1
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
2
|
Liu H, Yang K, Wang S, Ge J. Advancements in research on the thrombo-inflammation mechanisms mediated by factor XII in ischemic stroke. J Thromb Thrombolysis 2025:10.1007/s11239-025-03101-6. [PMID: 40281266 DOI: 10.1007/s11239-025-03101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2025] [Indexed: 04/29/2025]
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability, with thrombo-inflammation constituting a core pathophysiological mechanism. This process is closely linked to coagulation cascade activation, endothelial injury, immune cell infiltration, and neuronal damage. Coagulation factor XII (FXII), a key mediator of the contact activation pathway, has emerged as a promising therapeutic target due to its dual role in pathological thrombosis and immune regulation, without compromising physiological hemostasis. However, the clinical translation of FXII-targeted therapies is hindered by paradoxical observations. Recent studies highlight that FXII's functional complexity stems from its structural and spatial heterogeneity: full-length FXII derived from the liver and short FXII mRNA isoforms expressed in neurons mediate distinct biological effects. While FXII contributes to neuroinflammation and vascular injury via endothelial-platelet-neutrophil interactions, neuron-derived FXII exhibits neuroprotective effects through HGF-mediated signaling pathways. Additionally, circulating FXIIa promotes vascular remodeling by enhancing endothelial growth factor (VEGF) release. This review summarizes the multifaceted regulatory mechanisms of FXII in IS, focusing on its structure, distribution, preclinical-clinical paradox, and current therapeutic strategies. Special emphasis is placed on its domain-specific functions and the neuroprotective effects of FXII.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
- School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
- Hunan Academy of Chinese Medicine, No. 142 Yuehua Roud, Changsha, Hunan, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, No. 300, Xueshi Road, Changsha, Hunan, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
- Hunan Academy of Chinese Medicine, No. 142 Yuehua Roud, Changsha, Hunan, China.
| |
Collapse
|
3
|
Shu H, Liao Q, Chen Z, Liang M, Zhang S, Liu J, Wu Y, Hu P, Luo M, Zhu W, Zhu X, Yang L, Yan T. Flavonoids serve as a promising therapeutic agent for ischemic stroke. Brain Res 2025; 1853:149528. [PMID: 39999903 DOI: 10.1016/j.brainres.2025.149528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Ischemic stroke (IS) continues to be a major public health concern and is characterized by significantly high mortality and disabling rates. Inhibiting nerve cells death and enhancing the repair of ischemic tissue are important treatment concepts for IS. Currently, the mainstream treatment strategies mainly focus on short-term care, which underscores the urgent need for novel therapeutic strategies for long-term care. Emerging data reveal that flavonoids have surfaced as promising candidates for IS patients' long-term care. Flavonoids can alleviate neuroinflammation and anti-apoptosis due to their characteristic pharmacological mechanisms. Clinical evidence suggests that long-term flavonoids intake improves IS patients' long-term outcomes. Though the effect of flavonoids in IS treatment has been explored for decades, the neuroprotective pharmacodynamics have not been well established. Thereby, the aim of current review is to summarize the pathways involved in neuroprotective effect of flavonoids. This review will also advance the potential of flavonoids as a viable clinical candidate for the treatment of IS.
Collapse
Affiliation(s)
- Hongxin Shu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiuye Liao
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhihao Chen
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Mingyu Liang
- School of life sciences, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Si Zhang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junzhe Liu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanze Wu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ping Hu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ming Luo
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wenping Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xingen Zhu
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Li Yang
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Tengfeng Yan
- Department of Neurosurgery, the 2st affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, China; Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Zhang X, Li H, Gu Y, Ping A, Chen J, Zhang Q, Xu Z, Wang J, Tang S, Wang R, Lu J, Lu L, Jin C, Jin Z, Zhang J, Shi L. Repair-associated macrophages increase after early-phase microglia attenuation to promote ischemic stroke recovery. Nat Commun 2025; 16:3089. [PMID: 40164598 PMCID: PMC11958652 DOI: 10.1038/s41467-025-58254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
Ischemic stroke recovery involves dynamic interactions between the central nervous system and infiltrating immune cells. Peripheral immune cells compete with resident microglia for spatial niches in the brain, but how modulating this balance affects recovery remains unclear. Here, we use PLX5622 to create spatial niches for peripheral immune cells, altering the competition between infiltrating immune cells and resident microglia in male mice following transient middle cerebral artery occlusion (tMCAO). We find that early-phase microglia attenuation promotes long-term functional recovery. This intervention amplifies a subset of monocyte-derived macrophages (RAMf) with reparative properties, characterized by high expression of GPNMB and CD63, enhanced lipid metabolism, and pro-angiogenic activity. Transplantation of RAMf into stroke-affected mice improves white matter integrity and vascular repair. We identify Mafb as the transcription factor regulating the reparative phenotype of RAMf. These findings highlight strategies to optimize immune cell dynamics for post-stroke rehabilitation.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Huaming Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Yichen Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - An Ping
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jiarui Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Qia Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Zhouhan Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Junjie Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Shenjie Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Rui Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Lingxiao Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Chenghao Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ziyang Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China.
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Li M, Wang Q, Zhu S, Sun W, Ren X, Xu Z, Li X, Wang S, Liu Q, Chen L, Wang H. Paeoniflorin Attenuates Limb Ischemia by Promoting Angiogenesis Through ERα/ROCK-2 Pathway. Pharmaceuticals (Basel) 2025; 18:272. [PMID: 40006085 PMCID: PMC11859641 DOI: 10.3390/ph18020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Peripheral artery disease (PAD) is a high-risk vascular condition, and vascular remodeling has become a promising therapeutic approach. Paeoniflorin (PF) is the main bioactive compound in the roots of Paeonia lactiflora Pall, which is commonly used to treat a range of cardiovascular disorders. However, the mechanisms underlying the ameliorating effects of PF on PAD remain unclear. Therefore, the purpose of this study was to explore the therapeutic efficiency of PF on PAD and determine its mechanisms. Methods: The blood flow of mice was detected with a laser Doppler dot scanning imaging system. HE staining was used to observe the morphological changes of ischemic muscle. The changes in the serologic indexes were detected with an automatic biochemical assay, and the capillary density of ischemic gastrocnemius was detected with a Lectin immunofluorescence assay. The expression of angiogenesis-related proteins in ischemic gastrocnemius was detected with Western blotting, and the proportion of macrophages and neutrophils in total cells was detected with flow cytometry. Results: PF significantly increased blood flow, capillary density and protein expressions of vascular endothelial growth factor A (VEGFA), matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 2 (MMP9), and estrogen receptor α (ERα) in mouse ischemic tissue in a PAD model. PF enhances the migration of endothelial cells and promotes the formation of tubular structures, involving the ERα/ROCK2 signaling pathway. Furthermore, PF was found to promote the phenotypic transformation of macrophages and alleviated grave inflammatory responses during vascular remodeling. Conclusions: We determined that PF as a potent compound in promoting angiogenesis and mitigating inflammatory responses during revascularization.
Collapse
Affiliation(s)
- Mengyao Li
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Qianyi Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Sinan Zhu
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Wei Sun
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Xiuyun Ren
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Zhenkun Xu
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Xinze Li
- School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Shaoxia Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Qi Liu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| | - Lu Chen
- Instrumental Analysis and Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China; (M.L.); (Q.W.); (Q.L.)
| |
Collapse
|
6
|
Evans MA, Chavkin NW, Sano S, Sun H, Sardana T, Ravi R, Doviak H, Wang Y, Yura Y, Polizio AH, Horitani K, Ogawa H, Hirschi KK, Walsh K. Tet2-mediated clonal hematopoiesis modestly improves neurological deficits and is associated with inflammation resolution in the subacute phase of experimental stroke. Front Cell Neurosci 2024; 18:1487867. [PMID: 39742155 PMCID: PMC11685025 DOI: 10.3389/fncel.2024.1487867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Recent work has revealed that clonal hematopoiesis (CH) is associated with a higher risk of numerous age-related diseases, including ischemic stroke, however little is known about whether it influences stroke outcome independent of its widespread effects on cardiovascular disease. Studies suggest that leukocytes carrying CH driver mutations have an enhanced inflammatory profile, which could conceivably exacerbate brain injury after a stroke. Methods Using a competitive bone marrow transplant model of Tet2-mediated CH, we tested the hypothesis that CH would lead to a poorer outcome after ischemic stroke by augmenting brain inflammation. Stroke was induced in mice by middle cerebral artery occlusion and neurological outcome was assessed at acute (24 h) and subacute (14 d) timepoints. Brains were collected at both time points for histological, immunofluorescence and gene expression assays. Results Unexpectedly, Tet2-mediated CH had no effect on acute stroke outcome but led to a reduction in neurological deficits during the subacute phase. This improved neurological outcome was associated with lower levels of brain inflammation as evidenced by lower transcript levels of various inflammatory molecules alongside reduced astrogliosis. Discussion These findings suggest that Tet2-mediated CH may have beneficial effects on outcome after stroke, contrasting with the conventional understanding of CH whereby leukocytes with driver mutations promote disease by exacerbating inflammation.
Collapse
Affiliation(s)
- Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Nicholas W. Chavkin
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hanna Sun
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Taneesha Sardana
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ramya Ravi
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ariel H. Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Karen K. Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
7
|
Li R, Huang T, Zhou J, Liu X, Li G, Zhang Y, Guo Y, Li F, Li Y, Liesz A, Li P, Wang Z, Wan J. Mef2c Exacerbates Neuron Necroptosis via Modulating Alternative Splicing of Cflar in Ischemic Stroke With Hyperlipidemia. CNS Neurosci Ther 2024; 30:e70144. [PMID: 39648651 PMCID: PMC11625962 DOI: 10.1111/cns.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024] Open
Abstract
AIM Hyperlipidemia is a common comorbidity of stroke patients, elucidating the mechanism that underlies the exacerbated ischemic brain injury after stroke with hyperlipidemia is emerging as a significant clinical problem due to the growing proportion of hyperlipidemic stroke patients. METHODS Mice were fed a high-fat diet for 12 weeks to induce hyperlipidemia. Transient middle cerebral artery occlusion was induced as a mouse model of ischemic stroke. Emx1Cre mice were crossed with Mef2cfl/fl mice to specifically deplete Mef2c in neurons. RESULTS We reported that hyperlipidemia significantly aggravated neuronal necroptosis and exacerbated long-term neurological deficits following ischemic stroke in mice. Mechanistically, Cflar, an upstream necroptotic regulator, was alternatively spliced into pro-necroptotic isoform (CflarR) in ischemic neurons of hyperlipidemic mice. Neuronal Mef2c was a transcription factor modulating Cflar splicing and upregulated by hyperlipidemia following stroke. Neuronal specific Mef2c depletion reduced cerebral level of CflarR and cFLIPR (translated by CflarR), while mitigated neuron necroptosis and neurological deficits following stroke in hyperlipidemic mice. CONCLUSIONS Our study highlights the pathogenic role of CflarR splicing mediated by neuronal Mef2c, which aggravates neuron necroptosis following stroke with comorbid hyperlipidemia and proposes CflarR splicing as a potential therapeutic target for hyperlipidemic stroke patients.
Collapse
Affiliation(s)
- Ruqi Li
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianchen Huang
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianpo Zhou
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiansheng Liu
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gan Li
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yueman Zhang
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fengshi Li
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Li
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMUMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhenghong Wang
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jieqing Wan
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Gao J, Liu R, Tang J, Pan M, Zhuang Y, Zhang Y, Liao H, Li Z, Shen N, Ma W, Chen J, Wan Q. Suppressing nuclear translocation of microglial PKM2 confers neuroprotection via downregulation of neuroinflammation after mouse cerebral ischemia-reperfusion injury. Int Immunopharmacol 2024; 141:112880. [PMID: 39153304 DOI: 10.1016/j.intimp.2024.112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key metabolic enzyme. Yet, its role in cerebral ischemia injury remains unclear. In this study we demonstrated that PKM2 expression was increased in the microglia after mouse cerebral ischemia-reperfusion (I/R) injury. We found that microglial polarization-mediated pro-inflammatory effect was mediated by PKM2 after cerebral I/R. Mechanistically, our results revealed that nuclear PKM2 mediated ischemia-induced microglial polarization through association with acetyl-H3K9. Hif-1α mediated the effect of nuclear PKM2/histone H3 on microglial polarization. PKM2-dependent Histone H3/Hif-1α modifications contributed the expression of CCL2 and induced up-regulation of microglial polarization in peri-infarct, resulting in neuroinflammation. Inhibiting nuclear translocation of microglial PKM2 reduced ischemia-induced pro-inflammation and promoted neuronal survival. Together, this study identifies nucleus PKM2 as a crucial mediator for regulating ischemia-induced neuroinflammation, suggesting PKM2 as a potential therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Rui Liu
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Junchun Tang
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Mengxian Pan
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Yang Zhuang
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Ya Zhang
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Huabao Liao
- Department of Physiology, School of Medicine, Wuhan University, 185 Donghu Street, Wuhan 430071, China
| | - Zhuo Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Na Shen
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China
| | - Juan Chen
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, 26 Shengli Street, Wuhan 430013, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao 266071, China.
| |
Collapse
|
9
|
Blasdel N, Bhattacharya S, Donaldson PC, Reh TA, Todd L. Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia. J Neurosci 2024; 44:e0938242024. [PMID: 39353729 PMCID: PMC11561870 DOI: 10.1523/jneurosci.0938-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Endogenous reprogramming of glia into neurogenic progenitors holds great promise for neuron restoration therapies. Using lessons from regenerative species, we have developed strategies to stimulate mammalian Müller glia to regenerate neurons in vivo in the adult retina. We have demonstrated that the transcription factor Ascl1 can stimulate Müller glia neurogenesis. However, Ascl1 is only able to reprogram a subset of Müller glia into neurons. We have reported that neuroinflammation from microglia inhibits neurogenesis from Müller glia. Here we found that the peripheral immune response is a barrier to CNS regeneration. We show that monocytes from the peripheral immune system infiltrate the injured retina and negatively influence neurogenesis from Müller glia. Using CCR2 knock-out mice of both sexes, we found that preventing monocyte infiltration improves the neurogenic and proliferative capacity of Müller glia stimulated by Ascl1. Using scRNA-seq analysis, we identified a signaling axis wherein Osteopontin, a cytokine highly expressed by infiltrating immune cells is sufficient to suppress mammalian neurogenesis. This work implicates the response of the peripheral immune system as a barrier to regenerative strategies of the retina.
Collapse
Affiliation(s)
- Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
10
|
Wu F, Zhang Z, Ma S, He Y, He Y, Ma L, Lei N, Deng W, Wang F. Microenvironment-responsive nanosystems for ischemic stroke therapy. Theranostics 2024; 14:5571-5595. [PMID: 39310102 PMCID: PMC11413776 DOI: 10.7150/thno.99822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke, a common neurological disorder caused by impaired blood supply to the brain, presents a therapeutic challenge. Conventional treatments like thrombolysis and neuroprotection drugs lack ideal drug delivery systems, limiting their effectiveness. Selectively delivering therapies to the ischemic cerebral tissue holds great potential for preventing and/or treating ischemia-related pathological symptoms. The unique pathological microenvironment of the brain after ischemic stroke, characterized by hypoxia, acidity, and inflammation, offers new possibilities for targeted drug delivery. Pathological microenvironment-responsive nanosystems, extensively investigated in tumors with hypoxia-responsive systems as an example, could also respond to the ischemic cerebral microenvironment and achieve brain-targeted drug delivery and release. These emerging nanosystems are gaining traction for ischemic stroke treatment. In this review, we expound on the cerebral pathological microenvironment and clinical treatment strategies of ischemic stroke, highlight various stimulus-responsive materials employed in constructing ischemic stroke microenvironment-responsive nano delivery systems, and discuss the application of these microenvironment-responsive nanosystems in microenvironment regulation for ischemic stroke treatment.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhijian Zhang
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, 450052, Henan, China
| | - Yanyan He
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuxi He
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixia Ma
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ningjing Lei
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Deng
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fazhan Wang
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
11
|
Li X, Guan Y, Chen D, Li J, Yu W, Zou H, Liu B, Chen L, Chen Z. Immune Cells Promote BDNF Expression by Infiltrated Macrophages via Interleukin 4 in the Cerebral Ischemia of Male Rats. J Neurosci Res 2024; 102:e25379. [PMID: 39235282 DOI: 10.1002/jnr.25379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
We reported that infiltrated Ly6C+ macrophages express brain-derived neurotrophic factor (BDNF) only at the cerebral cortex infarct in a rat dMCAO model. However, the changein neuron-expressed BDNF, the niche components that induce the Ly6C+ cells to express BDNF, and the cellular sources of these components, remain unclear. In this study, immunofluorescence double staining was performed to label BDNF and Ly6C on brain sections at 3, 24, and 48 h following distal middle cerebral artery occlusion (dMCAO) of male rats, and to stain BDNF with Ly6C, IL-4R, and IL-10R. A neutralizing anti-IL-4 antibody was injected into the infarct, and the IL-4 and BDNF concentrations in the subareas of the infarct were determined using enzyme-linked immunosorbent assay. To find out the cellular sources of IL-4, the markers for microglia, T cells, and neurons were co-stained with IL-4 separately. In certain infarct subareas, the main BDNF-expressing cells shifted quickly from NeuN+ neurons to Ly6C+ cells during 24-48 h post-stroke, and the Ly6C+/BDNF+ cells mostly expressed IL-4 receptor. Following IL-4 neutralizing antibody injection, the BDNF, IL-4 protein levels, and BDNF+/Ly6C+ cells decreased significantly. The main IL-4-expressing cell type in this infarct subarea is not neuron either, but immune cells, including microglia, monocyte, macrophages, and T cells. The neurons, maintained BDNF and IL-4 expression in the peri-infarct area. In conclusion, in a specific cerebral subarea of the rat dMCAO model, IL-4 secreted by immune cells is one of the main inducers for Ly6C+ cells to express BDNF.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Yunqian Guan
- Cell Therapy Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Danni Chen
- Department of Clinical Medicine, Medical School of Yangzhou University, Yangzhou, China
| | - Jiyu Li
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenxiu Yu
- Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China
| | - Haiqiang Zou
- Department of Neurology, The General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Bochao Liu
- Cell Therapy Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
12
|
El Baassiri MG, Raouf Z, Jang HS, Scheese D, Duess JW, Fulton WB, Sodhi CP, Hackam DJ, Nasr IW. Ccr2-dependent monocytes exacerbate intestinal inflammation and modulate gut serotonergic signaling following traumatic brain injury. J Trauma Acute Care Surg 2024; 97:356-364. [PMID: 38189659 DOI: 10.1097/ta.0000000000004246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) leads to acute gastrointestinal dysfunction and mucosal damage, resulting in feeding intolerance. C-C motif chemokine receptor 2 (Ccr2 + ) monocytes are crucial immune cells that regulate the gut's inflammatory response via the brain-gut axis. Using Ccr2 ko mice, we investigated the intricate interplay between these cells to better elucidate the role of systemic inflammation after TBI. METHODS A murine-controlled cortical impact model was used, and results were analyzed on postinjury days 1 and 3. The experimental groups included (1) sham C57Bl/6 wild type (WT), (2) TBI WT, (3) sham Ccr2 ko , and (4) TBI Ccr2 ko . Mice were euthanized on postinjury days 1 and 3 to harvest the ileum and study intestinal dysfunction and serotonergic signaling using a combination of quantitative real-time polymerase chain reaction, immunohistochemistry, fluorescein isothiocyanate-dextran motility assays, and flow cytometry. Student's t test and one-way analysis of variance were used for statistical analysis, with significance achieved when p < 0.05. RESULTS Traumatic brain injury resulted in severe dysfunction and dysmotility of the small intestine in WT mice as established by significant upregulation of inflammatory cytokines iNOS , Lcn2 , TNFα , and IL1β and the innate immunity receptor toll-like receptor 4 ( Tlr4 ). This was accompanied by disruption of genes related to serotonin synthesis and degradation. Notably, Ccr2 ko mice subjected to TBI showed substantial improvements in intestinal pathology. Traumatic brain injury Ccr2 ko groups demonstrated reduced expression of inflammatory mediators ( iNOS , Lcn2 , IL1β , and Tlr4 ) and improvement in serotonin synthesis genes, including tryptophan hydroxylase 1 ( Tph1 ) and dopa decarboxylase ( Ddc ). CONCLUSION Our study reveals a critical role for Ccr2 + monocytes in modulating intestinal homeostasis after TBI. Ccr2 + monocytes aggravate intestinal inflammation and alter gut-derived serotonergic signaling. Therefore, targeting Ccr2 + monocyte-dependent responses could provide a better understanding of TBI-induced gut inflammation. Further studies are required to elucidate the impact of these changes on brain neuroinflammation and cognitive outcomes.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- From the Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xu Q, Liu Y, Tian X, Xia X, Zhang Y, Zhang X, Wang Y, Sun P, Meng X, Wang A. Monocyte Chemoattractant Protein-1, Inflammatory Biomarkers, and Prognosis of Patients With Ischemic Stroke or Transient Ischemic Attack: Fndings From a Nationwide Registry Study. J Am Heart Assoc 2024; 13:e035820. [PMID: 39119971 PMCID: PMC11963953 DOI: 10.1161/jaha.124.035820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Recent Mendelian randomization and meta-analysis highlight the relevance of MCP-1 (monocyte chemoattractant protein-1) in stroke. We aimed to investigate the associations between MCP-1 and clinical outcomes in patients with ischemic stroke or transient ischemic attack and test whether inflammation mediates or jointly contributes to the relationships. METHODS AND RESULTS A total of 10 700 patients from the Third China National Stroke Registry study were included. Multivariable Cox regression was used for recurrent stroke and all-cause death, and logistic regression was used for poor functional outcome. Mediation analyses were performed to clarify whether inflammation mediates the associations. After adjusting for potential confounders, low MCP-1 level (<337.6 pg/mL) was associated with a reduced risk of all-cause death (hazard ratio [HR], 0.65 [95% CI, 0.51-0.82]) and poor functional outcome (odds ratio, 0.81 [95% CI, 0.70-0.94]) but was not associated with recurrent stroke (HR, 1.10 [95% CI, 0.95-1.27]), compared with high MCP-1 level (≥337.6 pg/mL). The association between MCP-1 and all-cause death was partially mediated by highly sensitive C-reactive protein, interleukin-6, and YKL-40 (Chitinase-3-like protein 1; mediated proportion: 7.4%, 10.5%, and 7.4%, respectively). The corresponding mediated proportion for poor functional outcome was 9.9%, 17.1%, and 7.1%, respectively. Patients with combined high levels of MCP-1 and inflammatory biomarkers had the highest risks of all-cause death and poor functional outcome. CONCLUSIONS Low plasma MCP-1 level was associated with decreased risks of all-cause mortality and poor functional outcome after ischemic stroke or transient ischemic attack. Inflammation partially mediated and jointly contributed to the associations.
Collapse
Affiliation(s)
- Qin Xu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Clinical Epidemiology and Clinical TrialCapital Medical UniversityBeijingChina
- Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijingChina
| | - Yuanliang Liu
- Department of NeurologyThe Second People’s Hospital of GuiyangGuizhouChina
| | - Xue Tian
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Epidemiology and Health Statistics, School of Public HealthCapital Medical UniversityBeijingChina
| | - Xue Xia
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Clinical Epidemiology and Clinical TrialCapital Medical UniversityBeijingChina
| | - Yijun Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Epidemiology and Health Statistics, School of Public HealthCapital Medical UniversityBeijingChina
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Clinical Epidemiology and Clinical TrialCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| | - Ping Sun
- Department of NeurologyThe Second People’s Hospital of GuiyangGuizhouChina
| | - Xia Meng
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Clinical Epidemiology and Clinical TrialCapital Medical UniversityBeijingChina
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Clinical Epidemiology and Clinical TrialCapital Medical UniversityBeijingChina
- Beijing Municipal Key Laboratory of Clinical EpidemiologyBeijingChina
| |
Collapse
|
14
|
Li H, Guan M, Zhang NN, Wang Y, Liang T, Wu H, Wang C, Sun T, Liu S. Harnessing nanomedicine for modulating microglial states in the central nervous system disorders: Challenges and opportunities. Biomed Pharmacother 2024; 177:117011. [PMID: 38917758 DOI: 10.1016/j.biopha.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Microglia are essential for maintaining homeostasis and responding to pathological events in the central nervous system (CNS). Their dynamic and multidimensional states in different environments are pivotal factors in various CNS disorders. However, therapeutic modulation of microglial states is challenging due to the intricate balance these cells maintain in the CNS environment and the blood-brain barrier's restriction of drug delivery. Nanomedicine presents a promising avenue for addressing these challenges, offering a method for the targeted and efficient modulation of microglial states. This review covers the challenges faced in microglial therapeutic modulation and potential use of nanoparticle-based drug delivery systems. We provide an in-depth examination of nanoparticle applications for modulating microglial states in a range of CNS disorders, encompassing neurodegenerative and autoimmune diseases, infections, traumatic injuries, stroke, tumors, chronic pain, and psychiatric conditions. This review highlights the recent advancements and future prospects in nanomedicine for microglial modulation, paving the way for future research and clinical applications of therapeutic interventions in CNS disorders.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Meng Guan
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China; Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
15
|
Li X, Pan M, Tian X, Yang LZ, Zhang J, Yan D, Xu B, Zhao L, Fang W. Myeloid Cell Trim59 Deficiency Worsens Experimental Ischemic Stroke and Alters Cerebral Proteomic Profile. J Inflamm Res 2024; 17:4827-4843. [PMID: 39051047 PMCID: PMC11268786 DOI: 10.2147/jir.s469651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Background Tripartite motif containing 59 (TRIM59) is a ubiquitin ligase and is involved in the pathogenesis of various diseases, including cancers, sepsis, and other immune-related diseases. However, it has not been defined whether TRIM59 plays a role in ischemic stroke in mice. Methods This study determined the influence of Trim59 deficiency on experimental stroke outcomes and the cerebral proteomic profile using myeloid cell Trim59 conditional knockout (Trim59-cKO) mice and a label-free quantitative proteomic profiling technique. The possible mechanisms by which TRIM59 affected stroke onset were elucidated by in vivo and in vitro experiments. Results Immunofluorescence staining results showed that TRIM59 expression was up-regulated after cerebral ischemia and co-localized with macrophages. Myeloid cell Trim59 deficiency exacerbated ischemic injury on day 3 after experimental stroke. In proteomic analysis, 23 differentially expressed proteins were identified in ischemic brain of Trim59-cKO mice as compared to Trim59flox/flox mice. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed proteins were enriched in complement and coagulation cascades. Protein-protein interaction analysis suggested the central role of clusterin in the interaction network. ELISA and Western blot assays confirmed the reduced levels of clusterin protein in the ischemic brains of Trim59-cKO mice. Further experimental results showed that clusterin was expressed in neurons. Conditional co-culture experiments of primary neurons and bone marrow-derived macrophages demonstrated that LPS stimulated macrophages to secrete complement C3. In addition, TRIM59 may affect the changes in clusterin expression in an indirect manner by influencing the secretion of complement C3 in macrophages. In vivo experiments also proved a significant increase in C3 levels in the brains of Trim59-cKO mice after ischemia. Conclusion Myeloid cell Trim59 deficiency aggravated ischemic stroke outcomes in conjunction with a distinct cerebral proteomic profile, and the underlying mechanism may be related to the regulation of macrophage C3 expression by TRIM59.
Collapse
Affiliation(s)
- Xiang Li
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mengtian Pan
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xinjuan Tian
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, Eberly College of Science, State College, PA, USA
| | - Jingjing Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Li Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
16
|
Yao Y, Ni W, Feng L, Meng J, Tan X, Chen H, Shen J, Zhao H. Comprehensive immune modulation mechanisms of Angong Niuhuang Wan in ischemic stroke: Insights from mass cytometry analysis. CNS Neurosci Ther 2024; 30:e14849. [PMID: 39075660 PMCID: PMC11286541 DOI: 10.1111/cns.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Angong Niuhuang Wan (AGNHW, ), is a classical medicinal formula in Traditional Chinese Medicine (TCM) that has been appreciated for its neuroprotective properties in ischemic cerebral injuries, yet its intricate mechanisms remain only partially elucidated. AIMS This study leverages advanced Mass cytometry (CyTOF) to analyze AGNHW's multifaceted immunomodulation effects in-depth, emphasizing previously underexplored areas. RESULTS AGNHW mitigated monocyte-derived macrophages (MoDM) infiltration in the brain, distinguishing its effects on those from microglia. While the vehicle group exhibited elevated inflammatory markers like CD4, CD8a, and CD44 in ischemic brains, the AGNHW-treated group attenuated their expressions, indicating AGNHW's potential to temper the post-ischemic inflammatory response. Systemically, AGNHW modulated fundamental immune cell dynamics, notably augmenting CD8+ T cells, B cells, monocytes, and neutrophil counts in the peripheral blood under post-stroke conditions. Intracellularly, AGNHW exhibited its targeted modulation of the signaling pathways, revealing a remarked inhibition of key markers like IκBα, indicating potential suppression of inflammatory responses in ischemic brain injuries. CONCLUSION This study offers a comprehensive portrait of AGNHW's immunomodulation effects on ischemic stroke, illuminating its dual sites of action-both cerebral and systemic-and its nuanced modulation of cellular and molecular dynamics.
Collapse
Affiliation(s)
- Yang Yao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Weihua Ni
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Liangshu Feng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Jihong Meng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaomu Tan
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Hansen Chen
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Jiangang Shen
- School of Chinese Medicine, State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongHong KongChina
| | - Heng Zhao
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Gong H, Li Z, Huang G, Mo X. Effects of peripheral blood cells on ischemic stroke: Greater immune response or systemic inflammation? Heliyon 2024; 10:e32171. [PMID: 38868036 PMCID: PMC11168442 DOI: 10.1016/j.heliyon.2024.e32171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Ischemic stroke is still one of the most serious medical conditions endangering human health worldwide. Current research on the mechanism of ischemic stroke focuses on the primary etiology as well as the subsequent inflammatory response and immune modulation. Recent research has revealed that peripheral blood cells and their components are crucial to the ensuing progression of ischemic stroke. However, it remains unclear whether blood cell elements are principally in charge of systemic inflammation or immunological regulation, or if their participation is beneficial or harmful to the development of ischemic stroke. In this review, we aim to describe the changes in peripheral blood cells and their corresponding parameters in ischemic stroke. Specifically, we elaborate on the role of each peripheral component in the inflammatory response or immunological modulation as well as their interactions. It has been suggested that more specific therapies aimed at targeting peripheral blood cell components and their role in inflammation or immunity are more favorable to the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Huanhuan Gong
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Li
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guoqing Huang
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, PR China
| |
Collapse
|
18
|
Xie L, He M, Ying C, Chu H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front Mol Neurosci 2024; 17:1400808. [PMID: 38932932 PMCID: PMC11199882 DOI: 10.3389/fnmol.2024.1400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating disease with high morbidity, disability, and mortality, among which ischemic stroke is more common. However, there is still a lack of effective methods to improve the prognosis and reduce the incidence of its complications. At present, there is evidence that peripheral organs are involved in the inflammatory response after stroke. Moreover, the interaction between central and peripheral inflammation includes the activation of resident and peripheral immune cells, as well as the activation of inflammation-related signaling pathways, which all play an important role in the pathophysiology of stroke. In this review, we discuss the mechanisms of inflammatory response after ischemic stroke, as well as the interactions through circulatory pathways between peripheral organs (such as the gut, heart, lung and spleen) and the brain to mediate and regulate inflammation after ischemic stroke. We also propose the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes (CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In addition, we also summarize the mechanisms of anti-inflammatory drugs in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Xie
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Ming He
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Caidi Ying
- Department of Hepatobiliary and Pancreatic Surgery, The Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Haifeng Chu
- Department of Neurosurgery, The Traditional Chinese Medicine Hospital of Linping District, Hangzhou, China
| |
Collapse
|
19
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
20
|
Ye Q, Jo J, Wang CY, Oh H, Zhan J, Choy TJ, Kim KI, D'Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK. Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a CCL2-CCR2 pathway and NO dysregulation. Cell Rep 2024; 43:114193. [PMID: 38709635 PMCID: PMC11210630 DOI: 10.1016/j.celrep.2024.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Heavin Oh
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jiangshan Zhan
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tiffany J Choy
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyoung In Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 77030, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
22
|
Chen X, Gu J, Zhang X. Brain-Heart Axis and the Inflammatory Response: Connecting Stroke and Cardiac Dysfunction. Cardiology 2024; 149:369-382. [PMID: 38574466 PMCID: PMC11309082 DOI: 10.1159/000538409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND In recent years, the mechanistic interaction between the brain and heart has been explored in detail, which explains the effects of brain injuries on the heart and those of cardiac dysfunction on the brain. Brain injuries are the predominant cause of post-stroke deaths, and cardiac dysfunction is the second leading cause of mortality after stroke onset. SUMMARY Several studies have reported the association between brain injuries and cardiac dysfunction. Therefore, it is necessary to study the influence on the heart post-stroke to understand the underlying mechanisms of stroke and cardiac dysfunction. This review focuses on the mechanisms and the effects of cardiac dysfunction after the onset of stroke (ischemic or hemorrhagic stroke). KEY MESSAGES The role of the site of stroke and the underlying mechanisms of the brain-heart axis after stroke onset, including the hypothalamic-pituitary-adrenal axis, inflammatory and immune responses, brain-multi-organ axis, are discussed.
Collapse
Affiliation(s)
- Xiaosheng Chen
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xiaojia Zhang
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
23
|
He S, Liu C, Ren C, Zhao H, Zhang X. Immunological Landscape of Retinal Ischemia-Reperfusion Injury: Insights into Resident and Peripheral Immune Cell Responses. Aging Dis 2024; 16:AD.2024.0129. [PMID: 38502592 PMCID: PMC11745425 DOI: 10.14336/ad.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Retinal ischemia-reperfusion injury (RIRI) is a complex condition characterized by immune cell-mediated inflammation and consequent neuronal damage. This review delves into the immune response mechanisms in RIRI, particularly emphasizing the roles played by resident and peripheral immune cells. It highlights the pivotal role of microglia, the primary resident immune cells, in exacerbating neuroinflammation and neuronal damage through their activation and subsequent release of pro-inflammatory mediators. Additionally, the review explores the contributions of other glial cell types, such as astrocytes and Müller cells, in modulating the immune response within the retinal environment. The dual role of the complement system in RIRI is also examined, revealing its complex functions in both safeguarding and impairing retinal health. Inflammasomes, triggered by various danger signals, are discussed as crucial contributors to the inflammatory pathways in RIRI, with an emphasis on the involvement of different NOD-like receptor family proteins. The review further analyzes the infiltration and impact of peripheral immune cells like neutrophils, macrophages, and T cells, which migrate to the retina following ischemic injury. Critical to this discussion is the interplay between resident and peripheral immune cells and its implications for RIRI pathophysiology. Finally, the review outlines future research directions, focusing on basic research and the potential for clinical translation to enhance understanding and treatment of RIRI.
Collapse
Affiliation(s)
- Shan He
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
| | - Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China.
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Xuxiang Zhang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol 2024; 188:1-14. [PMID: 38246086 DOI: 10.1016/j.yjmcc.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
25
|
Lu W, Chen Z, Wen J. Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells. Biomed Pharmacother 2024; 170:115847. [PMID: 38016362 DOI: 10.1016/j.biopha.2023.115847] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Ischemic stroke is one of the most cases worldwide, with high rate of morbidity and mortality. In the pathological process of ischemic stroke, neuroinflammation is an essential process that defines the functional prognosis. After stroke onset, microglia, astrocytes and the infiltrating immune cells contribute to a complicated neuroinflammation cascade and play the complicated roles in the pathophysiological variations of ischemic stroke. Both microglia and astrocytes undergo both morphological and functional changes, thereby deeply participate in the neuronal inflammation via releasing pro-inflammatory or anti-inflammatory factors. Flavonoids are plant-specific secondary metabolites and can protect against cerebral ischemia injury via modulating the inflammatory responses. For instances, quercetin can inhibit the expression and release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, IL-6 and IL-1β, in the cerebral nervous system (CNS). Apigenin and rutin can promote the polarization of microglia to anti-inflammatory genotype and then inhibit neuroinflammation. In this review, we focused on the dual roles of activated microglia and reactive astrocyte in the neuroinflammation following ischemic stroke and discussed the anti-neuroinflammation of some flavonoids. Importantly, we aimed to reveal the new strategies for alleviating the cerebral ischemic stroke.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Liu F, Cheng X, Zhao C, Zhang X, Liu C, Zhong S, Liu Z, Lin X, Qiu W, Zhang X. Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke. Neurosci Bull 2024; 40:65-78. [PMID: 37755676 PMCID: PMC10774469 DOI: 10.1007/s12264-023-01109-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/27/2023] [Indexed: 09/28/2023] Open
Abstract
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Collapse
Affiliation(s)
- Fangxi Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xi Cheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
- Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Chang Liu
- Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhouyang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyu Lin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Xiuchun Zhang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
27
|
Wang Y, Yin Q, Yang D, Jin H, Yao Y, Song J, Liu C, Nie Y, Yin H, Wang W, Xu B, Xue L, Ji X, Chen X, Zhao H. LCP1 knockdown in monocyte-derived macrophages: mitigating ischemic brain injury and shaping immune cell signaling and metabolism. Theranostics 2024; 14:159-175. [PMID: 38164159 PMCID: PMC10750214 DOI: 10.7150/thno.88678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024] Open
Abstract
Rationale: Ischemic stroke poses a significant health burden with limited treatment options. Lymphocyte Cytosolic Protein 1 (LCP1) facilitates cell migration and immune responses by aiding in actin polymerization, cytoskeletal rearrangements, and phagocytosis. We have demonstrated that the long non-coding RNA (lncRNA) Maclpil silencing in monocyte-derived macrophages (MoDMs) led to LCP1 inhibition, reducing ischemic brain damage. However, the role of LCP1 of MoDMs in ischemic stroke remains unknown. Methods and Results: We investigated the impact of LCP1 on ischemic brain injury and immune cell signaling and metabolism. We found that knockdown of LCP1 in MoDMs demonstrated robust protection against ischemic infarction and improved neurological behaviors in mice. Utilizing the high-dimensional CyTOF technique, we demonstrated that knocking down LCP1 in MoDMs led to a reduction in neuroinflammation and attenuation of lymphopenia, which is linked to immunodepression. It also showed altered immune cell signaling by modulating the phosphorylation levels of key kinases and transcription factors, including p-PLCg2, p-ERK1/2, p-EGFR, p-AKT, and p4E-BP1 as well as transcription factors like p-STAT1, p-STAT3, and p-STAT4. Further bioinformatic analysis indicated that Akt and EGFR are particularly involved in fatty acid metabolism and glycolysis. Indeed, single-cell sequencing analysis confirmed that enrichment of fatty acid and glycolysis metabolism in Lcp1high monocytes/macrophages. Furthermore, Lcp1high cells exhibited enhanced oxidative phosphorylation, chemotaxis, migration, and ATP biosynthesis pathways. In vitro experiments confirmed the role of LCP1 in regulating mitochondrial function and fatty acid uptake. Conclusions: These findings contribute to a deeper understanding of LCP1 in the context of ischemic stroke and provide valuable insights into potential therapeutic strategies targeting LCP1 and metabolic pathways, aiming to attenuating neuroinflammation and lymphopenia.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS Building, Stanford, USA
| | - Qianqian Yin
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Decao Yang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Haojie Jin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, The College of forestry, Beijing Forestry University, Beijing, China
| | - Yang Yao
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS Building, Stanford, USA
| | - Jibing Song
- College of Chemistry, Beijing University of Chemical Technology, China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China
| | - Yu Nie
- Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, Hunan, China
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, MSLS Building, Stanford, USA
| | - Lixiang Xue
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Chen Y, Fei X, Liu G, Li X, Huang L, Yang LZ, Li Y, Xu B, Fang W. P-Glycoprotein Exacerbates Brain Injury Following Experimental Cerebral Ischemia by Promoting Proinflammatory Microglia Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6916819. [PMID: 38144707 PMCID: PMC10748718 DOI: 10.1155/2023/6916819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/02/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Microglia are activated following cerebral ischemic insult. P-glycoprotein (P-gp) is an efflux transporter on microvascular endothelial cells and upregulated after cerebral ischemia. This study evaluated the effects and possible mechanisms of P-gp on microglial polarization/activation in mice after ischemic stroke. P-gp-specific siRNA and adeno-associated virus (p-AAV) were used to silence and overexpress P-gp, respectively. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) were performed in mice and cerebral microvascular endothelial cells (bEnd.3) in vitro, respectively. OGD/R-injured bEnd.3 cells were cocultured with mouse microglial cells (BV2) in Transwell. Influences on acute ischemic stroke outcome, the expression of inflammatory cytokines, and chemokines and chemokines receptors, microglial polarization, glucocorticoid receptor (GR) nuclear translocation, and GR-mediated mRNA decay (GMD) activation were evaluated via reverse transcription real-time polymerase chain reaction, western blot, or immunofluorescence. Silencing P-gp markedly alleviated experimental ischemia injury as indicated by reduced cerebral infarct size, improved neurological deficits, and reduced the expression of interleukin-6 (IL-6) and IL-12 expression. Silencing P-gp also mitigated proinflammatory microglial polarization and the expression of C-C motif chemokine ligand 2 (CCL2) and its receptor CCR2 expression, whereas promoted anti-inflammatory microglia polarization. Additionally, P-gp silencing promoted GR nuclear translocation and the expression of GMD relative proteins in endothelial cells. Conversely, overexpressing P-gp via p-AAV transfection offset all these effects. Furthermore, silencing endothelial GR counteracted all effects mediated by silencing or overexpressing P-gp. Elevated P-gp expression aggravated inflammatory response and brain damage after ischemic stroke by augmenting proinflammatory microglial polarization in association with increased endothelial CCL2 release due to GMD inhibition by P-gp.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xuan Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Lele Zixin Yang
- Penn State University, University Park, State College, PA 16802, USA
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
29
|
Bai M, Sun R, Cao B, Feng J, Wang J. Monocyte-related cytokines/chemokines in cerebral ischemic stroke. CNS Neurosci Ther 2023; 29:3693-3712. [PMID: 37452512 PMCID: PMC10651979 DOI: 10.1111/cns.14368] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS Ischemic stroke is one of the leading causes of death worldwide and the most common cause of disability in Western countries. Multiple mechanisms contribute to the development and progression of ischemic stroke, and inflammation is one of the most important mechanisms. DISCUSSION Ischemia induces the release of adenosine triphosphate/reactive oxygen species, which activates immune cells to produce many proinflammatory cytokines that activate downstream inflammatory cascades to induce fatal immune responses. Research has confirmed that peripheral blood immune cells play a vital role in the immunological cascade after ischemic stroke. The role of monocytes has received much attention among numerous peripheral blood immune cells. Monocytes induce their effects by secreting cytokines or chemokines, including CCL2/CCR2, CCR4, CCR5, CD36, CX3CL1/CX3CR1, CXCL12(SDF-1), LFA-1/ICAM-1, Ly6C, MMP-2/9, NR4A1, P2X4R, P-selectin, CD40L, TLR2/4, and VCAM-1/VLA-4. Those factors play important roles in the process of monocyte recruitment, migration, and differentiation. CONCLUSION This review focuses on the function and mechanism of the cytokines secreted by monocytes in the process of ischemic stroke and provides novel targets for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Meiling Bai
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruize Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bin Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Chen H, Xu C, Zeng H, Zhang Z, Wang N, Guo Y, Zheng Y, Xia S, Zhou H, Yu X, Fu X, Tang T, Wu X, Chen Z, Peng Y, Cai J, Li J, Yan F, Gu C, Chen G, Chen J. Ly6C-high monocytes alleviate brain injury in experimental subarachnoid hemorrhage in mice. J Neuroinflammation 2023; 20:270. [PMID: 37978532 PMCID: PMC10657171 DOI: 10.1186/s12974-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is an uncommon type of potentially fatal stroke. The pathophysiological mechanisms of brain injury remain unclear, which hinders the development of drugs for SAH. We aimed to investigate the pathophysiological mechanisms of SAH and to elucidate the cellular and molecular biological response to SAH-induced injury. METHODS A cross-species (human and mouse) multiomics approach combining high-throughput data and bioinformatic analysis was used to explore the key pathophysiological processes and cells involved in SAH-induced brain injury. Patient data were collected from the hospital (n = 712). SAH was established in adult male mice via endovascular perforation, and flow cytometry, a bone marrow chimera model, qPCR, and microglial depletion experiments were conducted to explore the origin and chemotaxis mechanism of the immune cells. To investigate cell effects on SAH prognosis, murine neurological function was evaluated based on a modified Garcia score, pole test, and rotarod test. RESULTS The bioinformatics analysis confirmed that inflammatory and immune responses were the key pathophysiological processes after SAH. Significant increases in the monocyte levels were observed in both the mouse brains and the peripheral blood of patients after SAH. Ly6C-high monocytes originated in the bone marrow, and the skull bone marrow contribute a higher proportion of these monocytes than neutrophils. The mRNA level of Ccl2 was significantly upregulated after SAH and was greater in CD11b-positive than CD11b-negative cells. Microglial depletion, microglial inhibition, and CCL2 blockade reduced the numbers of Ly6C-high monocytes after SAH. With CCR2 antagonization, the neurological function of the mice exhibited a slow recovery. Three days post-SAH, the monocyte-derived dendritic cell (moDC) population had a higher proportion of TNF-α-positive cells and a lower proportion of IL-10-positive cells than the macrophage population. The ratio of moDCs to macrophages was higher on day 3 than on day 5 post-SAH. CONCLUSIONS Inflammatory and immune responses are significantly involved in SAH-induced brain injury. Ly6C-high monocytes derived from the bone marrow, including the skull bone marrow, infiltrated into mouse brains via CCL2 secreted from microglia. Moreover, Ly6C-high monocytes alleviated neurological dysfunction after SAH.
Collapse
Affiliation(s)
- Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Zhihua Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Ning Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yinghan Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Tianchi Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Xinyan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Zihang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Jing Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| | - Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, China.
| |
Collapse
|
31
|
Telianidis J, Hunter A, Widdop R, Kemp-Harper B, Pham V, McCarthy C, Chai SY. Inhibition of insulin-regulated aminopeptidase confers neuroprotection in a conscious model of ischemic stroke. Sci Rep 2023; 13:19722. [PMID: 37957163 PMCID: PMC10643421 DOI: 10.1038/s41598-023-46072-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is a leading cause of mortality and morbidity with a paucity of effective pharmacological treatments. We have previously identified insulin-regulated aminopeptidase (IRAP) as a potential target for the development of a new class of drugs for the treatment of stroke, as global deletion of this gene in mice significantly protected against ischemic damage. In the current study, we demonstrate that small molecular weight IRAP inhibitors reduce infarct volume and improve neurological outcome in a hypertensive animal model of ischemic stroke. The effects of two structurally distinct IRAP inhibitors (HFI419 or SJM164) were investigated in a model of stroke where the middle cerebral artery was transiently occluded with endothelin-1 in the conscious spontaneously hypertensive rat. IRAP inhibitor was administered into the lateral ventricle at 2 or 6 h after stroke, with subsequent doses delivered at 24, 48 and 70 h post-stroke. Functional outcomes were assessed prior to drug treatment, and on day 1 and 3 post-stroke. Histological analyses and neuroinflammatory cytokine profiling were conducted at 72 and 24 h post-stroke respectively. IRAP inhibitor treatment following stroke significantly reduced infarct volume and improved neurological and motor deficits. These protective effects were maintained even when the therapeutic window was extended to 6 h. Examination of the cellular architecture at 72 h post-stroke demonstrated that IRAP expression was upregulated in CD11b positive cells and activated astrocytes. Furthermore, IRAP inhibitor treatment significantly increased gene expression for interleukin 6 and C-C motif chemokine ligand 2 in the ischemic core. This study provides proof-of-principle that selective inhibition of IRAP activity with two structurally distinct IRAP inhibitors reduces infarct volume and improves functional outcome even when the first dose is administered 6 h post-stroke. This is the first direct evidence that IRAP inhibitors are a class of drug with potential use in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew Hunter
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Robert Widdop
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Barbara Kemp-Harper
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Vi Pham
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Claudia McCarthy
- Department Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
32
|
Wang R, Li H, Ling C, Zhang X, Lu J, Luan W, Zhang J, Shi L. A novel phenotype of B cells associated with enhanced phagocytic capability and chemotactic function after ischemic stroke. Neural Regen Res 2023; 18:2413-2423. [PMID: 37282471 DOI: 10.4103/1673-5374.371365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Accumulating evidence has demonstrated the involvement of B cells in neuroinflammation and neuroregeneration. However, the role of B cells in ischemic stroke remains unclear. In this study, we identified a novel phenotype of macrophage-like B cells in brain-infiltrating immune cells expressing a high level of CD45. Macrophage-like B cells characterized by co-expression of B-cell and macrophage markers, showed stronger phagocytic and chemotactic functions compared with other B cells and showed upregulated expression of phagocytosis-related genes. Gene Ontology analysis found that the expression of genes associated with phagocytosis, including phagosome- and lysosome-related genes, was upregulated in macrophage-like B cells. The phagocytic activity of macrophage-like B cells was verified by immunostaining and three-dimensional reconstruction, in which TREM2-labeled macrophage-like B cells enwrapped and internalized myelin debris after cerebral ischemia. Cell-cell interaction analysis revealed that macrophage-like B cells released multiple chemokines to recruit peripheral immune cells mainly via CCL pathways. Single-cell RNA sequencing showed that the transdifferentiation to macrophage-like B cells may be induced by specific upregulation of the transcription factor CEBP family to the myeloid lineage and/or by downregulation of the transcription factor Pax5 to the lymphoid lineage. Furthermore, this distinct B cell phenotype was detected in brain tissues from mice or patients with traumatic brain injury, Alzheimer's disease, and glioblastoma. Overall, these results provide a new perspective on the phagocytic capability and chemotactic function of B cells in the ischemic brain. These cells may serve as an immunotherapeutic target for regulating the immune response of ischemic stroke.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Huaming Li
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chenhan Ling
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaotao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Weimin Luan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine; Brain Research Institute, Zhejiang University; Stroke Research Center for Diagnostic and Therapeutic Technologies of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ligen Shi
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| |
Collapse
|
33
|
Blank-Stein N, Mass E. Macrophage and monocyte subsets in response to ischemic stroke. Eur J Immunol 2023; 53:e2250233. [PMID: 37467166 DOI: 10.1002/eji.202250233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality. Despite extensive efforts in stroke research, the only pharmacological treatment currently available is arterial recanalization, which has limited efficacy only in the acute phase of stroke. The neuroinflammatory response to stroke is believed to provide a wider time window than recanalization and has therefore been proposed as an attractive therapeutic target. In this review, we provide an overview of recent advances in the understanding of cellular and molecular responses of distinct macrophage populations following stroke, which may offer potential targets for therapeutic interventions. Specifically, we discuss the role of local responders in neuroinflammation, including the well-studied microglia as well as the emerging players, border-associated macrophages, and macrophages originating from the skull bone marrow. Additionally, we focus on the behavior of monocytes stemming from distant tissues such as the bone marrow and spleen. Finally, we highlight aging as a crucial factor modulating the immune response, which is often neglected in animal studies.
Collapse
Affiliation(s)
- Nelli Blank-Stein
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
34
|
Pimentel‐Coelho PM. Monocytes in neonatal stroke and hypoxic‐ischemic encephalopathy: Pathophysiological mechanisms and therapeutic possibilities. NEUROPROTECTION 2023; 1:66-79. [DOI: 10.1002/nep3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractNeonatal arterial ischemic stroke (NAIS) and neonatal hypoxic‐ischemic encephalopathy (HIE) are common causes of neurological impairments in infants, for which treatment options are very limited. NAIS and HIE induce an innate immune response that involves the recruitment of peripheral immune cells, including monocytes, into the brain. Monocytes and monocyte‐derived cells have the potential to contribute to both harmful and beneficial pathophysiological processes, such as neuroinflammation and brain repair, but their roles in NAIS and HIE remain poorly understood. Furthermore, recent evidence indicates that monocyte‐derived macrophages can persist in the brain for several months following NAIS and HIE in mice, with possible long‐lasting consequences that are still unknown. This review provides a comprehensive overview of the mechanisms of monocyte infiltration and their potential functions in the ischemic brain, focusing on HIE and NAIS. Therapeutic strategies targeting monocytes and the possibility of using monocytes for cell‐based therapies are also discussed.
Collapse
Affiliation(s)
- Pedro M. Pimentel‐Coelho
- Carlos Chagas Filho Biophysics Institute Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
35
|
Jiang H, Sun Z, Zhu X, Li F, Chen Q. Essential genes Ptgs2, Tlr4, and Ccr2 regulate neuro-inflammation during the acute phase of cerebral ischemic in mice. Sci Rep 2023; 13:13021. [PMID: 37563282 PMCID: PMC10415315 DOI: 10.1038/s41598-023-40255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Ischemic stroke (IS) is associated with changes in gene expression patterns in the ischemic penumbra and extensive neurovascular inflammation. However, the key molecules related to the inflammatory response in the acute phase of IS remain unclear. To address this knowledge gap, conducted a study using Gene Set Enrichment Analysis (GSEA) on two gene expression profiles, GSE58720 and GSE202659, downloaded from the GEO database. We screened differentially expressed genes (DEGs) using GEO2R and analyzed 170 differentially expressed intersection genes for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis. We also used Metascape, DAVID, STRING, Cytoscape, and TargetScan to identify candidate miRNAs and genes. The targeted genes and miRNA molecule were clarified using the mice middle cerebral artery occlusion-reperfusion (MCAO/R) model. Our findings revealed that 170 genes were correlated with cytokine production and inflammatory cell activation, as determined by GO and KEGG analyses. Cluster analysis identified 11 hub genes highly associated with neuroinflammation: Ccl7, Tnf, Ccl4, Timp1, Ccl3, Ccr1, Sele, Ccr2, Tlr4, Ptgs2, and Il6. TargetScan results suggested that Ptgs2, Tlr4, and Ccr2 might be regulated by miR-202-3p. In the MCAO/R model, the level of miR-202-3p decreased, while the levels of Ptgs2, Tlr4, and Ccr2 increased compared to the sham group. Knockdown of miR-202-3p exacerbated ischemic reperfusion injury (IRI) through neuroinflammation both in vivo and in vitro. Our study also demonstrated that mRNA and protein levels of Ptgs2, Tlr4, and Ccr2 increased in the MCAO/R model with miR-202-3p knockdown. These findings suggest that differentially expressed genes, including Ptgs2, Tlr4, and Ccr2 may play crucial roles in the neuroinflammation of IS, and their expression may be negatively regulated by miR-202-3p. Our study provides new insights into the regulation of neuroinflammation in IS.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Zhiqiang Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xiwei Zhu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
36
|
Nguyen JN, Chauhan A. Bystanders or not? Microglia and lymphocytes in aging and stroke. Neural Regen Res 2023; 18:1397-1403. [PMID: 36571333 PMCID: PMC10075112 DOI: 10.4103/1673-5374.360345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
As the average age of the world population increases, more people will face debilitating aging-associated conditions, including dementia and stroke. Not only does the incidence of these conditions increase with age, but the recovery afterward is often worse in older patients. Researchers and health professionals must unveil and understand the factors behind age-associated diseases to develop a therapy for older patients. Aging causes profound changes in the immune system including the activation of microglia in the brain. Activated microglia promote T lymphocyte transmigration leading to an increase in neuroinflammation, white matter damage, and cognitive impairment in both older humans and rodents. The presence of T and B lymphocytes is observed in the aged brain and correlates with worse stroke outcomes. Preclinical strategies in stroke target either microglia or the lymphocytes or the communications between them to promote functional recovery in aged subjects. In this review, we examine the role of the microglia and T and B lymphocytes in aging and how they contribute to cognitive impairment. Additionally, we provide an important update on the contribution of these cells and their interactions in preclinical aged stroke.
Collapse
Affiliation(s)
- Justin N. Nguyen
- University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| |
Collapse
|
37
|
Jing K, Chen F, Shi X, Guo J, Liu X. Dual effect of C-C motif chemokine receptor 5 on ischemic stroke: More harm than benefit? Eur J Pharmacol 2023:175857. [PMID: 37321471 DOI: 10.1016/j.ejphar.2023.175857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Ischemic stroke involves a series of complex pathological mechanisms, of which neuroinflammation is currently the most widely recognized. C-C motif chemokine receptor 5 (CCR5) has recently been shown to be upregulated after cerebral ischemia. Notably, CCR5 is not only involved in neuroinflammation, but also in the blood-brain barrier, neural structures, and connections. Accumulating experimental studies indicate that CCR5 has a dual effect on ischemic stroke. In the acute phase after cerebral ischemia, the pro-inflammatory and disruptive effect of CCR5 on the blood-brain barrier predominates. However, in the chronic phase, the effect of CCR5 on the repair of neural structures and connections is thought to be cell-type dependent. Interestingly, clinical evidence has shown that CCR5 might be harmful rather than beneficial. CCR5-Δ32 mutation or CCR5 antagonist exerts a neuroprotective effect in patients with ischemic stroke. Considering CCR5 as an attractive potential target, we introduce the current research progress of the entangled relationships between CCR5 and ischemic stroke. Clinical data are still needed to determine the efficacy of activating or inactivating CCR5 in the treatment of ischemic stroke, especially for potential phase- or cell type-dependent treatments in the future.
Collapse
Affiliation(s)
- Kai Jing
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Feng Chen
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaofei Shi
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jinmin Guo
- Department of Clinical Pharmacy, 960th Hospital of Joint Logistic Support Force, Shandong, Jinan, China.
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
38
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
39
|
Zbesko JC, Stokes J, Becktel DA, Doyle KP. Targeting foam cell formation to improve recovery from ischemic stroke. Neurobiol Dis 2023; 181:106130. [PMID: 37068641 PMCID: PMC10993857 DOI: 10.1016/j.nbd.2023.106130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Inflammation is a crucial part of the healing process after an ischemic stroke and is required to restore tissue homeostasis. However, the inflammatory response to stroke also worsens neurodegeneration and creates a tissue environment that is unfavorable to regeneration for several months, thereby postponing recovery. In animal models, inflammation can also contribute to the development of delayed cognitive deficits. Myeloid cells that take on a foamy appearance are one of the most prominent immune cell types within chronic stroke infarcts. Emerging evidence indicates that they form as a result of mechanisms of myelin lipid clearance becoming overwhelmed, and that they are a key driver of the chronic inflammatory response to stroke. Therefore, targeting lipid accumulation in foam cells may be a promising strategy for improving recovery. The aim of this review is to provide an overview of current knowledge regarding inflammation and foam cell formation in the brain in the weeks and months following ischemic stroke and identify targets that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Jacob C Zbesko
- Department of Immunobiology, University of Arizona, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, United States
| | | | - Kristian P Doyle
- Department of Immunobiology, University of Arizona, United States; Departments of Neurology, Neurosurgery, Psychology, Arizona Center on Aging, and the BIO5 Institute, University of Arizona, United States.
| |
Collapse
|
40
|
Ye Q, Jo J, Wang CY, Oh H, Choy TJ, Kim K, D’Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK. Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a NO-CCL2-CCR2 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535167. [PMID: 37066295 PMCID: PMC10103986 DOI: 10.1101/2023.04.03.535167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests pH homeostasis is a new cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption and reactive gliosis, which were both rescued by pharmacological or genetic inhibition of the NO-CCL2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-NO-CCL2 axis as a pivotal mechanism controlling BBB integrity and repair, while providing insights for a novel therapeutic approach against BBB-related CNS disorders.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Heavin Oh
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Tiffany J. Choy
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Kyoungin Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
41
|
Ye Z, Ai X, Yang K, Yang Z, Fei F, Liao X, Qiu Z, Gimple RC, Yuan H, Huang H, Gong Y, Xiao C, Yue J, Huang L, Saulnier O, Wang W, Zhang P, Dai L, Wang X, Wang X, Ahn YH, You C, Xu J, Wan X, Taylor MD, Zhao L, Rich JN, Zhou S. Targeting Microglial Metabolic Rewiring Synergizes with Immune-Checkpoint Blockade Therapy for Glioblastoma. Cancer Discov 2023; 13:974-1001. [PMID: 36649564 PMCID: PMC10073346 DOI: 10.1158/2159-8290.cd-22-0455] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Glioblastoma (GBM) constitutes the most lethal primary brain tumor for which immunotherapy has provided limited benefit. The unique brain immune landscape is reflected in a complex tumor immune microenvironment (TIME) in GBM. Here, single-cell sequencing of the GBM TIME revealed that microglia were under severe oxidative stress, which induced nuclear receptor subfamily 4 group A member 2 (NR4A2)-dependent transcriptional activity in microglia. Heterozygous Nr4a2 (Nr4a2+/-) or CX3CR1+ myeloid cell-specific Nr4a2 (Nr4a2fl/flCx3cr1Cre) genetic targeting reshaped microglia plasticity in vivo by reducing alternatively activated microglia and enhancing antigen presentation capacity for CD8+ T cells in GBM. In microglia, NR4A2 activated squalene monooxygenase (SQLE) to dysregulate cholesterol homeostasis. Pharmacologic NR4A2 inhibition attenuated the protumorigenic TIME, and targeting the NR4A2 or SQLE enhanced the therapeutic efficacy of immune-checkpoint blockade in vivo. Collectively, oxidative stress promotes tumor growth through NR4A2-SQLE activity in microglia, informing novel immune therapy paradigms in brain cancer. SIGNIFICANCE Metabolic reprogramming of microglia in GBM informs synergistic vulnerabilities for immune-checkpoint blockade therapy in this immunologically cold brain tumor. This article is highlighted in the In This Issue feature, p. 799.
Collapse
Affiliation(s)
- Zengpanpan Ye
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Xiaolin Ai
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Fan Fei
- Department of Neurosurgery, Sichuan People’s Hospital, Chengdu, Sichuan, P. R. China
| | - Xiaoling Liao
- Department of Neurosurgery, Sichuan People’s Hospital, Chengdu, Sichuan, P. R. China
| | - Zhixin Qiu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan C. Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Huairui Yuan
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hao Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
| | - Chaoxin Xiao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Jing Yue
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Liang Huang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Olivier Saulnier
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Wei Wang
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang, P. R. China
| | - Peidong Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong. Prince of Wales Hospital, Shatin, N.T., Hong Kong, SAR, P. R. China
| | - Xiuxing Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Young Ha Ahn
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Chao You
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Jianguo Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Xiaoxiao Wan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael D. Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, M5S 3E1, Canada
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jeremy N. Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| |
Collapse
|
42
|
Lei W, Jia L, Wang Z, Liang Z, Aizhen Z, Liu Y, Tian Y, Zhao L, Chen Y, Shi G, Yang Z, Yang Y, Xu X. CC chemokines family in fibrosis and aging: From mechanisms to therapy. Ageing Res Rev 2023; 87:101900. [PMID: 36871782 DOI: 10.1016/j.arr.2023.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.
Collapse
Affiliation(s)
- Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, 430064, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Zhao Aizhen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yawu Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guangyong Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
43
|
Montilla A, Zabala A, Er-Lukowiak M, Rissiek B, Magnus T, Rodriguez-Iglesias N, Sierra A, Matute C, Domercq M. Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis. Cell Death Dis 2023; 14:16. [PMID: 36635255 PMCID: PMC9835747 DOI: 10.1038/s41419-023-05551-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
In multiple sclerosis and the experimental autoimmune encephalomyelitis (EAE) model, both resident microglia and infiltrating macrophages contribute to demyelination as well as spontaneous remyelination. Nevertheless, the specific roles of microglia versus macrophages are unknown. We investigated the influence of microglia in EAE using the colony stimulating factor 1 receptor (CSF-1R) inhibitor, PLX5622, to deplete microglial population and Ccr2RFP/+ fmsEGFP/+ mice, to distinguish blood-derived macrophages from microglia. PLX5622 treatment depleted microglia and meningeal macrophages, and provoked a massive infiltration of CCR2+ macrophages into demyelinating lesions and spinal cord parenchyma, albeit it did not alter EAE chronic phase. In contrast, microglia and meningeal macrophages depletion reduced the expression of major histocompatibility complex II and CD80 co-stimulatory molecule in dendritic cells, macrophages and microglia. In addition, it diminished T cell reactivation and proliferation in the spinal cord parenchyma, inducing a significant delay in EAE onset. Altogether, these data point to a specific role of CNS microglia and meningeal macrophages in antigen presentation and T cell reactivation at initial stages of EAE.
Collapse
Affiliation(s)
- Alejandro Montilla
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Alazne Zabala
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Marco Er-Lukowiak
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 20251, Hamburg, Germany
| | - Noelia Rodriguez-Iglesias
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Domercq
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| |
Collapse
|
44
|
Qi T, Xu X, Guo Y, Xia Y, Peng L, Li C, Ding F, Gao C, Fan M, Yu M, Zhao H, He Y, Li W, Hai C, Gao E, Zhang X, Gao F, Fan Y, Yan W, Tao L. CSF2RB overexpression promotes the protective effects of mesenchymal stromal cells against ischemic heart injury. Theranostics 2023; 13:1759-1773. [PMID: 37064880 PMCID: PMC10091875 DOI: 10.7150/thno.81336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/26/2023] [Indexed: 04/18/2023] Open
Abstract
Aims: The invasive intramyocardial injection of mesenchymal stromal cells (MSCs) allows for limited repeat injections and shows poor therapeutic efficacy against ischemic heart failure. Intravenous injection is an alternative method because this route allows for repeated, noninvasive, and easy delivery. However, the lack of targeting of MSCs hinders the ability of these cells to accumulate in the ischemic area after intravenous injections. We investigated whether and how the overexpression of colony-stimulating factor 2 receptor beta subunit (CSF2RB) may regulate the cardiac homing of MSCs and their cardioprotective effects against ischemic heart failure. Methods and Results: Adult mice were subjected to myocardial ischemia/reperfusion (MI/R) or sham operations. We observed significantly higher CSF2 protein expression and secretion by the ischemic heart from 1 day to 2 weeks after MI/R. Mouse adipose tissue-derived MSCs (ADSCs) were infected with adenovirus harboring CSF2RB or control adenovirus. Enhanced green fluorescent protein (EGFP)-labeled ADSCs were intravenously injected into MI/R mice every three days for a total of 7 times. Compared with ADSCs infected with control adenovirus, intravenously delivered ADSCs overexpressing CSF2RB exhibited markedly increased cardiac homing. Histological analysis revealed that CSF2RB overexpression significantly enhanced the ADSC-mediated proangiogenic, antiapoptotic, and antifibrotic effects. More importantly, ADSCs overexpressing CSF2RB significantly increased the left ventricular ejection fraction and cardiac contractility/relaxation in MI/R mice. In vitro experiments demonstrated that CSF2RB overexpression increases the migratory capacity and reduces the hypoxia/reoxygenation-induced apoptosis of ADSCs. We identified STAT5 phosphorylation as the key mechanism underlying the effects of CSF2RB on promoting ADSC migration and inhibiting ADSC apoptosis. RNA sequencing followed by cause-effect analysis revealed that CSF2RB overexpression increases the expression of the ubiquitin ligase RNF4. Coimmunoprecipitation and coimmunostaining experiments showed that RNF4 binds to phosphorylated STAT5. RNF4 knockdown reduced STAT5 phosphorylation as well as the antiapoptotic and promigratory actions of ADSCs overexpressing CSF2RB. Conclusions: We demonstrate for the first time that CSF2RB overexpression optimizes the efficacy of intravenously delivered MSCs in the treatment of ischemic heart injury by increasing the response of the MSCs to a CSF2 gradient and CSF2RB-dependent STAT5/RNF4 activation.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- School of Public Management, Northwest University, Xi'an 710127, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lu Peng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fengyue Ding
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wenli Li
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| |
Collapse
|
45
|
Cao F, Wang Y, Song Y, Xu F, Xie Q, Jiang M, Liu X, Zhang D, Xu L. Celastrol Treatment Ameliorated Acute Ischemic Stroke-Induced Brain Injury by Microglial Injury Inhibition and Nrf2/HO-1 Pathway Activations. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1076522. [PMID: 37082194 PMCID: PMC10113063 DOI: 10.1155/2023/1076522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 04/22/2023]
Abstract
Background Stroke is the third main reason of mortality, which is the leading reason for adult disability in the globe. Poststroke inflammation is well known to cause acute ischemic stroke- (AIS-) induced brain injury (BI) exacerbation. Celastrol (CL) has exhibited anti-inflammatory activities in various inflammatory traits though underlying mechanisms remain unknown. So, the present investigation is aimed at studying CL protective mechanism against AIS-induced BI. Methods A mouse model regarding middle cerebral artery occlusion and an oxygen-glucose deprivation (OGD) cell model with or not CL treatment were constructed to study CL protective effects. NF-E2-related factor 2 (Nrf2) was then silenced in BV2 microglia cells (BV2) to study Nrf2 role regarding CL-mediated neuroprotection. Results The results showed that CL treatment suppressed AIS-induced BI by inhibiting NLRP3/caspase-1 pathway activations and induction of apoptosis and pyroptosis in vivo and in vitro. NLRP3/caspase-1 pathway blocking activation suppressed OGD-induced cell pyroptosis and apoptosis. Also, CL treatment reversed OGD-induced microglial injury by promoting Nrf2/heme oxygenase-1 (HO-1) pathway activations. Nrf2 downregulation reversed CL protective effects against OGD-induced microglial injury, pyroptosis, and apoptosis. Conclusion The findings advise that CL treatment ameliorated AIS-induced BI by inhibiting microglial injury and activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Fanfan Cao
- Sino-French Cooperative Central Lab, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai 200135, China
| | - Ying Wang
- Sino-French Cooperative Central Lab, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai 200135, China
| | - Yuting Song
- Sino-French Cooperative Central Lab, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai 200135, China
- Ningxia Medical University, Ningxia 750000, China
| | - Fengxia Xu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 207 Juye Road, Pudong New Area, Shanghai 200135, China
| | - Qiuhua Xie
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 207 Juye Road, Pudong New Area, Shanghai 200135, China
| | - Mei Jiang
- Department of Neurology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
| | - Xinghui Liu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 207 Juye Road, Pudong New Area, Shanghai 200135, China
| | - Denghai Zhang
- Sino-French Cooperative Central Lab, Gongli Hospital of Shanghai Pudong New Area, No. 207, Juye Rd., Pudong New District, Shanghai 200135, China
- Ningxia Medical University, Ningxia 750000, China
| | - Limin Xu
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 207 Juye Road, Pudong New Area, Shanghai 200135, China
| |
Collapse
|
46
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
47
|
Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther 2022; 28:1942-1952. [PMID: 36066198 PMCID: PMC9627381 DOI: 10.1111/cns.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating monocytes are precursors of both tissue macrophages and dendritic cells, and they can infiltrate the central nervous system (CNS) where they transform into bone marrow-derived macrophages (BMDMs). BMDMs play essential roles in various CNS diseases, thus modulating BMDMs might be a way to treat these disorders because there are currently no efficient therapeutic methods available for most of these neurological diseases. Moreover, BMDMs can serve as promising gene delivery vehicles following bone marrow transplantation for otherwise incurable genetic CNS diseases. Understanding the distinct roles that BMDMs play in CNS diseases and their potential as gene delivery vehicles may provide new insights and opportunities for using BMDMs as therapeutic targets or delivery vehicles. This review attempts to comprehensively summarize the neurological diseases that might be treated by modulating BMDMs or by delivering gene therapies via BMDMs after bone marrow transplantation.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jinming Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
- Department of Hematology and OncologyChildren's Hospital Affiliated to Zhengzhou University, Henan, Children's Hospital, Zhengzhou Children's HospitalZhengzhouChina
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
- Centre for Brain Repair and RehabilitationInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
48
|
Zhang Z, Lv M, Zhou X, Cui Y. Roles of peripheral immune cells in the recovery of neurological function after ischemic stroke. Front Cell Neurosci 2022; 16:1013905. [PMID: 36339825 PMCID: PMC9634819 DOI: 10.3389/fncel.2022.1013905] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 10/15/2023] Open
Abstract
Stroke is a leading cause of mortality and long-term disability worldwide, with limited spontaneous repair processes occurring after injury. Immune cells are involved in multiple aspects of ischemic stroke, from early damage processes to late recovery-related events. Compared with the substantial advances that have been made in elucidating how immune cells modulate acute ischemic injury, the understanding of the impact of the immune system on functional recovery is limited. In this review, we summarized the mechanisms of brain repair after ischemic stroke from both the neuronal and non-neuronal perspectives, and we review advances in understanding of the effects on functional recovery after ischemic stroke mediated by infiltrated peripheral innate and adaptive immune cells, immune cell-released cytokines and cell-cell interactions. We also highlight studies that advance our understanding of the mechanisms underlying functional recovery mediated by peripheral immune cells after ischemia. Insights into these processes will shed light on the double-edged role of infiltrated peripheral immune cells in functional recovery after ischemic stroke and provide clues for new therapies for improving neurological function.
Collapse
Affiliation(s)
- Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
49
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
50
|
Wang Y, Xu B, Xue L. Applications of CyTOF in Brain Immune Component Studies. ENGINEERING 2022; 16:187-197. [DOI: 10.1016/j.eng.2021.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|