1
|
Feng Q, Wang SA, Ning B, Xie J, Ding J, Liu S, Ai S, Li F, Wang X, Guan W. Evaluation of the tumor-targeting specific imaging and killing effect of a CEA-targeting nanoparticle in colorectal cancer. Biochem Biophys Res Commun 2024; 719:150084. [PMID: 38733742 DOI: 10.1016/j.bbrc.2024.150084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a prevalent digestive malignancy with significant global mortality and morbidity rates. Improving diagnostic capabilities for CRC and investigating novel therapeutic approaches are pressing clinical imperatives. Additionally, carcinoembryonic antigen (CEA) has emerged as a highly promising candidate for both colorectal tumor imaging and treatment. METHODS A novel active CEA-targeting nanoparticle, CEA(Ab)-MSNs-ICG-Pt, was designed and synthesized, which served as a tumor-specific fluorescence agent to help in CRC near-infrared (NIR) fluorescence imaging. In cell studies, CEA(Ab)-MSNs-ICG-Pt exhibited specific targeting to RKO cells through specific antibody-antigen binding of CEA, resulting in distribution both within and around these cells. The tumor-targeting-specific imaging capabilities of the nanoparticle were determined through in vivo fluorescence imaging experiments. Furthermore, the efficacy of the nanoparticle in delivering chemotherapeutics and its killing effect were evaluated both in vitro and in vivo. RESULTS The CEA(Ab)-MSNs-ICG-Pt nanoparticle, designed as a novel targeting agent for carcinoembryonic antigen (CEA), exhibited dual functionality as a targeting fluorescent agent. This CEA-targeting nanoparticle showed exceptional efficacy in eradicating CRC cells in comparison to individual treatment modalities. Furthermore, it exhibits exceptional biosafety and biocompatibility properties. CEA(Ab)-MSNs-ICG-Pt exhibits significant promise due to its ability to selectively target tumors through NIR fluorescence imaging and effectively eradicate CRC cells with minimal adverse effects in both laboratory and in vivo environments. CONCLUSION The favorable characteristics of CEA(Ab)-MSNs-ICG-Pt offer opportunities for its application in chemotherapeutic interventions, tumor-specific NIR fluorescence imaging, and fluorescence-guided surgical procedures.
Collapse
Affiliation(s)
- Qingzhao Feng
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China; Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Shu-An Wang
- Department of Clinic Nutrition, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Beibei Ning
- Department of Pediatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China
| | - Jixian Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Jie Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Song Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Shichao Ai
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Fuchao Li
- Department of Gerontology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008,China
| | - Xuerui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China; Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
2
|
Wang Q, Sun X, Fang X, Wang Z, Wang H, Sun S, Wang S, Li T, Zhang P, Cheng Z. Dual-molecular targeting nanomedicine upregulates synergistic therapeutic efficacy in preclinical hepatoma models. Acta Biomater 2024; 183:306-317. [PMID: 38838902 DOI: 10.1016/j.actbio.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Advanced hepatocellular carcinoma (HCC) is one of the most challenging cancers because of its heterogeneous and aggressive nature, precluding the use of curative treatments. Sorafenib (SOR) is the first approved molecular targeting agent against the mitogen-activated protein kinase (MAPK) pathway for the noncurative therapy of advanced HCC; yet, any clinically meaningful benefits from the treatment remain modest, and are accompanied by significant side effects. Here, we hypothesized that using a nanomedicine platform to co-deliver SOR with another molecular targeting drug, metformin (MET), could tackle these issues. A micelle self-assembled with amphiphilic polypeptide methoxy poly(ethylene glycol)-block-poly(L-phenylalanine-co-l-glutamic acid) (mPEG-b-P(LP-co-LG)) (PM) was therefore designed for combinational delivery of two molecular targeted drugs, SOR and MET, to hepatomas. Compared with free drugs, the proposed, dual drug-loaded micelle (PM/SOR+MET) enhanced the drugs' half-life in the bloodstream and drug accumulation at the tumor site, thereby inhibiting tumor growth effectively in the preclinical subcutaneous, orthotopic and patient-derived xenograft hepatoma models without causing significant systemic and organ toxicity. Collectively, these findings demonstrate an effective dual-targeting nanomedicine strategy for treating advanced HCC, which may have a translational potential for cancer therapeutics. STATEMENT OF SIGNIFICANCE: Treatment of advanced hepatocellular carcinoma (HCC) remains a formidable challenge due to its aggressive nature and the limitations inherent to current therapies. Despite advancements in molecular targeted therapies, such as Sorafenib (SOR), their modest clinical benefits coupled with significant adverse effects underscore the urgent need for more efficacious and less toxic treatment modalities. Our research presents a new nanomedicine platform that synergistically combines SOR with metformin within a specialized diblock polypeptide micelle, aiming to enhance therapeutic efficacy while reducing systemic toxicity. This innovative approach not only exhibits marked antitumor efficacy across multiple HCC models but also significantly reduces the toxicity associated with current treatments. Our dual-molecular targeting approach unveils a promising nanomedicine strategy for the molecular treatment of advanced HCC, potentially offering more effective and safer treatment alternatives with significant translational potential.
Collapse
Affiliation(s)
- Qilong Wang
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Xiwei Sun
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Xizhu Fang
- Department of Immunology and Pathogenic Biology, College of Medicine, Yanbian University, Yanji, 133002, PR China
| | - Zhongying Wang
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Haodong Wang
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Siqiao Sun
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Shuai Wang
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Tingting Li
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, 130061, PR China.
| | - Zhihua Cheng
- Department of Vascular Surgery, General Surgery Center, the First Hospital of Jilin University, Changchun, 130061, PR China.
| |
Collapse
|
3
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
4
|
Liu T, Liu L, Li L, Cai J. Exploiting targeted nanomedicine for surveillance, diagnosis, and treatment of hepatocellular carcinoma. Mater Today Bio 2023; 22:100766. [PMID: 37636988 PMCID: PMC10457457 DOI: 10.1016/j.mtbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that has the highest morbidity and mortality rates. In clinical practice, there are still many limitations in surveilling, diagnosing, and treating HCC, such as the poor detection of early HCC, the frequent post-surgery recurrence, the low local tumor control rate, the therapy resistance and side effects. Therefore, improved, or innovative modalities are urgently required for early diagnosis as well as refined and effective management. In recent years, nanotechnology research in the field of HCC has received great attention, with various aspects of diagnosis and treatment including biomarkers, ultrasound, diagnostic imaging, intraoperative imaging, ablation, transarterial chemoembolization, radiotherapy, and systemic therapy. Different from previous reviews that discussed from the perspective of nanoparticles' structure, design and function, this review systematically summarizes the methods and limitations of diagnosing and treating HCC in clinical guidelines and practices, as well as nanomedicine applications. Nanomedicine can overcome the limitations to improve diagnosis accuracy and therapeutic effect via enhancement of targeting, biocompatibility, bioavailability, controlled releasing, and combination of different clinical treatment modalities. Through an in-depth understanding of the logic of nanotechnology to conquer clinical limitations, the main research directions of nanotechnology in HCC are sorted out in this review. It is anticipated that nanomedicine will play a significant role in the future clinical practices of HCC.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jing Cai
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, PR China
| |
Collapse
|
5
|
Zhang W, Liu X, Cao S, Zhang Q, Chen X, Luo W, Tan J, Xu X, Tian J, Saw PE, Luo B. Multifunctional Redox-Responsive Nanoplatform with Dual Activation of Macrophages and T Cells for Antitumor Immunotherapy. ACS NANO 2023; 17:14424-14441. [PMID: 37498878 DOI: 10.1021/acsnano.2c12498] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
High expression of programmed death ligand 1 (PD-L1) and strong immune evasion ability of the tumor microenvironment (TME) are maintained through mutual regulation between different immune and stromal cells, which causes obstructions for cancer immunotherapy, especially immunosuppressive M2-like phenotype tumor-associated macrophages (TAMs). Repolarization of TAMs to the M1-like phenotype could secrete proinflammatory cytokines and reverse the immunosuppressive state of the TME. However, we found that reactive oxygen species (ROS) generated by repolarized TAMs could be a double-edged sword: ROS cause a stronger suppressive effect on CD8 T cells through an increased proportion of apoptotic regulatory T (Treg) cells. Thus, simply repolarizing TAMs while ignoring the suppressed function of T cells is insufficient for generating adequate antitumor immunity. Accordingly, we engineered multifunctional redox-responsive nanoplatform NPs (M+C+siPD-L1) with Toll-like receptor agonist (M), catalase (C), and siPD-L1 encased for coregulation of both TAMs and T cells to maximize cancer immunotherapy. Our results demonstrated that NPs (M+C+siPD-L1) showed superior biocompatibility and intratumor accumulation. For in vitro experiments, NPs (M+C+siPD-L1) simultaneously repolarized TAMs to the M1-like phenotype, hydrolyzed extra ROS, knocked down the expression of PD-L1 on tumor cells, and rescued the function of CD8 T cells suppressed by Treg cells. In both orthotopic Hepa1-6 and 4T1 tumor-bearing mouse models, NPs (M+C+siPD-L1) could effectively evoke active systemic antitumor immunity and inhibit tumor growth. The combination of repolarizing TAMs, hydrolyzing extra ROS, and knocking down the expression of PD-L1 proves to be a synergistic approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Wenyue Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaodi Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojiang Chen
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wanrong Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaolin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jing Tian
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baoming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
6
|
Huang Y, Kou Q, Su Y, Lu L, Li X, Jiang H, Gui R, Huang R, Nie X, Li J. Combination therapy based on dual-target biomimetic nano-delivery system for overcoming cisplatin resistance in hepatocellular carcinoma. J Nanobiotechnology 2023; 21:89. [PMID: 36918874 PMCID: PMC10015699 DOI: 10.1186/s12951-023-01840-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Strategies to overcome toxicity and drug resistance caused by chemotherapeutic drugs for targeted therapy against hepatocellular carcinoma (HCC) are urgently needed. Previous studies revealed that high oxidored-nitro domain-containing protein 1(NOR1) expression in HCC was associated with cisplatin (DDP) resistance. Herein, a novel dual-targeting nanocarrier system AR-NADR was generated for the treatment of DDP resistance in HCC. The core of the nanocarrier system is the metal-organic frameworks (MOF) modified with nuclear location sequence (NLS), which loading with DDP and NOR1 shRNA (R). The shell is an A54 peptide inserted into the erythrocyte membrane (AR). Our results show that AR-NADR efficiently internalized by tumor cells due to its specific binding to the A54 receptors that are abundantly expressed on the surface of HCC cells and NLS peptide-mediated nuclear entry. Additionally, DDP is more likely to be released due to the degradation of Ag-MOF in the acidic tumor microenvironment. Moreover, by acting as a vector for gene delivery, AR-NADR effectively inhibits tumor drug resistance by suppressing the expression of NOR1, which induces intracellular DDP accumulation and makes cells sensitive to DDP. Finally, the anti-HCC efficacy and mechanisms of AR-NADR were systematically elucidated by a HepG2/DDP cell model as well as a tumor model. Therefore, AR-NADR constitutes a key strategy to achieve excellent gene silencing and antitumor efficacy, which provides effective gene therapy and precise treatment strategies for cisplatin resistance in HCC.
Collapse
Affiliation(s)
- Yufen Huang
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qinjie Kou
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yanrong Su
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lu Lu
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xisheng Li
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Haiye Jiang
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong Gui
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong Huang
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China. .,Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, 410000, Hunan, China.
| | - Jian Li
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
CD13-Mediated Pegylated Carboxymethyl Chitosan-Capped Mesoporous Silica Nanoparticles for Enhancing the Therapeutic Efficacy of Hepatocellular Carcinoma. Pharmaceutics 2023; 15:pharmaceutics15020426. [PMID: 36839748 PMCID: PMC9962034 DOI: 10.3390/pharmaceutics15020426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Liver cancer, especially hepatocellular carcinoma, is an important cause of cancer-related death, and its incidence is increasing worldwide. Nano drug delivery systems have shown great promise in the treatment of cancers. In order to improve their therapeutic efficacy, it is very important to realize the high accumulation and effective release of drugs at the tumor site. In this manuscript, using doxorubicin (DOX) as a model drug, CD13-targeted mesoporous silica nanoparticles coated with NGR-peptide-modified pegylated carboxymethyl chitosan were constructed (DOX/MSN-CPN). DOX/MSN-CPN comprises a spherical shape with an obvious capping structure and a particle size of 125.01 ± 1.52 nm. With a decrease in pH, DOX/MSN-CPN showed responsive desorption from DOX/MSN-CPN and pH-responsive release of DOX was observed. Meanwhile, DOX/MSN-CPN could be efficiently absorbed through NGR-mediated internalization in vitro and could efficiently deliver DOX to tumor tissues with long accumulation times in vivo, suggesting good active targeting properties. Moreover, significant tumor inhibition has been observed in antitumor studies in vivo. This study provides a strategy of utilizing DOX/MSN-CPN as a nano-platform for drug delivery, which has superb therapeutic efficacy and safety for the treatment of hepatocellular carcinoma both in vivo and in vitro.
Collapse
|
8
|
Feng L, Li Z, Xiong Y, Yan T, Fu C, Zeng Q, Wang H. HtrA2 Independently Predicts Poor Prognosis and Correlates with Immune Cell Infiltration in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4067418. [PMID: 36704205 PMCID: PMC9873461 DOI: 10.1155/2023/4067418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023]
Abstract
High-temperature requirement protein A2 (HtrA2), a mitochondrial protein, is related to apoptosis regulation. However, the role of HtrA2 in hepatocellular carcinoma (HCC) remains unclear. In the present study, we explored the prognostic value and expression pattern of HtrA2 in HCC and confirmed its independent value for predicting outcomes via Cox analyses. LinkedOmics and GEPIA2 were used to construct the coexpression and functional networks of HtrA2. Additionally, the data obtained from TCGA was analyzed to investigate the relationship between the infiltration of immune cells and HtrA2 mRNA expression. Finally, the expression pattern of HtrA2 in HCC was confirmed by wet-lab experiments. The results showed high HtrA2 expression (P < 0.001) presented in tumor tissues in TCGA-HCC. Moreover, high HtrA2 expression was confirmed to be associated with poor HCC patient survival (P < 0.05). HtrA2 has also been recognized as an essential risk factor for overall survival (P=0.01, HR = 1.654, 95% CI 1.128-2.425), disease-specific survival (P=0.004, HR = 2.204, 95% CI 1.294-3.753), and progression-free interval (P=0.007, HR = 1.637, 95% CI 1.145-2.341) of HCC. HCC patients with low HtrA2 methylation had worse overall survival than patients with high methylation (P=0.0019). Functional network analysis suggests that HtrA2 regulates mitochondrial homeostasis through pathways involving multiple microRNAs and transcription factors in HCC. In addition, HtrA2 expression correlated with infiltrating levels of multiple immune cell populations. At last, increased expression of HtrA2 in HCC was confirmed using wet-lab experiments. Our study provides evidence that the upregulation of HtrA2 in HCC is an independent predictor of prognosis. Our results provide the foundation for further study on the roles of HtrA2 in HCC tumorigenesis.
Collapse
Affiliation(s)
- Lei Feng
- The Division of Gastroenterology and Hepatology, Suining Central Hospital, Suining, Sichuan, China
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhen Li
- Sichuan Vocational and Technical College, Suining, Sichuan, China
| | - Yao Xiong
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ting Yan
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Changmin Fu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiuyue Zeng
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Huamin Wang
- North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
9
|
Zhang Y, Shi J, Luo J, Liu C, Zhu L. Regulatory mechanisms and potential medical applications of HNF1A-AS1 in cancers. Am J Transl Res 2022; 14:4154-4168. [PMID: 35836869 PMCID: PMC9274608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are defined as a class of non-protein-coding RNAs that are longer than 200 nucleotides. Previous studies have shown that lncRNAs play a vital role in the progression of multiple diseases, which highlights their potential for medical applications. The lncRNA hepatocyte nuclear factor 1 homeobox A (HNF1A) antisense RNA 1 (HNF1A-AS1) is known to be abnormally expressed in multiple cancers. HNF1A-AS1 exerts its oncogenic roles through a variety of molecular mechanisms. Moreover, aberrant HNF1A-AS1 expression is associated with diverse clinical features in cancer patients. Therefore, HNF1A-AS1 is a promising biomarker for tumor diagnosis and prognosis and thus a potential candidate for tumor therapy. This review summarizes current studies on the role and the underlying mechanisms of HNF1A-AS1 various cancer types, including gastric cancer, liver cancer, glioma, lung cancer, colorectal cancer, breast cancer, bladder cancer, osteosarcoma, esophageal adenocarcinoma, hemangioma, oral squamous cell carcinoma, laryngeal squamous cell carcinoma, cervical cancer, as well as gastroenteropancreatic neuroendocrine neoplasms. We also describe the diagnostic, prognostic, and therapeutic value of HNF1A-AS1 for multiple cancer patients.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Jiang Shi
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junfang Luo
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Cong Liu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Lixu Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
10
|
Chen R, Zhao M, An Y, Liu D, Tang Q, Teng G. A Prognostic Gene Signature for Hepatocellular Carcinoma. Front Oncol 2022; 12:841530. [PMID: 35574316 PMCID: PMC9091376 DOI: 10.3389/fonc.2022.841530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma is the third most common cause of cancer-related deaths in China and immune-based therapy can improve patient outcomes. In this study, we investigated the relationship between immunity-associated genes and hepatocellular carcinoma from the prognostic perspective. The data downloaded from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) and the Gene Expression Omnibus (GEO) was screened for gene mutation frequency using the maftools package. Immunity-associated eight-gene signature with strong prognostic ability was constructed and proved as an independent predictor of the patient outcome in LIHC. Seven genes in the immune-related eight-gene signature were strongly associated with the infiltration of M0 macrophages, resting mast cells, and regulatory T cells. Our research may provide clinicians with a quantitative method to predict the prognosis of patients with liver cancer, which can assist in the selection of the optimal treatment plan.
Collapse
Affiliation(s)
- Rong Chen
- Department of Oncology, Zhongda Hospital, Nanjing, China
| | - Meng Zhao
- School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yanli An
- Medical School of Southeast University, Nanjing, China.,Department of Radiology, Medical School of Southeast University, Nanjing, China
| | - Dongfang Liu
- Medical School of Southeast University, Nanjing, China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, China
| | - Gaojun Teng
- Department of Radiology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
11
|
Mu W, Chu Q, Yang H, Guan L, Fu S, Gao T, Sang X, Zhang Z, Liang S, Liu Y, Zhang N. Multipoint Costriking Nanodevice Eliminates Primary Tumor Cells and Associated-Circulating Tumor Cells for Enhancing Metastasis Inhibition and Therapeutic Effect on HCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:2101472. [PMID: 35356152 PMCID: PMC8948568 DOI: 10.1002/advs.202101472] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/22/2021] [Indexed: 05/06/2023]
Abstract
Eliminating primary tumor ("roots") and inhibiting associated-circulating tumor cells (associated-CTCs, "seeds") are vital issues that need to be urgently addressed in cancer therapy. Associated-CTCs, which include single CTCs, CTC clusters, and CTC-neutrophil clusters, are essential executors in metastasis and the cause of metastasis-related death in cancer patients. Herein, a "roots and seeds" multipoint costriking nanodevice (GV-Lipo/sorafenib (SF)/digitoxin (DT)) is developed to eliminate primary tumors and inhibit the spread of associated-CTCs for enhancing metastasis inhibition and the therapeutic effect on hepatocellular carcinoma (HCC). GV-Lipo/SF/DT eliminates primary tumor cells by the action of SF, thus reducing CTC production at the roots and improving the therapeutic effect on HCC. GV-Lipo/SF/DT inhibits associated-CTCs effectively via the enhanced identification and capture effects of glypican-3 and/or vascular cell adhesion molecule 1 (VCAM1) targeting, dissociating CTC clusters using DT, blocking the formation of CTC-neutrophil clusters using anti-VCAM1 monoclonal antibody, and killing CTCs with SF. It is successfully verified that GV-Lipo/SF/DT increases the CTC elimination efficiency in vivo, thus effectively preventing metastasis, and shows enhanced antitumor efficacy in both an H22-bearing tumor model and orthotopic HCC models. Overall, the "roots and seeds" multipoint costriking strategy may open a new cancer treatment model for the clinic.
Collapse
Affiliation(s)
- Weiwei Mu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Qihui Chu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Huizhen Yang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Li Guan
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Shunli Fu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Tong Gao
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Xiao Sang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Zipeng Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Shuang Liang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Yongjun Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| | - Na Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhuaxi RoadJinanShandong Province250012China
| |
Collapse
|
12
|
Ding L, Zhang P, Huang X, Yang K, Liu X, Yu Z. Intracellular Reduction-Responsive Molecular Targeted Nanomedicine for Hepatocellular Carcinoma Therapy. Front Pharmacol 2022; 12:809125. [PMID: 35082681 PMCID: PMC8784786 DOI: 10.3389/fphar.2021.809125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 01/20/2023] Open
Abstract
The stimuli-responsive polymer-based platform for controlled drug delivery has gained increasing attention in treating hepatocellular carcinoma (HCC) owing to the fascinating biocompatibility and biodegradability, improved antitumor efficacy, and negligible side effects recently. Herein, a disulfide bond-contained polypeptide nanogel, methoxy poly(ethylene glycol)-poly(l-phenylalanine-co-l-cystine) [mPEG-P(LP-co-LC)] nanogel, which could be responsive to the intracellular reduction microenvironments, was developed to deliver lenvatinib (LEN), an inhibitor of multiple receptor tyrosine kinases, for HCC therapy. The lenvatinib-loaded nanogel (NG/LEN) displayed concise drug delivery under the stimulus of glutathione in the cancer cells. Furthermore, the intracellular reduction-responsive nanomedicine NG/LEN showed excellent antitumor effect and almost no side effects toward both subcutaneous and orthotopic HCC tumor-allografted mice in comparison to free drug. The excellent tumor-inhibition efficacy with negligible side effects demonstrated the potential of NG/LEN for clinical molecular targeted therapy of gastrointestinal carcinoma in the future.
Collapse
Affiliation(s)
- Lei Ding
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xu Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Kunmeng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhenxiang Yu
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Chen Y, Shang H, Wang C, Zeng J, Zhang S, Wu B, Cheng W. RNA-Seq Explores the Mechanism of Oxygen-Boosted Sonodynamic Therapy Based on All-in-One Nanobubbles to Enhance Ferroptosis for the Treatment of HCC. Int J Nanomedicine 2022; 17:105-123. [PMID: 35027829 PMCID: PMC8752973 DOI: 10.2147/ijn.s343361] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The combination of sonodynamic therapy and oxygenation strategy is widely used in cancer treatment. However, due to the complexity, heterogeneity and irreversible hypoxic environment produced by hepatocellular carcinoma (HCC) tissues, oxygen-enhancing sonodynamic therapy (SDT) has failed to achieve the desired results. With the emergence of ferroptosis with reactive oxygen species (ROS) cytotoxicity, this novel cell death method has attracted widespread attention. METHODS In this study, nanobubbles (NBs) were connected with the sonosensitizer Indocyanine green (ICG) to construct a 2-in-1 nanoplatform loaded with RAS-selective lethal (RSL3, ferroptosis promoter) (RSL3@O2-ICG NBs), combined with oxygen-enhanced SDT and potent ferroptosis. In addition, nanobubbles (NBs) combined with low-frequency ultrasound (LFUS) are called ultrasound-targeted nanobubble destruction (UTND) to ensure specific drug release and improve safety. RESULTS MDA/GSH and other related experimental results show that RSL3@O2-ICG NBs can enhance SDT and ferroptosis. Through RNA sequencing (RNA-seq), the differential expression of LncRNA and mRNA before and after synergistic treatment was identified, and then GO and KEGG pathways were used to enrich and analyze target genes and pathways related ferroptosis sensitivity. We found that they were significantly enriched in the ferroptosis-related pathway MAPK cascade and cell proliferation. Then, we searched for the expression of differentially expressed genes in the TCGA Hepatocellular carcinoma cohort. At the same time, we evaluated the proportion of immune cell infiltration and the identification of co-expression network modules and related prognostic analysis. We found that it was significantly related to the tumor microenvironment of hepatocellular carcinoma. The prognostic risk genes "SLC37A2" and "ITGB7" may represent new hepatocellular carcinoma ferroptosis-inducing markers and have guiding significance for treating hepatocellular carcinoma. CONCLUSION The therapeutic effect of the in vitro synergistic treatment has been proven to be significant, revealing the prospect of 2-in-1 nanobubbles combined with SDT and ferroptosis in treating HCC.
Collapse
Affiliation(s)
- Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jiaqi Zeng
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Shentao Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
14
|
Hua C, Zhang Y, Liu Y. Enhanced Anticancer Efficacy of Chemotherapy by Amphiphilic Y-Shaped Polypeptide Micelles. Front Bioeng Biotechnol 2021; 9:817143. [PMID: 35036402 PMCID: PMC8758568 DOI: 10.3389/fbioe.2021.817143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Although the treatment modalities of cancers are developing rapidly, chemotherapy is still the primary treatment strategy for most solid cancers. The progress in nanotechnology provides an opportunity to upregulate the tumor suppression efficacy and decreases the systemic toxicities. As a promising nanoplatform, the polymer micelles are fascinating nanocarriers for the encapsulation and delivery of chemotherapeutic agents. The chemical and physical properties of amphiphilic co-polymers could significantly regulate the performances of the micellar self-assembly and affect the behaviors of controlled release of drugs. Herein, two amphiphilic Y-shaped polypeptides are prepared by the ring-opening polymerization of cyclic monomer l-leucine N-carboxyanhydride (l-Leu NCA) initiated by a dual-amino-ended macroinitiator poly(ethylene glycol) [mPEG-(NH2)2]. The block co-polypeptides with PLeu8 and PLeu16 segments could form spontaneously into micelles in an aqueous solution with hydrodynamic radii of 80.0 ± 6.0 and 69.1 ± 4.8 nm, respectively. The developed doxorubicin (DOX)-loaded micelles could release the payload in a sustained pattern and inhibit the growth of xenografted human HepG2 hepatocellular carcinoma with decreased systemic toxicity. The results demonstrated the great potential of polypeptide micellar formulations in cancer therapy clinically.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | | | | |
Collapse
|
15
|
Abdel-Aziz N, El-Sonbaty SM, Hegazy MGA. Ameliorative potential of manganese nanoparticles with low-level ionizing radiation against experimentally induced hepatocarcinogenesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65474-65486. [PMID: 34322790 DOI: 10.1007/s11356-021-15571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology is a rich field with infinite possibilities of drug designs for cancer treatment. We aimed to biosynthesize manganese nanoparticles (Mn NPs) using Lactobacillus helveticus to investigate its anticancer synergistic effect with low-dose gamma radiation on HCC-induced rats. Diethylnitrosamine (DEN) (20 mg/kg BW, 5 times a week for 6 weeks) induced HCC in rats. Rats received Mn NPs (5 mg/kg BW/day) by gastric gavage over 4 weeks concomitant with single dose of gamma radiation (γ-R) (0.25 Gy). Characterization, cytotoxicity, and anticancer activity of Mn NPs were evaluated. DEN-induced significant liver dysfunction (alanine transaminase activity ALT, total proteins, and albumin levels) associated with significant increase in lipid peroxidation levels with reduction in super oxide dismutase activity. Furthermore, DEN intoxication is sponsored for remarkable increase in levels of Alfa-fetoprotein, tumor necrosis factor α, vascular endothelial growth factor, and transforming growth factor beta with remarkable decrease in caspase 3 and cytochrome c. Treatment with Mn NPs (4.98-11.58 nm) and single dose gamma radiation evoked significant repair in ALT, total protein, and albumin accompanied with balanced oxidative status, diminished inflammatory biomarkers, angiogenic factor, and growth factor with restoration in apoptotic factors. Mn NPs revealed obvious in vitro cytotoxic activity against HepG2 cell line in a dose-dependent manner. Our findings were well appreciated with the histopathological study. In conclusion, a new approach of the single or combined use of Mn NPs with low-dose γ-radiation regimens as promising paradigm for HCC treatment is recommended.
Collapse
Affiliation(s)
- Nahed Abdel-Aziz
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Marwa G A Hegazy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
16
|
Engel JB, Luchese CL, Tessaro IC. How are the properties of biocomposite foams influenced by the substitution of cassava starch for its residual sources? Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Wu B, Yuan Y, Liu J, Shang H, Dong J, Liang X, Wang D, Chen Y, Wang C, Zhou Y, Jing H, Cheng W. Single-cell RNA sequencing reveals the mechanism of sonodynamic therapy combined with a RAS inhibitor in the setting of hepatocellular carcinoma. J Nanobiotechnology 2021; 19:177. [PMID: 34118951 PMCID: PMC8199394 DOI: 10.1186/s12951-021-00923-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/02/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Ras activation is a frequent event in hepatocellular carcinoma (HCC). Combining a RAS inhibitor with traditional clinical therapeutics might be hampered by a variety of side effects, thus hindering further clinical translation. Herein, we report on integrating an IR820 nanocapsule-augmented sonodynamic therapy (SDT) with the RAS inhibitor farnesyl-thiosalicylic acid (FTS). Using cellular and tumor models, we demonstrate that combined nanocapsule-augmented SDT with FTS induces an anti-tumor effect, which not only inhibits tumor progression, and enables fluorescence imaging. To dissect the mechanism of a combined tumoricidal therapeutic strategy, we investigated the scRNA-seq transcriptional profiles of an HCC xenograft following treatment. RESULTS Integrative single-cell analysis identified several clusters that defined many corresponding differentially expressed genes, which provided a global view of cellular heterogeneity in HCC after combined SDT/FTS treatment. We conclude that the combination treatment suppressed HCC, and did so by inhibiting endothelial cells and a modulated immunity. Moreover, hepatic stellate secretes hepatocyte growth factor, which plays a key role in treating SDT combined FTS. By contrast, enrichment analysis estimated the functional roles of differentially expressed genes. The Gene Ontology terms "cadherin binding" and "cell adhesion molecule binding" and KEGG pathway "pathway in cancer" were significantly enriched by differentially expressed genes after combined SDT/FTS therapy. CONCLUSIONS Thus, some undefined mechanisms were revealed by scRNA-seq analysis. This report provides a novel proof-of-concept for combinatorial HCC-targeted therapeutics that is based on a non-invasive anti-tumor therapeutic strategy and a RAS inhibitor.
Collapse
Affiliation(s)
- Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
- Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin, China
| | - Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin, China
| | - Jiayin Liu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jing Dong
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Xitian Liang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Dongxu Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin, China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin, China
| | - Yang Zhou
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
18
|
Kong FH, Ye QF, Miao XY, Liu X, Huang SQ, Xiong L, Wen Y, Zhang ZJ. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics 2021; 11:5464-5490. [PMID: 33859758 PMCID: PMC8039945 DOI: 10.7150/thno.54822] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. Sorafenib is an oral kinase inhibitor that inhibits tumor cell proliferation and angiogenesis and induces cancer cell apoptosis. It also improves the survival rates of patients with advanced liver cancer. However, due to its poor solubility, fast metabolism, and low bioavailability, clinical applications of sorafenib have been substantially restricted. In recent years, various studies have been conducted on the use of nanoparticles to improve drug targeting and therapeutic efficacy in HCC. Moreover, nanoparticles have been extensively explored to improve the therapeutic efficacy of sorafenib, and a variety of nanoparticles, such as polymer, lipid, silica, and metal nanoparticles, have been developed for treating liver cancer. All these new technologies have improved the targeted treatment of HCC by sorafenib and promoted nanomedicines as treatments for HCC. This review provides an overview of hot topics in tumor nanoscience and the latest status of treatments for HCC. It further introduces the current research status of nanoparticle drug delivery systems for treatment of HCC with sorafenib.
Collapse
Affiliation(s)
- Fan-Hua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qi-Fa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiong-Ying Miao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Si-Qi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi-Jian Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Li Z, Liu Y, Fang X, Shu Z. Nanomaterials Enhance the Immunomodulatory Effect of Molecular Targeted Therapy. Int J Nanomedicine 2021; 16:1631-1661. [PMID: 33688183 PMCID: PMC7935456 DOI: 10.2147/ijn.s290346] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/23/2021] [Indexed: 01/22/2023] Open
Abstract
Molecular targeted therapy, a tumor therapy strategy that inhibits specific oncogenic targets, has been shown to modulate the immune response. In addition to directly inhibiting the proliferation and metastasis of tumor cells, molecular targeted drugs can activate the immune system through a variety of mechanisms, including by promoting tumor antigen processing and presentation, increasing intratumoral T cell infiltration, enhancing T cell activation and function, and attenuating the immunosuppressive effect of the tumor microenvironment. However, poor water solubility, insufficient accumulation at the tumor site, and nonspecific targeting of immune cells limit their application. To this end, a variety of nanomaterials have been developed to overcome these obstacles and amplify the immunomodulatory effects of molecular targeted drugs. In this review, we summarize the impact of molecular targeted drugs on the antitumor immune response according to their mechanisms, highlight the advantages of nanomaterials in enhancing the immunomodulatory effect of molecular targeted therapy, and discuss the current challenges and future prospects.
Collapse
Affiliation(s)
- Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
20
|
Regulation of tumor microenvironment for pancreatic cancer therapy. Biomaterials 2021; 270:120680. [PMID: 33588140 DOI: 10.1016/j.biomaterials.2021.120680] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic cancer (PC) is one kind of the most lethal malignancies worldwide, owing to its insidious symptoms, early metastases, and negative responses to current therapies. With an increasing understanding of pathology, the tumor microenvironment (TME) plays a significant role in ineffective treatment and poor prognosis of PC. Thus, a growing number of studies have focused on whether components of the TME could be effective targets for PC therapy. Biomaterials have been widely applied in cancer therapy, and numerous organic or inorganic biomaterials for TME regulation have been developed to inhibit the growth and metastasis of PC, as well as reverse therapeutic resistance. In this review, we discuss various biomaterials utilized to treat PC based on different components of the TME, including, but not limited to, extracellular matrix (ECM), abnormal tumor vascularization, and tumor-associated immune cells, as well as other unconventional therapeutic strategies. Besides, the perspectives on the underlying future of theranostic nanomedicines for PC therapy are also presented.
Collapse
|
21
|
Li L, Ye T, Zhang Q, Li X, Ma L, Yan J. The expression and clinical significance of TPM4 in hepatocellular carcinoma. Int J Med Sci 2021; 18:169-175. [PMID: 33390785 PMCID: PMC7738955 DOI: 10.7150/ijms.49906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is known as the fifth most common cancer in the world for its poor prognosis. New diagnostic markers and treatments are urgent to discover. To evaluate the protein expression of Tropomyosin4 (TPM4) and investigate its prognostic value in HCC, we collected 110 patients with different degrees of HCC and 10 patients with normal hepatic tissues and performed immunohistochemistry. Western bot was used to evaluate the expression of TPM4 in three HCC cell lines (HepG2, Huh7, SMMC-7721) and normal liver cell line LO2, as well as 7 HCC tissues and 7 normal hepatic tissues. The results of TPM4 staining revealed that TPM4 expression in HCC was higher than that in normal hepatic tissues, which was positive in 51.8% (n=57) and negative in 48.2% (n=53) while in normal hepatic tissues positive staining was in 10% (n=1) and negative staining was in 90% (n=9) (P=0.011). And the expression of TPM4 was related to pT status, grade and stage (P<0.001, P=0.015 and P<0.001, respectively). Western blot results indicated that TPM4 was high expressed in HCC cell line and HCC tissues. In conclusion, we believe that TPM4 can be applied as a diagnostic and prognostic marker to assist the management of HCC.
Collapse
Affiliation(s)
- Linjing Li
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Tao Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China, 510515
| | - Qingyan Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, 510080
| | - Xin Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China, 510515
| | - Li Ma
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing Yan
- Department of Clinical Laboratory Center, The Second Hospital of Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
22
|
Zhao Z, Li D, Wu Z, Wang Q, Ma Z, Zhang C. Research Progress and Prospect of Nanoplatforms for Treatment of Oral Cancer. Front Pharmacol 2020; 11:616101. [PMID: 33391000 PMCID: PMC7773899 DOI: 10.3389/fphar.2020.616101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Oral cancers refer to malignant tumors associated with high morbidity and mortality, and oral squamous cell carcinoma accounts for the majority of cases. It is an important part of head and neck, and oral cancer is one of the six most common cancers in the world. At present, the traditional treatment methods for oral cancer include surgery, radiation therapy, and chemotherapy. However, these methods have many disadvantages. In recent years, nanomedicine, the delivery of drugs through nanoplatforms for the treatment of cancer, has become a promising substitutive therapy. The use of nanoplatforms can reduce the degradation of the drug in the body and accurately deliver it to the tumor site. This minimizes the distribution of the drug to other organs, thereby reducing its toxicity and allowing higher drug concentration at the tumor site. This review introduces polymer nanoparticles, lipid-based nanoparticles, metal nanoparticles, hydrogels, exosomes, and dendrimers for the treatment of oral cancer, and discusses how these nanoplatforms play an anti-cancer effect. Finally, the review gives a slight outlook on the future prospects of nanoplatforms for oral cancer treatment.
Collapse
Affiliation(s)
- Zhilong Zhao
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ziqi Wu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | - Qihui Wang
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| | | | - Congxiao Zhang
- Department of Stomatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Niu H, Li J, Cai Q, Wang X, Luo F, Gong J, Qiang Z, Ren J. Molecular Stereocomplexation for Enhancing the Stability of Nanoparticles Encapsulated in Polymeric Micelles for Magnetic Resonance Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13881-13889. [PMID: 33170710 DOI: 10.1021/acs.langmuir.0c02281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A generalizable approach for improving the stability of polylactide-based (PLA-based) micelles for encapsulating nanoparticles (NPs) is demonstrated, using stereocomplexation between a pair of poly (ethylene glycol)-b-poly(d-lactide)/poly(ethylene glycol)-b-poly(l-lactide) block copolymer blends. Three different superparamagnetic ferrite-based NPs with distinct nanostructures are first prepared by the high-temperature pyrolysis method, including spherical MnFe2O4, cubic MnFe2O4, and core-shell MnFe2O4@Fe3O4. The diameters of these NPs are approximately 7-10 nm as revealed by transmission electron microscopy. These hydrophobic NPs can be encapsulated within self-assembled, stereocomplexed PLA (sc-PLA) micelles. All sc-PLA micelle systems loaded with three different NPs exhibit enhanced stability at elevated temperatures (20-60 °C) and with extended storage time (∼96 h) compared with analogous samples without stereocomplex formation, confirmed by dynamic light scattering measurements. The magnetic NP-loaded micelles with mean diameters of approximately 150 nm show both biocompatibility and superparamagnetic property. Under a 1.5 T magnetic field, cubic MnFe2O4 (c-MnFe2O4)-loaded micelles exhibit an excellent negative contrast enhancement of MR signals (373 mM-1·s-1), while core-shell MnFe2O4@Fe3O4-loaded micelles show a slightly lower signal for MR imaging (275 mM-1·s-1). These results suggest the potential of using sc-PLA-based polymer micelles as universal carriers for magnetic resonance imaging contrast agents with improved stability for different applications such as cancer diagnosis.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Quan Cai
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Xuefang Wang
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Fuhong Luo
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jiaying Gong
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
24
|
Ji G, Ma L, Yao H, Ma S, Si X, Wang Y, Bao X, Ma L, Chen F, Ma C, Huang L, Fang X, Song W. Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy. Acta Pharm Sin B 2020; 10:2171-2182. [PMID: 33304784 PMCID: PMC7715527 DOI: 10.1016/j.apsb.2020.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Primary bile acids were reported to augment secretion of chemokine (C‒X‒C motif) ligand 16 (CXCL16) from liver sinusoidal endothelial cells (LSECs) and trigger natural killer T (NKT) cell-based immunotherapy for liver cancer. However, abundant expression of receptors for primary bile acids across the gastrointestinal tract overwhelms the possibility of using agonists against these receptors for liver cancer control. Taking advantage of the intrinsic property of LSECs in capturing circulating nanoparticles in the circulation, we proposed a strategy using nanoemulsion-loaded obeticholic acid (OCA), a clinically approved selective farnesoid X receptor (FXR) agonist, for precisely manipulating LSECs for triggering NKT cell-mediated liver cancer immunotherapy. The OCA-nanoemulsion (OCA-NE) was prepared via ultrasonic emulsification method, with a diameter of 184 nm and good stability. In vivo biodistribution studies confirmed that the injected OCA-NE mainly accumulated in the liver and especially in LSECs and Kupffer cells. As a result, OCA-NE treatment significantly suppressed hepatic tumor growth in a murine orthotopic H22 tumor model, which performed much better than oral medication of free OCA. Immunologic analysis revealed that the OCA-NE resulted in augmented secretion of CXCL16 and IFN-γ, as well as increased NKT cell populations inside the tumor. Overall, our research provides a new evidence for the antitumor effect of receptors for primary bile acids, and should inspire using nanotechnology for precisely manipulating LSECs for liver cancer therapy.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BUN, blood urea nitrogen
- CDCA, chenodeoxycholic acid
- Cr, creatinine
- FXR, farnesoid X receptor
- Farnesoid X receptor
- H&E, hematoxylin and eosin
- HCC, hepatocellular carcinoma
- HPLC, high-performance liquid chromatography
- HSCs, hepatic stellate cells
- IFN-γ, interferon-γ
- IVIS, in vivo imaging system
- LSECs, liver sinusoidal endothelial cells
- Liver cancer
- Liver sinusoidal endothelial cells
- NE, nanoemulsion
- NKT cells, natural killer T cells
- Nanoemulsion
- OCA, obeticholic acid
- Obeticholic acid
- PBC, primary biliary cholangitis
- TACE, transarterial chemoembolisation
- TSR, tumor suppression rate
Collapse
Affiliation(s)
- Guofeng Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lushun Ma
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haochen Yao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yalin Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Second Hospital of Shandong University, Jinan 250000, China
| | - Xin Bao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Second Hospital of Jilin University, Changchun 130041, China
| | - Lili Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Fangfang Chen
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chong Ma
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xuedong Fang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
25
|
He X, Feng J, Yan S, Zhang Y, Zhong C, Liu Y, Shi D, Abagyan R, Xiang T, Zhang J. Biomimetic microbioreactor-supramolecular nanovesicles improve enzyme therapy of hepatic cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102311. [PMID: 33011392 DOI: 10.1016/j.nano.2020.102311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/05/2020] [Accepted: 09/20/2020] [Indexed: 12/24/2022]
Abstract
A novel biomimetic nanovesicle-loaded supramolecular enzyme-based therapeutics has been developed. Here, using a biomimetic lipid-D-α-tocopherol polyethylene glycol succinate (TPGS) hybrid semi-permeable membrane, cyclodextrin supramolecular docking, metal-ion-aided coordination complexing, we combined multiple functional motifs into a single biomimetic microbioreactor-supramolecular nanovesicle (MiSuNv) that allowed effective transport of arginine deiminase (ADI) to hepatic tumor cells to enhance arginine depletion. We compared two intercalated enzyme-carrying supermolecular motifs mainly comprising of 2-hydroxypropyl-β-cyclodextrin and sulfobutyl-ether-β-cyclodextrin, the only two cyclodextrin derivatives approved for injection by the United States Food and Drug Administration. The ADI-specific antitumor effects were enhanced by TPGS (one constituent of MiSuNv, having synergistic antitumor effects), as ADI was separated from adverse external environment by a semi-permeable membrane and sequestered in a favorable internal microenvironment with an optimal pH and metal-ion combination. ADI@MiSuNv contributed to cell cycle arrest, apoptosis and autophagy through the enhanced efficacy of enzyme treatment against Hep3B xenograft tumors in rats.
Collapse
Affiliation(s)
- Xiaoqian He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiao Feng
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Shenglei Yan
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Zheng Y, Sheng F, Wang Z, Yang G, Li C, Wang H, Song Z. Shear Speed-Regulated Properties of Long-Acting Docetaxel Control Release Poly (Lactic- Co-Glycolic Acid) Microspheres. Front Pharmacol 2020; 11:1286. [PMID: 32973517 PMCID: PMC7468411 DOI: 10.3389/fphar.2020.01286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Advanced drug carriers for the controlled release of chemotherapeutics in the treatment of malignant tumors have drawn significant notice in recent years. In the current study, microspheres (MPs) loaded with docetaxel (DTX) were prepared using polylactic-co-glycolic acid copolymer (PLGA). The double emulsion solvent evaporation method is simple to perform, and results in high encapsulation efficiency. Electron micrographs of the MPs showed that controlling the shear rate can effectively control the size of the MPs. At present, most DTX sustained-release carriers cannot maintain stable and long-term local drug release. The 1.68 μm DTX-loaded microspheres (MP/DTX) with elastase was completely degraded in 14 d. This controlled degradation period is similar to a course of treatment for most cancers. The drug release profile of all kinds of MP/DTX demonstrated an initial rapid release, then slower and stable release to the end. The current study demonstrates that it is possible to create drug-loaded MPs with specific degradation times and drug release curves, which may be useful in achieving optimal treatment times and drug release rates for different diseases, and different drug delivery routes. The initial burst release reaches the effective concentration of the drug at the beginning of release, and then the drug concentration is maintained by stable release to reduce the number of injections and improve patient compliance.
Collapse
Affiliation(s)
- Yuhao Zheng
- Department of Sports Medicine, First Hospital of Jilin University, Changchun, China
| | - Fan Sheng
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Zihang Wang
- Department of Traumatology, First Hospital of Jilin University, Changchun, China
| | - Guang Yang
- Department of Traumatology, First Hospital of Jilin University, Changchun, China
| | - Chenguang Li
- Department of Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun, China
| | - He Wang
- Department of Anesthesia, Yanbian University Hospital, Yanji, China
| | - Zhiming Song
- Department of Sports Medicine, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Phatruengdet T, Intakhad J, Tapunya M, Chariyakornkul A, Hlaing CB, Wongpoomchai R, Pilapong C. MRI contrast enhancement of liver pre-neoplasia using iron-tannic nanoparticles. RSC Adv 2020; 10:35419-35425. [PMID: 35515681 PMCID: PMC9056925 DOI: 10.1039/d0ra07308c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023] Open
Abstract
The most challenging part of liver cancer detection is finding it in the very early stages. It has been argued that liver preneoplasia is found at the very earliest stages of liver cancer. The presence of a lesion is closely related to the development of HCC. We report herein a new class of iron-based T1 MRI contrast agents which are nanoparticles of iron–tannic complexes (so-called Fe–TA NPs) that can be used for detecting liver preneoplasia. Preliminary assessment of their toxicity in healthy rats provides suitable imaging dose ranges with acceptable toxicity. In diethylnitrosamine (DEN) induced rats, it is shown that Fe–TA NPs are capable of enhancing MRI signals in rat livers having pre-neoplastic lesions within 60 minutes post-injection. The enhancement efficacy is strongly dependent on the characteristics of pre-neoplastic foci (GST-P+ foci). The highest enhancement was in good correlation with the size of GST-P+ foci and amount of Fe–TA NPs accumulated in the liver, and might be caused by the dysfunction of liver sinusoids along with cellular uptake capability of pre-neoplastic hepatocytes. Our results show that Fe–TA NPs are of great interest to develop as an efficient MRI imaging agent for risk assessment of liver cancer. Imaging liver preneoplasia could be considered beneficial in first-line assessment of early stage liver cancer.![]()
Collapse
Affiliation(s)
- Thipjutha Phatruengdet
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University Chiang Mai 50200 Thailand
| | - Jannarong Intakhad
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University Chiang Mai 50200 Thailand
| | - Monreudee Tapunya
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University Chiang Mai 50200 Thailand
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University Chiang Mai 50200 Thailand.,Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University Chiang Mai 50200 Thailand
| | - Chi Be Hlaing
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University Chiang Mai 50200 Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University Chiang Mai 50200 Thailand.,Functional Food Research Unit, Science and Technology Research Institute, Chiang Mai University Chiang Mai 50200 Thailand
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University Chiang Mai 50200 Thailand .,Materials Science Research Center, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
28
|
Intracellular delivery of cytochrome C using hypoxia-responsive polypeptide micelles for efficient cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111069. [DOI: 10.1016/j.msec.2020.111069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023]
|
29
|
Yu T, Li Y, Gu X, Li Q. Development of a Hyaluronic Acid-Based Nanocarrier Incorporating Doxorubicin and Cisplatin as a pH-Sensitive and CD44-Targeted Anti-Breast Cancer Drug Delivery System. Front Pharmacol 2020; 11:532457. [PMID: 32982750 PMCID: PMC7485461 DOI: 10.3389/fphar.2020.532457] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor-targeting nanomaterial-based chemotherapeutic drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer because of their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues. The cell-surface transmembrane glycoprotein CD44 binds to the extracellular domain of hyaluronic acid (HA), and is overexpressed in breast, ovarian, lung, and stomach cancer. In this study, an HA-based nano-carrier incorporating doxorubicin (DOX) and cisplatin (CDDP) was synthesized as a CD44-targeting anti-cancer drug delivery system, and its tumor inhibition effects against CD44+ breast cancer cells were evaluated in vitro and in vivo. These dual drug-loaded HA micelles (HA-DOX-CDDP) exhibited significantly enhanced drug release under acidic conditions, and showed higher cellular uptake and stronger cellular growth inhibition than free drugs against 4T1 (CD44+) breast cancer cells. In contrast, no significant differences in growth inhibition and cellular uptake were observed between HA-DOX-CDDP and free drugs in NIH-3T3 (CD44-) control cells. Furthermore, HA-DOX-CDDP micelles exhibited stronger inhibitory effects and lower systemic toxicity than free drugs in a 4T1 mammary cancer-bearing mouse model, as determined using immunofluorescence and histological analyses. Therefore, HA-DOX-CDDP micelles represent a promising drug delivery system that exhibits acid-sensitive drug release, CD44-targeted delivery, and excellent biocompatibility and biodegradation. These properties resulted in excellent tumor accumulation and reduced adverse effects, indicating that HA-DOX-CDDP micelles have promising potential applications in chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Tao Yu
- Center for Translational Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongshuang Li
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueyuan Gu
- Centeral Laboratory, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qin Li
- Center for Translational Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang, China.,Centeral Laboratory, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Zheng P, Ding B, Li G. Polydopamine-Incorporated Nanoformulations for Biomedical Applications. Macromol Biosci 2020; 20:e2000228. [PMID: 32830435 DOI: 10.1002/mabi.202000228] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Indexed: 12/18/2022]
Abstract
Polydopamine (PDA), a pigment in natural melanin, has attracted considerable attention because of its excellent optical properties, extraordinary adhesion, and good biocompatibility, which make it a promising material for application in energy, environmental, and biomedical fields. In this review, PDA-incorporated nanoformulations are focused for biomedical applications such as drug delivery, bioimaging, and tumor therapy. First, the recent advances in PDA-incorporated nanoformulations for drug delivery are discussed. Further, their application in boimaging, such as fluorescence imaging, photothermal imaging, and photoacoustic imaging, is reviewed. Next, their therapeutic applications, including chemotherapy, photodynamic therapy, photothermal therapy, and synergistic therapy are discussed. Finally, other biomedical applications of PDA-incorporated nanoformulations such as biosensing and clinical diagnosis are briefly presented. Finally, the biomedical applications of PDA-incorporated nanoformulations along with their prospects are summarized.
Collapse
Affiliation(s)
- Pan Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Li H, Li Q, Li Y, Sang X, Yuan H, Zheng B. Stannic Oxide Nanoparticle Regulates Proliferation, Invasion, Apoptosis, and Oxidative Stress of Oral Cancer Cells. Front Bioeng Biotechnol 2020; 8:768. [PMID: 32766221 PMCID: PMC7379168 DOI: 10.3389/fbioe.2020.00768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
Objective To explore the effects of SnO2 nanoparticles (NPs) on proliferation, invasion, apoptosis, and oxidative stress of oral cancer. Methods SnO2 NPs were prepared and characterized. Oral cancer cell lines CAL-27 and SCC-9 were cultured in vitro. We detected the effects of various concentrations of SnO2 NPs (0, 5, 25, 50, 100, 200 μg/mL) on the proliferation of oral cancer cells, and observed the morphological changes, and measured the cells ability of migration, invasion and apoptosis condition, and the levels of oxidative stress were measured by detecting malondialdehyde (MDA) and reactive oxygen species (ROS). Besides, we also measured the changes of mRNA and protein levels of factors related to cell proliferation, migration, invasion, apoptosis, and oxidative stress. Results SnO2 NPs inhibited the proliferation of oral cancer cells in a concentration-dependent manner (all P < 0.05). And SnO2 NPs treatment could reduce the migration and invasion ability of cells (all P < 0.05), induce apoptosis, and those effects were better when treated for 48 h than 24 h (all P < 0.05). And SnO2 NPs could induce oxidative stress in cells (all P < 0.05). Besides, the concentrations of cyclin-D1, C-myc, matrix MMP-9, and MMP-2 in SnO2 NPs treated group was decreased (all P < 0.05), and the expression levels of cleaved Caspase-3, cleaved Caspase-9, and Cytochrome C were increased (all P < 0.05). Conclusion In the present study, we found that SnO2 NPs could play a cytotoxic role in oral cancer cells, and inhibit cell proliferation, migration, and invasion, and induce oxidative stress and apoptosis, which suggests that SnO2 NPs may have the effects of anti-oral cancer. However, a more in-depth study is needed to determine its roles.
Collapse
Affiliation(s)
- Hui Li
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Qiushi Li
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yingcai Li
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xue Sang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Haotian Yuan
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Baihong Zheng
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Zhang H, Dong S, Li Z, Feng X, Xu W, Tulinao CMS, Jiang Y, Ding J. Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian J Pharm Sci 2020; 15:397-415. [PMID: 32952666 PMCID: PMC7486517 DOI: 10.1016/j.ajps.2019.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, nanoparticle-based therapeutic modalities have become promising strategies in cancer therapy. Selective delivery of anticancer drugs to the lesion sites is critical for elimination of the tumor and an improved prognosis. Innovative design and advanced biointerface engineering have promoted the development of various nanocarriers for optimized drug delivery. Keeping in mind the biological framework of the tumor microenvironment, biomembrane-camouflaged nanoplatforms have been a research focus, reflecting their superiority in cancer targeting. In this review, we summarize the development of various biomimetic cell membrane-camouflaged nanoplatforms for cancer-targeted drug delivery, which are classified according to the membranes from different cells. The challenges and opportunities of the advanced biointerface engineering drug delivery nanosystems in cancer therapy are discussed.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shujun Dong
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
33
|
Rehman A, Jafari SM, Aadil RM, Assadpour E, Randhawa MA, Mahmood S. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
He Q, Chen J, Yan J, Cai S, Xiong H, Liu Y, Peng D, Mo M, Liu Z. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci 2020; 15:416-448. [PMID: 32952667 PMCID: PMC7486519 DOI: 10.1016/j.ajps.2019.08.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Conventional tumor-targeted drug delivery systems (DDSs) face challenges, such as unsatisfied systemic circulation, low targeting efficiency, poor tumoral penetration, and uncontrolled drug release. Recently, tumor cellular molecules-triggered DDSs have aroused great interests in addressing such dilemmas. With the introduction of several additional functionalities, the properties of these smart DDSs including size, surface charge and ligand exposure can response to different tumor microenvironments for a more efficient tumor targeting, and eventually achieve desired drug release for an optimized therapeutic efficiency. This review highlights the recent research progresses on smart tumor environment responsive drug delivery systems for targeted drug delivery. Dynamic targeting strategies and functional moieties sensitive to a variety of tumor cellular stimuli, including pH, glutathione, adenosine-triphosphate, reactive oxygen species, enzyme and inflammatory factors are summarized. Special emphasis of this review is placed on their responsive mechanisms, drug loading models, drawbacks and merits. Several typical multi-stimuli responsive DDSs are listed. And the main challenges and potential future development are discussed.
Collapse
Affiliation(s)
- Qunye He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dongming Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
35
|
Chu G, Miao Y, Huang K, Song H, Liu L. Role and Mechanism of Rhizopus Nigrum Polysaccharide EPS1-1 as Pharmaceutical for Therapy of Hepatocellular Carcinoma. Front Bioeng Biotechnol 2020; 8:509. [PMID: 32582655 PMCID: PMC7296140 DOI: 10.3389/fbioe.2020.00509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: This work is to study the effect of Rhizopus nigrum polysaccharide EPS1-1 on hepatocellular carcinoma (HCC) in vitro and in vivo. Methods: HepG2 and Huh-7 cells and nude mice models of liver cancers were used in this study. The cells and nude mice were treated with EPS1-1 at different concentrations. The CCK8 assays were used to measure the proliferation activities of cells, apoptosis was determined with flow cytometry, cell migration was measured by wound-healing assays, cell invasion was evaluated by Transwell assay, and the survival periods of different groups of tumor-bearing mice were compared. Real-time PCR and Western blot were used to measure the expression levels of mRNAs and proteins of the genes related to proliferation, apoptosis, migration, and invasion. Results: In vitro experiments revealed that when treated with EPS1-1, HepG2 and Huh-7 cell proliferation activities decreased, while there was an increase for the apoptosis rate, and the migration and invasion capabilities were significantly reduced. In vivo experiments showed that EPS1-1 could significantly reduce the tumor growth and lung metastasis of HCC, and prolong the survival periods of tumor-bearing nude mice. Furthermore, EPS1-1 has no apparent damage to the heart, liver, and kidney. Further studies showed that EPS1-1 could affect the expression of proliferation-related genes CCND1 and c-Myc, apoptosis-related genes BAX and Bcl-2, and migration and invasion related genes Vimentin and Slug, thereby affecting the biological process of HCC. Conclusion: EPS1-1 can inhibit the malignant process of HCC in vitro and in vivo, which indicates that EPS1-1 has the potential value of clinical application as chemotherapy or adjuvant in the treatment of liver cancer.
Collapse
Affiliation(s)
- Guangyu Chu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Yingying Miao
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kexin Huang
- Department of Histology and Embryology, College of Basic Medicine, Jilin University, Changchun, China
| | - Han Song
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Liang Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Cui G, He P, Yu L, Wen C, Xie X, Yao G. Oxygen self-enriched nanoplatform combined with US imaging and chemo/photothermal therapy for breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102238. [PMID: 32565228 DOI: 10.1016/j.nano.2020.102238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/28/2020] [Accepted: 05/30/2020] [Indexed: 12/28/2022]
Abstract
Oxygen-saturated perfluorohexane-cored, cisplatin (Pt)-decorated hollow gold nanospheres (Pt-HAuNS-PFH@O2) have been synthesized for ultrasound (US) imaging-guided tumor treatment depending on chemo/photothermal therapy, relief of hypoxia, and photothermal induced US contrast signal. Both NIR laser-induced hyperthermia generation by gold nanospheres and acidity triggered release of Pt resulted in high toxicity after internalization by breast cancer cells. According to ex vivo immunofluorescence investigation and in vivo pharmacodynamic studies on MDA-MB-231 tumor bearing mice, the susceptibility of tumors to Pt-HAuNS-PFH@O2 was improved by the relief of hypoxia. In addition, US imaging under different conditions verified the amplified US contrast property of Pt-HAuNS-PFH@O2 by the heat-dependent liquid-gas conversion of PFH. Overall, Pt-HAuNS-PFH@O2 can be promisingly used as an oxygen self-enriched nanoplatform for US imaging-guided chemo/photothermal therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping He
- Department of Pathology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Yu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Churan Wen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xianbiao Xie
- Department of Bone Tumor, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Shan H, Li K, Zhao D, Chi C, Tan Q, Wang X, Yu J, Piao M. Locally Controlled Release of Methotrexate and Alendronate by Thermo-Sensitive Hydrogels for Synergistic Inhibition of Osteosarcoma Progression. Front Pharmacol 2020; 11:573. [PMID: 32508628 PMCID: PMC7248331 DOI: 10.3389/fphar.2020.00573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma (OS) is a serious primary bone malignant tumor that can easily affect children and adolescents. Chemotherapy is one of the important and feasible clinical treatment strategies for the treatment of OS at present, which is severely limited due to insufficient retention time, poor penetration ability, and serious side effects of current anti-tumor drug preparations. In this work, a novel injectable thermo-sensitive hydrogel (mPEG45-PLV19) loaded with methotrexate and alendronate, and the sustained release at the tumor site synergistically inhibited the progression of OS. The mPEG45-PLV19 shows excellent physical and chemical properties. Compared with other treatment groups, the in vivo treatment of gel+ methotrexate + alendronate effectively inhibited the growth of tumor. More importantly, it significantly reduced bone destruction and lung metastasis caused by OS. Therefore, this injectable thermo-sensitive hydrogel drug delivery system has broad prospects for OS chemotherapy.
Collapse
Affiliation(s)
- Hongli Shan
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Ke Li
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Changliang Chi
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Qinyuan Tan
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Xiaoqing Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, China
| | - Meihua Piao
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Zhang Y, Wang B, Zhao R, Zhang Q, Kong X. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111099. [PMID: 32600703 DOI: 10.1016/j.msec.2020.111099] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/06/2019] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is an emerging cancer treatment combining light, oxygen, and a photosensitizer (PS) to produce highly cytotoxic reactive oxygen species that cause cancer cell death. However, most PSs are hydrophobic molecules that have poor water solubility and cannot target tumor tissues, causing damage to normal tissues and cells during PDT. Thus, there is a substantial demand for the development of nanocarrier systems to achieve targeted delivery of PSs into tumor tissues and cells. This review summarizes the research progress in PS delivery systems for PDT treatment of tumors and focuses on the recent design and development of multifunctional nanoparticles as PS delivery carriers for enhanced PDT. These multifunctional nanoparticles possess unique properties, including tunable particle size, changeable shape, stimuli-responsive PS activation, controlled PS release, and hierarchical targeting capability. These properties can increase tumor accumulation, penetration, and cellular internalization of nanoparticles to achieve PS activation and/or release in cancer cells for enhanced PDT. Finally, recent developments in multifunctional nanoparticles for tumor-targeted PS delivery and their future prospects in PDT are discussed.
Collapse
Affiliation(s)
- Yonghe Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Beilei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ruibo Zhao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Quan Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Xiangdong Kong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
39
|
Zheng P, Liu Y, Chen J, Xu W, Li G, Ding J. Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Su M, Xiao S, Shu M, Lu Y, Zeng Q, Xie J, Jiang Z, Liu J. Enzymatic multifunctional biodegradable polymers for pH- and ROS-responsive anticancer drug delivery. Colloids Surf B Biointerfaces 2020; 193:111067. [PMID: 32388121 DOI: 10.1016/j.colsurfb.2020.111067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 01/09/2023]
Abstract
A new family of multifunctional biodegradable block copolymers, PEG-poly(ω-pentadecalactone-co-N-methyldiethyleneamine sebacate-co-2,2'-thiodiethylene sebacate) (PEG-PMT), were synthesized via lipase-catalyzed copolymerization procedures. Amphiphilic PEG-PMT copolymers can be readily transformed into stable micellar nanoparticles through self-assembling processes in aqueous medium. The particle sizes increase dramatically after exposure of the particles to the acidic pH and high reactive oxygen species (ROS) conditions in tumor microenvironments, due to protonation of thioether groups and oxidation of amino groups in the PMT micelle cores, respectively. For example, docetaxel (DTX)-loaded PEG-PM-19 % TS micelles were triggered synergistically by acidic pH and ROS stimuli to release over 85 % of the anti-cancer drug. In particular, DTX/PEG-PMT-19 % TS and DTX/PEG-PMT-48 % TS micelles performed better than commercial Duopafei formulation in prohibiting growth of CT-26 tumors xenografed in vivo (70 % of tumor-inhibiting efficiency). Biosafety analysis revealed that DTX-loaded PEG-PMT nanoparticles possessed minimal toxicity towards normal organs, such as liver and kidney. These experimental data demonstrated that the pH- and ROS-responsive PEG-PMT micelles are promising vectors for both delivery of anti-tumor drugs and their controlled release at tumor intracellular sites.
Collapse
Affiliation(s)
- Meifei Su
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Shuting Xiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Man Shu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yao Lu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Qiang Zeng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jianhua Xie
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Zhaozhong Jiang
- Department of Biomedical Engineering, Integrated Science and Technology Center, Yale University, 600 West Campus Drive, West Haven, CT, 06516, United States.
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
41
|
Gong Z, Liu X, Wu J, Li X, Tang Z, Deng Y, Sun X, Chen K, Gao Z, Bai J. pH-triggered morphological change in a self-assembling amphiphilic peptide used as an antitumor drug carrier. NANOTECHNOLOGY 2020; 31:165601. [PMID: 31891937 DOI: 10.1088/1361-6528/ab667c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The geometry of nanoparticles plays an important role in the process of drug encapsulation and release. In this study, an acid-responsive amphiphilic polypeptide consisting of lysine and leucine was prepared. In neutral media, the amphiphilic peptide L6K4 self-assembled to form spherical nanoparticles and encapsulated fat-soluble antitumor drugs. The intratumoral accumulation of the drug-loaded nanoparticles was improved in HeLa cells compared with normal cells. Compared to a neutral environment, increasingly acidic solutions changed the secondary structure of the peptide. In addition, the drug-loaded nanoparticles expanded and decomposed, rapidly releasing the poorly soluble antitumor drug doxorubicin (DOX). In addition, the amphiphilic peptide L6K4 had antitumor properties, and the antitumor performance of the combination of L6K4 and DOX was better than that of free DOX. Our results indicate that the use of acid responsiveness to induce geometric changes in drug-loaded peptide nanoparticles could be a promising strategy for antitumor drug delivery.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, 261042, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
He Y, Cong C, Li L, Luo L, He Y, Hao Z, Gao D. Sequential Intra-Intercellular Delivery of Nanomedicine for Deep Drug-Resistant Solid Tumor Penetration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8978-8988. [PMID: 32020804 DOI: 10.1021/acsami.9b20062] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cells in the center of solid tumors have always been an abyss untouched by treatments because of their deep location and increased drug resistance. Herein, we designed a rational strategy for sequential intra-intercellular delivery of nanomedicine to deep sites of drug-resistant solid tumors. In our formulation, dopamine and hemoglobin were polymerized to form a smart nanocarrier (PDA/Hb). Subsequently, the doxorubicin and nitric oxide donor were connected on the surface of PDA/Hb to obtain D/N-PDA/Hb. Ultimately, the hyaluronic acid was combined with D/N-PDA/Hb to form D/N-PDA/Hb@HA. Concretely, acidic and neutral environments of tumor cells were treated as a switch to turn on or off the drug release of a nanodrug. Meanwhile, the generation of nitric oxide in situ was exploited to favor the lysosomal escape of nanocarriers and overcome the drug resistance of deep solid tumor cells. The results indicated that the nanodrug based on sequential intra-intercellular delivery showed exciting penetration efficiency and resistance reversal of solid tumors. Conventional nanodrug delivery was highly dependent on the enhanced permeability and retention (EPR) effect and limited by tumorous interstitial fluid pressure. Plenty of drugs stayed on the surface of solid tumors, and the infiltrated drugs were inefficient due to strict resistance. To conquer this dilemma, this work proposed a new mechanism reversing the EPR effect for drug delivery, leading to better penetration and resistance reversal of solid tumors.
Collapse
Affiliation(s)
- Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Cong Cong
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Lei Li
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Liyao Luo
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Zining Hao
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse , Yanshan University , Qinhuangdao 066004 , P. R. China
| |
Collapse
|
43
|
Li S, Dong S, Xu W, Jiang Y, Li Z. Polymer Nanoformulation of Sorafenib and All-Trans Retinoic Acid for Synergistic Inhibition of Thyroid Cancer. Front Pharmacol 2020; 10:1676. [PMID: 32116677 PMCID: PMC7008594 DOI: 10.3389/fphar.2019.01676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
Part of differentiated thyroid cancer will relapse or develop into dedifferentiated thyroid cancer after standard therapy, such as surgery or radionuclide therapy. Sorafenib (SOR) is recommended for the treatment of advanced or radioiodine-refractory thyroid cancer. The monotherapy using SOR is often hampered by its modest efficacy, serve systemic toxicity, and high occurrence of drug resistance. In order to enhance the antitumor effect of SOR and reduce its side effects, SOR and all-trans retinoic acid (ATRA), a differentiation-promoting drug, were loaded into poly(ethylene glycol)-poly(lactide-co-glycolide) (PEG-PLGA) polymer micelles in this study. The drug-loaded micelles, PM/(SOR+ATRA), exhibited relatively slow drug release and effective cell uptake. Compared with other treatment groups, the PM/(SOR+ATRA) treatment group showed the most significant antitumor effect and minimal systemic toxicity toward the FTC-133 thyroid cancer-bearing BALB/c nude mouse model. Immunofluorescence analysis confirmed that PM/(SOR+ATRA) could significantly promote apoptosis and re-differentiation of tumor cells. All the results demonstrated that polymer micelles loaded with SOR and ATRA could treat thyroid cancer more effectively and safely.
Collapse
Affiliation(s)
- Shijie Li
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shujun Dong
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
Wu S, Su F, Magee HY, Meldrum DR, Tian Y. cRGD functionalized 2,1,3-benzothiadiazole (BTD)-containing two-photon absorbing red-emitter-conjugated amphiphilic poly(ethylene glycol)-block-poly( ε-caprolactone) for targeted bioimaging. RSC Adv 2019; 9:34235-34243. [PMID: 31798837 PMCID: PMC6886675 DOI: 10.1039/c9ra06694b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1. Micelle 1 with cRGD targeting groups were used for targeted bioimaging. For comparison, micelle 2 without the cRGD targeting groups were also prepared and investigated. The micelles were characterized using dynamic light scattering (DLS), showing average diameters of around 77 nm. The cRGD targeting group is known to bind specifically with αvβ3 integrin in cancer cells. In this study, αvβ3 integrin overexpressed human glioblastoma U87MG cell line and αvβ3 integrin deficient human cervical cancer HeLa cell line were chosen. Results showed that the cRGD targeting group enhanced the cellular uptake efficiency of the micelles significantly in αvβ3 integrin rich U87MG cells. Higher temperature (37 °C versus 4 °C) and calcium ions (with 3 M calcium chloride in the cell culture medium versus no addition of calcium ions) enhanced the cellular uptake efficiency, suggesting that the uptake of the micelles is through the endocytosis pathway in cells. A 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the micelles and no significant cytotoxicity was observed. The BTD-containing two-photon absorbing emitter in the micelles showed a two-photon absorbing cross-section of 236 GM (1 GM = 1 × 10−50 cm4 s per photonper molecule) at 820 nm, which is among the highest values reported for red 2PA emitters. Because of the two-photon absorbing characteristics, micelle 1 was successfully used for two-photon fluorescence imaging targeted to U87MG cells under a two-photon fluorescence microscope. This study is the first report regarding the targeted imaging of a specific cancer cell line (herein, U87MG) using the BTD-conjugated-fluorophore-containing block copolymers. A two-photon absorbing (2PA) red emitter group was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers, and further grafted with cyclo(Arg-Gly-Asp) (cRGD) peptide to form micelle 1.![]()
Collapse
Affiliation(s)
- Shanshan Wu
- Guangdong Industry Polytechnic, Foshan Municipality Anti-counterfeiting Engineering Research Center, Guangzhou, Guangdong 510300, China
| | - Fengyu Su
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hansa Y Magee
- Knowledge Enterprise, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
45
|
Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 2019; 120:109191. [DOI: 10.1016/j.eurpolymj.2019.08.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Fu X, Luo RG, Qiu W, Ouyang L, Fan GQ, Liang QR, Tang Q. Sustained release of arsenic trioxide benefits interventional therapy on rabbit VX2 liver tumor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102118. [PMID: 31678180 DOI: 10.1016/j.nano.2019.102118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/01/2019] [Accepted: 10/13/2019] [Indexed: 11/28/2022]
Abstract
The benefit of chemotherapy as a constituent of transcatheter arterial chemoembolization (TACE) is still in debate. Recently we have developed arsenic trioxide nanoparticle prodrug (ATONP) as a new anticancer drug, but its systemic toxicity is a big issue. In this preclinical TACE study, ATONP emulsified in lipiodol behaved as drug-eluting bead manner. Sustained release of arsenic from ATONP within occluded tumor caused very low arsenic level in plasma, avoiding the "rushing out" effect as ATO did. Correspondingly, intratumoral arsenic accumulation and inorganic phosphate deprivation were simultaneously observed, and arsenic concentration was much higher as ATONP was transarterially administered than ATO, or intravenously injected. Tumor necrosis and apoptosis were remarkably more severe in ATONP group than ATO, but no significant hepatic and renal toxicity was perceived. In brief, ATONP alleviated arsenic toxicity and boosted the therapeutic effect of TACE via Pi-activated drug sustainable release.
Collapse
Affiliation(s)
- Xin Fu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Rong-Guang Luo
- Department of Medical Imaging and Interventional Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Qiu
- Department of Interventional and Vascular Radiology, Chaohu Hospital of Anhui Medical University, Chaohu, China
| | - Lu Ouyang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Guang-Qin Fan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Qing-Rong Liang
- Institute for Advanced Study, Nanchang University, Nanchang, China
| | - Qun Tang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China; Institute for Advanced Study, Nanchang University, Nanchang, China.
| |
Collapse
|
47
|
Zhao X, Liu X, Zhang P, Liu Y, Ran W, Cai Y, Wang J, Zhai Y, Wang G, Ding Y, Li Y. Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma. Acta Pharm Sin B 2019; 9:1050-1060. [PMID: 31649853 PMCID: PMC6804453 DOI: 10.1016/j.apsb.2019.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy is among the limited choices approved for the treatment of hepatocellular carcinoma (HCC) at intermediate and advanced stages. Preferential and prolonged drug exposure in diseased sites is required to maximize the therapeutic index of the drug. Here, we report an injectable supramolecular peptide hydrogel as an intraperitoneal depot for localized and sustained release of triptolide for the treatment of orthotopic HCC. We chose peptide amphiphile C16-GNNQQNYKD-OH-based nanofibers as gelators and carriers for triptolide. Sustained triptolide release from the hydrogel was achieved over 14 days in vitro, with higher accumulation in and cytotoxicity against human HCC Bel-7402 in comparison with L-02 fetal hepatocytes. After intraperitoneal injection, the hydrogel showed prolonged retention over 13 days and preferential accumulation in the liver, realizing HCC growth inhibition by 99.7 ± 0.1% and animal median survival extension from 19 to 43 days, without causing noticeable pathological changes in the major organs. These results demonstrate that injectable peptide hydrogel can be a potential carrier for localized chemotherapy of HCC.
Collapse
Key Words
- ANOVA, analysis of variance
- AST, aspartate transaminase
- ATL, alanine transaminase
- AUC0–13, areas under the curve
- AURKA, aurora A kinase
- Akt, protein kinase B
- BUN, blood urea nitrogen
- Bel-7402/Luc, luciferase transfected human HCC cell line Bel-7402
- C16-N, C16-GNNQQNYKD-OH
- C16-N/DiI, DiI-labeled C16-N
- C16-N/DiR, DiR-labeled C16-N hydrogel
- C16-N/T, triptolide-loaded peptide amphiphile-based hydrogel
- CAS, Chinese Academy of Sciences
- CD, circular dichroism
- CKS2, cyclin kinase subunit-2
- CRE, creatinine
- DL, drug loading
- DSPE-PEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000]
- DSPE-PEG/DiI, DiI-labeled DSPE-PEG
- DSPE-PEG/DiR, DiR-labeled DSPE-PEG micelle
- DSPE-PEG/T, drug-loaded DSPE-PEG micelles
- EE, encapsulation efficiency
- FBS, fetal bovine serum
- FI range, fluorescence intensity range
- FI, fluorescence intensity
- GEMOX, gemcitabine and oxaliplatin
- H&E, hematoxylin and eosin
- HFIP, 1,1,1,3,3,3-hexafluoro-2-propanol
- HPLC, high-performance liquid chromatography
- Hepatocellular carcinoma
- Hydrogel
- LC–MS, liquid chromatography–mass spectrometry
- OB glue, EPIGLUs
- Peptide amphiphile
- RFI, relative fluorescence intensity
- Self-assembly
- TACE, transarterial chemoembolization
- TEM, transmission electron microscopy
- TIR, tumor inhibition rate
- Tmax, time to reach highest fluorescence intensity
- Triptolide
- d-Luciferin, (S)-4,5-dihydro-2-(6-hydroxy-2-benzothiazolyl)-4-thiazolecarboxylic acid potassium
Collapse
Affiliation(s)
- Xiyue Zhao
- Department of Chemistry, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoyu Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel./fax: +86 21 20231979.
| | - Yiran Liu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Wei Ran
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyang Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Jilin University, Changchun 130012, China
| | - Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanru Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaping Ding
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Yantai University, Yantai 264005, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel./fax: +86 21 20231979.
| |
Collapse
|
48
|
Effect of dual stimuli responsive dextran/nanocellulose polyelectrolyte complexes for chemophotothermal synergistic cancer therapy. Int J Biol Macromol 2019; 135:776-789. [DOI: 10.1016/j.ijbiomac.2019.05.218] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
|
49
|
Wu Y, Xu Z, Sun W, Yang Y, Jin H, Qiu L, Chen J, Chen J. Co-responsive smart cyclodextrin-gated mesoporous silica nanoparticles with ligand-receptor engagement for anti-cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109831. [PMID: 31349481 DOI: 10.1016/j.msec.2019.109831] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/15/2019] [Accepted: 05/29/2019] [Indexed: 01/30/2023]
Abstract
Combination of both internal- and external-stimuli responsive strategies in nanoplatforms can maximize therapeutic outcomes by overcoming drug efflux-mediated resistance and prolonging sustained release of therapeutic payloads in controlled and sequential manner. Here, we show a light/redox dual-stimuli responsive β-cyclodextrin (β-CD)-gated mesoporous silica nanoparticles (MSN) that can effectively load and seal the chemotherapeutics, doxorubicin (DOX), inside MSN with a dual-capped system. The primary gatekeeper was achieved by capping β-CD via a disulfide linkage. An azobenzene/galactose-grafted polymer (GAP) was introduced to functionalize the MSN surface through host-guest interaction. GAP not only served as a secondary non-covalent polymer-gatekeeper to further prevent molecules from leaking out, but also presented targeting ligand for engagement of the asialoglycoprotein receptor (ASGPR) on hepatocellular carcinoma (HepG2) cells. The controlled and stimuli release of DOX could be realized via dissociation of azobenzene moieties from β-CD cage upon UV-irradiation, followed by liberation with the endogenous glutathione. The in vitro studies verified the redox-sensitive DOX release behavior, and the UV irradiation could accelerate this process to trigger DOX burst from MSN-ss-CD/GAP. Notably, the DOX@MSN-ss-CD/GAP could more efficiently deliver DOX into HepG2 cells and demonstrate enhanced cytotoxicity as compared with HeLa and COS7 cells. The smart MSN-ss-CD/GAP delivery system holds the potential for universal therapeutic uses in both biomedical research and clinical settings.
Collapse
Affiliation(s)
- Yaling Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Wenjing Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Yingyue Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Lipeng Qiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Jingxiao Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
50
|
Li J, Webster TJ, Tian B. Functionalized Nanomaterial Assembling and Biosynthesis Using the Extremophile Deinococcus radiodurans for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900600. [PMID: 30925017 DOI: 10.1002/smll.201900600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The development of functionalized nanomaterial biosynthesis processes is important to expand many cutting-edge nanomaterial application areas. However, unclear synthesis mechanisms and low synthesis efficiency under various chemical stresses have limited the use of these biomaterials. Deinococcus radiodurans is an extreme bacterium well known for its exceptional resistance to radiation oxidants and electrophilic agents. This extremophile, which possesses a spontaneous self-assembled surface-layer (S-layer), has been an optimal model organism to study microbial nanomaterial biotemplates and biosynthesis under various stresses. This review summarizes the S-layers from D. radiodurans as an excellent biotemplate for various pre-synthesized nanomaterials and multiple applications, and highlights recent progresses about the biosynthesis of functionalized gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), as well as gold and silver bimetallic nanoparticles using D. radiodurans. Their formation mechanisms, properties, and applications are discussed and summarized to provide significant insights into the design or modification of functionalized nanomaterials via natural materials. Grand challenges and future directions to realize the multifunctional applications of these nanomaterials are highlighted for a better understanding of their biosynthesis mechanisms and functionalized modifications.
Collapse
Affiliation(s)
- Jiulong Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, Boston, MA, 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, Boston, MA, 02115, USA
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| |
Collapse
|