1
|
Affὸ S, Sererols-Viñas L, Garcia-Vicién G, Cadamuro M, Chakraborty S, Sirica AE. Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma: Insights into Origins, Heterogeneity, Lymphangiogenesis, and Peritoneal Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:378-396. [PMID: 39117110 DOI: 10.1016/j.ajpath.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant, and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA, one that differentiates the most common macroscopic subtype (eg, mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma is a prominent desmoplastic reaction manifested as a dense fibro-collagenous-enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. Although the protumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single-cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence supports CAFs' potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, the authors provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.
Collapse
Affiliation(s)
- Silvia Affὸ
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sanjukta Chakraborty
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Alphonse E Sirica
- Department of Pathology (Emeritus), Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
2
|
Li D, Andaloori L, Crowe M, Lin S, Hong J, Zaidi N, Ho M. Development of CAR-T Therapies and Personalized Vaccines for the Treatment of Cholangiocarcinoma: Current Progress, Mechanisms of Action, and Challenges. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:453-469. [PMID: 39675505 PMCID: PMC11983698 DOI: 10.1016/j.ajpath.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy with an increasing prevalence, a high mortality rate, poor overall survival, and limited responsiveness to conventional chemoradiotherapy. Targeted therapies addressing specific gene mutations have expanded treatment options for some patient populations. The introduction of chimeric antigen receptor-modified T-cell (CAR-T) immunotherapy and personalized vaccines have opened up a new avenue for managing various cancers. Considerable efforts have been dedicated to preclinical research and ongoing clinical trials of immunotherapeutic approaches including CAR-T therapy, vaccines, and antibody-based therapies such as antibody drug conjugates. However, the potential of CAR-T therapy and vaccines in treating advanced unresectable/metastatic cholangiocarcinoma remains largely unexplored. This article offers an overview of the current landscape of antibody-based immunotherapy, particularly CAR-T therapy and vaccines in the context of cholangiocarcinoma treatment. It outlines a framework for selecting CAR-T and vaccine targets and delves into the biology of promising targetable antigens, as well as potential future therapeutic targets.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lalitya Andaloori
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Crowe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Shaoli Lin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland.
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
3
|
Dadgar N, Arunachalam AK, Hong H, Phoon YP, Arpi-Palacios JE, Uysal M, Wehrle CJ, Aucejo F, Ma WW, Melenhorst JJ. Advancing Cholangiocarcinoma Care: Insights and Innovations in T Cell Therapy. Cancers (Basel) 2024; 16:3232. [PMID: 39335203 PMCID: PMC11429565 DOI: 10.3390/cancers16183232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a rare and aggressive malignancy originating from the bile ducts, with poor prognosis and limited treatment options. Traditional therapies, such as surgery, chemotherapy, and radiation, have shown limited efficacy, especially in advanced cases. Recent advancements in immunotherapy, particularly T cell-based therapies like chimeric antigen receptor T (CAR T) cells, tumor-infiltrating lymphocytes (TILs), and T cell receptor (TCR)-based therapies, have opened new avenues for improving outcomes in CCA. This review provides a comprehensive overview of the current state of T cell therapies for CCA, focusing on CAR T cell therapy. It highlights key challenges, including the complex tumor microenvironment and immune evasion mechanisms, and the progress made in preclinical and clinical trials. The review also discusses ongoing clinical trials targeting specific CCA antigens, such as MUC1, EGFR, and CD133, and the evolving role of precision immunotherapy in enhancing treatment outcomes. Despite significant progress, further research is needed to optimize these therapies for solid tumors like CCA. By summarizing the most recent clinical results and future directions, this review underscores the promising potential of T cell therapies in revolutionizing CCA treatment.
Collapse
Affiliation(s)
- Neda Dadgar
- Cleveland Clinic Foundation, Enterprise Cancer Institute, Translational Hematology & Oncology Research, Cleveland, OH 44114, USA;
| | - Arun K. Arunachalam
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Hanna Hong
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Yee Peng Phoon
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Jorge E. Arpi-Palacios
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Melis Uysal
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| | - Chase J. Wehrle
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Federico Aucejo
- Cleveland Clinic Foundation, Digestive Diseases & Surgery Institute, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Wen Wee Ma
- Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA;
| | - Jan Joseph Melenhorst
- Cleveland Clinic Foundation, Lerner Research Institute, Center for Immunotherapy and Precision Immuno-Oncology, Cleveland, OH 44195, USA; (A.K.A.); (H.H.); (Y.P.P.); (J.E.A.-P.); (M.U.)
| |
Collapse
|
4
|
Qiang M, Liu H, Yang L, Wang H, Guo R. Immunotherapy for small cell lung cancer: the current state and future trajectories. Discov Oncol 2024; 15:355. [PMID: 39152301 PMCID: PMC11329494 DOI: 10.1007/s12672-024-01119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 08/19/2024] Open
Abstract
Small cell lung cancer (SCLC) constitutes approximately 10% to 15% of all lung cancer diagnoses and represents a pressing global public health challenge due to its high mortality rates. The efficacy of conventional treatments for SCLC is suboptimal, characterized by limited anti-tumoral effects and frequent relapses. In this context, emerging research has pivoted towards immunotherapy combined with chemotherapy, a rapidly advancing field that has shown promise in ameliorating the clinical outcomes of SCLC patients. Through originally developed for non-small cell lung cancer (NSCLC), these therapies have extended new treatment avenues for SCLC. Currently, a nexus of emerging hot-spot treatments has demonstrated significant therapeutic efficacy. Based on the amalgamation of chemotherapy and immunotherapy, and the development of new immunotherapy agents, the treatment of SCLC has seen the hoping future. Progress has been achieved in enhancing the tumor immune microenvironment through the concomitant use of chemotherapy, immunotherapy, and tyrosine kinase inhibitors (TKI), as evinced by emerging clinical trial data. Moreover, a tripartite approach involving immunotherapy, targeted therapy, and chemotherapy appears auspicious for future clinical applications. Overcoming resistance to post-immunotherapy regimens remains an urgent area of exploration. Finally, bispecific antibodies, adoptive cell transfer (ACT), oncolytic virus, monotherapy, including Delta-like ligand 3 (DLL3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), as well as precision medicine, may present a prospective route towards achieving curative outcomes in SCLC. This review aims to synthesize extant literature and highlight future directions in SCLC treatment, acknowledging the persistent challenges in the field. Furthermore, the continual development of novel therapeutic agents and technologies renders the future of SCLC treatment increasingly optimistic.
Collapse
Affiliation(s)
- Min Qiang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Chen Q, Sun Y, Li H. Application of CAR-T cell therapy targeting mesothelin in solid tumor treatment. Discov Oncol 2024; 15:289. [PMID: 39023820 PMCID: PMC11258118 DOI: 10.1007/s12672-024-01159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is one of the most effective immunotherapies. CAR-T-cell therapy has achieved great success in the treatment of hematological malignancies. However, due to the characteristics of solid malignant tumors, such as on-target effects, off-tumor toxicity, an immunosuppressive tumor microenvironment (TME), and insufficient trafficking, CAR-T-cell therapy for solid tumors is still in the exploration stage. Mesothelin (MSLN) is a molecule expressed on the surface of various solid malignant tumor cells that is suitable as a target of tumor cells with high MSLN expression for CAR-T-cell therapy. This paper briefly described the development of CAR-T cell therapy and the structural features of MSLN, and especially summarized the strategies of structure optimization of MSLN-targeting CAR-T-cells and the enhancement methods of MSLN-targeting CAR-T cell anti-tumor efficacy by summarizing some preclinical experiment and clinical trials. When considering MSLN-targeting CAR-T-cell therapy as an example, this paper summarizes the efforts made by researchers in CAR-T-cell therapy for solid tumors and summarizes feasible treatment plans by integrating the existing research results.
Collapse
Affiliation(s)
- Qiuhong Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China.
| |
Collapse
|
6
|
Nguyen MQ, Kim DH, Shim HJ, Ta HKK, Vu TL, Nguyen TKO, Lim JC, Choe H. Novel Anti-Mesothelin Nanobodies and Recombinant Immunotoxins with Pseudomonas Exotoxin Catalytic Domain for Cancer Therapeutics. Mol Cells 2023; 46:764-777. [PMID: 38052492 PMCID: PMC10701305 DOI: 10.14348/molcells.2023.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.
Collapse
Affiliation(s)
- Minh Quan Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | | | | | - Huynh Kim Khanh Ta
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thi Luong Vu
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thi Kieu Oanh Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | | | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
7
|
Greten TF, Schwabe R, Bardeesy N, Ma L, Goyal L, Kelley RK, Wang XW. Immunology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2023; 20:349-365. [PMID: 36697706 DOI: 10.1038/s41575-022-00741-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/27/2023]
Abstract
Cholangiocarcinoma is the second most common primary liver cancer. Its incidence is low in the Western world but is rising globally. Surgery, chemotherapy and radiation therapy have been the only treatment options for decades. Progress in our molecular understanding of the disease and the identification of druggable targets, such as IDH1 mutations and FGFR2 fusions, has provided new treatment options. Immunotherapy has emerged as a potent strategy for many different types of cancer and has shown efficacy in combination with chemotherapy for cholangiocarcinoma. In this Review, we discuss findings related to key immunological aspects of cholangiocarcinoma, including the heterogeneous landscape of immune cells within the tumour microenvironment, the immunomodulatory effect of the microbiota and IDH1 mutations, and the association of immune-related signatures and patient outcomes. We introduce findings from preclinical immunotherapy studies, discuss future immune-mediated treatment options, and provide a summary of results from clinical trials testing immune-based approaches in patients with cholangiocarcinoma. This Review provides a thorough survey of our knowledge on immune signatures and immunotherapy in cholangiocarcinoma.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Bethesda, MD, USA.
| | - Robert Schwabe
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lipika Goyal
- Division of Oncology, Stanford School of Medicine, Palo Alto, CA, USA
| | - Robin K Kelley
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Xin W Wang
- Liver Cancer Program, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Zhai X, Mao L, Wu M, Liu J, Yu S. Challenges of Anti-Mesothelin CAR-T-Cell Therapy. Cancers (Basel) 2023; 15:cancers15051357. [PMID: 36900151 PMCID: PMC10000068 DOI: 10.3390/cancers15051357] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is a kind of adoptive T-cell therapy (ACT) that has developed rapidly in recent years. Mesothelin (MSLN) is a tumor-associated antigen (TAA) that is highly expressed in various solid tumors and is an important target antigen for the development of new immunotherapies for solid tumors. This article reviews the clinical research status, obstacles, advancements and challenges of anti-MSLN CAR-T-cell therapy. Clinical trials on anti-MSLN CAR-T cells show that they have a high safety profile but limited efficacy. At present, local administration and introduction of new modifications are being used to enhance proliferation and persistence and to improve the efficacy and safety of anti-MSLN CAR-T cells. A number of clinical and basic studies have shown that the curative effect of combining this therapy with standard therapy is significantly better than that of monotherapy.
Collapse
Affiliation(s)
- Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
9
|
Weidemann S, Gorbokon N, Lennartz M, Hube-Magg C, Fraune C, Bernreuther C, Clauditz TS, Jacobsen F, Jansen K, Schmalfeldt B, Wölber L, Paluchowski P, Berkes E, Heilenkötter U, Sauter G, Uhlig R, Wilczak W, Steurer S, Simon R, Krech T, Marx A, Burandt E, Lebok P. High Homogeneity of Mesothelin Expression in Primary and Metastatic Ovarian Cancer. Appl Immunohistochem Mol Morphol 2023; 31:77-83. [PMID: 36728364 PMCID: PMC9928564 DOI: 10.1097/pai.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2022] [Indexed: 02/03/2023]
Abstract
To study the extent of heterogeneity of mesothelin overexpression in primary ovarian cancers and their peritoneal and lymph node metastases, a tissue microarray (TMA) was constructed from multiple sites of 220 ovarian cancers and analyzed by immunohistochemistry. One tissue core each was taken from up to 18 different tumor blocks per cancer, resulting in a total of 2460 tissue spots from 423 tumor sites (188 primary cancers, 162 peritoneal carcinosis, and 73 lymph node metastases). Positive mesothelin expression was found in 2041 of the 2342 (87%) arrayed tissue spots and in 372 of the 392 (95%) tumor sites that were interpretable for mesothelin immunohistochemistry. Intratumoral heterogeneity was found in 23% of 168 primary cancer sites interpretable for mesothelin and decreased to 12% in 154 peritoneal carcinosis and to 6% in 71 lymph node metastases ( P <0.0001). Heterogeneity between the primary tumor and matched peritoneal carcinosis was found in 16% of 102 cancers with interpretable mesothelin results. In these cancers, the mesothelin status switched from positive in the primary tumor to negative in the peritoneal carcinosis (3 cancers) in or vice versa (2 cancers), or a mixture of positive and negative peritoneal carcinoses was found (11 cancers). No such switch was seen between the mesothelin-interpretable primary tumors and their nodal metastases of 59 cancers, and only 1 mesothelin-positive tumor had a mixture of positive and negative lymph node metastases. In conclusion, mesothelin expression is frequent and highly homogeneous in ovarian cancer.
Collapse
Affiliation(s)
- Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | | | | | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | | | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Kristina Jansen
- General, Visceral and Thoracic Surgery Department and Clinic
| | | | - Linn Wölber
- Department of Gynecology, University Medical Center Hamburg-Eppendorf
| | | | - Enikö Berkes
- Department of Gynecology, Regio Clinic Itzehoe, Itzehoe
| | | | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
- Clinical Center Osnabrueck, Institute of Pathology, Osnabrueck
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf
| |
Collapse
|
10
|
Nishio T, Koyama Y, Fuji H, Ishizuka K, Iwaisako K, Taura K, Hatano E, Brenner DA, Kisseleva T. The Role of Mesothelin in Activation of Portal Fibroblasts in Cholestatic Liver Injury. BIOLOGY 2022; 11:1589. [PMID: 36358290 PMCID: PMC9687690 DOI: 10.3390/biology11111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Fibrosis is a common consequence of abnormal wound healing, which is characterized by infiltration of myofibroblasts and formation of fibrous scar. In liver fibrosis, activated Hepatic Stellate Cells (aHSCs) and activated Portal Fibroblasts (aPFs) are the major contributors to the origin of hepatic myofibroblasts. aPFs are significantly involved in the pathogenesis of cholestatic fibrosis, suggesting that aPFs may be a primary target for anti-fibrotic therapy in cholestatic injury. aPFs are distinguishable from aHSCs by specific markers including mesothelin (Msln), Mucin 16 (Muc16), and Thymus cell antigen 1 (Thy1, CD90) as well as fibulin 2, elastin, Gremlin 1, ecto-ATPase nucleoside triphosphate diphosphohydrolase 2. Msln plays a critical role in activation of PFs, via formation of Msln-Muc16-Thy1 complex that regulates TGFβ1/TGFβRI-mediated fibrogenic signaling. The opposing pro- and anti-fibrogenic effects of Msln and Thy1 are key components of the TGFβ1-induced activation pathway in aPFs. In addition, aPFs and activated lung and kidney fibroblasts share similarities across different organs with expression of common markers and activation cascade including Msln-Thy1 interaction. Here, we summarize the potential function of Msln in activation of PFs and development of cholestatic fibrosis, offering a novel perspective for anti-fibrotic therapy targeting Msln.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukinori Koyama
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroaki Fuji
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0394, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka 530-8480, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - David A. Brenner
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Identification of Candidate Therapeutic Target Genes and Profiling of Tumor-Infiltrating Immune Cells in Pancreatic Cancer via Integrated Transcriptomic Analysis. DISEASE MARKERS 2022; 2022:3839480. [PMID: 36061357 PMCID: PMC9428685 DOI: 10.1155/2022/3839480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) has a dismal prognosis despite advancing scientific and technological knowledge. The exploration of novel genes is critical to improving current therapeutic measures. This research is aimed at selecting hub genes that can act as candidate therapeutic target genes and as prognostic biomarkers in PC. Gene expression profiles of datasets GSE101448, GSE15471, and GSE62452 were extracted from the GEO database. The “limma” package was performed to select differentially expressed genes (DEGs) between PC and normal tissue samples in each dataset. Robust rank aggregation (RRA) algorithm was conducted to integrate multiple expression profiles and identify robust DEGs. GO analysis and KEGG analysis were conducted to identify the functional correlation of the DEGs. The CIBERSORT algorithm was conducted to estimate the immune cell composition of each tissue sample. STRING and Cytoscape were used to establish the protein-protein interaction (PPI) network. The cytoHubba plugin in Cytoscape was performed to identify hub genes. Survival analysis based on hub gene expression was performed with clinical information from TCGA database. 566 robust DEGs (338 upregulated genes and 226 downregulated genes) were identified. Tumor tissue had a higher infiltration of resting dendritic cells and tumor-associated macrophages (TAM), including M0, M1, and M2 macrophages, while infiltration levels of B memory cells, plasma cells, T cells CD8, T follicular helper cells, and NK cells in normal tissue were relatively higher. GO terms and KEGG pathway analysis results revealed enrichment in tumor-associated pathways, including the extracellular matrix organization, cell−substrate adhesion cytokine−cytokine receptor interaction, calcium signaling pathway, and glycine, serine, and threonine metabolism, to name a few. Finally, FN1, MSLN, PLAU, and VCAN were selected as hub genes. High expression of FN1, MSLN, PLAU, and VCAN in PC significantly correlated with poor prognosis. Integrated transcriptomic analysis was used to provide new insights into PC pathogenesis. FN1, MSLN, PLAU, and VCAN may be considered as novel biomarkers of PC.
Collapse
|
12
|
Taniguchi G, Kajino K, Momose S, Saeki H, Yue L, Ohtsuji N, Abe M, Shibuya T, Orimo A, Nagahara A, Watanabe S, Hino O. The Inhibitory Effects of Anti-ERC/Mesothelin Antibody 22A31 on Colorectal Adenocarcinoma Cells, within a Mouse Xenograft Model. Cancers (Basel) 2022; 14:cancers14092198. [PMID: 35565327 PMCID: PMC9101225 DOI: 10.3390/cancers14092198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The expression of Renal Carcinoma (ERC)/mesothelin is overexpressed in malignancies such as mesothelioma, pancreatic cancer, and ovarian cancer, and molecular-targeted therapies against ERC/mesothelin have been developed to treat them. Recently, it was revealed that ERC/mesothelin is also expressed in colorectal cancer; thus, this protein is expected to be a therapeutic target in colorectal cancer. In this study, we demonstrated that anti-ERC/mesothelin antibody 22A31 suppressed the growth of colorectal cancer cells subcutaneously xenografted on the back of mice. This is the first report to show the effectiveness of an anti-ERC/mesothelin antibody for the treatment of colorectal cancer in vivo. Abstract The expression of Renal Carcinoma (ERC)/mesothelin is enhanced in a variety of cancers. ERC/mesothelin contributes to cancer progression by modulating cell signals that regulate proliferation and apoptosis. Based on such biological insights, ERC/mesothelin has become a molecular target for the treatment of mesothelioma, pancreatic cancer, and ovarian cancer. Recent studies revealed about 50–60% of colorectal adenocarcinomas also express ERC/mesothelin. Therefore, colorectal cancer can also be a potential target of the treatment using an anti-ERC/mesothelin antibody. We previously demonstrated an anti-tumor effect of anti-ERC antibody 22A31 against mesothelioma. In this study, we investigated the effect of 22A31 on a colorectal adenocarcinoma cell line, HCT116. The cells were xenografted into BALB/c nu/nu mice. All mice were randomly allocated to either an antibody treatment group with 22A31 or isotype-matched control IgG1κ. We compared the volume of subsequent tumors, and tumors were pathologically assessed by immunohistochemistry. Tumors treated with 22A31 were significantly smaller than those treated with IgG1κ and contained significantly fewer mitotic cells with Ki67 staining. We demonstrated that 22A31 exhibited a growth inhibitory property on HCT116. Our results implied that ERC/mesothelin-targeted therapy might be a promising treatment for colorectal cancer.
Collapse
Affiliation(s)
- Gentaro Taniguchi
- Department of Molecular Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (G.T.); (L.Y.); (N.O.); (M.A.); (A.O.); (O.H.)
- Department of Gastroenterology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.S.); (A.N.); (S.W.)
| | - Kazunori Kajino
- Department of Molecular Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (G.T.); (L.Y.); (N.O.); (M.A.); (A.O.); (O.H.)
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
- Correspondence:
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe 350-8550, Japan;
| | - Harumi Saeki
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Liang Yue
- Department of Molecular Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (G.T.); (L.Y.); (N.O.); (M.A.); (A.O.); (O.H.)
| | - Naomi Ohtsuji
- Department of Molecular Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (G.T.); (L.Y.); (N.O.); (M.A.); (A.O.); (O.H.)
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Masaaki Abe
- Department of Molecular Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (G.T.); (L.Y.); (N.O.); (M.A.); (A.O.); (O.H.)
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.S.); (A.N.); (S.W.)
| | - Akira Orimo
- Department of Molecular Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (G.T.); (L.Y.); (N.O.); (M.A.); (A.O.); (O.H.)
| | - Akihito Nagahara
- Department of Gastroenterology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.S.); (A.N.); (S.W.)
| | - Sumio Watanabe
- Department of Gastroenterology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (T.S.); (A.N.); (S.W.)
| | - Okio Hino
- Department of Molecular Pathology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (G.T.); (L.Y.); (N.O.); (M.A.); (A.O.); (O.H.)
| |
Collapse
|
13
|
Mesothelin: An Immunotherapeutic Target beyond Solid Tumors. Cancers (Basel) 2022; 14:cancers14061550. [PMID: 35326701 PMCID: PMC8946840 DOI: 10.3390/cancers14061550] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review summarizes the current knowledge on mesothelin’s function, its role in cancer, and opportunities for immunotherapeutic targeting of mesothelin. Immunotherapies including monoclonal antibodies, antibody–drug conjugates, chimeric antigen receptor T and NK-cells, targeted alpha therapies, and bispecific T cell engaging molecules are reviewed. We show future directions for mesothelin targeting in hematological malignancies, including acute myeloid leukemia. Abstract Modern targeted cancer therapies rely on the overexpression of tumor associated antigens with very little to no expression in normal cell types. Mesothelin is a glycosylphosphatidylinositol-anchored cell surface protein that has been identified in many different tumor types, including lung adenocarcinomas, ovarian carcinomas, and most recently in hematological malignancies, including acute myeloid leukemia (AML). Although the function of mesothelin is widely unknown, interactions with MUC16/CA125 indicate that mesothelin plays a role in the regulation of proliferation, growth, and adhesion signaling. Most research on mesothelin currently focuses on utilizing mesothelin to design targeted cancer therapies such as monoclonal antibodies, antibody–drug conjugates, chimeric antigen receptor T and NK cells, bispecific T cell engaging molecules, and targeted alpha therapies, amongst others. Both in vitro and in vivo studies using different immunotherapeutic modalities in mesothelin-positive AML models highlight the potential impact of this approach as a unique opportunity to treat hard-to-cure AML.
Collapse
|
14
|
Li D, Lin S, Hong J, Ho M. Immunotherapy for hepatobiliary cancers: Emerging targets and translational advances. Adv Cancer Res 2022; 156:415-449. [DOI: 10.1016/bs.acr.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Matricellular proteins in intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:249-281. [DOI: 10.1016/bs.acr.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Arman T, Baron JA, Lynch KD, White LA, Aldan J, Clarke JD. MCLR-elicited hepatic fibrosis and carcinogenic gene expression changes persist in rats with diet-induced nonalcoholic steatohepatitis through a 4-week recovery period. Toxicology 2021; 464:153021. [PMID: 34740672 PMCID: PMC8629135 DOI: 10.1016/j.tox.2021.153021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) causes liver extracellular matrix (ECM) remodeling and is a risk factor for fibrosis and hepatocellular carcinoma (HCC). Microcystin-LR (MCLR) is a hepatotoxin produced by fresh-water cyanobacteria that causes a NASH-like phenotype, liver fibrosis, and is also a risk factor for HCC. The focus of the current study was to investigate and compare hepatic recovery after cessation of MCLR exposure in healthy versus NASH animals. Male Sprague-Dawley rats were fed either a control or a high fat/high cholesterol (HFHC) diet for eight weeks. Animals received either vehicle or 30 μg/kg MCLR (i.p: 2 weeks, alternate days). Animals were euthanized at one of three time points: at the completion of the MCLR exposure period and after 2 and 4 weeks of recovery. Histological staining suggested that after four weeks of recovery the MCLR-exposed HFHC group had less steatosis and more fibrosis compared to the vehicle-exposed HFHC group and MCLR-exposed control group. RNA-Seq analysis revealed dysregulation of ECM genes after MCLR exposure in both control and HFHC groups that persisted only in the HFHC groups during recovery. After 4 weeks of recovery, MCLR hepatotoxicity in pre-existing NASH persistently dysregulated genes related to cellular differentiation and HCC. These data demonstrate impaired hepatic recovery and persistent carcinogenic changes after MCLR toxicity in pre-existing NASH.
Collapse
Affiliation(s)
- Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - J Allen Baron
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - Laura A White
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, 99164, United States
| | - Johnny Aldan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, United States.
| |
Collapse
|
17
|
Immunotoxins Immunotherapy against Hepatocellular Carcinoma: A Promising Prospect. Toxins (Basel) 2021; 13:toxins13100719. [PMID: 34679012 PMCID: PMC8538445 DOI: 10.3390/toxins13100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Therefore, fighting against such cancer is reasonable. Chemotherapy drugs are sometimes inefficient and often accompanied by undesirable side effects for patients. On the other hand, the emergence of chemoresistant HCC emphasizes the need for a new high-efficiency treatment strategy. Immunotoxins are armed and rigorous targeting agents that can purposefully kill cancer cells. Unlike traditional chemotherapeutics, immunotoxins because of targeted toxicity, insignificant cross-resistance, easy production, and other favorable properties can be ideal candidates against HCC. In this review, the characteristics of proper HCC-specific biomarkers for immunotoxin targeting were dissected. After that, the first to last immunotoxins developed for the treatment of liver cancer were discussed. So, by reviewing the strengths and weaknesses of these immunotoxins, we attempted to provide keynotes for designing an optimal immunotoxin against HCC.
Collapse
|
18
|
Kunk PR, Dougherty SC, Lynch K, Whitehair R, Meneveau M, Obeid JM, Winters K, Ju JY, Stelow EB, Bauer TW, Slingluff CL, Rahma OE. Myeloid Cell Infiltration Correlates With Prognosis in Cholangiocarcinoma and Varies Based on Tumor Location. J Immunother 2021; 44:254-263. [PMID: 34191790 PMCID: PMC8373662 DOI: 10.1097/cji.0000000000000378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/03/2021] [Indexed: 01/04/2023]
Abstract
Cholangiocarcinoma (CC) is an uncommon malignancy with increasing incidence and dismal prognosis. We conducted a comprehensive analysis of the CC tumor immune microenvironment (TIME) based on tumor location to identify therapeutic targets. We hypothesized that the TIME of CC would vary by primary tumor location and that high tumor infiltration by CD8+ T cells and low infiltration by M2 macrophages would be associated with improved survival. A retrospective analysis was conducted of 99 CC tumor samples surgically resected between 2000 and 2014. Tissue microarrays were constructed from each tumor and stained by immunohistochemistry for 24 markers of immune cells, immune activation or inhibition, programmed cell death-ligand 1, and mesothelin. Most tumors were amply infiltrated with by CD4+, CD8+, and FoxP3+ T cells, as well as by myeloid cells. Mesothelin expression ≥1+ by immunohistochemistry was found in 68% of tumors. We identified higher densities of M1 macrophages in primary distal extrahepatic CC, as well as metastatic lesions. Mesothelin expression was also significantly higher in distal extrahepatic CC. There was no association with survival of infiltration by CD4+, CD8+, or FoxP3+ T cells, mesothelin expression, or programmed cell death-ligand 1 percentage expression, however, high CD14+ myeloid cells and high CD163+ M2 macrophages were associated with worse survival. In conclusion, the CC TIME is a heterogenous milieu highly infiltrated by innate and adaptive immune cells, which differs based on primary tumor location and between primary tumors and metastatic lesions. The correlation of intratumoral M2 macrophages and myeloid cells with a worse prognosis may suggest promising immunotherapeutic targets in CC.
Collapse
Affiliation(s)
- Paul R. Kunk
- Department of Medicine, Division of Hematology-Oncology, University of Virginia Health System, Charlottesville, VA, United States
| | - Sean C. Dougherty
- Department of Medicine, Division of Hematology-Oncology, University of Virginia Health System, Charlottesville, VA, United States
| | - Kevin Lynch
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Rachel Whitehair
- Department of Pathology, Division of Anatomic Pathology, University of Virginia Health System, Charlottesville, VA, United States
| | - Max Meneveau
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Joseph M. Obeid
- Department of Surgery, Stony Brook University Hospital, Stony Brook, NY, United States
| | - Kevin Winters
- Department of Medicine, Division of Hematology-Oncology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jennifer Y. Ju
- Department of Pathology, Division of Anatomic Pathology, University of Virginia Health System, Charlottesville, VA, United States
| | - Edward B. Stelow
- Department of Pathology, Division of Anatomic Pathology, University of Virginia Health System, Charlottesville, VA, United States
| | - Todd W. Bauer
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Craig L. Slingluff
- Department of Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Osama E. Rahma
- Departement of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Weidemann S, Perez D, Izbicki JR, Neipp M, Mofid H, Daniels T, Nahrstedt U, Jacobsen F, Bernreuther C, Simon R, Steurer S, Burandt E, Marx AH, Krech T, Clauditz TS, Jansen K. Mesothelin is Commonly Expressed in Pancreatic Adenocarcinoma but Unrelated to Cancer Aggressiveness. Cancer Invest 2021; 39:711-720. [PMID: 34143695 DOI: 10.1080/07357907.2021.1943747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Data on Mesothelin (MSLN) expression in human normal and cancerous tissues is controversial. We employed immunohistochemistry (IHC) on a tissue microarray (TMA) from 599 pancreatic cancers and 12 large tissue sections of pancreatitis. MSLN expression was highest in pancreatic adenocarcinomas (89%) and adenocarcinomas of the ampulla Vateri (79%), infrequent in pancreatitis and absent in 6 acinus cell carcinomas and normal pancreas. MSLN expression was unrelated to pathological tumor stage, grade, metastasis, and tumor-infiltrating CD8+ lymphocytes. In conclusion, pancreatic cancer may be ideally suited for putative anti- MSLN therapies, and MSLN may represent a suitable biomarker for pancreatic cancer diagnosis, especially on small biopsies.
Collapse
Affiliation(s)
- Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Perez
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Neipp
- General, Vascular and Visceral Surgery Clinic, Itzehoe Medical Center, Itzehoe, Germany
| | - Hamid Mofid
- General, Visceral Thoracic and Vascular Surgery Clinic, Regio Clinic Pinneberg, Pinneberg, Germany
| | - Thies Daniels
- General, Visceral and Tumor Surgery Clinic, Albertinen Hospital, Hamburg, Germany
| | - Ulf Nahrstedt
- Department of General and Abdominal Surgery, Schoen Clinic Hamburg Eilbek, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristina Jansen
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Hagerty B, O'Sullivan TN, Zhang X, Collins NK, Lawrence WC, Bassel LL, Pate N, Xu J, Guerin TM, Kozlov S, Alewine C. Novel humanized mesothelin-expressing genetically engineered mouse models underscore challenges in delivery of complex therapeutics to pancreatic cancers. Mol Cancer Ther 2021; 20:2082-2092. [PMID: 34315768 DOI: 10.1158/1535-7163.mct-21-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Antibody-based therapies designed for human use frequently fail to cross-react with the murine isoform of their target. Due to this problem, pre-clinical studies of antibody-based mesothelin-targeted therapeutics in immune competent systems have been limited by the lack of suitable mouse models. Here, we describe two immune-competent humanized mesothelin transgenic mouse lines that can act as tolerant hosts for C57Bl/6-syngeneic cell lines expressing the human isoform of mesothelin. Thyroid peroxidase (TPO) mice have thyroid-restricted human mesothelin expression. Mesothelin (Msl) mice express human mesothelin in the typical serosal membrane distribution and can additionally be utilized to assess on-target, off-tumor toxicity of human mesothelin-targeted therapeutics. Both transgenic strains shed human mesothelin into the serum like human mesothelioma and ovarian cancer patients and serum human mesothelin can be used as a blood-based surrogate of tumor burden. Using these models, we examined the on-target toxicity and anti-tumor activity of human mesothelin-targeted recombinant immunotoxins. We found that immunotoxin treatment causes acute and chronic histologic changes to serosal membranes in Msl mice while human mesothelin-expressing thyroid follicular cells in TPO mice are resistant to immunotoxin despite excellent drug delivery. Furthermore, poor delivery of immunotoxin to syngeneic orthotopic human mesothelin-expressing pancreatic adenocarcinoma limits anti-tumor activity both alone and in combination with immune checkpoint inhibition. In summary, we have developed two high-fidelity, immunocompetent murine models for human cancer that allow for rigorous pre-clinical evaluation of human mesothelin-targeted therapeutics.
Collapse
Affiliation(s)
- Brendan Hagerty
- Laboratory of Molecular Biology, NIH- National Cancer Institute Center for Cancer Research
| | - T Norene O'Sullivan
- Center for Advanced Preclinical Research, National Cancer Institute/Center for Cancer Research
| | - Xianyu Zhang
- Laboratory of Molecular Biology, NIH- National Cancer Institute Center for Cancer Research
| | - N Keith Collins
- Center for Advanced Preclinical Research, National Cancer Institute at Frederick, National Institutes of Health
| | - Wendi Custer Lawrence
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research
| | - Laura L Bassel
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research
| | - Nathan Pate
- Center for Advanced Preclinical Research, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research (FNLCR)
| | - Jian Xu
- Laboratory Molecular Biology, National Cancer Institute
| | - Theresa M Guerin
- Center for Advanced Preclinical Research, SAIC at Frederick National Laboratory for Cancer Research
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research
| | - Christine Alewine
- Laboratory of Molecular Biology, NIH- National Cancer Institute Center for Cancer Research
| |
Collapse
|
21
|
Mahfuz AMUB, Zubair-Bin-Mahfuj AM, Podder DJ. A network-biology approach for identification of key genes and pathways involved in malignant peritoneal mesothelioma. Genomics Inform 2021; 19:e16. [PMID: 34261301 PMCID: PMC8261271 DOI: 10.5808/gi.21019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 11/20/2022] Open
Abstract
Even in the current age of advanced medicine, the prognosis of malignant peritoneal mesothelioma (MPM) remains abysmal. Molecular mechanisms responsible for the initiation and progression of MPM are still largely not understood. Adopting an integrated bioinformatics approach, this study aims to identify the key genes and pathways responsible for MPM. Genes that are differentially expressed in MPM in comparison with the peritoneum of healthy controls have been identified by analyzing a microarray gene expression dataset. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of these differentially expressed genes (DEG) were conducted to gain a better insight. A protein-protein interaction (PPI) network of the proteins encoded by the DEGs was constructed using STRING and hub genes were detected analyzing this network. Next, the transcription factors and miRNAs that have possible regulatory roles on the hub genes were detected. Finally, survival analyses based on the hub genes were conducted using the GEPIA2 web server. Six hundred six genes were found to be differentially expressed in MPM; 133 are upregulated and 473 are downregulated. Analyzing the STRING generated PPI network, six dense modules and 12 hub genes were identified. Fifteen transcription factors and 10 miRNAs were identified to have the most extensive regulatory functions on the DEGs. Through bioinformatics analyses, this work provides an insight into the potential genes and pathways involved in MPM.
Collapse
Affiliation(s)
- A. M. U. B. Mahfuz
- Department of Biotechnology & Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka 1209, Bangladesh
| | | | - Dibya Joti Podder
- Department of General Surgery, Sher-E-Bangla Medical College, Barishal 8200, Bangladesh
| |
Collapse
|
22
|
Kamp EJCA, Dinjens WNM, Doukas M, Bruno MJ, de Jonge PJF, Peppelenbosch MP, de Vries AC. Optimal tissue sampling during ERCP and emerging molecular techniques for the differentiation of benign and malignant biliary strictures. Therap Adv Gastroenterol 2021; 14:17562848211002023. [PMID: 33948111 PMCID: PMC8053835 DOI: 10.1177/17562848211002023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 02/04/2023] Open
Abstract
Patients with cholangiocarcinoma have poor survival since the majority of patients are diagnosed at a stage precluding surgical resection, due to locally irresectable tumors and/or metastases. Optimization of diagnostic strategies, with a principal role for tissue diagnosis, is essential to detect cancers at an earlier stage amenable to curative treatment. Current barriers for a tissue diagnosis include both insufficient tissue sampling and a difficult cyto- or histopathological assessment. During endoscopic retrograde cholangiopancreatography, optimal brush sampling includes obtaining more than one brush within an individual patient to increase its diagnostic value. Currently, no significant increase of the diagnostic accuracy for the new cytology brush devices aiming to enhance the cellularity of brushings versus standard biliary brush devices has been demonstrated. Peroral cholangioscopy with bile duct biopsies appears to be a valuable tool in the diagnostic work-up of indeterminate biliary strictures, and may overcome current technical difficulties of fluoroscopic-guided biopsies. Over the past years, molecular techniques to detect chromosomal instability, mutations and methylation profiling of tumors have revolutionized, and implementation of these techniques on biliary tissue during diagnostic work-up of biliary strictures may be awaited in the near future. Fluorescence in situ hybridization has already been implemented in routine diagnostic evaluation of biliary strictures in several centers. Next-generation sequencing is promising for standard diagnostic care in biliary strictures, and recent studies have shown adequate detection of prevalent genomic alterations in KRAS, TP53, CDKN2A, SMAD4, PIK3CA, and GNAS on biliary brush material. Detection of DNA methylation of tumor suppressor genes and microRNAs may evolve over the coming years to a valuable diagnostic tool for cholangiocarcinoma. This review summarizes optimal strategies for biliary tissue sampling during endoscopic retrograde cholangiopancreatography and focuses on the evolving molecular techniques on biliary tissue to improve the differentiation of benign and malignant biliary strictures.
Collapse
Affiliation(s)
- Eline J. C. A. Kamp
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Winand N. M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Pieter Jan F. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Annemarie C. de Vries
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, Room Na-609, Rotterdam, 3015 GD, The Netherlands
| |
Collapse
|
23
|
Mesothelin Expression in Human Tumors: A Tissue Microarray Study on 12,679 Tumors. Biomedicines 2021; 9:biomedicines9040397. [PMID: 33917081 PMCID: PMC8067734 DOI: 10.3390/biomedicines9040397] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/13/2022] Open
Abstract
Mesothelin (MSLN) represents an attractive molecule for targeted cancer therapies. To identify tumors that might benefit from such therapies, tissue microarrays including 15,050 tumors from 122 different tumor types and 76 healthy organs were analyzed for MSLN expression by immunohistochemistry. Sixty-six (54%) tumor types showed at least occasional weak staining, including 50 (41%) tumor types with at least one strongly positive sample. Highest prevalence of MSLN positivity had ovarian carcinomas (serous 97%, clear cell 83%, endometrioid 77%, mucinous 71%, carcinosarcoma 65%), pancreatic adenocarcinoma (ductal 75%, ampullary 81%), endometrial carcinomas (clear cell 71%, serous 57%, carcinosarcoma 50%, endometrioid 45%), malignant mesothelioma (69%), and adenocarcinoma of the lung (55%). MSLN was rare in cancers of the breast (7% of 1138), kidney (7% of 807), thyroid gland (1% of 638), soft tissues (0.3% of 931), and prostate (0 of 481). High expression was linked to advanced pathological tumor (pT) stage (p < 0.0001) and metastasis (p < 0.0001) in 1619 colorectal adenocarcinomas, but unrelated to parameters of malignancy in 1072 breast-, 386 ovarian-, 174 lung-, 757 kidney-, 171 endometrial-, 373 gastric-, and 925 bladder carcinomas. In summary, numerous important cancer types with high-level MSLN expression might benefit from future anti-MSLN therapies, but MSLN’s prognostic relevance appears to be limited.
Collapse
|
24
|
A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): "Lactosome" Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy. Life (Basel) 2021; 11:life11020158. [PMID: 33670777 PMCID: PMC7923095 DOI: 10.3390/life11020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform.
Collapse
|
25
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
26
|
Klampatsa A, Dimou V, Albelda SM. Mesothelin-targeted CAR-T cell therapy for solid tumors. Expert Opin Biol Ther 2020; 21:473-486. [PMID: 33176519 DOI: 10.1080/14712598.2021.1843628] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Mesothelin (MSLN) is a tumor differentiation antigen normally restricted to the body's mesothelial surfaces, but significantly overexpressed in a broad range of solid tumors. For this reason, MSLN has emerged as an important target for the development of novel immunotherapies. This review focuses on anti-MSLN chimeric antigen receptor (CAR) T cell immunotherapy approaches.Areas covered: A brief overview of MSLN as a therapeutic target and existing anti-MSLN antibody-based drugs and vaccines is provided. A detailed account of anti-MSLN CAR-T cell approaches utilized in preclinical models is presented. Finally, a comprehensive summary of currently ongoing and completed anti-MSLN CAR-T cell clinical trials is discussed.Expert opinion: Initial trials using anti-MSLN CAR-T cells have been safe, but efficacy has been limited. Employing regional routes of delivery, introducing novel modifications leading to enhanced tumor infiltration and persistence, and improved safety profiles and combining anti-MSLN CAR-T cells with standard therapies, could render them more efficacious in the treatment of solid malignancies.
Collapse
Affiliation(s)
- Astero Klampatsa
- Thoracic Oncology Immunotherapy Group, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Vivian Dimou
- Thoracic Oncology Immunotherapy Group, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Steven M Albelda
- Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors. Biomolecules 2020; 10:biom10070973. [PMID: 32605175 PMCID: PMC7408136 DOI: 10.3390/biom10070973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein normally expressed only on serosal surfaces, and not found in the parenchyma of vital organs. Many solid tumors also express MSLN, including mesothelioma and pancreatic adenocarcinoma. Due to this favorable expression profile, MSLN represents a viable target for directed anti-neoplastic therapies, such as recombinant immunotoxins (iToxs). Pre-clinical testing of MSLN-targeted iTox’s has yielded a strong body of evidence for activity against a number of solid tumors. This has led to multiple clinical trials, testing the safety and efficacy of the clinical leads SS1P and LMB-100. While promising clinical results have been observed, neutralizing anti-drug antibody (ADA) formation presents a major challenge to overcome in the therapeutic development process. Additionally, on-target, off-tumor toxicity from serositis and non-specific capillary leak syndrome (CLS) also limits the dose, and therefore, impact anti-tumor activity. This review summarizes existing pre-clinical and clinical data on MSLN-targeted iTox’s. In addition, we address the potential future directions of research to enhance the activity of these anti-tumor agents.
Collapse
|
28
|
Jewell ML, Gibson JR, Guy CD, Hyun J, Du K, Oh SH, Premont RT, Hsu DS, Ribar T, Gregory SG, Diehl AME. Single-Cell RNA Sequencing Identifies Yes-Associated Protein 1-Dependent Hepatic Mesothelial Progenitors in Fibrolamellar Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:93-107. [PMID: 31669305 PMCID: PMC10069284 DOI: 10.1016/j.ajpath.2019.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/23/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
Abstract
Fibrolamellar carcinoma (FLC) is characterized by in-frame fusion of DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) with protein kinase cAMP-activated catalytic subunit α (PRKACA) and by dense desmoplasia. Surgery is the only effective treatment because mechanisms supporting tumor survival are unknown. We used single-cell RNA sequencing to characterize a patient-derived FLC xenograft model and identify therapeutic targets. Human FLC cells segregated into four discrete clusters that all expressed the oncogene Yes-associated protein 1 (YAP1). The two communities most enriched with cells coexpressing FLC markers [CD68, A-kinase anchoring protein 12 (AKAP12), cytokeratin 7, epithelial cell adhesion molecule (EPCAM), and carbamoyl palmitate synthase-1] also had the most cells expressing YAP1 and its proproliferative target genes (AREG and CCND1), suggesting these were proliferative FLC cell clusters. The other two clusters were enriched with cells expressing profibrotic YAP1 target genes, ACTA2, ELN, and COL1A1, indicating these were fibrogenic FLC cells. All clusters expressed the YAP1 target gene and mesothelial progenitor marker mesothelin, and many mesothelin-positive cells coexpressed albumin. Trajectory analysis predicted that the four FLC communities were derived from a single cell type transitioning among phenotypic states. After establishing a novel FLC cell line that harbored the DNAJB1-PRKACA fusion, YAP1 was inhibited, which significantly reduced expression of known YAP1 target genes as well as cell growth and migration. Thus, both FLC epithelial and stromal cells appear to arise from DNAJB1-PRKACA fusion in a YAP1-dependent liver mesothelial progenitor, identifying YAP1 as a target for FLC therapy.
Collapse
Affiliation(s)
- Mark L Jewell
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Cynthia D Guy
- Department of Pathology, Duke University, Durham, North Carolina
| | - Jeongeun Hyun
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Seh-Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Richard T Premont
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - David S Hsu
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Thomas Ribar
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| | - Anna Mae E Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
29
|
Sirois AR, Deny DA, Li Y, Fall YD, Moore SJ. Engineered Fn3 protein has targeted therapeutic effect on mesothelin-expressing cancer cells and increases tumor cell sensitivity to chemotherapy. Biotechnol Bioeng 2019; 117:330-341. [PMID: 31631324 DOI: 10.1002/bit.27204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/12/2022]
Abstract
Mesothelin is a protein expressed at high levels on the cell surface in a variety of cancers, with limited expression in healthy tissues. The presence of mesothelin on tumor tissue correlates with increased invasion and metastasis, and resistance to traditional chemotherapies, through mechanisms that remain poorly understood. Molecules that specifically recognize mesothelin and interrupt its contribution to tumor progression have significant potential for targeted therapy and targeted drug delivery applications. A number of mesothelin-targeting therapies are in preclinical and clinical development, although none are currently approved for routine clinical use. In this work, we report the development of a mesothelin-targeting protein based on the fibronectin type-III non-antibody protein scaffold, which offers opportunities for applications where antibodies have limitations. We engineered protein variants that bind mesothelin with high affinity and selectively initiate apoptosis in tumor cells expressing mesothelin. Interestingly, apoptosis does not occur through a caspase-mediated pathway and does not require downregulation of cell-surface mesothelin, suggesting a currently unknown pathway through which mesothelin contributes to cancer progression. Importantly, simultaneous treatment with mesothelin-binding protein and chemotherapeutic mitomycin C had a greater cytotoxic effect on mesothelin-positive cells compared to either molecule alone, underscoring the potential for combination therapy including biologics targeting mesothelin.
Collapse
Affiliation(s)
- Allison R Sirois
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Picker Engineering Program, Smith College, Northampton, Massachusetts
| | - Daniela A Deny
- Biochemistry Program, Smith College, Northampton, Massachusetts
| | - Yanxuan Li
- Picker Engineering Program, Smith College, Northampton, Massachusetts
| | - Yacine D Fall
- Biochemistry Program, Smith College, Northampton, Massachusetts
| | - Sarah J Moore
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Picker Engineering Program, Smith College, Northampton, Massachusetts.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| |
Collapse
|
30
|
Yakushiji H, Kobayashi K, Takenaka F, Kishi Y, Shinohara M, Akehi M, Sasaki T, Ohno E, Matsuura E. Novel single-chain variant of antibody against mesothelin established by phage library. Cancer Sci 2019; 110:2722-2733. [PMID: 31461572 PMCID: PMC6726835 DOI: 10.1111/cas.14150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 01/29/2023] Open
Abstract
Mesothelin (MSLN) shows increased expression in various cancer cells. For clinical application of antibodies as a positron emission tomography (PET) imaging reagent, a human shortened antibody is essential both for avoiding redundant immune responses and for providing rapid imaging. Therefore, we cloned a single‐chain fragment of variable regions (scFv) from a human‐derived gene sequence. This was achieved through the construction of a naïve phage library derived from human tonsil lymphocytes. Using a column with human recombinant MSLN, we carried out bio‐panning of phage‐variants by colony formation. We first obtained 120 clones that were subjected to selection in an ELISA using human recombinant MSLN as a solid phase antigen, and 15 phage clones of scFv with a different sequence were selected and investigated by flow cytometry (FCM). Then, six variants were selected and the individual scFv gene was synthesized in the VL and VH domains and expressed in Chinese hamster ovary cells. Mammalian cell‐derived human‐origin scFv clones were analyzed by FCM again, and one MSLN highly specific scFv clone was established. PET imaging by 89Zr‐labeled scFv was done in mice bearing xenografts with MSLN‐expressing cancer cells, and tumor legions were successfully visualized. The scFv variant established in the present study may be potentially useful for cancer diagnosis by PET imaging.
Collapse
Affiliation(s)
- Hiromasa Yakushiji
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Medical Life Science Faculty of Medical Bioscience Kyushu, University of Health and Welfare, Miyazaki, Japan
| | - Kazuko Kobayashi
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Fumiaki Takenaka
- Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiro Kishi
- Department of Research and Development, Ina Institute, Medical & Biological Laboratories, Co., Ltd, Ina, Japan
| | - Midori Shinohara
- Department of Research and Development, Ina Institute, Medical & Biological Laboratories, Co., Ltd, Ina, Japan
| | - Masaru Akehi
- Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takanori Sasaki
- Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiji Ohno
- Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Eiji Matsuura
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Neutron Therapy Research Center, Okayama University, Okayama, Japan
| |
Collapse
|
31
|
Perkhofer L, Beutel AK, Ettrich TJ. Immunotherapy: Pancreatic Cancer and Extrahepatic Biliary Tract Cancer. Visc Med 2019; 35:28-37. [PMID: 31312647 DOI: 10.1159/000497291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and extrahepatic biliary tract cancer (BTC) are among the malignancies with the highest morbidity and mortality. Despite increasing knowledge on biology and novel therapies, outcome remains poor in these patients. Recent progress in immunotherapies created new hopes in the treatment of PDAC and extrahepatic BTC. Several trials tested immunotherapies in various therapeutic situations as monotherapies or in combinations. Although responses were seen in some of the trials, the value of immunotherapy in PDAC and extrahepatic BTC remains unclear in the current situation, especially regarding the complex biological characteristics with a high stroma component, intrinsic resistance mechanisms and an immunosuppressive, hypoxic microenvironment. These major hurdles have to be taken into account and overcome if immunotherapies should be successful in these tumor entities. Thereby, combinational approaches that allow on the one hand targeted therapy and on the other restore or boost the function of immune cells are promising.
Collapse
Affiliation(s)
- Lukas Perkhofer
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| | - Alica K Beutel
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| | - Thomas J Ettrich
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
32
|
Sirois AR, Deny DA, Baierl SR, George KS, Moore SJ. Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding. PLoS One 2018; 13:e0197029. [PMID: 29738555 PMCID: PMC5940182 DOI: 10.1371/journal.pone.0197029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics.
Collapse
Affiliation(s)
- Allison R. Sirois
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
- Picker Engineering Program, Smith College, Northampton, Massachusetts, United States of America
| | - Daniela A. Deny
- Department of Biochemistry, Smith College, Northampton, Massachusetts, United States of America
| | - Samantha R. Baierl
- Picker Engineering Program, Smith College, Northampton, Massachusetts, United States of America
| | - Katia S. George
- Department of Biochemistry, Smith College, Northampton, Massachusetts, United States of America
| | - Sarah J. Moore
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts, United States of America
- Picker Engineering Program, Smith College, Northampton, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Manzanares MÁ, Campbell DJW, Maldonado GT, Sirica AE. Overexpression of periostin and distinct mesothelin forms predict malignant progression in a rat cholangiocarcinoma model. Hepatol Commun 2017; 2:155-172. [PMID: 29404524 PMCID: PMC5796331 DOI: 10.1002/hep4.1131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Periostin and mesothelin have each been suggested to be predictors of poor survival for patients with intrahepatic cholangiocarcinoma, although the clinical prognostic value of both of these biomarkers remains uncertain. The aim of the current study was to investigate these biomarkers for their potential to act as tumor progression factors when assessed in orthotopic tumor and three-dimensional culture models of rat cholangiocarcinoma progression. Using our orthotopic model, we demonstrated a strong positive correlation between tumor and serum periostin and mesothelin and increasing liver tumor mass and associated peritoneal metastases that also reflected differences in cholangiocarcinoma cell aggressiveness and malignant grade. Periostin immunostaining was most prominent in the desmoplastic stroma of larger sized more aggressive liver tumors and peritoneal metastases. In comparison, mesothelin was more highly expressed in the cholangiocarcinoma cells; the slower growing more highly differentiated liver tumors exhibited a luminal cancer cell surface immunostaining for this biomarker, and the rapidly growing less differentiated liver and metastatic tumor masses largely showed cytoplasmic mesothelin immunoreactivity. Two molecular weight forms of mesothelin were identified, one at ∼40 kDa and the other, a more heavily glycosylated form, at ∼50 kDa. Increased expression of the 40-kDa mesothelin over that of the 50 kDa form predicted increased malignant progression in both the orthotopic liver tumors and in cholangiocarcinoma cells of different malignant potential in three-dimensional culture. Moreover, coculturing of cancer-associated myofibroblasts with cholangiocarcinoma cells promoted overexpression of the 40-kDa mesothelin, which correlated with enhanced malignant progression in vitro. Conclusion: Periostin and mesothelin are useful predictors of tumor progression in our rat desmoplastic cholangiocarcinoma models. This supports their relevance to human intrahepatic cholangiocarcinoma. (Hepatology Communications 2018;2:155-172).
Collapse
Affiliation(s)
- Miguel Á Manzanares
- Division of Cellular and Molecular Pathogenesis, Department of Pathology Virginia Commonwealth University School of Medicine Richmond VA
| | - Deanna J W Campbell
- Division of Cellular and Molecular Pathogenesis, Department of Pathology Virginia Commonwealth University School of Medicine Richmond VA
| | - Gabrielle T Maldonado
- Division of Cellular and Molecular Pathogenesis, Department of Pathology Virginia Commonwealth University School of Medicine Richmond VA
| | - Alphonse E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology Virginia Commonwealth University School of Medicine Richmond VA
| |
Collapse
|
34
|
Abstract
Mesothelin (MSLN) is considered a promising target for cancer therapy. Originally extracted in 1992 after the immunization of mice with a human ovarian cancer (OC) cell line and cloned in 1996, MSLN seems to be involved in cell adhesion and metastasis. MSLN is prevalent in mesothelia tissues but is expressed in several human cancers, such as OC, pancreatic cancer, mesothelioma, and lung cancer. Amatuximab (MORAb-009) is a mouse-human chimeric monoclonal antibody with a selective affinity for MSLN. The principal mechanism of action comprises inhibition of binding of MSLN with the antigen CA125/MUC16. The highest phase of development is actually a Phase II trial (MORAb-009-201, Europe). In this review, we describe the mechanism of action of amatuximab and other MSLN-targeting novel drugs, along with a discussion about the expected efficacy, safety, and toxicity of this promising group of agents and implications for future research and clinical practice.
Collapse
Affiliation(s)
- Paolo Baldo
- Pharmacy Unit, Directorate Department, CRO Aviano-IRCCS National Cancer Institute, Aviano, Italy
| | - Sara Cecco
- Pharmacy Unit, Directorate Department, CRO Aviano-IRCCS National Cancer Institute, Aviano, Italy
| |
Collapse
|
35
|
Hochnadel I, Kossatz-Boehlert U, Jedicke N, Lenzen H, Manns MP, Yevsa T. Cancer vaccines and immunotherapeutic approaches in hepatobiliary and pancreatic cancers. Hum Vaccin Immunother 2017; 13:2931-2952. [PMID: 29112462 PMCID: PMC5718787 DOI: 10.1080/21645515.2017.1359362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.
Collapse
Affiliation(s)
- Inga Hochnadel
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Uta Kossatz-Boehlert
- b Institute for Neuroanatomy, Eberhard-Karls University Tuebingen , Tuebingen , Germany
| | - Nils Jedicke
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Henrike Lenzen
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Michael P Manns
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Tetyana Yevsa
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
36
|
Liver myofibroblasts of murine origins express mesothelin: Identification of novel rat mesothelin splice variants. PLoS One 2017; 12:e0184499. [PMID: 28898276 PMCID: PMC5595315 DOI: 10.1371/journal.pone.0184499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 01/09/2023] Open
Abstract
Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrβ, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and cellular distribution in transfected COS7 fibroblasts. We conclude that mesothelin is a marker of activated murine liver myofibroblasts. Mesothelin gene expression and regulation may be critical in liver myofibroblasts functions and fibrosis progression.
Collapse
|
37
|
Ilyas SI, Gores GJ. Emerging molecular therapeutic targets for cholangiocarcinoma. J Hepatol 2017; 67:632-644. [PMID: 28389139 PMCID: PMC5563275 DOI: 10.1016/j.jhep.2017.03.026] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinomas (CCAs) are diverse epithelial tumors arising from the liver or large bile ducts with features of cholangiocyte differentiation. CCAs are classified anatomically into intrahepatic (iCCA), perihilar (pCCA), and distal CCA (dCCA). Each subtype has distinct risk factors, molecular pathogenesis, therapeutic options, and prognosis. CCA is an aggressive malignancy with a poor overall prognosis and median survival of less than 2years in patients with advanced disease. Potentially curative surgical treatment options are limited to the subset of patients with early-stage disease. Presently, the available systemic medical therapies for advanced or metastatic CCA have limited therapeutic efficacy. Molecular alterations define the differences in biological behavior of each CCA subtype. Recent comprehensive genetic analysis has better characterized the genomic and transcriptomic landscape of each CCA subtype. Promising candidates for targeted, personalized therapy have emerged, including potential driver fibroblast growth factor receptor (FGFR) gene fusions and somatic mutations in isocitrate dehydrogenase (IDH)1/2 in iCCA, protein kinase cAMP-activated catalytic subunit alpha (PRKACA) or beta (PRKACB) gene fusions in pCCA, and ELF3 mutations in dCCA/ampullary carcinoma. A precision genomic medicine approach is dependent on an enhanced understanding of driver mutations in each subtype and stratification of patients according to their genetic drivers. We review the current genomic landscape of CCA, the potentially actionable molecular aberrations in each CCA subtype, and the role of immunotherapy in CCA.
Collapse
Affiliation(s)
- Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
38
|
Xu JY, Ye ZL, Jiang DQ, He JC, Ding YM, Li LF, Lv SQ, Wang Y, Jin HJ, Qian QJ. Mesothelin-targeting chimeric antigen receptor-modified T cells by piggyBac transposon system suppress the growth of bile duct carcinoma. Tumour Biol 2017; 39:1010428317695949. [PMID: 28381173 DOI: 10.1177/1010428317695949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor modified T cell-based immunotherapy is revolutionizing the field of cancer treatment. However, its potential in treating bile duct carcinoma has not been fully explored. Herein, we developed the second-generation mesothelin-targeting chimeric antigen receptor-modified T cells with the 4-1BB co-stimulatory module by the piggyBac transposon system. Mesothelin-targeting chimeric antigen receptor was expressed by 66.0% of mesothelin-targeting chimeric antigen receptor-modified T cells post electrophoretic transfection and stimulation with K562-meso cells; the expressions of activation markers were tested by flow cytometry assay and showed greater activation of mesothelin-targeting chimeric antigen receptor-modified T cells than control T cells (CD107α: 71.9% vs 48.6%; CD27: 92.1% vs 61.8%; CD137: 55.5% vs 8.4%; CD28: 98.0% vs 82.1%; CD134: 37.5% vs 10.4%). Furthermore, mesothelin-targeting chimeric antigen receptor-modified T cells exerted cytotoxicity toward mesothelin-expressing EH-CA1b and EH-CA1a cells in an effector-to-target ratio-dependent manner, while leaving mesothelin-negative GSC-SD and EH-GB1 cells and normal liver L02 cells almost unharmed. Mesothelin-targeting chimeric antigen receptor-modified T cells secreted cytokines at higher levels when co-cultured with mesothelin-positive EH-CA1a and EH-CA1b cells than with mesothelin-negative GSC-SD and EH-GB1 cells. Enhanced cytotoxicity and cytokine secretion of mesothelin-targeting chimeric antigen receptor-modified T cells compared to control T cells were also observed when co-cultured with 293-meso cells (interferon γ: 85.1% ± 1.47% vs 8.3% ± 2.50%, p = 0.000; tumor necrosis factor α: 90.9% ± 4.67% vs 18.5% ± 3.62%, p = 0.0004; interleukin 2: 60.8% ± 2.00% vs 15.6% ± 2.06%, p = 0.002; interleukin 6: 6.4% ± 2.95% vs 1.7% ± 0.63%, p = 0.055). In addition, mesothelin-targeting chimeric antigen receptor-modified T cells showed greater inhibitory and proliferative capability than control T cells within EH-CA1a cell xenografts. This study shows the potential of mesothelin-targeting chimeric antigen receptor-modified T cells in treating bile duct carcinoma.
Collapse
Affiliation(s)
- Jie-Ying Xu
- 1 Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhen-Long Ye
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Du-Qing Jiang
- 1 Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiang-Chuan He
- 1 Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yong-Mei Ding
- 3 Department of Biotherapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Lin-Fang Li
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Sai-Qun Lv
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Ying Wang
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Hua-Jun Jin
- 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| | - Qi-Jun Qian
- 1 Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.,2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China.,3 Department of Biotherapy, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University of Chinese PLA, Shanghai, China
| |
Collapse
|
39
|
Manzanares MÁ, Usui A, Campbell DJ, Dumur CI, Maldonado GT, Fausther M, Dranoff JA, Sirica AE. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1068-1092. [PMID: 28315313 DOI: 10.1016/j.ajpath.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022]
Abstract
To gain insight into the cellular and molecular interactions mediating the desmoplastic reaction and aggressive malignancy of mass-forming intrahepatic cholangiocarcinoma (ICC), we modeled ICC desmoplasia and progression in vitro. A unique three-dimensional (3D) organotypic culture model was established; within a dilute collagen-type I hydrogel, a novel clonal strain of rat cancer-associated myofibroblasts (TDFSM) was co-cultured with a pure rat cholangiocarcinoma cell strain (TDECC) derived from the same ICC type as TDFSM. This 3D organotypic culture model reproduced key features of desmoplastic reaction that closely mimicked those of the in situ tumor, as well as promoted cholangiocarcinoma cell growth and progression. Our results supported a resident liver mesenchymal cell origin of the TDFSM cells, which were not neoplastically transformed. Notably, 3D co-culturing of TDECC cells with TDFSM cells provoked the formation of a dense fibrocollagenous stroma in vitro that was associated with significant increases in both proliferative TDFSM myofibroblastic cells and TDECC cholangiocarcinoma cells accumulating within the gel matrix. This dramatic desmoplastic ICC-like phenotype, which was not observed in the TDECC or TDFSM controls, was highly dependent on transforming growth factor (TGF)-β, but not promoted by TGF-α. However, TGF-α was determined to be a key factor for promoting cholangiocarcinoma cell anaplasia, hyperproliferation, and higher malignant grading in this 3D culture model of desmoplastic ICC.
Collapse
Affiliation(s)
- Miguel Á Manzanares
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Akihiro Usui
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Deanna J Campbell
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Catherine I Dumur
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Gabrielle T Maldonado
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Michel Fausther
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alphonse E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
40
|
Aravalli RN, Steer CJ. Immune-Mediated Therapies for Liver Cancer. Genes (Basel) 2017; 8:E76. [PMID: 28218682 PMCID: PMC5333065 DOI: 10.3390/genes8020076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
In recent years, immunotherapy has gained renewed interest as an alternative therapeutic approach for solid tumors. Its premise is based on harnessing the power of the host immune system to destroy tumor cells. Development of immune-mediated therapies, such as vaccines, adoptive transfer of autologous immune cells, and stimulation of host immunity by targeting tumor-evasive mechanisms have advanced cancer immunotherapy. In addition, studies on innate immunity and mechanisms of immune evasion have enhanced our understanding on the immunology of liver cancer. Preclinical and clinical studies with immune-mediated therapies have shown potential benefits in patients with liver cancer. In this review, we summarize current knowledge and recent developments in tumor immunology by focusing on two main primary liver cancers: hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, 420 Delaware Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
A novel PET imaging using ⁶⁴Cu-labeled monoclonal antibody against mesothelin commonly expressed on cancer cells. J Immunol Res 2015; 2015:268172. [PMID: 25883990 PMCID: PMC4390102 DOI: 10.1155/2015/268172] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/14/2015] [Accepted: 02/19/2015] [Indexed: 01/27/2023] Open
Abstract
Mesothelin (MSLN) is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb) against human MSLN. In this study, we applied the 11-25 mAb to in vivo imaging to detect MSLN-expressing tumors. In in vitro and ex vivo immunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with 64Cu via a chelating agent DOTA and was used in both in vitro cell binding assay and in vivo positron emission tomography (PET) imaging in the tumor-bearing mice. We confirmed that 64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The 64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than 18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions.
Collapse
|
42
|
Prognostic value of mesothelin expression in patients with triple negative and HER2-positive breast cancers. Biomed Pharmacother 2015; 70:190-5. [DOI: 10.1016/j.biopha.2015.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 01/05/2015] [Indexed: 11/21/2022] Open
|
43
|
Zhang L, Frank R, Furth EE, Ziober AF, LiVolsi VA, Zhang PJ. Expression and diagnostic values of calretinin and CK5/6 in cholangiocarcinoma. Exp Hematol Oncol 2014; 3:12. [PMID: 24860692 PMCID: PMC4032162 DOI: 10.1186/2162-3619-3-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/09/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mesothelin, a mesothelial marker, has been found expressed in and as a potential treatment target of cholangioacarcinoma (CC). It is possible that CC may be derived from the cells sharing mesothelial markers. However, the expression of other mesothelial markers in CC is largely unknown. METHODS Thirty CC cases (10 extrahepatic and 20 intrahepatic) were retrieved from our institutional archive. The immunohistochemical study of Calretinin (DC8), WT1 (6F-H2), Lymphatic Endothelial Marker (D2-40), CK5/6 (D5/16 B4) and CK19 (b170) was done on formalin fixed paraffin embedded sections for 2-3 blocks of each case. We compared the expression levels between CC and normal bile duct (NBD) on the same block. RESULTS All of the CC and NBD are positive for CK19 (23/23) and negative for WT1 (0/23) and D2-40 (0/23), except one CC positive for D2-40(1/30, 3.3%) and one NBD positive for WT1 (1/23, 4.3%). Calretinin immunoreactivity was detected in 52.2% (12/23) of CC, but none in NBD (0/23). CK5/6 was also detectable in 73.3% (22/30) of CC and all NBD (30/30). Increased expression of calretinin and reduced expression of CK5/6 were more likely associated with CC than NBD (P < 0.001 and P = 0.002, respectively). The sequential staining pattern of positive calretinin and negative CK5/6 in calretinin negative cases has a sensitivity of 69.57% and a specificity of 100% for differentiating CC from NBD. CK5/6 expression was also more likely associated with well-differentiated CC (7/7 versus 12/20 in moderately differentiated, and 9/10 in poorly differentiated, P = 0.019) and extrahepatic CC (10/10 versus 12/20 in intrahepatic, P = 0.029), but there was no association between the calretinin expression and the CC grade or location. CONCLUSION Calretinin and CK5/6 immunohistochemical stains may be useful for diagnosing a CC. Their immunohistochemical results should be interpreted with caution in the cases with differential diagnoses of mesothelioma and CC. A full mesothelioma panel, including WT1 and/or D2-40, is recommended to better define a mesothelial lineage. The biology of calretinin and CK5/6 expression in CC is unclear, but might shed light on identifying therapeutic targets for CC.
Collapse
Affiliation(s)
- Lanjing Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Pearlman School of Medicine, Philadelphia, PA, USA ; Departments of Pathology, University Medical Center of Princeton at Plainsboro/Rutgers Robert Wood Johnson Medical School, Plainsboro, NJ, USA ; Department of Chemical Biology, Ernest Mario School of Pharmacy, Department of Pathology and Lab Medicine, Robert Wood Johnson Medical School, and Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Renee Frank
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Pearlman School of Medicine, Philadelphia, PA, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Pearlman School of Medicine, Philadelphia, PA, USA
| | - Amy F Ziober
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Pearlman School of Medicine, Philadelphia, PA, USA
| | - Virginia A LiVolsi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Pearlman School of Medicine, Philadelphia, PA, USA
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Pearlman School of Medicine, Philadelphia, PA, USA ; Department of Pathology, 6 Founders, 3400 Spruce St, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Melaiu O, Stebbing J, Lombardo Y, Bracci E, Uehara N, Bonotti A, Cristaudo A, Foddis R, Mutti L, Barale R, Gemignani F, Giamas G, Landi S. MSLN gene silencing has an anti-malignant effect on cell lines overexpressing mesothelin deriving from malignant pleural mesothelioma. PLoS One 2014; 9:e85935. [PMID: 24465798 PMCID: PMC3897543 DOI: 10.1371/journal.pone.0085935] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Genes involved in the carcinogenetic mechanisms underlying malignant pleural mesothelioma (MPM) are still poorly characterized. So far, mesothelin (MSLN) has aroused the most interest. It encodes for a membrane glycoprotein, frequently over-expressed in various malignancies such as MPM, and ovarian and pancreatic cancers. It has been proposed as a diagnostic and immunotherapeutic target with promising results. However, an alternative therapeutic approach seems to rise, whereby synthetic molecules, such as antisense oligonucleotides, could be used to inhibit MSLN activity. To date, such a gene-level inhibition has been attempted in two studies only, both on pancreatic and ovarian carcinoma cell lines, with the use of silencing RNA approaches. With regard to MPM, only one cell line (H2373) has been employed to study the effects of MSLN depletion. Indeed, the knowledge on the role of MSLN in MPM needs expanding. Accordingly, we investigated the expression of MSLN in a panel of three MPM cell lines, i.e., NCI-H28, Mero-14, and IstMes2; one non-MPM cell line was used as reference (Met5A). MSLN knock-down experiments on MSLN-overexpressing cells were also performed through silencing RNA (siRNA) to verify whether previous findings could be generalized to a different set of cell cultures. In agreement with previous studies, transient MSLN-silencing caused decreased proliferation rate and reduced invasive capacity and sphere formation in MSLN-overexpressing Mero-14 cells. Moreover, MSLN-siRNA combined with cisplatin, triggered a marked increase in apoptosis and a decrease in proliferation as compared to cells treated with each agent alone, thereby suggesting a sensitizing effect of siRNA towards cisplatin. In summary, our findings confirm that MSLN should be considered a key molecular target for novel gene-based targeted therapies of cancer.
Collapse
Affiliation(s)
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ylenia Lombardo
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Elisa Bracci
- Department of Biology, University of Pisa, Pisa, Italy
| | - Norihisa Uehara
- Second Department of Pathology, Kansai Medical University, Moriguchi-Shi, Osaka, Japan
| | - Alessandra Bonotti
- Department of Endocrinology and Metabolism, Orthopedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Alfonso Cristaudo
- Department of Endocrinology and Metabolism, Orthopedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Rudy Foddis
- Department of Endocrinology and Metabolism, Orthopedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Luciano Mutti
- Laboratory of Clinical Oncology, Vercelli National Health Trust, Vercelli, Italy
| | | | | | - Georgios Giamas
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
45
|
Kim H, Gao W, Ho M. Novel immunocytokine IL12-SS1 (Fv) inhibits mesothelioma tumor growth in nude mice. PLoS One 2013; 8:e81919. [PMID: 24260587 PMCID: PMC3829959 DOI: 10.1371/journal.pone.0081919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022] Open
Abstract
Mesothelin is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed on the cell surface of malignant mesothelioma. Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma. Immunocytokines represent a novel class of armed antibodies. To provide an alternative approach to current mesothelin-targeted antibody therapies, we have developed a novel immunocytokine based on interleukin-12 (IL12) and the SS1 Fv specific for mesothelin. IL12 possesses potent anti-tumor activity in a wide variety of solid tumors. The newly-developed recombinant immunocytokine, IL12-SS1 (Fv), was produced in insect cells using a baculovirus-insect cell expression system. The SS1 single-chain Fv was fused to the C terminus of the p35 subunit of IL12 through a short linker (GSADGG). The single-chain IL12-SS1 (Fv) immunocytokine bound native mesothelin proteins on malignant mesothelioma (NCI-H226) and ovarian (OVCAR-3) cells as well as recombinant mesothelin on A431/H9 cells. The immunocytokine retained sufficient bioactivity of IL12 and significantly inhibited human malignant mesothelioma (NCI-H226) grown in the peritoneal cavity of nude mice and showed comparable anti-tumor activity to that of the SS1P immunotoxin. IL12-SS1 (Fv) is the first reported immunocytokine to mesothelin-positive tumors and may be an attractive addition to mesothelin-targeted cancer therapies.
Collapse
Affiliation(s)
- Heungnam Kim
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wei Gao
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Tang Z, Qian M, Ho M. The role of mesothelin in tumor progression and targeted therapy. Anticancer Agents Med Chem 2013; 13:276-80. [PMID: 22721387 DOI: 10.2174/1871520611313020014] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 01/28/2023]
Abstract
Mesothelin, a glycosylphosphatidylinositol (GPI) anchored cell surface protein, is a potential target for antibody-based cancer therapy due to its high expression in mesothelioma, ovarian cancer, pancreatic cancer, cholangiocarcinoma and other cancers. The SS1P immunotoxin and MORAb-009 (amatuximab), a chimeric monoclonal antibody, are currently being evaluated in clinical trials. In this review, we discuss the role of mesothelin in cancer progression and provide new insights into mesothelin-targeted cancer therapy. Recent studies highlight three mechanisms by which mesothelin plays a role in cancer progression. First, mesothelin may aid in the peritoneal implantation and metastasis of tumors through its interaction with mucin MUC16 (also known as CA125). Second, mesothelin may promote cancer cell survival and proliferation via the NF-κB signaling pathway. Finally, mesothelin expression promotes resistance to certain chemotherapy drugs such as TNF-α, paclitaxel, and a combination of platinum and cyclophosphamide. However, its cancerspecific expression makes mesothelin a potential target for monoclonal antibody therapy. New human monoclonal antibodies targeting mesothelin have been isolated by phage display technology and may provide opportunities for novel cancer therapy.
Collapse
Affiliation(s)
- Zhewei Tang
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | | | | |
Collapse
|
47
|
Tang Z, Feng M, Gao W, Phung Y, Chen W, Chaudhary A, St Croix B, Qian M, Dimitrov DS, Ho M. A human single-domain antibody elicits potent antitumor activity by targeting an epitope in mesothelin close to the cancer cell surface. Mol Cancer Ther 2013; 12:416-26. [PMID: 23371858 PMCID: PMC3624043 DOI: 10.1158/1535-7163.mct-12-0731] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma and multiple forms of cancers, and show great promise for clinical development for solid cancers. Antibodies against mesothelin have been shown to act via immunotoxin-based inhibition of tumor growth and induction of antibody-dependent cell-mediated cytotoxicity (ADCC). However, complement-dependent cytotoxicity (CDC), considered an important additional mechanism of therapeutic antibodies against tumors, is inactive for such antibodies. Here, we used phage display antibody engineering technology and synthetic peptide screening to identify SD1, a human single-domain antibody to mesothelin. SD1 recognizes a conformational epitope at the C-terminal end (residues 539-588) of mesothelin close to the cell surface. To investigate SD1 as a potential therapeutic agent, we generated a recombinant human Fc (SD1-hFc) fusion protein. Interestingly, the SD1-hFc protein exhibits strong CDC activity, in addition to ADCC, against mesothelin-expressing tumor cells. Furthermore, it causes growth inhibition of human tumor xenografts in nude mice as a single agent. SD1 is the first human single-domain antibody targeting mesothelin-expressing tumors, shows potential as a cancer therapeutic candidate, and may improve current antibody therapy targeting mesothelin-expressing tumors.
Collapse
Affiliation(s)
- Zhewei Tang
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200062, China
- Antiody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Mingqian Feng
- Antiody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Gao
- Antiody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yen Phung
- Antiody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Weizao Chen
- Protein Interaction Group, CCR Nanobiology Program, Frederick National laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Amit Chaudhary
- Tumor Angiogenesis Section, Mouse Cancer Genetics Program, Frederick National laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Brad St Croix
- Tumor Angiogenesis Section, Mouse Cancer Genetics Program, Frederick National laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Min Qian
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Dimiter S. Dimitrov
- Protein Interaction Group, CCR Nanobiology Program, Frederick National laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702
| | - Mitchell Ho
- Antiody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
48
|
Phung Y, Gao W, Man YG, Nagata S, Ho M. High-affinity monoclonal antibodies to cell surface tumor antigen glypican-3 generated through a combination of peptide immunization and flow cytometry screening. MAbs 2012; 4:592-9. [PMID: 22820551 DOI: 10.4161/mabs.20933] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Isolating high-affinity antibodies against native tumor antigens on the cell surface is not straightforward using standard hybridoma procedures. Here, we describe a combination method of synthetic peptide immunization and high-throughput flow cytometry screening to efficiently isolate hybridomas for cell binding. Using this method, we identified high-affinity monoclonal antibodies specific for the native form of glypcian-3 (GPC3), a target heterogeneously expressed in hepatocellular carcinoma (HCC) and other cancers. We isolated a panel of monoclonal antibodies (YP6, YP7, YP8, YP9 and YP9.1) for cell surface binding. The antibodies were used to characterize GPC3 protein expression in human liver cancer cell lines and tissues by flow cytometry, immunoblotting and immunohistochemistry. The best antibody (YP7) bound cell surface-associated GPC3 with equilibrium dissociation constant, KD = 0.3 nmol/L and was highly specific for HCC, not normal tissues or other forms of primary liver cancers (such as cholangiocarcinoma). Interestingly, the new antibody was highly sensitive in that it detected GPC3 in low expression ovarian clear cell carcinoma and melanoma cells. The YP7 antibody exhibited significant HCC xenograft tumor growth inhibition in nude mice. These results describe an improved method for producing high-affinity monoclonal antibodies to cell surface tumor antigens and represent a general approach to isolate therapeutic antibodies against cancer. The new high-affinity antibodies described here have significant potential for GPC3-expressing cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Yen Phung
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
49
|
Ho M. Advances in liver cancer antibody therapies: a focus on glypican-3 and mesothelin. BioDrugs 2012; 25:275-84. [PMID: 21942912 DOI: 10.2165/11595360-000000000-00000] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liver cancer is one of the most common malignancies worldwide. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common primary liver cancers, yet there have been no significant advances in effective therapeutics. There is an urgent need to identify molecular targets for the development of novel therapeutic approaches. In this review, glypican-3 (GPC3) and mesothelin are discussed, with a focus on their potential as targets for antibody therapy in liver cancer. GPC3 and mesothelin are glycosylphosphatidylinositol-anchored proteins present on the cell surface. They are attractive candidates for liver cancer therapy given that GPC3 and mesothelin show high expression in HCC and CCA, respectively. Antibody drugs targeting GPC3 or mesothelin have shown anti-cancer activity in mice. Humanized or chimeric IgG molecules based on first-generation murine monoclonal antibodies against these antigens are being evaluated in clinical studies. Recently, fully human monoclonal antibodies against GPC3 and mesothelin have been isolated by antibody phage display technology that may provide opportunities for novel cancer therapy.
Collapse
Affiliation(s)
- Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
| |
Collapse
|
50
|
Phung YT, Barbone D, Broaddus VC, Ho M. Rapid generation of in vitro multicellular spheroids for the study of monoclonal antibody therapy. J Cancer 2011; 2:507-14. [PMID: 22043235 PMCID: PMC3204399 DOI: 10.7150/jca.2.507] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/12/2011] [Indexed: 11/05/2022] Open
Abstract
Tumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates and are difficult to study in vitro. Cells cultured as monolayers typically exhibit less resistance to therapy than those grown in vivo. Therefore, it is important to develop an alternative research model that better represents in vivo tumors. We have developed a protocol to produce multicellular spheroids, a simple and more relevant model of in vivo tumors that allows for further investigations of the microenvironmental effects on drug penetration and tumor cell killing. The protocol is used to produce in vitro three-dimensional tumor spheroids from established human cancer cell lines and primary cancer cells isolated from patients without the use of any extracellular components. To study the ability of tumor-targeting immunoconjugates to penetrate these tumor spheroids in vitro, we have used an immunotoxin targeting mesothelin, a surface protein expressed in malignant mesotheliomas. This method for producing consistent, reproducible 3D spheroids may allow for improved testing of novel monoclonal antibodies and other agents for their ability to penetrate solid tumors for cancer therapy.
Collapse
Affiliation(s)
- Yen T Phung
- 1. Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | |
Collapse
|