1
|
Walweel N, Cinar V, Mersin O, Macit S, Yildiz U, Demirel E, Tunç CU, Ulutabanca H, Hamurcu Z, Yuksel Durmaz Y, Aydin O. Enhanced In Vitro and In Vivo Autophagy Suppression via LC3 siRNA-Loaded "Smart" Nanoparticles and Doxorubicin Combination Therapy in Triple Negative Breast Cancer. ACS APPLIED BIO MATERIALS 2025; 8:2938-2953. [PMID: 40056448 DOI: 10.1021/acsabm.4c01778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Autophagy plays a complex role in cancer progression, serving as both a tumor suppressor and a promoter, depending on the context. In triple-negative breast cancer (TNBC), a particularly aggressive subtype with limited therapeutic options, autophagy inhibition has emerged as a promising strategy to enhance the efficacy of chemotherapy. This study investigates the synergistic effects of autophagy suppression using LC3 siRNA-loaded "smart" nanoparticles (LC3siRNA-NPs) in combination with doxorubicin (DOX) to overcome chemoresistance in TNBC. We engineered a well-defined copolymer, poly[hexyl methacrylate-co-2-(dimethylamino) ethyl methacrylate-co-trimethylaminoethyl methacrylate iodide], and a PEG heteroarm beta-cyclodextrin (βCD) core star copolymer that delivers LC3 siRNA, effectively silencing the autophagy-related gene LC3. In vitro, the coadministration of LC3siRNA-NPs and DOX significantly inhibited TNBC cell proliferation, migration, and colony formation, while inducing apoptosis more effectively than either treatment alone. Mechanistically, this combination downregulated key oncogenic markers such as PARP, cyclin D1, and Src, enhancing the therapeutic outcome. In vivo, treatment with LC3siRNA-NPs and DOX in a TNBC xenograft model resulted in superior tumor growth suppression compared to that with monotherapy alone. Our findings highlight the potential of autophagy-targeting nanocarriers to improve chemotherapy outcomes and provide an effective approach to TNBC treatment by enhancing chemotherapeutic sensitivity and reducing tumor resistance.
Collapse
MESH Headings
- Doxorubicin/pharmacology
- Doxorubicin/chemistry
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/metabolism
- Humans
- Autophagy/drug effects
- Nanoparticles/chemistry
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/chemistry
- Animals
- Mice
- Female
- Cell Proliferation/drug effects
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Microtubule-Associated Proteins/antagonists & inhibitors
- Biocompatible Materials/chemistry
- Biocompatible Materials/pharmacology
- Biocompatible Materials/chemical synthesis
- Drug Screening Assays, Antitumor
- Materials Testing
- Particle Size
- Apoptosis/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Mice, Nude
- Cell Line, Tumor
- Mice, Inbred BALB C
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/chemistry
- Dose-Response Relationship, Drug
Collapse
Affiliation(s)
- Nada Walweel
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Venhar Cinar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri 38030, Turkey
- GENKOK-Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38280, Turkey
| | - Osman Mersin
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Semih Macit
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Ummugulsum Yildiz
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Erhan Demirel
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Cansu Umran Tunç
- NanoThera Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Halil Ulutabanca
- Department of Neurosurgery, Erciyes University Medical School, Kayseri 38030, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri 38030, Turkey
- GENKOK-Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri 38280, Turkey
| | - Yasemin Yuksel Durmaz
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Turkey
- Research Institute of Health Science and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Turkey
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering Research and Implementation Center, Erciyes University, Kayseri 38030, Turkey
| |
Collapse
|
2
|
de Oliveira GV, Soares MV, Cordeiro LM, da Silva AF, Venturini L, Ilha L, Baptista FBO, da Silveira TL, Soares FAA, Iglesias BA. Toxicological assessment of photoactivated tetra-cationic porphyrin molecules under white light exposure in a Caenorhabditis elegans model. Toxicology 2024; 504:153793. [PMID: 38574843 DOI: 10.1016/j.tox.2024.153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Photodynamic therapy (PDT) utilizes the potential of photosensitizing substances to absorb light energy and produce reactive oxygen species. Tetra-cationic porphyrins, which have organic or coordination compounds attached to their periphery, are heterocyclic derivatives with well-described antimicrobial and antitumoral properties. This is due to their ability to produce reactive oxygen species and their photobiological properties in solution. Consequently, these molecules are promising candidates as new and more effective photosensitizers with biomedical, environmental, and other biomedical applications. Prior to human exposure, it is essential to establish the toxicological profile of these molecules using in vivo models. In this study, we used Caenorhabditis elegans, a small free-living nematode, as a model for assessing toxic effects and predicting toxicity in preclinical research. We evaluated the toxic effects of porphyrins (neutral and tetra-cationic) on nematodes under dark/light conditions. Our findings demonstrate that tetra-methylated porphyrins (3TMeP and 4TMeP) at a concentration of 3.3 µg/mL (1.36 and 0.93 µM) exhibit high toxicity (as evidenced by reduced survival, development, and locomotion) under dark conditions. Moreover, photoactivated tetra-methylated porphyrins induce higher ROS levels compared to neutral (3TPyP and 4TPyP), tetra-palladated (3PdTPyP and 4PdTPyP), and tetra-platinated (3PtTPyP and 4PtTPyP) porphyrins, which may be responsible for the observed toxic effects.
Collapse
Affiliation(s)
- Gabriela Vitória de Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Marcell Valandro Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Larissa Marafiga Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Franzen da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Luiza Venturini
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Larissa Ilha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Fabiane Bicca Obetine Baptista
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tássia Limana da Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrinic Materials, Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Carobeli LR, Santos ABC, Martins LBM, Damke E, Consolaro MEL. Recent advances in photodynamic therapy combined with chemotherapy for cervical cancer: a systematic review. Expert Rev Anticancer Ther 2024; 24:263-282. [PMID: 38549400 DOI: 10.1080/14737140.2024.2337259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Despite the evidence that photodynamic therapy (PDT) associated with chemotherapy presents great potential to overcome the limitations of monotherapy, little is known about the current status of this combination against cervical cancer. This systematic review aimed to address the currently available advances in combining PDT and chemotherapy in different research models and clinical trials of cervical cancer. METHODS We conducted a systematic review based on PRISMA Statement and Open Science Framework review protocol using PubMed, Web of Science, Embase, Scopus, LILACS, and Cochrane databases. We selected original articles focusing on 'Uterine Cervical Neoplasms' and 'Photochemotherapy and Chemotherapy' published in the last 10 years. The risk of bias in the studies was assessed using the CONSORT and SYRCLE tools. RESULTS Twenty-three original articles were included, focusing on HeLa cells, derived from endocervical adenocarcinoma and on combinations of several chemotherapeutics. Most of the combinations used modern drug delivery systems for improved simultaneous delivery and presented promising results with increased cytotoxicity compared to monotherapy. CONCLUSION Despite the scarcity of animal studies and the absence of clinical studies, the combination of chemotherapy with PDT presents a potential option for cervical cancer therapy requiring additional studies. OSF REGISTRATION https://doi.org/10.17605/OSF.IO/WPHN5 [Figure: see text].
Collapse
Affiliation(s)
- Lucimara Rodrigues Carobeli
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | - Ana Beatriz Camillo Santos
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Edilson Damke
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
- Graduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
4
|
Anil A, Chaskar J, Pawar AB, Tiwari A, Chaskar AC. Recent advances in DNA-based probes for photoacoustic imaging. J Biotechnol 2024; 382:8-20. [PMID: 38211667 DOI: 10.1016/j.jbiotec.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
Photoacoustic imaging(PAI) is a widely developing imaging modality that has seen tremendous evolvement in the last decade. PAI has gained the upper hand in the imaging field as it takes advantage of optical absorption and ultrasound detection that imparts higher resolution, rich contrast and elevated penetration depth. Unlike other imaging techniques, PAI does not use ionising radiation and is a better, cost-effective and healthier alternative to other imaging techniques. It offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chromophores. These properties of PAI have led to its extended applications in the biomedical field in the treatment of diseases such as cancer. This paper reviews how DNA probes have been used in PAI, the various techniques by which it has been modified, and their role in the process. We also focus on different nanocomposites containing DNA having PAI and photothermal therapy(PTT) properties for detection, diagnosis and therapy, its constituents and the role of DNA in it.
Collapse
Affiliation(s)
- Anusri Anil
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Jyotsna Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Avinash B Pawar
- Department of Chemistry, Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite College of Arts, Science & Commerce, Pune 411038, India
| | - Abhishekh Tiwari
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India.
| | - Atul Changdev Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India; Department of Chemistry, Institute of Chemical Technology, Mumbai.
| |
Collapse
|
5
|
Ling J, Gu R, Liu L, Chu R, Wu J, Zhong R, Ye S, Liu J, Fan S. Versatile Design of Organic Polymeric Nanoparticles for Photodynamic Therapy of Prostate Cancer. ACS MATERIALS AU 2024; 4:14-29. [PMID: 38221923 PMCID: PMC10786136 DOI: 10.1021/acsmaterialsau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 01/16/2024]
Abstract
Radical prostatectomy is a primary treatment option for localized prostate cancer (PCa), although high rates of recurrence are commonly observed postsurgery. Photodynamic therapy (PDT) has demonstrated efficacy in treating nonmetastatic localized PCa with a low incidence of adverse events. However, its limited efficacy remains a concern. To address these issues, various organic polymeric nanoparticles (OPNPs) loaded with photosensitizers (PSs) that target prostate cancer have been developed. However, further optimization of the OPNP design is necessary to maximize the effectiveness of PDT and improve its clinical applicability. This Review provides an overview of the design, preparation, methodology, and oncological aspects of OPNP-based PDT for the treatment of PCa.
Collapse
Affiliation(s)
- Jiacheng Ling
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongrong Gu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Lulu Liu
- School
of Resources and Environment, Anhui Agricultural
University, 130 Changjiang
West Road, Hefei 230036, China
| | - Ruixi Chu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junchao Wu
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongfang Zhong
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Sheng Ye
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jian Liu
- Inner
Mongolia University Hohhot, Inner
Mongolia 010021, China
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- DICP-Surrey
Joint Centre for Future Materials, Department of Chemical and Process
Engineering and Advanced Technology Institute, University of Surrey, Guilford,
Surrey GU27XH, U.K.
| | - Song Fan
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| |
Collapse
|
6
|
Rajan SS, Chandran R, Abrahamse H. Overcoming challenges in cancer treatment: Nano-enabled photodynamic therapy as a viable solution. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1942. [PMID: 38456341 DOI: 10.1002/wnan.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Cancer presents a formidable challenge, necessitating innovative therapies that maximize effectiveness while minimizing harm to healthy tissues. Nanotechnology has emerged as a transformative force in cancer treatment, particularly through nano-enabled photodynamic therapy (NE-PDT), which leverages precise and targeted interventions. NE-PDT capitalizes on photosensitizers activated by light to generate reactive oxygen species (ROS) that initiate apoptotic pathways in cancer cells. Nanoparticle enhancements optimize this process, improving drug delivery, selectivity, and ROS production within tumors. This review dissects NE-PDT's mechanistic framework, showcasing its potential to harness apoptosis as a potent tool in cancer therapy. Furthermore, the review explores the synergy between NE-PDT and complementary treatments like chemotherapy, immunotherapy, and targeted therapies, highlighting the potential to amplify apoptotic responses, enhance immune recognition of cancer cells, and inhibit resistance mechanisms. Preclinical and clinical advancements in NE-PDT demonstrate its efficacy across various cancer types. Challenges in translating NE-PDT into clinical practice are also addressed, emphasizing the need for optimizing nanoparticle design, refining dosimetry, and ensuring long-term safety. Ultimately, NE-PDT represents a promising approach in cancer therapy, utilizing the intricate mechanisms of apoptosis to address therapeutic hurdles. The review underscores the importance of understanding the interplay between nanoparticles, ROS generation, and apoptotic pathways, contributing to a deeper comprehension of cancer biology and novel therapeutic strategies. As interdisciplinary collaborations continue to thrive, NE-PDT offers hope for effective and targeted cancer interventions, where apoptosis manipulation becomes central to conquering cancer. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
7
|
Bhattacharya D, Mukhopadhyay M, Shivam K, Tripathy S, Patra R, Pramanik A. Recent developments in photodynamic therapy and its application against multidrug resistant cancers. Biomed Mater 2023; 18:062005. [PMID: 37827172 DOI: 10.1088/1748-605x/ad02d4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Recently, photodynamic therapy (PDT) has received a lot of attention for its potential use in cancer treatment. It enables the therapy of a multifocal disease with the least amount of tissue damage. The most widely used prodrug is 5-aminolevulinic acid, which undergoes heme pathway conversion to protoporphyrin IX, which acts as a photosensitizer (PS). Additionally, hematoporphyrin, bacteriochlorin, and phthalocyanine are also studied for their therapeutic potential in cancer. Unfortunately, not every patient who receives PDT experiences a full recovery. Resistance to different anticancer treatments is commonly observed. A few of the resistance mechanisms by which cancer cells escape therapeutics are genetic factors, drug-drug interactions, impaired DNA repair pathways, mutations related to inhibition of apoptosis, epigenetic pathways, etc. Recently, much research has been conducted to develop a new generation of PS based on nanomaterials that could be used to overcome cancer cells' multidrug resistance (MDR). Various metal-based, polymeric, lipidic nanoparticles (NPs), dendrimers, etc, have been utilized in the PDT application against cancer. This article discusses the detailed mechanism by which cancer cells evolve towards MDR as well as recent advances in PDT-based NPs for use against multidrug-resistant cancers.
Collapse
Affiliation(s)
- Debalina Bhattacharya
- Department of Microbiology, Maulana Azad College, Kolkata, West Bengal 700013, India
| | - Mainak Mukhopadhyay
- Department of Biotechnology, JIS University, Kolkata, West Bengal 700109, India
| | - Kumar Shivam
- Amity Institute of Click Chemistry Research & Studies, Amity University, Noida 201301, India
| | - Satyajit Tripathy
- Department of Pharmacology, University of Free State, Bloemfontein, Free State, 9301, South Africa
- Amity Institute of Allied Health Science, Amity University, Noida 201301, India
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research & Studies, Amity University, Noida 201301, India
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Arindam Pramanik
- School of Medicine, University of Leeds, Leeds, LS9 7TF, United Kingdom
- Amity Institute of Biotechnology, Amity University, Noida 201301, India
| |
Collapse
|
8
|
Chen Z, Huang Q, Song Y, Feng X, Zeng L, Liu Z, Hu X, Tao C, Wang L, Qi Y, Song H. Cubosomes-assisted transdermal delivery of doxorubicin and indocyanine green for chemo-photothermal combination therapy of melanoma. Biomed Pharmacother 2023; 166:115316. [PMID: 37572638 DOI: 10.1016/j.biopha.2023.115316] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Melanoma is a highly aggressive form of skin cancer with limited therapeutic options. Chemo-photothermal combination therapy has demonstrated potential for effectively treating melanoma, and transdermal administration is considered the optimal route for treating skin diseases due to its ability to bypass first-pass metabolism and enhance drug concentration. However, the stratum corneum presents a formidable challenge as a significant barrier to drug penetration in transdermal drug delivery. Lipid-nanocarriers, particularly cubosomes, have been demonstrated to possess significant potential in augmenting drug permeation across the stratum corneum. Herein, cubosomes co-loaded with doxorubicin (DOX, a chemotherapeutic drug) and indocyanine green (ICG, a photothermal agent) (DOX-ICG-cubo) transdermal drug delivery system was developed to enhance the therapeutic efficiency of melanoma by improving drug permeation. The DOX-ICG-cubo showed high encapsulation efficiency of both DOX and ICG, and exhibited good stability under physiological conditions. In addition, the unique cubic structure of the DOX-ICG-cubo was confirmed through transmission electron microscopy (TEM) images, polarizing microscopy, and small angle X-ray scattering (SAXS). The DOX-ICG-cubo presented high photothermal conversion efficiency, as well as pH and thermo-responsive DOX release. Notably, the DOX-ICG-cubo exhibited enhanced drug permeation efficiency, good biocompatibility, and improved in vivo anti-melanoma efficacy through the synergistic effects of chemo-photothermal therapy. In conclusion, DOX-ICG-cubo presented a promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China; Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China
| | - Qinbiao Huang
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China
| | - Yutong Song
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, PR China
| | - Xianquan Feng
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China
| | - Xiaomu Hu
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China
| | - Chun Tao
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China
| | - Lie Wang
- Department of General Surgery, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China
| | - Yafeng Qi
- Department of General Surgery, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China.
| | - Hongtao Song
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou 350025, PR China.
| |
Collapse
|
9
|
Shi H, Wang R, Cao HC, Guo HY, Pan P, Xiong CF, Zhang LJ, Yang Q, Wei S, Liu T. A Metal-Polyphenol-Based Oxygen Economizer and Fenton Reaction Amplifier for Self-Enhanced Synergistic Photothermal/Chemodynamic/Chemotherapy. Adv Healthc Mater 2023; 12:e2300054. [PMID: 36977362 DOI: 10.1002/adhm.202300054] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Indexed: 03/30/2023]
Abstract
To overcome the limitations of doxorubicin (DOX) chemotherapy, nanomedicines that integrate additional photothermal therapy (PTT) and chemodynamic therapy (CDT) strategies are highlighted as promising alternatives for the treatment of malignant tumors. However, time-consuming preparation processes, biosafety concerns, and the bottlenecks of individual therapeutic modalities often limit the practical applications of this strategy. To address these issues, this work designs an oxygen economizer that additionally serves as a Fenton reaction amplifier through the simple assembly of epigallocatechin gallate (EGCG), pluronic F-127 (PF127), iron (III) ions, and doxorubicin (DOX) for the enhancement of synergistic PTT/CDT/chemotherapy. The resulting nanoformulation, EFPD, can target mitochondria and inhibit cell respiration to reduce O2 consumption, thus boosting DOX-mediated H2 O2 generation for enhanced CDT and simultaneously improving hypoxia-limited DOX chemotherapy efficacy. Moreover, the coordination between EGCG and Fe3+ provides EFPD with excellent photothermal conversion efficiencies (η = 34.7%) for PTT and photothermal-accelerated drug release. Experimental results indicate that EFPD-mediated synergistic enhancement of PTT/CDT/chemotherapy can achieve excellent therapeutic outcomes, including enhanced ablation of solid tumors, reduced metastasis and cardiotoxicity, and extended life spans.
Collapse
Affiliation(s)
- Hui Shi
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Ru Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Hu-Chen Cao
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Hai-Yan Guo
- School of Public Health, Anhui Medical University, Hefei, 230032, P. R. China
| | - Pei Pan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Cheng-Feng Xiong
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Lin-Jun Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Qiang Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Shuang Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Tao Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
10
|
Pogorzelska A, Mazur M, Świtalska M, Wietrzyk J, Sigorski D, Fronczyk K, Wiktorska K. Anticancer effect and safety of doxorubicin and nutraceutical sulforaphane liposomal formulation in triple-negative breast cancer (TNBC) animal model. Biomed Pharmacother 2023; 161:114490. [PMID: 36931031 DOI: 10.1016/j.biopha.2023.114490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Female breast cancer is the most deadly cancer in women worldwide. The triple-negative breast cancer subtype therapies, due to the lack of specific drug targets, are still based on systemic chemotherapy with doxorubicin, which is burdened with severe adverse effects. To enhance therapeutic success and protect against systemic toxicity, drug carriers or combination therapy are being developed. Thus, an innovative liposomal formulation containing doxorubicin and the main nutraceutical, sulforaphane, has been developed. The anticancer efficacy and safety of the proposed liposomal formulation was evaluated in vivo, in a 4T1 mouse model of triple-negative breast cancer, and the mechanism of action was determined in vitro, using triple-negative breast cancer MDA-MB-231 and non-tumorigenic breast MCF-10A cell line. The elaborated drug carriers were shown to efficiently deliver both compounds into the cancer cell and direct doxorubicin to the cell nucleus. Incorporation of sulforaphane resulted in a twofold inhibition of tumor growth and the potential of up to a fourfold reduction in doxorubicin concentration due to the synergistic interaction between the two compounds. Sulforaphane was shown to increase the accumulation of doxorubicin in the nuclei of cancer cells, accompanied by inhibition of mitosis, without affecting the reactive oxygen species status of the cell. In normal cells, an antagonistic effect resulting in less cytotoxicity was observed. In vivo results showed that sulforaphane incorporation yielded not only cardioprotective, but also nephro- and hepatoprotective effects. The results of the research revealed the prospects of applying sulforaphane as a component of liposomal doxorubicin in triple-negative breast cancer chemotherapy.
Collapse
Affiliation(s)
- Anna Pogorzelska
- Laboratory of Translation Research, Department of Biomedical Research, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland
| | - Maciej Mazur
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, Warsaw 02-093, Poland
| | - Marta Świtalska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, Wrocław 53-114, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, Wrocław 53-114, Poland
| | - Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Al. Wojska Polskiego 37, Olsztyn 10-228, Poland; Department of Oncology and Immuno-Oncology, Warmian-Masurian Cancer Center of The Ministry of The Interior and Administration's Hospital, Al. Wojska Polskiego 37, Olsztyn 10-228, Poland
| | - Krzysztof Fronczyk
- Faculty of Psychology, University of Warsaw, Stawki 5/7, Warsaw 00-183, Poland
| | - Katarzyna Wiktorska
- Laboratory of Translation Research, Department of Biomedical Research, National Medicines Institute, Chełmska 30/34, Warsaw 00-725, Poland.
| |
Collapse
|
11
|
Wu H, Xu S, Lin K, Xu J, Fu D. Acidity-activatable dynamic halloysite nanotubes as a drug delivery system for efficient antitumor therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Liu T, Xiong CF, Zhang LJ, Jiao GH, Shi H, Feng J, Zhang XZ. Boosting Doxorubicin-Induced Mitochondria Apoptosis for the Monodrug-Mediated Combination of Chemotherapy and Chemodynamic Therapy. Adv Healthc Mater 2023; 12:e2202045. [PMID: 36239177 DOI: 10.1002/adhm.202202045] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/29/2022] [Indexed: 01/26/2023]
Abstract
Doxorubicin (Dox)-mediated generation of reactive oxygen radicals (ROS) for mitochondrial apoptosis is identified as a new cytotoxic mechanism in addition to the well-established one via nuclear DNA replication interference. However, this mechanism contributes far less than the latter to Dox therapy. This newly identified pathway to make Dox therapy function like the combination of chemodynamic therapy (CDT) and chemotherapy-mediated by Dox alone would be amplified. One-pot nanoconstruction (HEBD) is fabricated based on the chemical reactions driven assemblies among epigallocatechin gallate (EGCG), buthionine sulfoximine (BSO) and formaldehyde in aqueous mediums followed by Dox adsorption. Acid tumor microenvironments allow the liberation of EGCG, BSO, and Dox due to the breakage of Schiff base bonds. EGCG component in HEBD is responsible for targeting mitochondria and disrupting mitochondrial electron transport chain (mETC) to compel electrons leakage in favor of their capture by Dox to produce more ROS. EGCG-induced mETC disruption results in mitochondrial respiration inhibition with alleviated hypoxia in tumor cells while BSO inhibits glutathione biosynthesis to protect ROS from redox depletion, further boosting Dox-induced CDT. This strategy of amplifying CDT pathway for the Dox-mediated combined therapy could largely improve antitumor effect, extend lifespan of tumor-bearing mice, reduce risks of cardiotoxicity and metastasis.
Collapse
Affiliation(s)
- Tao Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Cheng-Feng Xiong
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Lin-Jun Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Guan-Hua Jiao
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Hui Shi
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
13
|
Ma X, Wang P, Wu Q, Zhou J, Wang D, Yadav D, Zhang H, Zhang Y. Porphyrin Centered Paclitaxel Tetrameric Prodrug Nanoassemblies as Tumor-Selective Theranostics for Synergized Breast Cancer Therapy. Adv Healthc Mater 2023; 12:e2202024. [PMID: 36222266 DOI: 10.1002/adhm.202202024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/25/2022] [Indexed: 01/18/2023]
Abstract
Although having undergone decades of development, nanoparticulate drug delivery vehicles for efficient cancer therapy remain a challenge, confined by low drug loading, instability, and poor cancer tissue selectivity. A self-assembled prodrug, the combination of prodrug strategy and the self-assembly merits, represents a special chemical entity which spontaneously organizes into supramolecular composites with defined architecture, therefore also providing a strategy to develop new medications. Paclitaxel (PTX) is still among the most generally prescribed chemotherapeutics in oncology but is restricted by poor solubility. Although photodynamic therapy, with its noninvasive features and barely developed drug resistance, signifies an alternative tool to suppress life-threatening cancer, sole use hardly fulfills its potential. To this end, a reduction-activatable heterotetrameric prodrug with the photosensitizer is synthesized, then formulated into self-assembled nanoparticles (NPs) for tumor imaging and combined chemo- and photodynamic therapy. Coating the NPs with amphiphilic polymer distearylphosphatidylethanolamine-polyethylene glycol-arginine-glycine-aspartate (DSPE-PEG-RGD) offers high stability and enables cancer tissue targeting. The as-prepared NPs enlighten disease cells and reveal more potent cytotoxicity comparing to PTX and the photosensitizer alone. Furthermore, the NPs selectively accumulates into tumors and synergistically inhibits tumor proliferation with reduced side effects in mice.
Collapse
Affiliation(s)
- Xiaodong Ma
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.,Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Helsinki, FI-00520, Finland
| | - Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.,Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Qiwei Wu
- Department of Radiology Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Junnian Zhou
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Helsinki, FI-00520, Finland
| | - Dongqing Wang
- Department of Radiology Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Deependra Yadav
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Helsinki, FI-00520, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Helsinki, FI-00520, Finland
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.,Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
14
|
Hameed S, Bhattarai P, Gong Z, Liang X, Yue X, Dai Z. Ultrasmall porphyrin-silica core-shell dots for enhanced fluorescence imaging-guided cancer photodynamic therapy. NANOSCALE ADVANCES 2022; 5:277-289. [PMID: 36605795 PMCID: PMC9765644 DOI: 10.1039/d2na00704e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Clinically used small-molecular photosensitizers (PSs) for photodynamic therapy (PDT) share similar disadvantages, such as the lack of selectivity towards cancer cells, short blood circulation time, life-threatening phototoxicity, and low physiological solubility. To overcome such limitations, the present study capitalizes on the synthesis of ultra-small hydrophilic porphyrin-based silica nanoparticles (core-shell porphyrin-silica dots; PSDs) to enhance the treatment outcomes of cancer via PDT. These ultra-small PSDs, with a hydrodynamic diameter less than 7 nm, have an excellent aqueous solubility in water (porphyrin; TPPS3-NH2) and enhanced tumor accumulation therefore exhibiting enhanced fluorescence imaging-guided PDT in breast cancer cells. Besides ultra-small size, such PSDs also displayed an excellent biocompatibility and negligible dark cytotoxicity in vitro. Moreover, PSDs were also found to be stable in other physiological solutions as a function of time. The fluorescence imaging of porphyrin revealed a prolonged residence time of PSDs in tumor regions, reduced accumulation in vital organs, and rapid renal clearance upon intravenous injection. The in vivo study further revealed reduced tumor growth in 4T1 tumor-bearing bulb mice after laser irradiation explaining the excellent photodynamic therapeutic efficacy of ultra-small PSDs. Thus, ultrasmall hydrophilic PSDs combined with excellent imaging-guided therapeutic abilities and renal clearance behavior represent a promising platform for cancer imaging and therapy.
Collapse
Affiliation(s)
- Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab Lahore 54000 Pakistan
| | - Pravin Bhattarai
- CÚRAM-SFI Research Centre for Medical Devices, Biomedical Sciences, University of Galway Ireland
| | - Zhuoran Gong
- Department of Biomedical Engineering, College of Future Technology, Peking University Beijing 100871 China
| | - Xiaolong Liang
- Department of Ultrasonography, Peking University Third Hospital Beijing 100191 China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology Harbin 150001 China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, Peking University Beijing 100871 China
| |
Collapse
|
15
|
Dual-Functionalized Nanoliposomes Achieve a Synergistic Chemo-Phototherapeutic Effect. Int J Mol Sci 2022; 23:ijms232112817. [PMID: 36361615 PMCID: PMC9653560 DOI: 10.3390/ijms232112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
The enhancement of photodynamic therapy (PDT) effectiveness by combining it with other treatment modalities and improved drug delivery has become an interesting field in cancer research. We have prepared and characterized nanoliposomes containing the chemotherapeutic drug irinotecan (CPT11lip), the photodynamic agent protoporphyrin IX (PpIXlip), or their combination (CPT11-PpIXlip). The effects of individual and bimodal (chemo-phototherapeutic) treatments on HeLa cells have been studied by a combination of biological and photophysical studies. Bimodal treatments show synergistic cytotoxic effects on HeLa cells at relatively low doses of PpIX/PDT and CPT11. Mechanistic cell inactivation studies revealed mitotic catastrophe, apoptosis, and senescence contributions. The enhanced anticancer activity is due to a sustained generation of reactive oxygen species, which increases the number of double-strand DNA breaks. Bimodal chemo-phototherapeutic liposomes may have a very promising future in oncological therapy, potentially allowing a reduction in the CPT11 concentration required to achieve a therapeutic effect and overcoming resistance to individual cancer treatments.
Collapse
|
16
|
Menilli L, Milani C, Reddi E, Moret F. Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage. Cancers (Basel) 2022; 14:cancers14184462. [PMID: 36139623 PMCID: PMC9496990 DOI: 10.3390/cancers14184462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present review represents the outstanding and promising recent literature reports (2017–2022) on nanoparticle-based formulations developed for anticancer therapy with photodynamic therapy (PDT), photosensitizers, and chemotherapeutics. Besides brief descriptions of chemotherapeutics’ classification and of PDT mechanisms and limitations, several examples of nanosystems endowed with different responsiveness (e.g., acidic pH and reactive oxygen species) and peculiarity (e.g., tumor oxygenation capacity, active tumor targeting, and biomimetic features) are described, and for each drug combination, in vitro and in vivo results on preclinical cancer models are reported. Abstract The widespread diffusion of photodynamic therapy (PDT) as a clinical treatment for solid tumors is mainly limited by the patient’s adverse reaction (skin photosensivity), insufficient light penetration in deeply seated neoplastic lesions, unfavorable photosensitizers (PSs) biodistribution, and photokilling efficiency due to PS aggregation in biological environments. Despite this, recent preclinical studies reported on successful combinatorial regimes of PSs with chemotherapeutics obtained through the drugs encapsulation in multifunctional nanometric delivery systems. The aim of the present review deals with the punctual description of several nanosystems designed not only with the objective of co-transporting a PS and a chemodrug for combination therapy, but also with the goal of improving the therapeutic efficacy by facing the main critical issues of both therapies (side effects, scarce tumor oxygenation and light penetration, premature drug clearance, unspecific biodistribution, etc.). Therefore, particular attention is paid to the description of bio-responsive drugs and nanoparticles (NPs), targeted nanosystems, biomimetic approaches, and upconverting NPs, including analyzing the therapeutic efficacy of the proposed photo-chemotherapeutic regimens in in vitro and in vivo cancer models.
Collapse
Affiliation(s)
- Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Celeste Milani
- Department of Biology, University of Padova, 35100 Padova, Italy
- Institute of Organic Synthesis and Photoreactivity, ISOF-CNR, 40129 Bologna, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| |
Collapse
|
17
|
Carrier free nanomedicine for synergistic cancer therapy by initiating apoptosis and paraptosis. J Colloid Interface Sci 2022; 622:298-308. [DOI: 10.1016/j.jcis.2022.04.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
|
18
|
Guduru ATKVVNSK, Manav N, Mansuri A, Gupta I, Bhatia D, Kumar A, Dalvi SV. NIR-Active Porphyrin-Decorated Lipid Microbubbles for Enhanced Therapeutic Activity Enabled by Photodynamic Effect and Ultrasound in 3D Tumor Models of Breast Cancer Cell Line and Zebrafish Larvae. ACS APPLIED BIO MATERIALS 2022; 5:4270-4283. [PMID: 35960932 DOI: 10.1021/acsabm.2c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porphyrin is known to enable the photodynamic effect during cancer drug delivery and molecular imaging. However, its hydrophobicity and tendency to aggregate in an aqueous medium create a significant hurdle for its use as an anticancer drug. Loading porphyrin onto biocompatible delivery vehicles can enhance its efficacy. This can be achieved by using gas-filled microbubbles that can be administered intravenously. This study aimed at developing near-infrared (NIR)-active porphyrin-loaded lipid microbubbles with anticancer activity enhanced by sonodynamic and photodynamic effects. The porphyrin-loaded microbubbles were studied for their cell toxicity, cellular uptake of porphyrin, and effect on cellular three-dimensional (3D) invasion of breast cancer cells (MDA-MB-231) in cellulo. Toxicity studies in zebrafish larvae (Danio rerio) in the presence and absence of photodynamic and sonodynamic therapy were also conducted. The results suggest that with a higher concentration of porphyrin loaded on microbubbles, the porphyrin-loaded microbubbles display a higher therapeutic effect facilitated by photodynamic and sonodynamic therapy, which results in enhanced cellular uptake and cellular toxicity. A lower concentration of loaded porphyrin microbubbles exhibits high cellular viability and good fluorescence intensity in the NIR region, which can be exploited for bioimaging applications.
Collapse
Affiliation(s)
- Aditya Teja K V V N S K Guduru
- Department of Chemical Engineering, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Neha Manav
- Department of Chemistry, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangapura, Ahmedabad 380009, Gujarat, India
| | - Iti Gupta
- Department of Chemistry, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Engineering, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangapura, Ahmedabad 380009, Gujarat, India
| | - Sameer V Dalvi
- Department of Chemical Engineering, Indian Institute of Technology─Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
19
|
Liu Z, Li H, Tian Z, Liu X, Guo Y, He J, Wang Z, Zhou T, Liu Y. Porphyrin-Based Nanoparticles: A Promising Phototherapy Platform. Chempluschem 2022; 87:e202200156. [PMID: 35997087 DOI: 10.1002/cplu.202200156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Phototherapy, including photodynamic therapy and photothermal therapy, is an emerging form of non-invasive treatment. The combination of imaging technology and phototherapy is becoming an attractive development in the treatment of cancer, as it allows for highly effective therapeutic results through image-guided phototherapy. Porphyrins have attracted significant interest in the treatment and diagnosis of cancer due to their excellent phototherapeutic effects in phototherapy and their remarkable imaging capabilities in fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. However, porphyrins suffer from poor water solubility, low near-infrared absorption and insufficient tumor accumulation. The development of nanotechnology provides an effective way to improve the bioavailability, phototherapeutic effect and imaging capability of porphyrins. This review highlights the research results of porphyrin-based small molecule nanoparticles in phototherapy and image-guided phototherapy in the last decade and discusses the challenges and directions for the development of porphyrin-based small molecule nanoparticles in phototherapy.
Collapse
Affiliation(s)
- Zhenhua Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Hui Li
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Xin Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yu Guo
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Zhenyu Wang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, P.R. China
| | - Tao Zhou
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang City, Hunan Province, 421001, P. R. China
| |
Collapse
|
20
|
Zhang W, Lyu X, Zhang L, Wang W, Shen Q, Lu S, Lu L, Zhan M, Hu X. Rationally Driven Drug Nonradiative Decay via a Label-free Polyprodrug Strategy to Renew Tumor Cascade Photothermal-Chemotherapy. Macromol Rapid Commun 2022; 43:e2100918. [PMID: 35106866 DOI: 10.1002/marc.202100918] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/16/2022] [Indexed: 11/09/2022]
Abstract
Drugs are frequently used for only chemotherapy that ignores their photophysical properties that potentially endow them with other therapeutic potency. Additionally, current photothermal-chemotherapy replies on the co-delivery of drugs and photothermal agents, but their spatiotemporal delivery and precise release is unsatisfactory. Herein, we report label-free doxorubicin (DOX) polyprodrug nanoparticles (DPNs) formulated from disulfide bonds-tethered DOX polyprodrug amphiphiles (PDMA-b-PDOXM). Benefiting from boosted nonradiative decay of high-density DOX, significant fluorescence quenching and photothermal effect are observed for DPNs without common photothermal agents. Upon cellular uptake and laser irradiation, the heat can promote lysosomal escape of DPNs into reductive cytosol, whereupon free DOX is released to activate chemotherapy and fluorescence, achieving rational cascade photothermal-chemotherapy. Current label-free polyprodrug strategy can make full use of drug, it provides an alternative insight to extend the therapeutic domain of drugs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenjia Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510631, China
| | - Li Zhang
- Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou, Guangdong, 510080, China
| | - Wenhui Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
21
|
Qian R, Jing B, Jiang D, Gai Y, Zhu Z, Huang X, Gao Y, Lan X, An R. Multi-antitumor therapy and synchronous imaging monitoring based on exosome. Eur J Nucl Med Mol Imaging 2022; 49:2668-2681. [DOI: 10.1007/s00259-022-05696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
|
22
|
Liang X, Chen M, Bhattarai P, Hameed S, Tang Y, Dai Z. Complementing Cancer Photodynamic Therapy with Ferroptosis through Iron Oxide Loaded Porphyrin-Grafted Lipid Nanoparticles. ACS NANO 2021; 15:20164-20180. [PMID: 34898184 DOI: 10.1021/acsnano.1c08108] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials that combine multimodality imaging and therapeutic functions within a single nanoplatform have drawn extensive attention for molecular medicines and biological applications. Herein, we report a theranostic nanoplatform based on a relatively smaller (<20 nm) iron oxide loaded porphyrin-grafted lipid nanoparticles (Fe3O4@PGL NPs). The amphiphilic PGL easily self-assembled on the hydrophobic exterior surface of ultrasmall Fe3O4 NPs, resulting in a final ultrasmall Fe3O4@PGL NPs with diameter of ∼10 nm. The excellent self-assembling nature of the as-synthesized PGL NPs facilitated a higher loading of porphyrins, showed a negligible dark toxicity, and demonstrated an excellent photodynamic effect against HT-29 cancer cells in vitro. The in vivo experimental results further confirmed that Fe3O4@PGL NPs were ideally qualified for both the fluorescence and magnetic resonance (MR) imaging guided nanoplatforms to track the biodistribution and therapeutic responses of NPs as well as to simultaneously trigger the generation of highly cytotoxic reactive oxygen species (ROS) necessary for excellent photodynamic therapy (PDT). After recording convincing therapeutic responses, we further evaluated the ability of Fe3O4@PGL NPs/Fe3O4@Lipid NPs for ferroptosis therapy (FT) via tumor microenvironment (TME) modulation for improved anticancer activity. We hypothesized that tumor-associated macrophages (TAMs) could significantly improve the efficacy of FT by accelerating the Fenton reaction in vitro. In our results, the Fe ions released in vitro directly contributed to the Fenton reaction, whereas the presence of RAW 264.7 macrophages further accelerated the ROS generation as observed by the fluorescence imaging. The significant increase in the ROS during the coincubation of NPs, endocytosed by HT-29 cells and RAW264.7 cells, further induced increased cellular toxicity of cancer cells.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Min Chen
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Department of Biophotonics, Phutung Research Institute, Kathmandu 12335, Nepal
| | - Sadaf Hameed
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Yida Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Qindeel M, Sargazi S, Hosseinikhah SM, Rahdar A, Barani M, Thakur VK, Pandey S, Mirsafaei R. Porphyrin‐Based Nanostructures for Cancer Theranostics: Chemistry, Fundamentals and Recent Advances. ChemistrySelect 2021. [DOI: 10.1002/slct.202103418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maimoona Qindeel
- Hamdard Institute of Pharmaceutical Sciences Hamdard University Islamabad Campus Islamabad Pakistan
- Department of Pharmacy Quaid-i-Azam University Islamabad Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 9816743463 Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Abbas Rahdar
- Department of Physics Faculty of Science University of Zabol Zabol Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center Kerman University of Medical Sciences Kerman 7616913555 Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College Scotland Edinburgh EH9 3JG United Kingdom
- School of Engineering University of Petroleum & Energy Studies (UPES) Dehradun 248007 Uttarakhand India
| | - Sadanand Pandey
- Particulate Matter Research Center Research Institute of Industrial Science & Technology (RIST) 187-12, Geumho-ro Gwangyang-si Jeollanam-do 57801, Republic of Korea
| | - Razieh Mirsafaei
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics School of Pharmacy Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
24
|
Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021; 33:1011-1034. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Korolev D, Postnov V, Aleksandrov I, Murin I. The Combination of Solid-State Chemistry and Medicinal Chemistry as the Basis for the Synthesis of Theranostics Platforms. Biomolecules 2021; 11:1544. [PMID: 34680176 PMCID: PMC8534059 DOI: 10.3390/biom11101544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents the main patterns of synthesis for theranostics platforms. We examine various approaches to the interpretation of theranostics, statistics of publications drawn from the PubMed database, and the solid-state and medicinal chemistry methods used for the formation of nanotheranostic objects. We highlight and analyze chemical methods for the modification of nanoparticles, synthesis of spacers with functional end-groups, and the immobilization of medicinal substances and fluorophores. An overview of the modern solutions applied in various fields of medicine is provided, along with an outline of specific examples and an analysis of modern trends and development areas of theranostics as a part of personalized medicine.
Collapse
Affiliation(s)
- Dmitry Korolev
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (D.K.); (V.P.)
| | - Viktor Postnov
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (D.K.); (V.P.)
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia;
| | - Ilia Aleksandrov
- Almazov National Medical Research Centre, Institute of Experimental Medicine, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (D.K.); (V.P.)
| | - Igor Murin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia;
| |
Collapse
|
26
|
Guirguis M, Bhandari C, Li J, Eroy M, Prajapati S, Margolis R, Shrivastava N, Hoyt K, Hasan T, Obaid G. Membrane composition is a functional determinant of NIR-activable liposomes in orthotopic head and neck cancer. NANOPHOTONICS 2021; 10:3169-3185. [PMID: 35433177 PMCID: PMC9012185 DOI: 10.1515/nanoph-2021-0191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Near-infrared (NIR)-activable liposomes containing photosensitizer (PS)-lipid conjugates are emerging as tunable, high-payload, and tumor-selective platforms for photodynamic therapy (PDT)-based theranostics. To date, the impact that the membrane composition of a NIR-activable liposome (the chemical nature and subsequent conformation of PS-lipid conjugates) has on their in vitro and in vivo functionality has not been fully investigated. While their chemical nature is critical, the resultant physical conformation dictates their interactions with the immediate biological environments. Here, we evaluate NIR-activable liposomes containing lipid conjugates of the clinically-used PSs benzoporphyrin derivative (BPD; hydrophobic, membrane-inserting conformation) or IRDye 700DX (hydrophilic, membrane-protruding conformation) and demonstrate that membrane composition is critical for their function as tumor-selective PDT-based platforms. The PS-lipid conformations were primarily dictated by the varying solubilities of the two PSs and assisted by their lipid conjugation sites. Conformation was further validated by photophysical analysis and computational predictions of PS membrane partitioning (topological polar surface area [tPSA], calculated octanol/water partition [cLogP], and apparent biomembrane permeability coefficient [Papp]). Results show that the membrane-protruding lipo-IRDye700DX exhibits 5-fold more efficient photodynamic generation of reactive molecular species (RMS), 12-fold expedited phototriggered burst release of entrap-ped agents, and 15-fold brighter fluorescence intensity as compared to the membrane-inserting lipo-BPD-PC (phosphatidylcholine conjugate). Although the membrane-inserting lipo-BPD-PC exhibits less efficient photo-dynamic generation of RMS, it allows for more sustained phototriggered release, 10-fold greater FaDu cancer cell phototoxicity, and 7.16-fold higher tumor-selective delivery in orthotopic mouse FaDu head and neck tumors. These critical insights pave the path for the rational design of emerging NIR-activable liposomes, whereby functional consequences of membrane composition can be tailored toward a specific therapeutic purpose.
Collapse
Affiliation(s)
- Mina Guirguis
- Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA
| | - Chanda Bhandari
- Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA
| | - Junjie Li
- Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA
| | - Menitte Eroy
- Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA
| | - Sushant Prajapati
- Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA
| | - Ryan Margolis
- Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA
| | - Navadeep Shrivastava
- Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02114, Massachusetts, USA; and Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge 02139, Massachusetts, USA
| | - Girgis Obaid
- Corresponding author: Girgis Obaid, Department of Bioengineering, University of Texas at Dallas, Richardson 75080, Texas, USA,
| |
Collapse
|
27
|
Chen J, Qian C, Ren P, Yu H, Kong X, Huang C, Luo H, Chen G. Light-Responsive Micelles Loaded With Doxorubicin for Osteosarcoma Suppression. Front Pharmacol 2021; 12:679610. [PMID: 34220512 PMCID: PMC8249570 DOI: 10.3389/fphar.2021.679610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 01/14/2023] Open
Abstract
The enhancement of tumor targeting and cellular uptake of drugs are significant factors in maximizing anticancer therapy and minimizing the side effects of chemotherapeutic drugs. A key challenge remains to explore stimulus-responsive polymeric nanoparticles to achieve efficient drug delivery. In this study, doxorubicin conjugated polymer (Poly-Dox) with light-responsiveness was synthesized, which can self-assemble to form polymeric micelles (Poly-Dox-M) in water. As an inert structure, the polyethylene glycol (PEG) can shield the adsorption of protein and avoid becoming a protein crown in the blood circulation, improving the tumor targeting of drugs and reducing the cardiotoxicity of doxorubicin (Dox). Besides, after ultraviolet irradiation, the amide bond connecting Dox with PEG can be broken, which induced the responsive detachment of PEG and enhanced cellular uptake of Dox. Notably, the results of immunohistochemistry in vivo showed that Poly-Dox-M had no significant damage to normal organs. Meanwhile, they showed efficient tumor-suppressive effects. This nano-delivery system with the light-responsive feature might hold great promises for the targeted therapy for osteosarcoma.
Collapse
Affiliation(s)
- Jiayi Chen
- Bengbu Medical College, Bengbu, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | | | - Peng Ren
- Bengbu Medical College, Bengbu, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Han Yu
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiangjia Kong
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenglong Huang
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huanhuan Luo
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Chen
- Bengbu Medical College, Bengbu, China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
28
|
Biomimetic Nanotechnology: A Natural Path Forward for Tumor-Selective and Tumor-Specific NIR Activable Photonanomedicines. Pharmaceutics 2021; 13:pharmaceutics13060786. [PMID: 34070233 PMCID: PMC8225032 DOI: 10.3390/pharmaceutics13060786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of biomimetic nanotechnology has seen an exponential rise over the past decade with applications in regenerative medicine, immunotherapy and drug delivery. In the context of nanomedicines activated by near infrared (NIR) photodynamic processes (photonanomedicines; PNMs), biomimetic nanotechnology is pushing the boundaries of activatable tumor targeted nanoscale drug delivery systems. This review discusses how, by harnessing a unique collective of biological processes critical to targeting of solid tumors, biomimetic PNMs (bPNMs) can impart tumor cell specific and tumor selective photodynamic therapy-based combination regimens. Through molecular immune evasion and self-recognition, bPNMs can confer both tumor selectivity (preferential bulk tumor accumulation) and tumor specificity (discrete molecular affinity for cancer cells), respectively. They do so in a manner that is akin, yet arguably superior, to synthetic molecular-targeted PNMs. A particular emphasis is made on how bPNMs can be engineered to circumvent tumor cell heterogeneity, which is considered the Achilles’ heel of molecular targeted therapeutics. Forward-looking propositions are also presented on how patient tumor heterogeneity can ultimately be recapitulated to fabricate patient-specific, heterogeneity-targeting bPNMs.
Collapse
|
29
|
Kwon N, Kim H, Li X, Yoon J. Supramolecular agents for combination of photodynamic therapy and other treatments. Chem Sci 2021; 12:7248-7268. [PMID: 34163818 PMCID: PMC8171357 DOI: 10.1039/d1sc01125a] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising treatment for cancers such as superficial skin cancers, esophageal cancer, and cervical cancer. Unfortunately, PDT often does not have sufficient therapeutic benefits due to its intrinsic oxygen dependence and the limited permeability of irradiating light. Side effects from "always on" photosensitizers (PSs) can be problematic, and PDT cannot treat tumor metastases or recurrences. In recent years, supramolecular approaches using non-covalent interactions have attracted attention due to their potential in PS development. A supramolecular PS assembly could be built to maximize photodynamic effects and minimize side effects. A combination of two or more therapies can effectively address shortcomings while maximizing the benefits of each treatment regimen. Using the supramolecular assembly, it is possible to design a multifunctional supramolecular PS to exert synergistic effects by combining PDT with other treatment methods. This review provides a summary of important research progress on supramolecular systems that can be used to combine PDT with photothermal therapy, chemotherapy, and immunotherapy to compensate for the shortcomings of PDT, and it provides an overview of the prospects for future cancer treatment advances and clinical applications.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University Fuzhou 350116 China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
30
|
Gong Z, Dai Z. Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002178. [PMID: 34026428 PMCID: PMC8132157 DOI: 10.1002/advs.202002178] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/24/2020] [Indexed: 05/04/2023]
Abstract
As a novel noninvasive therapeutic modality combining low-intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue-penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state-of-the-art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial-augmented SDT are in discussion, including porphyrin-based nanomaterials, porphyrin-like nanomaterials, inorganic nanomaterials, and organic-inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial-based sonosensitizer, and multidisciplinary collaboration.
Collapse
Affiliation(s)
- Zhuoran Gong
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
31
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine conjugates in cancer theranostics. Bioact Mater 2021; 6:794-809. [PMID: 33024900 PMCID: PMC7528000 DOI: 10.1016/j.bioactmat.2020.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Cyanine is a meritorious fluorogenic core for the construction of fluorescent probes and its phototherapeutic potential has been enthusiastically explored as well. Alternatively, the covalent conjugation of cyanine with other potent therapeutic agents not only boosts its therapeutic efficacy but also broadens its therapeutic modality. Herein, we summarize miscellaneous cyanine-therapeutic agent conjugates in cancer theranostics from literature published between 2014 and 2020. The application scenarios of such theranostic cyanine conjugates covered common cancer therapeutic modalities, including chemotherapy, phototherapy and targeted therapy. Besides, cyanine conjugates that serve as nanocarriers for drug delivery are introduced as well. In an additional section, we analyze the potential of these conjugates for clinical translation. Overall, this review is aimed to stimulate research interest in exploring unattempted therapeutic agents and novel conjugation strategies and hopefully, accelerate clinical translation in this field.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Hak A, Ravasaheb Shinde V, Rengan AK. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagnosis Photodyn Ther 2021; 33:102205. [PMID: 33561574 DOI: 10.1016/j.pdpdt.2021.102205] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Phototherapy has the potential to play a greater role in oncology. Phototherapy converts light energy into either chemical energy or thermal energy, which eventually destroys cancer cells after a series of biological reactions. With nanotechnology applications in cancer therapeutics, it has become possible to prepare smart drug carriers with multifunctional properties at the nanoscale level. These nanocarriers may be able to deliver the drug molecules to the target site more efficiently in the form of nanoparticles. Several intrinsic and extrinsic properties of these nanocarriers help target the tumor cells exclusively, and by utilizing these features, drug molecules can be delivered to the tumor cells specifically, which results in high tumor uptake and better therapeutic effects ultimately. Nanocarriers can also be designed to carry different drugs together to provide a platform for combination therapy like chemo-photodynamic therapy and chemo-photodynamic-photothermal therapy. In combination therapy, co-delivery of all different drugs is crucial to obtain their synergistic effects, and with the help of nanocarriers, it is possible to co-deliver these drugs by loading them together onto the nanocarriers.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
33
|
Bhandari C, Guirguis M, Savan NA, Shrivastava N, Oliveira S, Hasan T, Obaid G. What NIR photodynamic activation offers molecular targeted nanomedicines: Perspectives into the conundrum of tumor specificity and selectivity. NANO TODAY 2021; 36:101052. [PMID: 33552231 PMCID: PMC7864390 DOI: 10.1016/j.nantod.2020.101052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Near infrared (NIR) photodynamic activation is playing increasingly critical roles in cutting-edge anti-cancer nanomedicines, which include spatiotemporal control over induction of therapy, photodynamic priming, and phototriggered immunotherapy. Molecular targeted photonanomedicines (mt-PNMs) are tumor-specific nanoscale drug delivery systems, which capitalize on the unparalleled spatio-temporal precision of NIR photodynamic activation to augment the accuracy of tumor tissue treatment. mt-PNMs are emerging as a paradigm approach for the targeted treatment of solid tumors, yet remain highly complex and multifaceted. While ligand targeted nanomedicines in general suffer from interdependent challenges in biophysics, surface chemistry and nanotechnology, mt-PNMs provide distinct opportunities to synergistically potentiate the effects of ligand targeting. This review provides what we believe to be a much-need demarcation between the processes involved in tumor specificity (biomolecular recognition events) and tumor selectivity (preferential tumor accumulation) of ligand targeted nanomedicines, such as mt-PNMs, and elaborate on what NIR photodynamic activation has to offer. We discuss the interplay between both tumor specificity and tumor selectivity and the degree to which both may play central roles in cutting-edge NIR photoactivable nanotechnologies. A special emphasis is made on NIR photoactivable biomimetic nanotechnologies that capitalize on both specificity and selectivity phenomena to augment the safety and efficacy of photodynamic anti-tumor regimens.
Collapse
Affiliation(s)
- Chanda Bhandari
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - Mina Guirguis
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - N. Anna Savan
- Michigan State University, East Lansing, Michigan, 48824, U.S
| | - Navadeep Shrivastava
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| |
Collapse
|
34
|
Yang H, Liu R, Xu Y, Qian L, Dai Z. Photosensitizer Nanoparticles Boost Photodynamic Therapy for Pancreatic Cancer Treatment. NANO-MICRO LETTERS 2021; 13:35. [PMID: 34138222 PMCID: PMC8187547 DOI: 10.1007/s40820-020-00561-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/31/2020] [Indexed: 05/13/2023]
Abstract
Patients with pancreatic cancer (PCa) have a poor prognosis apart from the few suitable for surgery. Photodynamic therapy (PDT) is a minimally invasive treatment modality whose efficacy and safety in treating unresectable localized PCa have been corroborated in clinic. Yet, it suffers from certain limitations during clinical exploitation, including insufficient photosensitizers (PSs) delivery, tumor-oxygenation dependency, and treatment escape of aggressive tumors. To overcome these obstacles, an increasing number of researchers are currently on a quest to develop photosensitizer nanoparticles (NPs) by the use of a variety of nanocarrier systems to improve cellular uptake and biodistribution of photosensitizers. Encapsulation of PSs with NPs endows them significantly higher accumulation within PCa tumors due to the increased solubility and stability in blood circulation. A number of approaches have been explored to produce NPs co-delivering multi-agents affording PDT-based synergistic therapies for improved response rates and durability of response after treatment. This review provides an overview of available data regarding the design, methodology, and oncological outcome of the innovative NPs-based PDT of PCa.
Collapse
Affiliation(s)
- Huanyu Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, People's Republic of China.
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| |
Collapse
|
35
|
Li Y, Zhou Y, Yue X, Dai Z. Cyanine Conjugate-Based Biomedical Imaging Probes. Adv Healthc Mater 2020; 9:e2001327. [PMID: 33000915 DOI: 10.1002/adhm.202001327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Indexed: 12/12/2022]
Abstract
Cyanine is a class of fluorescent dye with meritorious fluorescence properties and has motivated numerous researchers to explore its imaging capabilities by miscellaneous structural modification and functionalization strategies. The covalent conjugation with other functional molecules represents a distinctive design strategy and has shown immense potential in both basic and clinical research. This review article summarizes recent achievements in cyanine conjugate-based probes for biomedical imaging. Particular attention is paid to the conjugation with targeting warheads and other contrast agents for targeted fluorescence imaging and multimodal imaging, respectively. Additionally, their clinical potential in cancer diagnostics is highlighted and some concurrent impediments for clinical translation are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Yiming Zhou
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| | - Xiuli Yue
- School of Environment Harbin Institute of Technology Harbin 150090 China
| | - Zhifei Dai
- Department of Biomedical Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
36
|
Xu Y, Liu R, Dai Z. Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing. NANOSCALE 2020; 12:21001-21014. [PMID: 33078813 DOI: 10.1039/d0nr05452f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CRISPR-Cas9, the breakthrough genome-editing technology, has emerged as a promising tool to prevent and cure various diseases. The efficient genome editing technology strongly relies on the specific and effective delivery of CRISPR/Cas9 cargos. However, the lack of a safe, specific, and efficient non-viral delivery system for in vivo genome editing remains a major limit for its clinical translation. In this review, we will first briefly introduce the working mechanism of CRISPR/Cas9 and the patterns of CRISPR/Cas9 delivery. Furthermore, the physiological obstacles for the delivery process in vivo are elaborated. Finally, the key considerations will be deeply discussed in designing non-viral nanovectors for therapeutic CRISPR/Cas9 delivery in vivo, including the effective encapsulation of large-size macromolecules, targeting specific tissues and cells, efficient endosomal escape and safety concerns of the vector systems, in the hope of inviting more comprehensive studies on the development of safe, specific, and efficient non-viral nanovectors for delivering a CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Yunxue Xu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China. and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
37
|
Tian J, Huang B, Nawaz MH, Zhang W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213410] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Wang R, Yang Y, Yang M, Yuan D, Huang J, Chen R, Wang H, Hu L, Di L, Li J. Synergistic inhibition of metastatic breast cancer by dual-chemotherapy with excipient-free rhein/DOX nanodispersions. J Nanobiotechnology 2020; 18:116. [PMID: 32847586 PMCID: PMC7449082 DOI: 10.1186/s12951-020-00679-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The management of metastatic cancer remains a major challenge in cancer therapy worldwide. The targeted delivery of chemotherapeutic drugs through rationally designed formulations is one potential therapeutic option. Notably, excipient-free nanodispersions that are entirely composed of pharmaceutically active molecules have been evaluated as promising candidates for the next generation of drug formulations. Formulated from the self-assembly of drug molecules, these nanodispersions enable the safe and effective delivery of therapeutic drugs to local disease lesions. Here, we developed a novel and green approach for preparing nanoparticles via the self-assembly of rhein (RHE) and doxorubicin (DOX) molecules, named RHE/DOX nanoparticles (RD NPs); this assembly was associated with the interaction force and did not involve any organic solvents. RESULTS According to molecular dynamics (MD) simulations, DOX molecules tend to assemble around RHE molecules through intermolecular forces. This intermolecular retention of DOX was further improved by the nanosizing effect of RD NPs. Compared to free DOX, RD NPs exerted a slightly stronger inhibitory effect on 4T1 cells in the scratch healing assay. As a dual drug-loaded nanoformulation, the efficacy of RD NPs against tumor cells in vitro was synergistically enhanced. Compared to free DOX, the combination of DOX and RHE in nanoparticles exerted a synergistic effect with a combination index (CI) value of 0.51 and showed a stronger ability to induce cell apoptosis. Furthermore, the RD NP treatment not only effectively suppressed primary tumor growth but also significantly inhibited tumor metastasis both in vitro and in vivo, with a better safety profile. CONCLUSIONS The generation of pure nanodrugs via a self-assembly approach might hold promise for the development of more efficient and novel excipient-free nanodispersions, particularly for two small molecular antitumor drugs that potentially exert synergistic antiproliferative effects on metastatic breast cancer.
Collapse
Affiliation(s)
- Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Yujie Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Mengmeng Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Jinyu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Rui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Honglan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing, China.
| |
Collapse
|
39
|
Lai H, Liu C, Hou L, Lin W, Chen T, Hong A. TRPM8-regulated calcium mobilization plays a critical role in synergistic chemosensitization of Borneol on Doxorubicin. Theranostics 2020; 10:10154-10170. [PMID: 32929340 PMCID: PMC7481425 DOI: 10.7150/thno.45861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Lung cancer has a high mortality rate and is resistant to multiple chemotherapeutics. Natural Borneol (NB) is a monoterpenoid compound that facilitates the bioavailability of drugs. In this study, we investigated the effects of NB on chemosensitivity in the A549 human lung adenocarcinoma cell line and to elucidate therapeutic molecular target of NB. Methods: The chemosensitivity effects of NB in A549 cells were examined by MTT assay. The mechanism of NB action was evaluated using flow cytometry and Western blotting assays. Surface plasmon resonance (SPR) and LC-MS combined analysis (MS-SPRi) was performed to elucidate the candidate molecular target of NB. The chemosensitizing capacity of NB in vivo was assessed in nude mice bearing A549 tumors. Results: NB pretreatment sensitized A549 cells to low doxorubicin (DOX) dosage, leading to a 15.7% to 41.5% increase in apoptosis. This increase was correlated with ERK and AKT inactivation and activation of phospho-p38 MAPK, phospho-JNK, and phosphor-p53. Furthermore, this synergism depends on reactive oxygen species (ROS) generation. MS-SPRi analysis revealed that transient receptor potential melastatin-8 (TRPM8) is the candidate target of NB in potentiating DOX killing potency. Genetically, TRPM8 knock-down significantly suppresses the chemosensitizing effects of NB and inhibits ROS generation through restraining calcium mobilization. Moreover, pretreatment with NB synergistically enhances the anticancer effects of DOX to delay tumor progression in vivo. Conclusions: These results suggest that TRPM8 may be a valid therapeutic target in the potential application of NB, and show that NB is a chemosensitizer for lung cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Lai
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Chang Liu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Liyuan Hou
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Wenwei Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
40
|
Purushothaman B, Lee J, Hong S, Song JM. Multifunctional TPP-PEG-biotin self-assembled nanoparticle drug delivery-based combination therapeutic approach for co-targeting of GRP78 and lysosome. J Nanobiotechnology 2020; 18:102. [PMID: 32690101 PMCID: PMC7372800 DOI: 10.1186/s12951-020-00661-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background In this study, a multifunctional tetraphenylporphyrin (TPP) conjugated polyethylene glycol with biotin (TPP-PEG-biotin) as a photo-dynamic therapy (PDT) material encapsulating a ruthenium complex 1 (Ru-1) was fabricated as self-assembled nanoparticle (Ru-1@TPP-PEG-biotin SAN) to co-target glucose-regulated protein 78 (GRP78) and the lysosome as a new anti-cancer therapeutic strategy. Results The MTT assay results reveals the enhanced anticancer activity of the Ru-1@TPP-PEG-biotin SANs due to the co-targeting of the GRP78 and lysosome. The Ru-1@TPP-PEG-biotin reduced level of GRP78 and lysosomal ceramide that contributed to the stability of the lysosomal membrane. The endoplasmic reticulum (ER) stress concomitant with the inhibition of GRP78 was clearly monitored by the phosphorylation of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and inositol-requiring enzyme 1 α (IRE1α) kinases to indicate the activation of the unfolded protein response (UPR) signaling using immunofluorescence assay. On the other hand, the degradation of the lysosome was observed through PDT action by the Ru-1@TPP-PEG-biotin SAN treatment. This was confirmed by the co-localization assay showing the disappearance of cathepsin D and lysosomal-associated membrane protein 1 (LAMP1) in the lysosome. Conclusions Considering lysosome-mediated autophagy is an effective cancer cell survival mechanism, the degradation of the lysosome along with GRP78 inhibition by the Ru-1@TPP-PEG-biotin SAN combination therapy is suggested as a new co-targeting cancer treatment.![]()
Collapse
Affiliation(s)
| | - Jeongmin Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sera Hong
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
41
|
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Liang J, Jin X, Chen B, Hu J, Huang Q, Wan J, Hu Z, Wang B. Doxorubicin-loaded pH-responsive nanoparticles coated with chlorin e6 for drug delivery and synergetic chemo-photodynamic therapy. NANOTECHNOLOGY 2020; 31:195103. [PMID: 31978912 DOI: 10.1088/1361-6528/ab6fd5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The integration of chemotherapy drugs and photosensitizers to form versatile nanoplatforms for achieving chemo-photodynamic synergetic therapy has shown great superiority in tumor theranostic applications. We constructed pH-responsive nanoparticles (DOX/PB NPs) encapsulating the chemotherapeutic drug doxorubicin (DOX) into the cores of PLGA NPs coated with bovine serum albumin (BSA) via a water-in-oil (W/O/W) emulsion method. A simple and efficient chemo-photodynamic synergetic nanoplatform (DOX/PB@Ce6 NPs) was obtained by the adsorption of photosensitizer chlorin e6 (Ce6) onto the surface of the DOX/PB NPs. With optimal size, pH-responsive drug release behavior and excellent singlet oxygen production, the DOX/PB@Ce6 NPs have the potential to enhance anti-tumor efficiency. The cellular uptake, cytotoxicity, chemo-photodynamic synergetic effect and biocompatibility of the NPs were evaluated based on HeLa cells via in vitro experiments. The in vitro chemo-photodynamic synergetic experiments indicated that the DOX/PB@Ce6 NPs had remarkable cancer cell killing efficiency under laser irradiation. Notably, by hemolysis assay, all the NPs displayed excellent blood compatibility and were expected to be applicable for intravenous injection. In summary, the designed DOX/PB@Ce6 NPs multifunctional theranostic nanoplatform had excellent reactive oxygen species generation and would be a potential therapeutic platform for chemo-photodynamic synergetic therapy.
Collapse
Affiliation(s)
- Junlong Liang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim Y, Uthaman S, Pillarisetti S, Noh K, Huh KM, Park IK. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy. Acta Biomater 2020; 108:273-284. [PMID: 32205212 DOI: 10.1016/j.actbio.2020.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
Bioactivatable polymer nanoparticles (NPs) have attracted considerable attention as a prospective cancer therapy. Herein, we describe bioactivatable reactive oxygen species (ROS)-sensitive prodrug NPs designed to elicit spatiotemporally controlled, phototriggered chemo-photodynamic therapy. First, an effective anticancer agent, doxorubicin (DOX), was conjugated to poly(ethylene glycol) (PEG) via an ROS-responsive degradable thioketal (TK) linker. The resulting amphiphilic PEG-DOX conjugate (PEG-TK-DOX) self-assembled into a bioactivatable ROS-responsive NP system could efficiently encapsulate a hydrophobic photodynamic therapy (PDT) agent, pheophorbide A (PhA), with good colloidal stability and unimodal size distribution. Second, after the selective retention of NPs in the tumor, the site-specific release of DOX and PhA was spatiotemporally controlled, initially by endogenous ROS and subsequently by exogenous ROS produced during PDT. The locoregional treatment not only photoactivates PhA molecules to generate cytotoxic ROS but also triggers an ROS cascade, which accelerates the release of DOX and PhA via the ROS-mediated structural destruction of NPs, resulting in an enhanced anticancer therapeutic effect. This prodrug-NP system may function as an effective nanomedicine platform, working synergistically to maximize the efficacy of the combination of chemotherapy and photodynamic therapy with a remote-controlled release mechanism. STATEMENT OF SIGNIFICANCE: Photodynamic therapy (PDT) is a noninvasive therapy involving local ROS generation through the activation of photosensitizer (PS) molecules induced via external irradiation with near-infrared (NIR) light. Combinational therapies with PDT could synergistically enhance the therapeutic efficacy and overcome the limitations of monotherapy. In this study, we describe bioactivatable reactive oxygen species (ROS)-sensitive prodrug nanoparticles designed to elicit spatiotemporally controlled, photo triggered chemo-photodynamic therapy. Upon accumulation in tumor by enhanced permeation and retention (EPR) effect, the nanoparticles exhibited target-specific release of chemo-drug and photosensitizer in a spatiotemporally controlled cascade manner by endogenous ROS in the initial stage and the excessive production of exogenous ROS during PDT, leading to a further ROS cascade that accelerates the release of therapeutic cargo.
Collapse
|
44
|
Wang Q, Sun M, Li D, Li C, Luo C, Wang Z, Zhang W, Yang Z, Feng Y, Wang S, He Z, Zhang H, Kan Q, Sun W, Sun J. Cytochrome P450 enzyme-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between clopidogrel and photosensitizer. Theranostics 2020; 10:5550-5564. [PMID: 32373230 PMCID: PMC7196307 DOI: 10.7150/thno.42633] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS)-based photodynamic therapy (PDT) has a widespread application in cancer therapy. Nevertheless, the efficiency of PDT is far from satisfactory. One major impediment is the overexpression of glutathione (GSH) in tumor cells, which could deplete the level of PDT-generated ROS. Herein, we develop a novel type of cytochrome P450 enzyme-mediated auto-enhanced photodynamic co-nanoassembly between clopidogrel (CPG) and photosensitizer pyropheophorbide a (PPa). Methods: In this work, we prepare the co-assembled nanoparticles of CPG and PPa (CPG/PPa NPs) by using one-step precipitation method. The assembly mechanism, drug release behavior, GSH consumption, ROS generation, cellular uptake, cytotoxicity of CPG/PPa NPs are investigated in vitro. The mice bearing 4T1 tumor are employed to evaluate in vivo biodistribution and anti-tumor effect of CPG/PPa NPs. Results: Such CPG/PPa NPs could disrupt the intracellular redox homeostasis, resulting from the elimination of GSH by CPG active metabolite mediated by cytochrome P450 enzyme (CYP2C19). The in vivo assays reveal that CPG/PPa NPs not only increase the drug accumulation in tumor sites but also significantly suppress tumor growth in BALB/c mice bearing 4T1 tumor. With CPG-mediated GSH consumption and PPa-triggered ROS generation, CPG/PPa NPs show the enhanced PDT treatment effect by breaking intracellular redox balance. Conclusion: Our findings provide a valuable knowledge for the rational design of the PDT-based combinational cancer therapy.
Collapse
|
45
|
Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct Target Ther 2020; 5:12. [PMID: 32296050 PMCID: PMC7005157 DOI: 10.1038/s41392-019-0104-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 02/02/2023] Open
Abstract
Stage IV breast cancer, which has a high risk of invasion, often develops into metastases in distant organs, especially in the lung, and this could threaten the lives of women. Thus, the development of more advanced therapeutics that can efficiently target metastatic foci is crucial. In this study, we built an dual-acting therapeutic strategy using micelles with high stability functionalized with fibronectin-targeting CREKA peptides encapsulating two slightly soluble chemotherapy agents in water, doxorubicin (D) and vinorelbine (V), which we termed C-DVM. We found that small C-DVM micelles could efficiently codeliver drugs into 4T1 cells and disrupt microtubule structures. C-DVM also exhibited a powerful ability to eradicate and inhibit invasion of 4T1 cells. Moreover, an in vivo pharmacokinetics study showed that C-DVM increased the drug circulation half-life and led to increased enrichment of drugs in lung metastatic foci after 24 h. Moreover, dual-acting C-DVM treatment led to 90% inhibition of metastatic foci development and reduced invasion of metastases. C-DVM could potentially be used as a targeted treatment for metastasis and represents a new approach with higher therapeutic efficacy than conventional chemotherapy for stage IV breast cancer that could be used in the future.
Collapse
|
46
|
Mo S, Zhang X, Hameed S, Zhou Y, Dai Z. Glutathione-responsive disassembly of disulfide dicyanine for tumor imaging with reduction in background signal intensity. Theranostics 2020; 10:2130-2140. [PMID: 32104501 PMCID: PMC7019170 DOI: 10.7150/thno.39673] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023] Open
Abstract
Near-infrared (NIR) fluorescence imaging has been proved as an effective modality in identifying the tumor border and distinguishing the tumor cells from healthy tissue during the oncological surgery. Developing NIR fluorescent probes with high tumor to background (T/B) signal is essential for the complete debulking of the tumor, which will prolong the survival rate of tumor patients. However, the nonspecific binding and "always-on" properties of the conventional fluorescent probes leads to high background signals and poor specificity. Method: To address this problem, glutathione (GSH)-responsive, two disulfide-bonded dicyanine dyes (ss-diCy5 and ss-diNH800CW) were synthesized. As synthesized dyes are quenched under normal physiological conditions, however, once reached to the tumor site, these dyes are capable of emitting strong fluorescence signals primarily because of the cleavage of the disulfide bond in the tumor microenvironment with high GSH concentration. Besides, the GSH-responsive behavior of these dyes was monitored using the UV-vis and fluorescence spectroscopy. The diagnostic accuracy of the aforementioned dyes was also tested both in tumor cells and 4T1-bearing mice. Results: The fluorescence signal intensity of disulfide dicyanine dyes was quenched up to 89% compared to the mono cyanine dyes, thus providing a very low fluorescence background. However, when the disulfide dicyanine dye reaches the tumor site, the dicyanine is cleaved by GSH into two mono-dyes with high fluorescence strength, thus producing strong fluorescent signals upon excitation. The fluorescent signal of the dicyanine was enhanced by up to 27-fold after interacting with the GSH solution. In vivo xenografts tumor studies further revealed that the fluorescence signals of aforementioned dyes can be quickly recovered in the solid tumor. Conclusion: In summary, the disulfide dicyanines dyes can provide a promising platform for specific tumor-activatable fluorescence imaging with improved T/B value.
Collapse
Affiliation(s)
- Shanyan Mo
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoting Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Bort G, Lux F, Dufort S, Crémillieux Y, Verry C, Tillement O. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic AGuIX nanoparticles. Am J Cancer Res 2020; 10:1319-1331. [PMID: 31938067 PMCID: PMC6956799 DOI: 10.7150/thno.37543] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
Interest of tumor targeting through EPR effect is still controversial due to intrinsic low targeting efficacy and rare translation to human cancers. Moreover, due to different reasons, it has generally been described for relatively large nanoparticles (NPs) (hydrodynamic diameter > 10 nm). In this review EPR effect will be discussed for ultrasmall NPs using the example of the AGuIX® NP (Activation and Guiding of Irradiation by X-ray) recently translated in clinic. AGuIX® NP is a 4 ± 2 nm hydrodynamic diameter polysiloxane based NP. Since AGuIX® NP biodistribution is monitored by magnetic resonance imaging (MRI) and its activation is triggered by irradiation upon X-rays, this NP is well adapted for a theranostic approach of radiotherapy cancer treatment. Here we show that AGuIX® NP is particularly well suited to benefit from EPR-mediated tumor targeting thanks to an ultrasmall size and efficacy under irradiation at small dose. Indeed, intravenously-injected AGuIX® NP into rodent cancer models passively reached the tumor and revealed no toxicity, favoured by renal clearance. Moreover, translation of AGuIX® NP accumulation and retention into humans carrying brain metastases was validated during a first-in-man phase Ib trial taking advantage of easy biodistribution monitoring by MRI.
Collapse
|
48
|
Siwawannapong K, Zhang R, Lei H, Jin Q, Tang W, Dong Z, Lai RY, Liu Z, Kamkaew A, Cheng L. Ultra -small Pyropheophorbide -a Nanodots for Near -infrared Fluorescence/Photoacoustic Imaging-guided Photodynamic Therapy. Am J Cancer Res 2020; 10:62-73. [PMID: 31903106 PMCID: PMC6929619 DOI: 10.7150/thno.35735] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Rationale: Nanoparticles (NPs) that are rapidly eliminated from the body offer great potential in clinical test. Renal excretion of small particles is preferable over other clearance pathways to minimize potential toxicity. Thus, there is a significant demand to prepare ultra-small theranostic agents with renal clearance behaviors. Method: In this work, we report a facile method to prepare NPs with ultra-small size that show renal clearable behavior for imaging-guided photodynamic therapy (PDT). Pyropheophorbide-a (Pa), a deep red photosensitizer was functionalized with polyethylene glycol (PEG) to obtain Pa-PEG. The prepared NPs formed ultra-small nanodots in aqueous solution and showed red-shifted absorbance that enabling efficient singlet oxygen generation upon light irradiation. Results: In vitro studies revealed good photodynamic therapy (PDT) effect of these Pa-PEG nanodots. Most of the cancer cells incubated with Pa-PEG nanodots were destroyed after being exposed to the irradiated light. Utilizing the optical properties of such Pa-PEG nanodots, in vivo photoacoustic (PA) and fluorescence (FL) imaging techniques were used to assess the optimal time for PDT treatment after intravenous (i.v.) injection of the nanodots. As monitored by the PA/FL dual-modal imaging, the nanodots could accumulate at the tumor site and reach the maximum concentration at 8 h post injection. Finally, the tumors on mice treated with Pa-PEG nanodots were effectively inhibited by PDT treatment. Moreover, Pa-PEG nanodots showed high PA/FL signals in kidneys implying these ultra-small nanodots could be excreted out of the body via renal clearance. Conclusion: We demonstrated the excellent properties of Pa-PEG nanodots that can be an in vivo imaging-guided PDT agent with renal clearable behavior for potential future clinical translation.
Collapse
|
49
|
Hameed S, Zhang M, Bhattarai P, Mustafa G, Dai Z. Enhancing cancer therapeutic efficacy through ultrasound‐mediated micro‐to‐nano conversion. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1604. [DOI: 10.1002/wnan.1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| | - Miaomiao Zhang
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
- Phutung Research Institute Kathmandu Nepal
| | - Ghulam Mustafa
- Department of Sciences Bahria University Lahore Lahore Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering Peking University Beijing China
| |
Collapse
|
50
|
Kyropoulou M, DiLeone S, Lanzilotto A, Constable EC, Housecroft CE, Meier WP, Palivan CG. Porphyrin Containing Polymersomes with Enhanced ROS Generation Efficiency: In Vitro Evaluation. Macromol Biosci 2019; 20:e1900291. [DOI: 10.1002/mabi.201900291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Myrto Kyropoulou
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Stefano DiLeone
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Angelo Lanzilotto
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Edwin C. Constable
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | | | - Wolfgang P. Meier
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| |
Collapse
|