infiltration were analyzed, and correlation between biomarker expression and immune cell infiltration was calculated. A competing endogenous RNA network (ceRNA) was constructed, and biomarker expression levels were quantified in clinical samples using RT-PCR. 1101 DEGs were found, with two modules most relevant to SAP. Potential biomarkers in peripheral blood samples were identified as glutathione S-transferase 1 (MGST1) and glutamyl peptidyltransferase (QPCT). GSEA revealed their association with immunoglobulin regulation, with QPCT potentially linked to pancreatic cancer development. Correlation between biomarkers and immune cell infiltration was demonstrated. A ceRNA network consisting of 39 nodes and 41 edges was constructed. Elevated expression levels of MGST1 and QPCT were verified in clinical samples. In conclusion, peripheral blood MGST1 and QPCT show promise as SAP biomarkers for diagnosis, providing targets for therapeutic intervention and contributing to SAP understanding.
Collapse
Affiliation(s)
- Yang Sun
- Department of Emergency Medicine, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Jingjun Xie
- Department of General Surgery, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Jun Zhu
- Department of Pharmacy, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yadong Yuan
- Department of General Surgery, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
23
|
Xiao S, Han X, Bai S, Chen R. Analysis of immune cell infiltration characteristics in severe acute pancreatitis through integrated bioinformatics. Sci Rep 2024; 14:8711. [PMID: 38622245 PMCID: PMC11018854 DOI: 10.1038/s41598-024-59205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
The etiopathogenesis of severe acute pancreatitis (SAP) remains poorly understood. We aim to investigate the role of immune cells Infiltration Characteristics during SAP progression. Gene expression profiles of the GSE194331 dataset were retrieved from the GEO. Lasso regression and random forest algorithms were employed to select feature genes from genes related to SAP progression and immune responses. CIBERSORT was utilized to estimate differences in immune cell types and proportions and the relationship between immune cells and gene expression. We performed pathway enrichment analysis using GSEA to examine disparities in KEGG signaling pathways when comparing the two groups. Additionally, CMap analysis was executed to identify prospective small molecular compounds. The three hub genes (CBLB, JADE2, RNF144A) were identified that can predict SAP progression. Analysis of CIBERSORT and TISIDB databases has shown that there are significant differences in immune cell expression levels between the normal and SAP groups, and three hub genes (CBLB, JADE2, RNF144A) were highly correlated with multiple immune cells, regulating the characteristics of immune cell infiltration in the microenvironment. Finally, drug prediction through the Connectivity Map database suggested that compounds such as Entecavir, KU-0063794, Y-27632, and Antipyrine have certain effects as potential targeted drugs for the treatment of SAP. CBLB, JADE2, and RNF144A are hub genes in SAP, potentially playing important roles in SAP progression. This finding further broadens the understanding of the etiopathogenesis of SAP and provides a feasible basis for future research on diagnostic and immunotherapeutic targets for SAP.
Collapse
Affiliation(s)
- Shuai Xiao
- Department of Intensive Care Medicine, Tengzhou Central People's Hospital, Tengzhou, China
| | - Xiao Han
- Department of Nutriology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuhui Bai
- Department of General Practice, Jining First People's Hospital, Jining, China
| | - Rui Chen
- Department of General Practice, The Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
24
|
Hu S, Lin T, Chen Y, Guo Y, Sun X, Shi L, Pan J. NLRC4-mediated pyroptosis was involved in coagulation disorders of acute pancreatitis. J Gene Med 2024; 26:e3683. [PMID: 38571451 DOI: 10.1002/jgm.3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a potentially lethal acute disease highly involved in coagulation disorders. Pyroptosis has been reported to exacerbate coagulation disorders, yet this implication has not been illustrated completely in AP. METHODS RNA sequencing data of peripheral blood of AP patients were downloaded from the Gene Expression Omnibus database. Gene set variation analysis and single sample gene set enrichment analysis were used to calculate the enrichment score of coagulation-related signatures and pyroptosis. Spearman and Pearson correlation analysis was used for correlation analysis. Peripheral blood samples and related clinical parameters were collected from patients with AP and healthy individuals. A severe AP (SAP) model of mice was established using caerulein and lipopolysaccharide. Enzyme-linked immunosorbent assay, chemiluminescence immunoassay and immunohistochemical analysis were employed to detect the level of coagulation indicators and pyroptosis markers in serum and pancreas tissues. Additionally, we evaluated the effect of pyroptosis inhibition and NLRC4 silence on the function of human umbilical vein endothelial cells (HUVECs). RESULTS Coagulation disorders were significantly positively correlated to the severity of AP, and they could be a predictor for AP severity. Further analyses indicated that six genes-DOCK9, GATA3, FCER1G, NLRC4, C1QB and C1QC-may be involved in coagulation disorders of AP. Among them, NLRC4 was positively related to pyroptosis that had a positive association with most coagulation-related signatures. Data from patients showed that NLRC4 and other pyroptosis markers, including IL-1β, IL-18, caspase1 and GSDMD, were significant correlation to AP severity. In addition, NLRC4 was positively associated with coagulation indicators in AP patients. Data from mice showed that NLRC4 was increased in the pancreas tissues of SAP mice. Treatment with a pyroptosis inhibitor effectively alleviated SAP and coagulation disorders in mice. Finally, inhibiting pyroptosis or silencing NLRC4 could relieve endothelial dysfunction in HUVECs. CONCLUSIONS NLRC4-mediated pyroptosis damages the function of endothelial cells and thereby exacerbates coagulation disorders of AP. Inhibiting pyroptosis could improve coagulation function and alleviate AP.
Collapse
Affiliation(s)
- Sunkuan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China
- Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Tiesu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yufeng Chen
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China
- Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yimo Guo
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuecheng Sun
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingyan Shi
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingye Pan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China
- Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Collaborative Innovation Center for Intelligence Medical Education, Wenzhou, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, China
| |
Collapse
|
25
|
Zhou L, Yu J, Wang S, Ma Y, Liu X, Zhang X, Luo Y, Wen S, Li L, Li W, Niu X. Tectoridin alleviates caerulein-induced severe acute pancreatitis by targeting ERK2 to promote macrophage M2 polarization. Arch Biochem Biophys 2024; 752:109873. [PMID: 38141907 DOI: 10.1016/j.abb.2023.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Severe acute pancreatitis (SAP) is an inflammatory disease of the pancreas with a high mortality rate. Macrophages play a crucial role in the pathogenesis of pancreatitis. Tectoridin (Tec) is a highly active isoflavone with anti-inflammatory pharmacological activity. However, the role of Tec in the SAP process is not known. The purpose of this study was to investigate the therapeutic effect and potential mechanism of Tec on SAP. To establish SAP mice by intraperitoneal injection of caerulein and Lipopolysaccharide (LPS), the role of Tec in the course of SAP was investigated based on histopathology, biochemical indicators of amylase and lipase and inflammatory factors. The relationship between Tec and macrophage polarization was verified by immunofluorescence, real-time quantitative PCR and Western blot analysis. We then further predicted the possible targets and signal pathways of action of Tec by network pharmacology and molecular docking, and validated them by in vivo and in vitro. In this study, we demonstrated that Tec significantly reduced pancreatic injury in SAP mice, and decreased serum levels of amylase and lipase. The immunofluorescence and Western blot analysis showed that Tec promoted macrophage M2 polarization. Network pharmacology and molecular docking predicted that Tec may target ERK2 for the treatment of SAP, and in vivo and in vitro experiments proved that Tec inhibited the ERK MAPK signal pathway. In summary, Tec can target ERK2, promote macrophage M2 polarization and attenuate pancreatic injury, Tec may be a potential drug for the treatment of SAP.
Collapse
Affiliation(s)
- Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajing Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yuzhi Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Sha Wen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lingli Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
26
|
Liu J, Zhong L, Zhang Y, Ma J, Xie T, Chen X, Zhang B, Shang D. Identification of novel biomarkers based on lipid metabolism-related molecular subtypes for moderately severe and severe acute pancreatitis. Lipids Health Dis 2024; 23:1. [PMID: 38169383 PMCID: PMC10763093 DOI: 10.1186/s12944-023-01972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an unpredictable and potentially fatal disorder. A derailed or unbalanced immune response may be the root of the disease's severe course. Disorders of lipid metabolism are highly correlated with the occurrence and severity of AP. We aimed to characterize the contribution and immunological characteristics of lipid metabolism-related genes (LMRGs) in non-mild acute pancreatitis (NMAP) and identify a robust subtype and biomarker for NMAP. METHODS The expression mode of LMRGs and immune characteristics in NMAP were examined. Then LMRG-derived subtypes were identified using consensus clustering. The weighted gene co-expression network analysis (WGCNA) was utilized to determine hub genes and perform functional enrichment analyses. Multiple machine learning methods were used to build the diagnostic model for NMAP patients. To validate the predictive effectiveness, nomograms, receiver operating characteristic (ROC), calibration, and decision curve analysis (DCA) were used. Using gene set variation analysis (GSVA) and single-cell analysis to study the biological roles of model genes. RESULTS Dysregulated LMRGs and immunological responses were identified between NMAP and normal individuals. NMAP individuals were divided into two LMRG-related subtypes with significant differences in biological function. The cluster-specific genes are primarily engaged in the regulation of defense response, T cell activation, and positive regulation of cytokine production. Moreover, we constructed a two-gene prediction model with good performance. The expression of CARD16 and MSGT1 was significantly increased in NMAP samples and positively correlated with neutrophil and mast cell infiltration. GSVA results showed that they are mainly upregulated in the T cell receptor complex, immunoglobulin complex circulating, and some immune-related routes. Single-cell analysis indicated that CARD16 was mainly distributed in mixed immune cells and macrophages, and MGST1 was mainly distributed in exocrine glandular cells. CONCLUSIONS This study presents a novel approach to categorizing NMAP into different clusters based on LMRGs and developing a reliable two-gene biomarker for NMAP.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Zhong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yunshu Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyuan Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tong Xie
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
27
|
Peng K, Biao C, Zhao YY, Jun LC, Wei W, A Bu Li Zi YLNYZ, Song L. Long non-coding RNA MM2P suppresses M1-polarized macrophages-mediated excessive inflammation to prevent sodium taurocholate-induced acute pancreatitis by blocking SHP2-mediated STAT3 dephosphorylation. Clin Exp Med 2023; 23:3589-3603. [PMID: 37486591 DOI: 10.1007/s10238-023-01126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
M1 macrophage-mediated excessive inflammatory response plays a key role in the onset and progression of acute pancreatitis (AP), and this study aimed to investigate the role and underlying mechanisms by which the macrophage polarization-related long noncoding RNA (lncRNA) MM2P participated in the regulation of AP progression. By performing quantitative reverse-transcription PCR (qRT-PCR) assay, lncRNA MM2P was found to be downregulated in both sodium taurocholate-induced AP model mice tissues and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and gain-of-function experiments confirmed that overexpression of lncRNA MM2P counteracted inflammatory responses, reduced macrophage infiltration and facilitated M1-to-M2 transformation of macrophages to ameliorate AP development in vitro and in vivo. Further mechanical experiments revealed that lncRNA MM2P inhibited Src homology 2 containing protein tyrosine phosphatase 2 (SHP2)-mediated signal transducer and activator of transcription 3 (STAT3) dephosphorylation to activate the STAT3 signaling, and silencing of SHP2 suppressed M1 type skewing in LPS-induced RAW264.7 cells. Interestingly, our rescuing experiments verified that lncRNA MM2P-induced suppressing effects on M1-polarization of LPS-treated RAW264.7 cells were abrogated by co-treating cells with STAT3 inhibitor stattic. Collectively, our data for the first time revealed that lncRNA MM2P suppressed M1-polarized macrophages to attenuate the progression of sodium taurocholate-induced AP, and lncRNA MM2P might be an ideal biomarker for AP diagnosis and treatment.
Collapse
Affiliation(s)
- Kang Peng
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Chen Biao
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Yin Yong Zhao
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Li Chao Jun
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | - Wang Wei
- General Surgery Department, The First People's Hospital of Urumqi, Urumqi, 830011, China
| | | | - Lin Song
- General Surgery Department, The First People's Hospital of Urumqi (Children's Hospital of Urumqi), Jiankang Road No. 1, Tianshan District, Urumqi, 830002, Xinjiang, China.
| |
Collapse
|
28
|
Li L, Liu Q, Le C, Zhang H, Liu W, Gu Y, Yang J, Zhang X. Toll-like receptor 2 deficiency alleviates acute pancreatitis by inactivating the NF-κB/NLRP3 pathway. Int Immunopharmacol 2023; 121:110547. [PMID: 37356124 DOI: 10.1016/j.intimp.2023.110547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
The early aseptic immune response is the key factor leading to the aggravation of acute pancreatitis (AP). Toll-like receptor (TLR) 2 is an important member of the TLR family, but the role of TLR2 in AP remains to be investigated. In the present study, we found that TLR2 expression was significantly increased in AP patients. In a mouse model of cerulein-induced AP, TLR2 deficiency resulted in reduced inflammation, reduced infiltration of pancreatic neutrophils and macrophages, and decreased expression of proinflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-17 and IL-18. In addition, transcriptomic analysis revealed that nod-like receptor family pyrin domain-containing 3 (NLRP3) expression was increased in AP, and there was a significant correlation between NLRP3 and TLR2. This study found that TLR2 deficiency can lead to a decrease in the activation of the NF-κB/NLRP3 signalling pathway, and the NLRP3 inhibitor MCC950 can alleviate AP in mice. Therefore, this study confirmed that TLR2 participates in the development of AP by activating the NF-κB/NLRP3 pathway. This study suggested that TLR2 might be a novel therapeutic target for AP.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Disease, Hangzhou 310006, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Disease, Hangzhou 310006, China
| | - Chenyu Le
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Wenfei Liu
- Chinese PLA 305 Hospital, Beijing 100018, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Disease, Hangzhou 310006, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310006, China; Hangzhou Institute of Digestive Disease, Hangzhou 310006, China.
| |
Collapse
|
29
|
Kumar L, Kumar S, Sandeep K, Patel SKS. Therapeutic Approaches in Pancreatic Cancer: Recent Updates. Biomedicines 2023; 11:1611. [PMID: 37371705 DOI: 10.3390/biomedicines11061611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is a significant challenge for effective treatment due to its complex mechanism, different progressing stages, and lack of adequate procedures for screening and identification. Pancreatic cancer is typically identified in its advanced progression phase with a low survival of ~5 years. Among cancers, pancreatic cancer is also considered a high mortality-causing casualty over other accidental or disease-based mortality, and it is ranked seventh among all mortality-associated cancers globally. Henceforth, developing diagnostic procedures for its early detection, understanding pancreatic cancer-linked mechanisms, and various therapeutic strategies are crucial. This review describes the recent development in pancreatic cancer progression, mechanisms, and therapeutic approaches, including molecular techniques and biomedicines for effectively treating cancer.
Collapse
Affiliation(s)
- Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Kumar Sandeep
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
30
|
Gerasimenko JV, Gerasimenko OV. The role of Ca 2+ signalling in the pathology of exocrine pancreas. Cell Calcium 2023; 112:102740. [PMID: 37058923 PMCID: PMC10840512 DOI: 10.1016/j.ceca.2023.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Exocrine pancreas has been the field of many successful studies in pancreatic physiology and pathology. However, related disease - acute pancreatitis (AP) is still takes it toll with more than 100,000 related deaths worldwide per year. In spite of significant scientific progress and several human trials currently running for AP, there is still no specific treatment in the clinic. Studies of the mechanism of initiation of AP have identified two crucial conditions: sustained elevations of cytoplasmic calcium concentration (Ca2+ plateau) and significantly reduced intracellular energy (ATP depletion). These hallmarks are interdependent, i.e., Ca2+ plateau increase energy demand for its clearance while energy production is greatly affected by the pathology. Result of long standing Ca2+ plateau is destabilisation of the secretory granules and premature activation of the digestive enzymes leading to necrotic cell death. Main attempts so far to break the vicious circle of cell death have been concentrated on reduction of Ca2+ overload or reduction of ATP depletion. This review will summarise these approaches, including recent developments of potential therapies for AP.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom.
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom
| |
Collapse
|
31
|
Stojanovic B, Jovanovic IP, Stojanovic MD, Jovanovic M, Vekic B, Milosevic B, Cvetkovic A, Spasic M, Stojanovic BS. The Emerging Roles of the Adaptive Immune Response in Acute Pancreatitis. Cells 2023; 12:1495. [PMID: 37296616 PMCID: PMC10253175 DOI: 10.3390/cells12111495] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Acute pancreatitis (AP) is an abrupt, variable inflammatory condition of the pancreas, potentially escalating to severe systemic inflammation, rampant pancreatic necrosis, and multi-organ failure. Its complex pathogenesis involves an intricate immune response, with different T cell subsets (Th1, Th2, Th9, Th17, Th22, TFH, Treg, and CD8+ T cells) and B cells playing pivotal roles. Early T cell activation initiates the AP development, triggering cytokines associated with the Th1 response, which stimulate macrophages and neutrophils. Other T cell phenotypes contribute to AP's pathogenesis, and the balance between pro-inflammatory and anti-inflammatory cytokines influences its progression. Regulatory T and B cells are crucial for moderating the inflammatory response and promoting immune tolerance. B cells further contribute through antibody production, antigen presentation, and cytokine secretion. Understanding these immune cells' roles in AP could aid in developing new immunotherapies to enhance patient outcomes. However, further research is required to define these cells' precise roles in AP and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Ivan P. Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Berislav Vekic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Bojan Milosevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Aleksandar Cvetkovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Marko Spasic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.)
| | - Bojana S. Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
32
|
Harithpriya K, Jayasuriya R, Adhikari T, Rai A, Ramkumar KM. Modulation of transcription factors by small molecules in β-cell development and differentiation. Eur J Pharmacol 2023; 946:175606. [PMID: 36809813 DOI: 10.1016/j.ejphar.2023.175606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Transcription factors regulate gene expression and play crucial roles in development and differentiation of pancreatic β-cell. The expression and/or activities of these transcription factors are reduced when β-cells are chronically exposed to hyperglycemia, which results in loss of β-cell function. Optimal expression of such transcription factors is required to maintain normal pancreatic development and β-cell function. Over many other methods of regenerating β-cells, using small molecules to activate transcription factors has gained insights, resulting in β-cells regeneration and survival. In this review, we discuss the broad spectrum of transcription factors regulating pancreatic β-cell development, differentiation and regulation of these factors in normal and pathological states. Also, we have presented set of potential pharmacological effects of natural and synthetic compounds on activities of transcription factor involved in pancreatic β-cell regeneration and survival. Exploring these compounds and their action on transcription factors responsible for pancreatic β-cell function and survival could be useful in providing new insights for development of small molecule modulators.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Trishla Adhikari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Awantika Rai
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
33
|
Waddell H, Stevenson TJ, Mole DJ. The role of the circadian rhythms in critical illness with a focus on acute pancreatitis. Heliyon 2023; 9:e15335. [PMID: 37089281 PMCID: PMC10119767 DOI: 10.1016/j.heliyon.2023.e15335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Circadian rhythms are responsible for governing various physiological processes, including hormone secretion, immune responses, metabolism, and the sleep/wake cycle. In critical illnesses such as acute pancreatitis (AP), circadian rhythms can become dysregulated due to disease. Evidence suggests that time of onset of disease, coupled with peripheral inflammation brought about by AP will impact on the circadian rhythms generated in the central pacemaker and peripheral tissues. Cells of the innate and adaptive immune system are governed by circadian rhythms and the diurnal pattern of expression can be disrupted during disease. Peak circadian immune cell release and gene expression can coincide with AP onset, that may increase pancreatic injury, tissue damage and the potential for systemic inflammation and multiple organ failure to develop. Here, we provide an overview of the role of circadian rhythms in AP and the underpinning inflammatory mechanisms to contextualise ongoing research into the chronobiology and chronotherapeutics of AP.
Collapse
Affiliation(s)
- Heather Waddell
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Tyler J. Stevenson
- Institute of Biodiversity and Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Damian J. Mole
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Clinical Surgery, School of Clinical Sciences and Community Health, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
34
|
Identification of Key Biomarkers Associated with Immunogenic Cell Death and Their Regulatory Mechanisms in Severe Acute Pancreatitis Based on WGCNA and Machine Learning. Int J Mol Sci 2023; 24:ijms24033033. [PMID: 36769358 PMCID: PMC9918120 DOI: 10.3390/ijms24033033] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Immunogenic cell death (ICD) is a form of programmed cell death with a strong sense of inflammatory detection, whose powerful situational awareness can cause the reactivation of aberrant immunity. However, the role of ICD in the pathogenesis of severe acute pancreatitis (SAP) has yet to be investigated. This study aims to explore the pivotal genes associated with ICD in SAP and how they relate to immune infiltration and short-chain fatty acids (SCFAs), in order to provide a theoretical foundation for further, in-depth mechanistic studies. We downloaded GSE194331 datasets from the Gene Expression Omnibus (GEO). The use of differentially expressed gene (DEG) analysis; weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression analysis allowed us to identify a total of three ICD-related hub genes (LY96, BCL2, IFNGR1) in SAP. Furthermore, single sample gene set enrichment analysis (ssGSEA) demonstrated that hub genes are closely associated with the infiltration of specific immune cells, the activation of immune pathways and the metabolism of SCFAs (especially butyrate). These findings were validated through the analysis of gene expression patterns in both clinical patients and rat animal models of SAP. In conclusion, the first concept of ICD in the pathogenesis of SAP was proposed in our study. This has important implications for future investigations into the pro-inflammatory immune mechanisms mediated by damage-associated molecular patterns (DAMPs) in the late stages of SAP.
Collapse
|
35
|
Abstract
Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis. The complex kinetics and stepwise development of pancreatic cancer suggests that it is governed by a discrete set of organizing rules and principles, and repeated attempts to target specific components within the microenvironment reveal self-regulating mechanisms of resistance. The histopathological and genetic progression models of the transforming ductal epithelium must therefore be considered together with a programme of stromal progression to create a comprehensive picture of pancreatic cancer evolution. Understanding the underlying organizational logic of the tumour to anticipate and pre-empt the almost inevitable compensatory mechanisms will be essential to eradicate the disease.
Collapse
Affiliation(s)
- Sunil R Hingorani
- Division of Hematology and Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
36
|
Liu S, Szatmary P, Lin JW, Wang Q, Sutton R, Chen L, Liu T, Huang W, Xia Q. Circulating monocytes in acute pancreatitis. Front Immunol 2022; 13:1062849. [PMID: 36578487 PMCID: PMC9791207 DOI: 10.3389/fimmu.2022.1062849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease characterized by inflammation of the exocrine pancreas and manifesting itself through acute onset of abdominal pain. It is frequently associated with organ failure, pancreatic necrosis, and death. Mounting evidence describes monocytes - phagocytic, antigen presenting, and regulatory cells of the innate immune system - as key contributors and regulators of the inflammatory response and subsequent organ failure in acute pancreatitis. This review highlights the recent advances of dynamic change of numbers, phenotypes, and functions of circulating monocytes as well as their underling regulatory mechanisms with a special focus on the role of lipid modulation during acute pancreatitis.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jing-wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Tingting Liu, ; Wei Huang, ; Qing Xia,
| |
Collapse
|
37
|
Hassan MA, Abedelmaksoud TG, Abd El-Maksoud AA. Effects of Lactoferrin Supplemented with Fermented Milk on Obesity-Associated Pancreatic Damage in Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122019. [PMID: 36556384 PMCID: PMC9785828 DOI: 10.3390/life12122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022]
Abstract
Non-alcoholic fatty pancreas disease is a newly emerging disease that represents an important risk factor for the development of pancreatic cancer. Obesity is a risk factor for pancreatic diseases, including pancreatitis and pancreatic cancer. On the other hand, the development of healthy aspects-based food products is a recent trend. Lactoferrin is a component of the body's immune system, which interacts with DNA, RNA, polysaccharides, and heparin, and it has many biological functions and many important immunomodulatory properties. Thus, this study aims to investigate the enhancement effect of supplementation of lactoferrin with stirred yogurt on weight gain, lipid profile, glucose level, and pancreatic enzymes in animals fed a high-fat diet (HFD). Forty-eight female albino rats were divided into 6 groups treated orally for 45 days as follows: negative control (basal diet), positive control (add 1% cholesterol), stirred yogurt (SY), Lactoferrin LF (100 mg/kg bw), supplementation of lactoferrin with stirred yogurt SY-LF at two concentrations LF1 (50 mg/kg bw) and LF2 (100 mg/kg bw). Blood and pancreas samples were collected for different analyses. Animals fed with a HFD showed a significant increase in body weight, total cholesterol, triglyceride, low-density lipoprotein (LDL), glucose level, amylase, and Lipase enzymes (44.72%, 151.33 mg/dL, 142.67 mg/dL, 85.37 mg/dL, 141.33 mg/dL, 39.33 U/mL, 23.43 U/mL). Moreover, it observed a significant decrease in high-density lipoprotein (HDL, 37.33 mg/dL); meanwhile, SY fortified with lactoferrin was useful in losing weight gain and improving lipid profile, pancreas function, and histological change in the pancreas. The supplementation of lactoferrin at 100 mg/Kg bw with LB. Acidophilus as a probiotic was more effective for pancreas functions. This application is a natural protective alternative to manufactured medicines for children and the elderly as a natural product.
Collapse
Affiliation(s)
- Mona A. Hassan
- Food Evaluation and Food Science Department, National Organization for Drug Control and Research, Giza 12553, Egypt
| | | | - Ahmed A. Abd El-Maksoud
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence:
| |
Collapse
|
38
|
Blockade of the protease ADAM17 ameliorates experimental pancreatitis. Proc Natl Acad Sci U S A 2022; 119:e2213744119. [PMID: 36215509 PMCID: PMC9586293 DOI: 10.1073/pnas.2213744119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute and chronic pancreatitis, the latter associated with fibrosis, are multifactorial inflammatory disorders and leading causes of gastrointestinal disease-related hospitalization. Despite the global health burden of pancreatitis, currently, there are no effective therapeutic agents. In this regard, the protease A Disintegrin And Metalloproteinase 17 (ADAM17) mediates inflammatory responses through shedding of bioactive inflammatory cytokines and mediators, including tumor necrosis factor α (TNFα) and the soluble interleukin (IL)-6 receptor (sIL-6R), the latter of which drives proinflammatory IL-6 trans-signaling. However, the role of ADAM17 in pancreatitis is unclear. To address this, Adam17ex/ex mice-which are homozygous for the hypomorphic Adam17ex allele resulting in marked reduction in ADAM17 expression-and their wild-type (WT) littermates were exposed to the cerulein-induced acute pancreatitis model, and acute (1-wk) and chronic (20-wk) pancreatitis models induced by the cigarette smoke carcinogen nicotine-derived nitrosamine ketone (NNK). Our data reveal that ADAM17 expression was up-regulated in pancreatic tissues of animal models of pancreatitis. Moreover, the genetic (Adam17ex/ex mice) and therapeutic (ADAM17 prodomain inhibitor [A17pro]) targeting of ADAM17 ameliorated experimental pancreatitis, which was associated with a reduction in the IL-6 trans-signaling/STAT3 axis. This led to reduced inflammatory cell infiltration, including T cells and neutrophils, as well as necrosis and fibrosis in the pancreas. Furthermore, up-regulation of the ADAM17/IL-6 trans-signaling/STAT3 axis was a feature of pancreatitis patients. Collectively, our findings indicate that the ADAM17 protease plays a pivotal role in the pathogenesis of pancreatitis, which could pave the way for devising novel therapeutic options to be deployed against this disease.
Collapse
|
39
|
Huang W, Zhang J, Jin W, Yang J, Yu G, Shi H, Shi K. Piperine alleviates acute pancreatitis: A possible role for FAM134B and CCPG1 dependent ER-phagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154361. [PMID: 35963197 DOI: 10.1016/j.phymed.2022.154361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acute pancreatitis was a common acute abdominal disease characterized by pancreatic acinar cell death and inflammation. Endoplasmic reticulum autophagy (ER-phagy) coud maintain cell homeostasis by degrading redundant and disordered endoplasmic reticulum and FAM134B and CCPG1 was main ER-phagy receptors. As a natural alkaloid, piperin is found in black pepper and has anti-inflammatory properties, whose effect on ER-phagy in pancreatitis has not been studied. PURPOSE The objective of this study was to demonstrate the pivotal role of FAM134B and CCPG1 dependent ER-phagy for alleviating acute pancreatitis and explore the molecular mechanism of piperine in alleviating acute pancreatitis. METHOD In this study we investigated the role of ER-phagy in acute pancreatitis and whether piperine could alleviate pancreatitis through ER-phagy regulation. We first detected endoplasmic reticulum stress (ER-stress) and ER-phagy in different degrees of acute pancreatitis. Then we used ER-stress and autophagy regulators to explore the relationship between ER-stress and ER-phagy in acute pancreatitis and their regulation of cell death. Through using FAM134B-/- and CCPG1-/-, we investigated the mechanism of piperine in the treatment of acute pancreatitis. RESULTS In this study, we confirmed that with the progression of acute pancreatitis, the pancreatic endoplasmic reticulum stress increased continuously, but the ER-phagy increased first and then was inhibited. Meanwhile, in acute pancreatitis, ER-stress and ER-phagy interacted: endoplasmic reticulum stress can induce ER-phagy, but serious ER-stress would inhibit ER-phagy; and ER-phagy could alleviate ER-stress. Next, we found that piperine reduced ER-stress by enhancing FAM134B and CCPG1 dependent ER-phagy, thereby alleviating pancreatic injury. CONCLUSION Impaired ER-phagy was both a cause and a consequence of ER-stress in AP mice, which contributed to the transition from AP to SAP. Piperine targeting ER-phagy provided a new insight into the pharmacological mechanism of piperine in treating AP.
Collapse
Affiliation(s)
- Weiguo Huang
- Translational Medicine Laboratory, Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Jie Zhang
- Translational Medicine Laboratory, Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Wenzhang Jin
- Translational Medicine Laboratory, Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China
| | - Jintao Yang
- Translational Medicine Laboratory, Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Guanzhen Yu
- Translational Medicine Laboratory, Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hongqi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, PR China.
| | - Keqing Shi
- Translational Medicine Laboratory, Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
40
|
Liu X, Luo W, Chen J, Hu C, Mutsinze RN, Wang X, Zhang Y, Huang L, Zuo W, Liang G, Wang Y. USP25 Deficiency Exacerbates Acute Pancreatitis via Up-Regulating TBK1-NF-κB Signaling in Macrophages. Cell Mol Gastroenterol Hepatol 2022; 14:1103-1122. [PMID: 35934222 PMCID: PMC9490099 DOI: 10.1016/j.jcmgh.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Severe acute pancreatitis can easily lead to systemic inflammatory response syndrome and death. Macrophages are known to be involved in the pathophysiology of acute pancreatitis (AP), and macrophage activation correlates with disease severity. In this study, we examined the role of ubiquitin-specific protease 25, a deubiquitinating enzyme and known regulator of macrophages, in the pathogenesis of AP. METHODS We used L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP in Usp25-/- mice and wild-type mice. We also generated bone marrow Usp25-/- chimeric mice and initiated L-arginine-mediated AP. Primary acinar cells and bone marrow-derived macrophages were isolated from wild-type and Usp25-/- mice to dissect molecular mechanisms. RESULTS Our results show that Usp25 deficiency exacerbates pancreatic and lung injury, neutrophil and macrophage infiltration, and systemic inflammatory responses in L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP. Bone marrow Usp25-/- chimeric mice challenged with L-arginine show that Usp25 deficiency in macrophages exaggerates AP by up-regulating the TANK-binding kinase 1 (TBK1)-nuclear factor-κB (NF-κB) signaling pathway. Similarly, in vitro data confirm that Usp25 deficiency enhances the TBK1-NF-κB pathway, leading to increased expression of inflammatory cytokines in bone marrow-derived macrophages. CONCLUSIONS Usp25 deficiency in macrophages enhances TBK1-NF-κB signaling, and the induction of inflammatory chemokines and type I interferon-related genes exacerbates pancreatic and lung injury in AP.
Collapse
Affiliation(s)
- Xin Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Medical Research Center, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rumbidzai N. Mutsinze
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China,Correspondence Address correspondence to: Yi Wang, PhD, Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. fax: (86) 577 85773060
| |
Collapse
|
41
|
Liu D, Wen L, Wang Z, Hai Y, Yang D, Zhang Y, Bai M, Song B, Wang Y. The Mechanism of Lung and Intestinal Injury in Acute Pancreatitis: A Review. Front Med (Lausanne) 2022; 9:904078. [PMID: 35872761 PMCID: PMC9301017 DOI: 10.3389/fmed.2022.904078] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP), as a common cause of clinical acute abdomen, often leads to multi-organ damage. In the process of severe AP, the lungs and intestines are the most easily affected organs aside the pancreas. These organ damages occur in succession. Notably, lung and intestinal injuries are closely linked. Damage to ML, which transports immune cells, intestinal fluid, chyle, and toxic components (including toxins, trypsin, and activated cytokines to the systemic circulation in AP) may be connected to AP. This process can lead to the pathological changes of hyperosmotic edema of the lung, an increase in alveolar fluid level, destruction of the intestinal mucosal structure, and impairment of intestinal mucosal permeability. The underlying mechanisms of the correlation between lung and intestinal injuries are inflammatory response, oxidative stress, and endocrine hormone secretion disorders. The main signaling pathways of lung and intestinal injuries are TNF-α, HMGB1-mediated inflammation amplification effect of NF-κB signal pathway, Nrf2/ARE oxidative stress response signaling pathway, and IL-6-mediated JAK2/STAT3 signaling pathway. These pathways exert anti-inflammatory response and anti-oxidative stress, inhibit cell proliferation, and promote apoptosis. The interaction is consistent with the traditional Chinese medicine theory of the lung being connected with the large intestine (fei yu da chang xiang biao li in Chinese). This review sought to explore intersecting mechanisms of lung and intestinal injuries in AP to develop new treatment strategies.
Collapse
Affiliation(s)
- Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Linlin Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- County People’s Hospital, Pingliang, China
| | - Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang Hai
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
| | - Dan Yang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Min Bai
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Bing Song
- Gansu University of Chinese Medicine/Scientific Research and Experimental Center, Lanzhou, China
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| | - Yongfeng Wang
- Gansu Provincial Engineering Laboratory for Research and Promotion of Quality Standardization of Authentic Medicinal Materials in Gansu Province/Provincial Key Laboratory of Pharmaceutical Chemistry and Quality Research in Colleges and Universities in Gansu Province/Gansu Provincial Laboratory Animal Industry Technology Center, Lanzhou, China
| |
Collapse
|
42
|
Al Mamun A, Suchi SA, Aziz MA, Zaeem M, Munir F, Wu Y, Xiao J. Pyroptosis in acute pancreatitis and its therapeutic regulation. Apoptosis 2022; 27:465-481. [PMID: 35687256 DOI: 10.1007/s10495-022-01729-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/20/2022]
Abstract
Pyroptosis defines a new type of GSDMs-mediated programmed cell death, distinguishes from the classical concepts of apoptosis and necrosis-mediated cell death and is prescribed by cell swelling and membrane denaturation, leading to the extensive secretion of cellular components and low-grade inflammatory response. However, NLRP3 inflammasome activation can trigger its downstream inflammatory cytokines, leading to the activation of pyroptosis-regulated cell death. Current studies reveal that activation of caspase-4/5/11-driven non-canonical inflammasome signaling pathways facilitates the pathogenesis and progression of acute pancreatitis (AP). In addition, a large number of studies have reported that NLRP3 inflammasome-dependent pyroptosis is a crucial player in driving the course of the pathogenesis of AP. Excessive uncontrolled GSDMD-mediated pyroptosis has been implicated in AP. Therefore, the pyroptosis-related molecule GSDMD may be an independent prognostic biomarker for AP. The present review paper summarizes the molecular mechanisms of pyroptotic signaling pathways and their pathophysiological impacts on the progress of AP. Moreover, we briefly present some experimental compounds targeting pyroptosis-regulated cell death for exploring novel therapeutic directions for the treatment and management of AP. Our review investigations strongly suggest that targeting pyroptosis could be an ideal therapeutic approach in AP.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 501759, South Korea
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh.,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Zhejiang Province, Wenzhou, 325035, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China. .,Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
43
|
Zhuang Q, Huang L, Zeng Y, Wu X, Qiao G, Liu M, Wang L, Zhou Y, Xiong Y. Dynamic Monitoring of Immunoinflammatory Response Identifies Immunoswitching Characteristics of Severe Acute Pancreatitis in Rats. Front Immunol 2022; 13:876168. [PMID: 35663952 PMCID: PMC9160235 DOI: 10.3389/fimmu.2022.876168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Immune dysfunction is the main characteristic of severe acute pancreatitis (SAP), and the timing of immune regulation has become a major challenge for SAP treatment. Previous reports about the time point at which the immune status of SAP changed from excessive inflammatory response to immunosuppression (hypo-inflammatory response) are conflicting. Purposes The aims of this study are to explore the immunological dynamic changes in SAP rats from the perspective of intestinal mucosal immune function, and to determine the immunoswitching point from excessive inflammatory response to immunosuppression. Methods Retrograde injection of sodium taurocholate into the pancreaticobiliary duct was applied to establish a SAP model in rats. The survival rate and the activities of serum amylase and pancreatic lipase in SAP rats were measured at different time points after model construction. The pathological changes in the pancreas and small intestines were analyzed, and the levels of intestinal pro- and anti-inflammatory cytokines and the numbers of intestinal macrophages, dendritic cells, Th1, Th2, and T regulatory cells were assessed. Meanwhile, the SAP rats were challenged with Pseudomonas aeruginosa (PA) strains to simulate a second hit, and the levels of intestinal inflammatory cytokines and the numbers of immune cells were analyzed to confirm the immunoswitching point. Results The time periods of 12–24 h and 48–72 h were the two death peaks in SAP rats. The pancreas of SAP rats showed self-limiting pathological changes, and the switching period of intestinal cytokines, and innate and adaptive immunity indexes occurred at 24–48 h. It was further confirmed that 48 h after SAP model construction was the immunoswitching point from excessive inflammatory response to immunosuppression. Conclusion The SAP rats showed characteristics of intestinal mucosal immune dysfunction after model construction, and the 48th h was identified as the immunoswitching point from excessive inflammatory response to immunosuppression. The results are of great significance for optimizing the timing of SAP immune regulation.
Collapse
Affiliation(s)
- Qian Zhuang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Institute for Clinical Trials of Drugs, Second People's Hospital of Yibin, Yibin, China
| | - Yue Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lulu Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
Hagen CM, Roth E, Graf TR, Verrey F, Graf R, Gupta A, Pellegrini G, Poncet N, Camargo SMR. Loss of LAT1 sex-dependently delays recovery after caerulein-induced acute pancreatitis. World J Gastroenterol 2022; 28:1024-1054. [PMID: 35431492 PMCID: PMC8968515 DOI: 10.3748/wjg.v28.i10.1024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The expression of amino acid transporters is known to vary during acute pancreatitis (AP) except for LAT1 (slc7a5), the expression of which remains stable. LAT1 supports cell growth by importing leucine and thereby stimulates mammalian target of rapamycin (mTOR) activity, a phenomenon often observed in cancer cells. The mechanisms by which LAT1 influences physiological and pathophysiological processes and affects disease progression in the pancreas are not yet known.
AIM To evaluate the role of LAT1 in the development of and recovery from AP.
METHODS AP was induced with caerulein (cae) injections in female and male mice expressing LAT1 or after its knockout (LAT1 Cre/LoxP). The development of the initial AP injury and its recovery were followed for seven days after cae injections by daily measuring body weight, assessing microscopical tissue architecture, mRNA and protein expression, protein synthesis, and enzyme activity levels, as well as by testing the recruitment of immune cells by FACS and ELISA.
RESULTS The initial injury, evaluated by measurements of plasma amylase, lipase, and trypsin activity, as well as the gene expression of dedifferentiation markers, did not differ between the groups. However, early metabolic adaptations that support regeneration at later stages were blunted in LAT1 knockout mice. Especially in females, we observed less mTOR reactivation and dysfunctional autophagy. The later regeneration phase was clearly delayed in female LAT1 knockout mice, which did not regain normal expression of the pancreas-specific differentiation markers recombining binding protein suppressor of hairless-like protein (rbpjl) and basic helix-loop-helix family member A15 (mist1). Amylase mRNA and protein levels remained lower, and, strikingly, female LAT1 knockout mice presented signs of fibrosis lasting until day seven. In contrast, pancreas morphology had returned to normal in wild-type littermates.
CONCLUSION LAT1 supports the regeneration of acinar cells after AP. Female mice lacking LAT1 exhibited more pronounced alterations than male mice, indicating a sexual dimorphism of amino acid metabolism.
Collapse
Affiliation(s)
- Cristina M Hagen
- Institute of Physiology, University of Zurich, Zurich 8057, ZH, Switzerland
| | - Eva Roth
- Institute of Physiology, University of Zurich, Zurich 8057, ZH, Switzerland
| | - Theresia Reding Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, Zurich University Hospital, Zurich 8091, ZH, Switzerland
| | - François Verrey
- Institute of Physiology, University of Zurich, Zurich 8057, ZH, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, Zurich University Hospital, Zurich 8091, ZH, Switzerland
| | - Anurag Gupta
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, Zurich University Hospital, Zurich 8091, ZH, Switzerland
| | - Giovanni Pellegrini
- Institute of Veterinary Pathology, University of Zurich, Zurich 8057, ZH, Switzerland
| | - Nadège Poncet
- Institute of Physiology, University of Zurich, Zurich 8057, ZH, Switzerland
| | | |
Collapse
|
45
|
Wang Y, Li Y, Gao S, Yu X, Chen Y, Lin Y. Tetrahedral Framework Nucleic Acids Can Alleviate Taurocholate-Induced Severe Acute Pancreatitis and Its Subsequent Multiorgan Injury in Mice. NANO LETTERS 2022; 22:1759-1768. [PMID: 35138113 DOI: 10.1021/acs.nanolett.1c05003] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe acute pancreatitis (SAP) is an inflammatory disease of the pancreas accompanied by tissue injury and necrosis. It not only affects the pancreas but also triggers a systemic inflammatory response that leads to multiorgan failure or even death. Moreover, there is no effective treatment currently that can reverse the disease progression. In this study, tetrahedral framework nucleic acids (tFNAs) were utilized to treat SAP in mice for the first time and proved to be effective in suppressing inflammation and preventing pathological cell death. Serum levels of pancreatitis-related biomarkers witnessed significant changes after tFNAs treatment. Reduction in the expression of certain cytokines involved in local and systemic inflammatory response were observed, together with alteration in proteins related to cell death and apoptosis. Collectively, our results demonstrate that tFNAs could both alleviate SAP and its subsequent multiorgan injury in mice, thus offering a novel and effective option to deal with SAP in the future.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xi Yu
- Department of Orthopedic Surgery and Orthopedic Research Institute Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
46
|
Allawadhi P, Beyer G, Mahajan UM, Mayerle J. Novel Insights Into Macrophage Diversity During the Course of Pancreatitis. Gastroenterology 2021; 161:1802-1805. [PMID: 34587487 DOI: 10.1053/j.gastro.2021.09.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Prince Allawadhi
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Georg Beyer
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Bavarian Cancer Research Center, Munich, Germany
| | - Ujjwal M Mahajan
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Bavarian Cancer Research Center, Munich, Germany.
| |
Collapse
|
47
|
Nalisa M, Nweke EE, Smith MD, Omoshoro-Jones J, Devar JWS, Metzger R, Augustine TN, Fru PN. Chemokine receptor 8 expression may be linked to disease severity and elevated interleukin 6 secretion in acute pancreatitis. World J Gastrointest Pathophysiol 2021; 12:115-133. [PMID: 34877026 PMCID: PMC8611186 DOI: 10.4291/wjgp.v12.i6.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disease, which presents with epigastric pain and is clinically diagnosed by amylase and lipase three times the upper limit of normal. The 2012 Atlanta classification stratifies the severity of AP as one of three risk categories namely, mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP). Challenges in stratifying AP upon diagnosis suggest that a better understanding of the underlying complex pathophysiology may be beneficial. AIM To identify the role of the chemokine receptor 8 (CCR8), expressed by T-helper type-2 Lymphocytes and peritoneal macrophages, and its possible association to Interleukin (IL)-6 and AP stratification. METHODS This study was a prospective case-control study. A total of 40 patients were recruited from the Chris Hani Baragwanath Academic Hospital and the Charlotte Maxeke Johannesburg Academic Hospital. Bioassays were performed on 29 patients (14 MAP, 11 MSAP, and 4 SAP) and 6 healthy controls as part of a preliminary study. A total of 12 mL of blood samples were collected at Day (D) 1, 3, 5, and 7 post epigastric pain. Using multiplex immunoassay panels, real-time polymerase chain reaction (qRT-PCR) arrays, and multicolour flow cytometry analysis, immune response-related proteins, genes, and cells were profiled respectively. GraphPad Prism™ software and fold change (FC) analysis was used to determine differences between the groups. P<0.05 was considered significant. RESULTS The concentration of IL-6 was significantly different at D3 post epigastric pain in both the MAP group and MSAP group with P = 0.001 and P = 0.013 respectively, in a multiplex assay. When a FC of 2 was applied to identify differentially expressed genes using RT2 Profiler, CCR8 was shown to increase steadily with disease severity from MAP (1.33), MSAP (38.28) to SAP (1172.45) median FC. Further verification studies using RT-PCR showed fold change increases of CCR8 in MSAP and SAP ranging from 1000 to 1000000 times when represented as Log10, compared to healthy control respectively at D3. The findings also showed differing lymphocyte and monocyte cell frequency between the groups. With monocyte population frequency as high as 70% in MSAP at D3. CONCLUSION The higher levels of CCR8 and IL-6 in the severe patients and immune cell differences compared to MAP and controls provide an avenue for exploring AP stratification to improve management.
Collapse
Affiliation(s)
- Mwangala Nalisa
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Martin D Smith
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, Gauteng, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, Gauteng, South Africa
| | - John WS Devar
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, Gauteng, South Africa
| | - Rebecca Metzger
- Institut für Immunologie, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Tanya N Augustine
- School of Anatomical Sciences, Faculty of Health Science, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Pascaline N Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| |
Collapse
|
48
|
Lee JH, Song WJ, An JH, Chae HK, Park SM, Li Q, Youn HY. Role of serum high-motility group box-1 (HMGB1) concentration as a prognostic factor in canine acute pancreatitis: A pilot study. Res Vet Sci 2021; 141:26-32. [PMID: 34649188 DOI: 10.1016/j.rvsc.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/08/2021] [Accepted: 09/26/2021] [Indexed: 11/18/2022]
Abstract
High-mobility group box-1 (HMGB1) is an intranuclear molecule that is released extracellularly in cytotoxic conditions. In acute pancreatitis, extracellular HMGB1 acts as a stimulating factor in the mechanism associated with pancreatic injury. To evaluate the prognostic property of serum HMGB1 levels at the time of diagnosis of pancreatitis, the blood samples collected over 10 months from canine patients in Seoul National University Veterinary Medical Teaching Hospital (n = 29). The HMGB1 levels were measured with ELISA kit and results were analyzed correlation with patient's death, hospitalization cost and period. HMGB1 levels in patients with acute pancreatitis (mean = 76 ng/mL, standard deviation [SD] = 46.99 ng/mL) were higher than that of normal individuals (mean = 31.65 ng/mL, SD = 18.41 ng/mL, p = 0.0082). Similarly, non-survivors demonstrated statistically significant difference than the survivors (p = 0.008). Clinical severity of acute pancreatitis was categorized into three stages: mild, moderate, and severe based on the disease activity index (DAI). The HMGB1 levels and mortality were associated with moderate DAI (p = 0.0236). However, the correlation between serum HMGB1 and patients' hospitalization period and cost were not found to be significant (R2 = 0.01991). The evaluation of serum HMGB1 level at the time of diagnosis was identified as a potential prognostic factor to estimate the prognosis of acute pancreatitis in canines.
Collapse
Affiliation(s)
- Jeong-Hwa Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine and Research Institute of Veterinary Science, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Kyu Chae
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiang Li
- Department of Veterinary Medicine, College of Agriculture, YanBian University, YanJi, JiLin 133000, China.
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
49
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
50
|
Lin Y, Chen Y, Feng W, Zhang J, Hua R, Yin B, Yang X. STAT5 promotes chronic pancreatitis by enhancing GM-CSF-dependent neutrophil augmentation. J Leukoc Biol 2021; 110:293-300. [PMID: 34184320 DOI: 10.1002/jlb.3ma1020-647r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pancreatitis (CP) is a continuing or relapsing inflammatory disease of the pancreas, characterized by fibrosis of the whole tissue. The regulatory mechanisms of the immune microenvironment in the pathogenesis of CP are still not clear. Immune cells, especially myeloid cells, play an important role in the pathogenesis of pancreatitis. Understanding the regulatory mechanisms of immune infiltration has a significant impact on CP intervention. Here, we demonstrated that transcription factor STAT5 was involved in and critical for the progression of CP. Inflammatory stress could significantly increase the expression and activation of STAT5 during CP. STAT5 deficiency or inhibition contributed to alleviating pancreatic inflammation and fibrosis in CP mice. The increased neutrophil infiltration, mediated by up-regulated GM-CSF, was responsible for the pancreatitis-promoting activity of STAT5. Our investigation highlighted the importance of STAT5 in regulating the immune microenvironment of CP. Targeting STAT5 may hold distinct promise for clinical treatment to alleviate CP.
Collapse
Affiliation(s)
- Yuli Lin
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Department of Oncology, Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenxue Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuguang Yang
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|