1
|
Xia T, Yu J, Du M, Chen X, Wang C, Li R. Vascular endothelial cell injury: causes, molecular mechanisms, and treatments. MedComm (Beijing) 2025; 6:e70057. [PMID: 39931738 PMCID: PMC11809559 DOI: 10.1002/mco2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
Vascular endothelial cells form a single layer of flat cells that line the inner surface of blood vessels, extending from large vessels to the microvasculature of various organs. These cells are crucial metabolic and endocrine components of the body, playing vital roles in maintaining circulatory stability, regulating vascular tone, and preventing coagulation and thrombosis. Endothelial cell injury is regarded as a pivotal initiating factor in the pathogenesis of various diseases, triggered by multiple factors, including infection, inflammation, and hemodynamic changes, which significantly compromise vascular integrity and function. This review examines the causes, underlying molecular mechanisms, and potential therapeutic approaches for endothelial cell injury, focusing specifically on endothelial damage in cardiac ischemia/reperfusion (I/R) injury, sepsis, and diabetes. It delves into the intricate signaling pathways involved in endothelial cell injury, emphasizing the roles of oxidative stress, mitochondrial dysfunction, inflammatory mediators, and barrier damage. Current treatment strategies-ranging from pharmacological interventions to regenerative approaches and lifestyle modifications-face ongoing challenges and limitations. Overall, this review highlights the importance of understanding endothelial cell injury within the context of various diseases and the necessity for innovative therapeutic methods to improve patient outcomes.
Collapse
Affiliation(s)
- Tian Xia
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Jiachi Yu
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Meng Du
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Clinical LaboratoryHuaian Hospital of Huaian CityHuaianJiangsuChina
| | - Ximeng Chen
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Chengbin Wang
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| | - Ruibing Li
- Department of Laboratory MedicineThe First Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Laboratory MedicineMedical School of Chinese PLABeijingChina
| |
Collapse
|
2
|
Li J, Shi X, Xu J, Wang K, Hou F, Luan X, Chen L. Aldehyde Dehydrogenase 2 Lactylation Aggravates Mitochondrial Dysfunction by Disrupting PHB2 Mediated Mitophagy in Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411943. [PMID: 39737891 PMCID: PMC11848585 DOI: 10.1002/advs.202411943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Indexed: 01/01/2025]
Abstract
Mitochondrial dysfunction is a crucial event in acute kidney injury (AKI), leading to a metabolic shift toward glycolysis and increased lactate production. Lactylation, a posttranslational modification derived from lactate, plays a significant role in various cellular processes, yet its implications in AKI remain underexplored. Here, a marked increase in lactate levels and pan-Kla levels are observed in kidney tissue from AKI patients and mice, with pronounced lactylation activity in injured proximal tubular cells identified by single-cell RNA sequencing. The lactylation of aldehyde dehydrogenase 2 (ALDH2) is identified at lysine 52 (K52la), revealing that ALDH2 lactylation exacerbates tubular injury and mitochondrial dysfunction. Conversely, the ALDH2 K52R mutation alleviates these injuries in HK-2 cells and adeno-associated virus-infected kidney tissues in mice. Furthermore, ALDH2 lactylation can be modulated by upregulating SIRT3 in vivo and in vitro, which reduces ALDH2 lactylation, mitigating tubular injury and mitochondrial dysfunction. Mechanistically, immunoprecipitation-mass spectrometry analysis demonstrates an interaction between ALDH2 and prohibitin 2 (PHB2), a crucial mitophagy receptor. ALDH2 lactylation promotes the ubiquitination-proteasomal degradation of PHB2 to inhibit mitophagy and worsen mitochondrial dysfunction. These findings highlight the critical role of endogenous lactate in AKI and propose ALDH2 lactylation as a potential therapeutic target.
Collapse
Affiliation(s)
- Jiaying Li
- Department of NephrologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
- Department of Internal MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Xiaoxiao Shi
- Department of NephrologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Jiatong Xu
- Department of NephrologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Kaiyue Wang
- Department of NephrologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Fangxing Hou
- Department of NephrologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Xiaodong Luan
- Center for Drug Research and EvaluationInstitute of Clinical MedicinePeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| | - Limeng Chen
- Department of NephrologyState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100730China
| |
Collapse
|
3
|
Wang J, Pu X, Zhuang H, Guo Z, Wang M, Yang H, Li C, Chang X. Astragaloside IV alleviates septic myocardial injury through DUSP1-Prohibitin 2 mediated mitochondrial quality control and ER-autophagy. J Adv Res 2024:S2090-1232(24)00471-5. [PMID: 39550027 DOI: 10.1016/j.jare.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024] Open
Abstract
INTRODUCTION Septic cardiomyopathy (SCM) is a complication of myocardial injury in patients with severe sepsis. OBJECTIVES This study highlights the potential of Astragaloside IV(AS) in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2-related mitochondria-ER interaction. METHODS Dual specificity phosphatase-1 (DUSP1)/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) /DUSP1 transgenic mice (DUSP1/PHB2TG) were used to generate LPS-induced sepsis models. The pathological mechanism by which AS-IV improves heart injury was detected using cardiac ultrasound, fluorescence staining, transmission electron microscopy, and western blotting. After siRNA treatment of cardiomyocytes with DUSP-1/PHB2, changes in mitochondrial function and morphology were determined using qPCR, western blotting, ELISA, and laser confocal microscopy, and the targeted therapeutic effects of AS-IV were further examined. RESULTS SCM treatment leads to severe mitochondrial dysfunction. However, Astragaloside IV (AS) treatment normalizes mitochondrial homeostasis and ER function. Notably, the protective effect was blocked in DUSP1/Prohibitin 2 cardiomyocyte-specific knockout mice (DUSP1/PHB2CKO) but remained unaffected in DUSP1 transgenic mice (DUSP1/PHB2TG). CONCLUSION This study highlights the potential of AS in the treatment of septic cardiomyopathy and provides a reference for developing cardioprotective drugs targeting DUSP1-PHB2 related mitochondria-ER interaction.
Collapse
Affiliation(s)
- Junyan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haowen Zhuang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mengyuan Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huaihong Yang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| | - Chun Li
- School of Pharmaceutical Sciences, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin 519000, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
4
|
Chang X, Zhou H, Hu J, Ge T, He K, Chen Y, Zou R, Fan X. Targeting mitochondria by lipid-selenium conjugate drug results in malate/fumarate exhaustion and induces mitophagy-mediated necroptosis suppression. Int J Biol Sci 2024; 20:5793-5811. [PMID: 39494338 PMCID: PMC11528455 DOI: 10.7150/ijbs.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease primarily affecting large and medium-sized arteries and involves various complex pathological mechanisms and factors. Previous studies have demonstrated a close association between atherosclerosis and inflammatory damage, metabolic disorders, and gut microbiota. It is also closely linked to several cellular processes, such as endothelial cell pyroptosis, ferroptosis, mitophagy, mitochondrial dynamics, and mitochondrial biogenesis. Mitophagy has been recognized as a previously unexplored mechanism contributing to endothelial injury in atherosclerosis. Our study aims to further elucidate the potential relationship and mechanisms between AS-induced mitophagy dysfunction and the interaction of TMBIM6 and NDUFS4. Data from the study demonstrated that atherosclerosis in AS mice was associated with substantial activation of inflammatory and oxidative stress damage, along with a marked reduction in endothelial mitophagy expression and increased pathological mitochondrial fission, leading to mitochondrial homeostasis disruption. However, under pharmacological intervention, mitophagy levels significantly increased, pathological mitochondrial fission was notably reduced, and oxidative stress and inflammatory damage were suppressed, while necroptotic pathways in endothelial cells were significantly blocked. Interestingly, the deletion of TMBIM6 or NDUFS4 in animal models or cell lines markedly impaired the therapeutic effects of the drug, disrupting its regulation of mitophagy and mitochondrial fission, and leading to the re-emergence of inflammatory responses and oxidative stress damage. Metabolomics analysis further revealed that autophagy plays a pivotal regulatory role during drug intervention and after genetic modification of TMBIM6 and NDUFS4. The activation of autophagy (macroautophagy/mitophagy) alleviated the negative effects of mitochondrial fission and inflammatory damage induced by lipid stress in endothelial cells, a regulatory mechanism likely associated with the TMBIM6-NDUFS4 axis. Subsequent animal gene modification experiments demonstrated that knocking out TMBIM6-NDUFS4 negates the therapeutic effects of the drug on lipid-induced damage and metabolic function. In summary, our research reveals a phenotypic regulatory mechanism of endothelial cell stress damage through mitophagy, influenced by the interaction of TMBIM6 and NDUFS4. Pharmacological intervention can restore mitochondrial homeostasis in endothelial cells by regulating mitophagy via the TMBIM6-NDUFS4 pathway. This novel insight suggests that TMBIM6-NDUFS4 may serve as a key therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, Beijing, China
| | - Jinlin Hu
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Teng Ge
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Kunyang He
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Ye Chen
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
| |
Collapse
|
5
|
Chang X, Zhou S, Liu J, Wang Y, Guan X, Wu Q, Liu Z, Liu R. Zishenhuoxue decoction-induced myocardial protection against ischemic injury through TMBIM6-VDAC1-mediated regulation of calcium homeostasis and mitochondrial quality surveillance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155331. [PMID: 38870748 DOI: 10.1016/j.phymed.2023.155331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 06/15/2024]
Abstract
BACKGROUND Zishenhuoxue decoction (ZSHX), a Chinese herbal medicine, exhibits myocardial and vascular endothelial protective properties. The intricate regulatory mechanisms underlying myocardial ischemic injury and its association with dysfunctional mitochondrial quality surveillance (MQS) remain elusive. HYPOTHESIS/PURPOSE To study the protective effect of ZSHX on ischemic myocardial injury in mice using a TMBIM6 gene-modified animal model and mitochondrial quality control-related experiments. STUDY DESIGN Using model animals and myocardial infarction surgery-induced ischemic myocardial injury TMBIM6 gene-modified mouse models, the pharmacological activity of ZSHX in inhibiting ischemic myocardial injury and mitochondrial homeostasis disorder in vivo was tested. METHODS Our focal point entailed scrutinizing the impact of ZSHX on ischemic myocardial impairment through the prism of TMBIM6. This endeavor was undertaken utilizing mice characterized by heart-specific TMBIM6 knockout (TMBIM6CKO) and their counterparts, the TMBIM6 transgenic (TMBIM6TG) and VDAC1 transgenic (VDAC1TG) mice. RESULTS ZSHX demonstrated dose-dependent effectiveness in mitigating ischemic myocardial injury and enhancing mitochondrial integrity. TMBIM6CKO hindered ZSHX's cardio-therapeutic and mitochondrial protective effects, while ZSHX's benefits persisted in TMBIM6TG mice. TMBIM6CKO also blocked ZSHX's regulation of mitochondrial function in HR-treated cardiomyocytes. Hypoxia disrupted the MQS in cardiomyocytes, including calcium overload, excessive fission, mitophagy issues, and disrupted biosynthesis. ZSHX counteracted these effects, thereby normalizing MQS and inhibiting calcium overload and cardiomyocyte necroptosis. Our results also showed that hypoxia-induced TMBIM6 blockade resulted in the over-activation of VDAC1, a major mitochondrial calcium uptake pathway, while ZSHX could increase the expression of TMBIM6 and inhibit VDAC1-mediated calcium overload and MQS abnormalities. CONCLUSIONS Our findings suggest that ZSHX regulates mitochondrial calcium homeostasis and MQS abnormalities through a TMBIM6-VDAC1 interaction mechanism, which helps to treat ischemic myocardial injury and provides myocardial protection. This study also offers insights for the clinical translation and application of mitochondrial-targeted drugs in cardiomyocytess.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing 100053, China.
| |
Collapse
|
6
|
Tao J, Qiu J, Zheng J, Li R, Chang X, He Q. Phosphoglycerate mutase 5 exacerbates alcoholic cardiomyopathy in male mice by inducing prohibitin-2 dephosphorylation and impairing mitochondrial quality control. Clin Transl Med 2024; 14:e1806. [PMID: 39143739 PMCID: PMC11324691 DOI: 10.1002/ctm2.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The induction of mitochondrial quality control (MQC) mechanisms is essential for the re-establishment of mitochondrial homeostasis and cellular bioenergetics during periods of stress. Although MQC activation has cardioprotective effects in various cardiovascular diseases, its precise role and regulatory mechanisms in alcoholic cardiomyopathy (ACM) remain incompletely understood. METHODS We explored whether two mitochondria-related proteins, phosphoglycerate mutase 5 (Pgam5) and prohibitin 2 (Phb2), influence MQC in male mice during ACM. RESULTS Myocardial Pgam5 expression was upregulated in a male mouse model of ACM. Notably, following ACM induction, heart dysfunction was markedly reversed in male cardiomyocyte-specific Pgam5 knockout (Pgam5cKO) mice. Meanwhile, in alcohol-treated male mouse-derived neonatal cardiomyocytes, Pgam5 depletion preserved cell survival and restored mitochondrial dynamics, mitophagy, mitochondrial biogenesis and the mitochondrial unfolded protein response (mtUPR). We further found that in alcohol-treated cardiomyocyte, Pgam5 binds Phb2 and induces its dephosphorylation at Ser91. Alternative transduction of phospho-mimetic (Phb2S91D) and phospho-defective (Phb2S9A) Phb2 mutants attenuated and enhanced, respectively, alcohol-related mitochondrial dysfunction in cardiomyocytes. Moreover, transgenic male mice expressing Phb2S91D were resistant to alcohol-induced heart dysfunction. CONCLUSIONS We conclude that ACM-induced Pgam5 upregulation results in Pgam5-dependent Phb2S91 dephosphorylation, leading to MQC destabilisation and mitochondrial dysfunction in heart. Therefore, modulating the Pgam5/Phb2 interaction could potentially offer a novel therapeutic strategy for ACM in male mice. HIGHLIGHTS Pgam5 knockout attenuates alcohol-induced cardiac histopathology and heart dysfunction in male mice. Pgam5 KO reduces alcohol-induced myocardial inflammation, lipid peroxidation and metabolic dysfunction in male mice. Pgam5 depletion protects mitochondrial function in alcohol-exposed male mouse cardiomyocytes. Pgam5 depletion normalises MQC in ACM. EtOH impairs MQC through inducing Phb2 dephosphorylation at Ser91. Pgam5 interacts with Phb2 and induces Phb2 dephosphorylation. Transgenic mice expressing a Ser91 phospho-mimetic Phb2 mutant are resistant to ACM.
Collapse
Affiliation(s)
- Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China, Xianning, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Li S, Sun J, Li Y, Lv X, Wang L, Song L. CgPHB2 involved in the haemocyte mitophagy in response to Vibrio splendidus stimulation in Pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105168. [PMID: 38522715 DOI: 10.1016/j.dci.2024.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Prohibitin2 (PHB2) is recently identified as a novel inner membrane mitophagy receptor to mediate mitophagy. In the present study, the function of CgPHB2 in mediating mitophagy in response to Vibrio splendidus stimulation was investigated in Crassostrea gigas. CgPHB2 protein was mainly distributed in the cytoplasm of three subpopulations of haemocytes. After V. splendidus stimulation, the expressions of CgPHB2 mRNA in haemocytes were up-regulated significantly at 6, 12 and 24 h, and the abundance of CgPHB2 protein was also enhanced at 12-24 h compared to control group. Furthermore, the green signals of CgPHB2 were colocalized respectively with the red signals of mitochondria and CgLC3 in the haemocytes at 12 h after V. splendidus stimulation, and the co-localization value of CgPHB2 and mtphagy Dye was significantly increased. The direct interaction between CgPHB2 and CgLC3 was simulated by molecular docking. In PHB2-inhibitor Fluorizoline-treated oysters, the mRNA expressions of mitophagy-related genes and the ratio of mitophagy were significantly decreased in haemocytes of oysters after V. splendidus stimulation. All the results collectively suggested that CgPHB2 participated in mediating the haemocyte mitophagy in the antibacterial immune response of oysters.
Collapse
Affiliation(s)
- Shurong Li
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
8
|
Du Y, Li J, Dai Z, Chen Y, Zhao Y, Liu X, Xia T, Zhu P, Wang Y. Pyruvate kinase M2 sustains cardiac mitochondrial quality surveillance in septic cardiomyopathy by regulating prohibitin 2 abundance via S91 phosphorylation. Cell Mol Life Sci 2024; 81:254. [PMID: 38856931 PMCID: PMC11335292 DOI: 10.1007/s00018-024-05253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 06/11/2024]
Abstract
The endogenous mitochondrial quality control (MQC) system serves to protect mitochondria against cellular stressors. Although mitochondrial dysfunction contributes to cardiac damage during many pathological conditions, the regulatory signals influencing MQC disruption during septic cardiomyopathy (SC) remain unclear. This study aimed to investigate the involvement of pyruvate kinase M2 (PKM2) and prohibitin 2 (PHB2) interaction followed by MQC impairment in the pathogenesis of SC. We utilized LPS-induced SC models in PKM2 transgenic (PKM2TG) mice, PHB2S91D-knockin mice, and PKM2-overexpressing HL-1 cardiomyocytes. After LPS-induced SC, cardiac PKM2 expression was significantly downregulated in wild-type mice, whereas PKM2 overexpression in vivo sustained heart function, suppressed myocardial inflammation, and attenuated cardiomyocyte death. PKM2 overexpression relieved sepsis-related mitochondrial damage via MQC normalization, evidenced by balanced mitochondrial fission/fusion, activated mitophagy, restored mitochondrial biogenesis, and inhibited mitochondrial unfolded protein response. Docking simulations, co-IP, and domain deletion mutant protein transfection experiments showed that PKM2 phosphorylates PHB2 at Ser91, preventing LPS-mediated PHB2 degradation. Additionally, the A domain of PKM2 and the PHB domain of PHB2 are required for PKM2-PHB2 binding and PHB2 phosphorylation. After LPS exposure, expression of a phosphorylation-defective PHB2S91A mutant negated the protective effects of PKM2 overexpression. Moreover, knockin mice expressing a phosphorylation-mimetic PHB2S91D mutant showed improved heart function, reduced inflammation, and preserved mitochondrial function following sepsis induction. Abundant PKM2 expression is a prerequisite to sustain PKM2-PHB2 interaction which is a key element for preservation of PHB2 phosphorylation and MQC, presenting novel interventive targets for the treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Yingzhen Du
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jialei Li
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhe Dai
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Chen
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Zhao
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoman Liu
- School of Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tian Xia
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Pingjun Zhu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.
| | - Yijin Wang
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
9
|
Rui Y, Zhang X, Min X, Xie H, Ma X, Geng F, Liu R. Unlocking renal Restoration: Mesaconine from Aconitum plants restore mitochondrial function to halt cell apoptosis in acute kidney injury. Int Immunopharmacol 2024; 133:112170. [PMID: 38691919 DOI: 10.1016/j.intimp.2024.112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor β1 (TGF-β1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1β (interleukin-1β) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.
Collapse
Affiliation(s)
- Yixin Rui
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xinran Min
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiuying Ma
- Sichuan Engineering Research Center for Medicinal Animals, Sichuan 611137, China
| | - Funeng Geng
- Sichuan Engineering Research Center for Medicinal Animals, Sichuan 611137, China; Guizhou Yunfeng Pharmaceutical, Guizhou 510000, China.
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
10
|
Sui M, Yan S, Zhang P, Li Y, Chen K, Li Y, Lu H, Li Y, Zhao W, Zeng L. The role of Testis-Specific Protein Y-encoded-Like 2 in kidney injury. iScience 2024; 27:109594. [PMID: 38665207 PMCID: PMC11043847 DOI: 10.1016/j.isci.2024.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Recent findings suggest that Testis-Specific Protein Y-encoded-Like 2 (TSPYL2) plays a fibrogenic role in diabetes-associated renal injury. However, the role of TSPYL2 in IRI-induced kidney damage is not entirely clear. In this study, we found that the expression of TSPYL2 was upregulated in a mouse model of AKI and in the hypoxia/reoxygenation (H/R) cell model. Knockdown of TSPYL2 attenuated kidney injury after IRI. More specifically, the knockdown of TSPYL2 or aminocarboxymuconate-semialdehyde decarboxylase (ACMSD) alleviated renal IRI-induced mitochondrial dysfunction and oxidative stress in vitro and in vivo. Further investigation showed that TSPYL2 regulated SREBP-2 acetylation by inhibiting SIRT1 and promoting p300 activity, thereby promoting the transcriptional activity of ACMSD. In conclusion, TSPYL2 was identified as a pivotal regulator of IRI-induced kidney damage by activating ACMSD, which may lead to NAD+ content and the damaging response in the kidney.
Collapse
Affiliation(s)
- Mingxing Sui
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sijia Yan
- Department of Pathology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Zhang
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuhong Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kewen Chen
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanhua Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanlan Lu
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yanfeng Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenyu Zhao
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Zeng
- Department of Organ Transplantation, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Wang T, Wang G, Shan D, Fang Y, Zhou F, Yu M, Ju L, Li G, Xiang W, Qian K, Zhang Y, Xiao Y, Wang X. ACAT1 promotes proliferation and metastasis of bladder cancer via AKT/GSK3β/c-Myc signaling pathway. J Cancer 2024; 15:3297-3312. [PMID: 38817856 PMCID: PMC11134450 DOI: 10.7150/jca.95549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 06/01/2024] Open
Abstract
Acetyl-CoA acetyltransferase 1 (ACAT1) plays a significant role in the regulation of gene expression and tumorigenesis. However, the biological role of ACAT1 in bladder cancer (BLCA) has yet to be elucidated. This research aimed to elucidate the bioinformatics features and biological functions of ACAT1 in BLCA. Here, we demonstrate that ACAT1 is elevated in BLCA tissues and is correlated with specific clinicopathological features and an unfavorable prognosis for survival in BLCA patients. ACAT1 was identified as an independent risk factor in BLCA. Phenotypically, both in vitro and in vivo, ACAT1 knockdown suppressed BLCA cell proliferation and migration, while ACAT1 overexpression had the opposite effect. Mechanistic assays revealed that ACAT1 enhances BLCA cell proliferation and metastasis through the AKT/GSK3β/c-Myc signaling pathway by modulating the cell cycle and EMT. Taken together, the results of our study reveal that ACAT1 is an oncogenic driver in BLCA that enhances tumor proliferation and metastasis, indicating its potential as a diagnostic and therapeutic target for this disease.
Collapse
Affiliation(s)
- Tingjun Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yayun Fang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Li
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Xiang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Kim MJ, Oh CJ, Hong CW, Jeon JH. Comprehensive overview of the role of mitochondrial dysfunction in the pathogenesis of acute kidney ischemia-reperfusion injury: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:61-73. [PMID: 38351610 DOI: 10.12701/jyms.2023.01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/10/2024] [Indexed: 05/08/2024]
Abstract
Acute kidney ischemia-reperfusion (IR) injury is a life-threatening condition that predisposes individuals to chronic kidney disease. Since the kidney is one of the most energy-demanding organs in the human body and mitochondria are the powerhouse of cells, mitochondrial dysfunction plays a central role in the pathogenesis of IR-induced acute kidney injury. Mitochondrial dysfunction causes a reduction in adenosine triphosphate production, loss of mitochondrial dynamics (represented by persistent fragmentation), and impaired mitophagy. Furthermore, the pathological accumulation of succinate resulting from fumarate reduction under oxygen deprivation (ischemia) in the reverse flux of the Krebs cycle can eventually lead to a burst of reactive oxygen species driven by reverse electron transfer during the reperfusion phase. Accumulating evidence indicates that improving mitochondrial function, biogenesis, and dynamics, and normalizing metabolic reprogramming within the mitochondria have the potential to preserve kidney function during IR injury and prevent progression to chronic kidney disease. In this review, we summarize recent advances in understanding the detrimental role of metabolic reprogramming and mitochondrial dysfunction in IR injury and explore potential therapeutic strategies for treating kidney IR injury.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| |
Collapse
|
13
|
Chen Y, Li Z, Zhang H, Chen H, Hao J, Liu H, Li X. Mitochondrial metabolism and targeted treatment strategies in ischemic-induced acute kidney injury. Cell Death Discov 2024; 10:69. [PMID: 38341438 DOI: 10.1038/s41420-024-01843-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI). The kidney is susceptible to IRI under several clinical conditions, including hypotension, sepsis, and surgical procedures, such as partial nephrectomy and kidney transplantation. Extensive research has been conducted on the mechanism and intervention strategies of renal IRI in past decades; however, the complex pathophysiology of IRI-induced AKI (IRI-AKI) is not fully understood, and there remains a lack of effective treatments for AKI. Renal IRI involves several processes, including reactive oxygen species (ROS) production, inflammation, and apoptosis. Mitochondria, the centers of energy metabolism, are increasingly recognized as substantial contributors to the early phases of IRI. Multiple mitochondrial lesions have been observed in the renal tubular epithelial cells (TECs) of IRI-AKI mice, and damaged or dysfunctional mitochondria are toxic to the cells because they produce ROS and release cell death factors, resulting in TEC apoptosis. In this review, we summarize the recent advances in the mitochondrial pathology in ischemic AKI and highlight promising therapeutic approaches targeting mitochondrial dysfunction to prevent or treat human ischemic AKI.
Collapse
Affiliation(s)
- Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zixian Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhan-jiang Central Hospital, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
14
|
Zhang B, Li W, Cao J, Zhou Y, Yuan X. Prohibitin 2: A key regulator of cell function. Life Sci 2024; 338:122371. [PMID: 38142736 DOI: 10.1016/j.lfs.2023.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The PHB2 gene is located on chromosome 12p13 and encodes prohibitin 2, a highly conserved protein of 37 kDa. PHB2 is a dimer with antiparallel coils, possessing a unique negatively charged region crucial for its mitochondrial molecular chaperone functions. Thus, PHB2 plays a significant role in cell life activities such as mitosis, mitochondrial autophagy, signal transduction, and cell death. This review discusses how PHB2 inhibits transcription factors or nuclear receptors to maintain normal cell functions; how PHB2 in the cytoplasm or membrane ensures normal cell mitosis and regulates cell differentiation; how PHB2 affects mitochondrial structure, function, and cell apoptosis through mitochondrial intimal integrity and mitochondrial autophagy; how PHB2 affects mitochondrial stress and inhibits cell apoptosis by regulating cytochrome c migration and other pathways; how PHB2 affects cell growth, proliferation, and metastasis through a mitochondrial independent mechanism; and how PHB2 could be applied in disease treatment. We provide a theoretical basis and an innovative perspective for a comprehensive understanding of the role and mechanism of PHB2 in cell function regulation.
Collapse
Affiliation(s)
- Bingjie Zhang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| | - Xia Yuan
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
15
|
Liu N, Ding Y, Zhou H, Chang X, Lou L. Dual-specificity phosphatase 1 interacts with prohibitin 2 to improve mitochondrial quality control against type-3 cardiorenal syndrome. Int J Med Sci 2024; 21:547-561. [PMID: 38322592 PMCID: PMC10845262 DOI: 10.7150/ijms.90484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.
Collapse
Affiliation(s)
- Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiu Ding
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chang
- Cardiovascular department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Long Lou
- Kunming Municipal Hospital of Traditional Chinese Medicine, Yunnan, China
| |
Collapse
|
16
|
Sun J, Liu C, Liu YY, Guo ZA. Mitophagy in renal interstitial fibrosis. Int Urol Nephrol 2024; 56:167-179. [PMID: 37450241 DOI: 10.1007/s11255-023-03686-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
As a high energy consumption organ, kidney relies on a large number of mitochondria to ensure normal physiological activities. Under specific stimulation, mitophagy and mitochondrial dynamics (fission, fusion) cooperatively regulate mitochondrial quality and participate in many life activities such as energy metabolism, inflammatory response, oxidative stress, cell senescence and death. Mitophagy plays a key role in the progression of acute kidney injury and chronic kidney disease. The early induction of oxidative stress in renal parenchyma, the activation of pro-inflammatory cytokines and TGF-β signal pathway are closely related to renal interstitial fibrosis. Macrophage reprogramming is also considered to be an important participant in the progression of kidney fibrosis. This review summarizes the molecular mechanism of mitochondrial autophagy and its relationship with the pathway of promoting fibrosis, and discusses the possibility of restoring mitophagy balance as a pharmacological target for the treatment of renal interstitial fibrosis, so as to provide new ideas for more efficient anti-fibrosis and delay the progress of chronic kidney disease.
Collapse
Affiliation(s)
- Jun Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chong Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Liu
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhao-An Guo
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
17
|
Jin S, Sun J, Liu G, Shen L, Weng Y, Li J, Chen M, Wang Y, Gao Z, Jiang F, Li S, Chen D, Pang Q, Wu Y, Wang Z. Nrf2/PHB2 alleviates mitochondrial damage and protects against Staphylococcus aureus-induced acute lung injury. MedComm (Beijing) 2023; 4:e448. [PMID: 38077250 PMCID: PMC10701464 DOI: 10.1002/mco2.448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Staphylococcus aureus (SA) is a major cause of sepsis, leading to acute lung injury (ALI) characterized by inflammation and oxidative stress. However, the role of the Nrf2/PHB2 pathway in SA-induced ALI (SA-ALI) remains unclear. In this study, serum samples were collected from SA-sepsis patients, and a SA-ALI mouse model was established by grouping WT and Nrf2-/- mice after 6 h of intraperitoneal injection. A cell model simulating SA-ALI was developed using lipoteichoic acid (LTA) treatment. The results showed reduced serum Nrf2 levels in SA-sepsis patients, negatively correlated with the severity of ALI. In SA-ALI mice, downregulation of Nrf2 impaired mitochondrial function and exacerbated inflammation-induced ALI. Moreover, PHB2 translocation from mitochondria to the cytoplasm was observed in SA-ALI. The p-Nrf2/total-Nrf2 ratio increased in A549 cells with LTA concentration and treatment duration. Nrf2 overexpression in LTA-treated A549 cells elevated PHB2 content on the inner mitochondrial membrane, preserving genomic integrity, reducing oxidative stress, and inhibiting excessive mitochondrial division. Bioinformatic analysis and dual-luciferase reporter assay confirmed direct binding of Nrf2 to the PHB2 promoter, resulting in increased PHB2 expression. In conclusion, Nrf2 plays a role in alleviating SA-ALI by directly regulating PHB2 transcription and maintaining mitochondrial function in lung cells.
Collapse
Affiliation(s)
- Si‐Hao Jin
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
- Department of Nursing, School of MedicineShaoxing Vocational & Technical CollegeShaoxingChina
| | - Jiao‐Jiao Sun
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Gang Liu
- Department of Nosocomial InfectionThe Forth Affiliated Hospital of Zhejiang UniversityJinhuaChina
| | - Li‐Juan Shen
- Department of Critical Care MedicineWuxi Hospital of Traditional Chinese MedicineWuxiChina
| | - Yuan Weng
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Jin‐You Li
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Min Chen
- Department of LaboratoryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ying‐Ying Wang
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Zhi‐Qi Gao
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Feng‐Juan Jiang
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Sheng‐Peng Li
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Dan Chen
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Qing‐Feng Pang
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Ya‐Xian Wu
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Zhi‐Qiang Wang
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| |
Collapse
|
18
|
Zhu X, Deng Z, Cao Y, Zhou Z, Sun W, Liu C, Fan S, Yin XX. Resveratrol prevents Drp1-mediated mitochondrial fission in the diabetic kidney through the PDE4D/PKA pathway. Phytother Res 2023; 37:5916-5931. [PMID: 37767771 DOI: 10.1002/ptr.8004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/30/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
To explore the role of PDE4D in diabetic nephropathy (DN) and investigate whether resveratrol protects against DN via inhibiting PDE4D. Diabetic db/db mouse and glomerular mesangial cell line (GMCs) were used to investigate the role of PDE4D and the protective effect of resveratrol on renal fibrosis under high glucose (HG) environment. Resveratrol alleviated the progress of DN via inhibiting mitochondrial fragmentation and restoring the expression of PDE4D, PKA, phosphorylated Drp1-Ser637 and Drp1 in kidney of db/db mice. In HG-exposed GMCs, resveratrol treatment decreased the expression of PDE4D, increased PKA level, and inhibited Drp1-mediated mitochondrial fission. In contrast, PDE4D over-expression blunted the inhibitory effects of resveratrol on Drp1 expression and mitochondrial fission. Moreover, PKA inhibitor H89 blunted the effects of resveratrol on phosphorylated Drp1-Ser637 expression and mitochondrial fission in HG-treated GMCs. Inhibition of mitochondrial fission with Drp1 inhibitor Mdivi-1 alleviated mitochondrial dysfunction in GMCs under HG. These findings indicate PDE4D plays an important role in the process of DN. Resveratrol attenuates the development of DN by preventing mitochondrial fission through inhibiting PDE4D, which regulates the expression of phosphorylated Drp1-Ser637 directly.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zongli Deng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yanjuan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zihui Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wen Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chang Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Siwen Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Zhi F, Zhang Q, Liu L, Chang X, Xu H. Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments. Cell Stress Chaperones 2023; 28:641-655. [PMID: 37405612 PMCID: PMC10746653 DOI: 10.1007/s12192-023-01361-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Diabetic cardiomyopathy describes decreased myocardial function in diabetic patients in the absence of other heart diseases such as myocardial ischemia and hypertension. Recent studies have defined numerous molecular interactions and signaling events that may account for deleterious changes in mitochondrial dynamics and functions influenced by hyperglycemic stress. A metabolic switch from glucose to fatty acid oxidation to fuel ATP synthesis, mitochondrial oxidative injury resulting from increased mitochondrial ROS production and decreased antioxidant capacity, enhanced mitochondrial fission and defective mitochondrial fusion, impaired mitophagy, and blunted mitochondrial biogenesis are major signatures of mitochondrial pathologies during diabetic cardiomyopathy. This review describes the molecular alterations underlying mitochondrial abnormalities associated with hyperglycemia and discusses their influence on cardiomyocyte viability and function. Based on basic research findings and clinical evidence, diabetic treatment standards and their impact on mitochondrial function, as well as mitochondria-targeted therapies of potential benefit for diabetic cardiomyopathy patients, are also summarized.
Collapse
Affiliation(s)
- Fumin Zhi
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Qian Zhang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Li Liu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, 100053, China.
| | - Hongtao Xu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
20
|
Ning X, Li X, Ma K, Pang H, Tian T, Hao H, Hou Q, Li M, Liu T, Hou S, Du H, Song X, Sun Z, Zhao C, Jin M. VDAC1 Protein Regulation of Oxidative Damage and Mitochondrial Dysfunction-Mediated Cytotoxicity by Silica Nanoparticles in SH-SY5Y Cells. Mol Neurobiol 2023; 60:6542-6555. [PMID: 37458989 DOI: 10.1007/s12035-023-03491-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/07/2023] [Indexed: 09/28/2023]
Abstract
Silica nanoparticles (SiNPs) have been widely used in industry, electronics, and pharmaceutical industries. In addition, it is also widely used in medicine, tumor treatment and diagnosis, as well as other biomedical and biotechnology fields. The opportunities for people to contact SiNPs through iatrogenic, occupational, and environmental exposures are gradually increasing. The damage and biological effects of SiNPs on the nervous system have attracted widespread attention in the field of toxicology. Central nerve cells are rich in mitochondria. It is suggested that the effects of SiNPs on mitochondrial damage of nerve cells may involve the maintenance of neuronal membrane potential, the synthesis and operation of neurotransmitters, and the transmission of nerve pulses, and so on. We established an experimental model of SH-SY5Y cells to detect the cell survival rate, apoptosis, changes of reactive oxygen species and mitochondrial membrane potential, and the expression of mitochondrial function-related enzymes and proteins, so as to reveal the possible mechanism of SiNPs on neuronal mitochondrial damage. It was found that SiNPs could cause oxidative damage to cells and mitochondria, destroy some normal functions of mitochondria, and induce apoptosis in SH-SY5Y cells. The voltage-dependent anion channel 1(VDAC1) protein inhibitor DIDS could effectively reduce intracellular oxidative stress, such as the reduction of ROS content, and could also usefully restore some functional proteins of mitochondria to normal levels. The inhibition of VDAC1 protein may play an important role in the oxidative damage and dysfunction of neuronal mitochondria induced by SiNPs.
Collapse
Affiliation(s)
- Xiaofan Ning
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xinyue Li
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Kai Ma
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Huan Pang
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tiantian Tian
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Huifang Hao
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Qiaohong Hou
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Meng Li
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Tianxiang Liu
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shanshan Hou
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Haiying Du
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Xiuling Song
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Chao Zhao
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
21
|
Naya Y, Hata N, Kobayash M, Thuyuki M, Koyama Y, Ogihara K. Pathological study of proximal tubule mitochondria in diclofenac-induced acute kidney injury model mice. Tissue Cell 2023; 84:102188. [PMID: 37567074 DOI: 10.1016/j.tice.2023.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Diclofenac, a non-steroidal anti-inflammatory drug, reportedly targets mitochondria and induces nephrotoxicity via reactive oxygen species. However, there are few detailed reports of pathological analyses of mitochondria and the factors that cause acute kidney injury (AKI) as a result of nephrotoxicity. In this study, we investigated mitochondrial damage in the proximal tubule in AKI mice at 6, 12, and 24 h after administration of diclofenac. Statistical analysis of immunohistochemistry results confirmed that expression of p62 and LC3, which is associated with autophagy, reached a maximum level in the degenerated proximal renal tubule 12 h after diclofenac treatment, with high autophagy activity. Electron microscopy images provided clear evidence that confirmed mitochondrial degeneration and injury as well as autophagy (mitophagy) in mitochondria treated with diclofenac. The purpose of this study was to pathologically characterize both mitochondrial damage in the proximal renal tubules induced by diclofenac and the course of mitophagy to remove the damaged mitochondria. This report provides important information regarding mitochondrial damage in the proximal tubules in diclofenac-induced nephropathy.
Collapse
Affiliation(s)
- Yuko Naya
- Laboratory of Pathology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Nozomi Hata
- Laboratory of Pathology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Miyu Kobayash
- Laboratory of Pathology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Momoka Thuyuki
- Laboratory of Pathology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Yuichi Koyama
- Laboratory of Pathology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Kikumi Ogihara
- Laboratory of Pathology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan.
| |
Collapse
|
22
|
Cai C, Li Z, Zheng Z, Guo Z, Li Q, Deng S, Shi N, Ou Q, Zhou H, Guo Z, Chen Z, Zhu H. Pgam5-mediated PHB2 dephosphorylation contributes to endotoxemia-induced myocardial dysfunction by inhibiting mitophagy and the mitochondrial unfolded protein response. Int J Biol Sci 2023; 19:4657-4671. [PMID: 37781037 PMCID: PMC10535708 DOI: 10.7150/ijbs.85767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Numerous mitochondrial abnormalities are reported to result from excessive inflammation during endotoxemia. Prohibitin 2 (PHB2) and phosphoglycerate mutase 5 (Pgam5) have been associated with altered mitochondrial homeostasis in several cardiovascular diseases; however, their role in endotoxemia-related myocardial dysfunction has not been explored. Our experiments were aimed to evaluate the potential contribution of Pgam5 and PHB2 to endotoxemia-induced mitochondrial dysfunction in cardiomyocytes, with a focus on two endogenous protective programs that sustain mitochondrial integrity, namely mitophagy and the mitochondrial unfolded protein response (UPRmt). We found that PHB2 transgenic mice are resistant to endotoxemia-mediated myocardial depression and mitochondrial damage. Our assays indicated that PHB2 overexpression activates mitophagy and the UPRmt, which maintains mitochondrial metabolism, prevents oxidative stress injury, and enhances cardiomyocyte viability. Molecular analyses further showed that Pgam5 binds to and dephosphorylates PHB2, resulting in cytosolic translocation of mitochondrial PHB2. Silencing of Pgam5 or transfection of a phosphorylated PHB2 mutant in mouse HL-1 cardiomyocytes prevented the loss of mitochondrially-localized PHB2 and activated mitophagy and UPRmt in the presence of LPS. Notably, cardiomyocyte-specific deletion of Pgam5 in vivo attenuated LPS-mediated myocardial dysfunction and preserved cardiomyocyte viability. These findings suggest that Pgam5/PHB2 signaling and mitophagy/UPRmt are potential targets for the treatment of endotoxemia-related cardiac dysfunction.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zemao Zheng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhongzhou Guo
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qian Li
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuxian Deng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hao Zhou
- School of Medicine, University of Rochester Medical Center Rochester, Rochester, NY 14642, United States
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hang Zhu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
23
|
He K, An S, Liu F, Chen Y, Xiang G, Wang H. Integrative analysis of multi-omics data reveals inhibition of RB1 signaling promotes apatinib resistance of hepatocellular carcinoma. Int J Biol Sci 2023; 19:4511-4524. [PMID: 37781033 PMCID: PMC10535702 DOI: 10.7150/ijbs.83862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/01/2023] [Indexed: 10/03/2023] Open
Abstract
Although apatinib is a promising drug for the treatment of liver cancer, the underlying drug resistance mechanism is still unclear. Here, we constructed apatinib-resistant HepG2 cells. We then characterized the epigenomic, transcriptomic, and proteomic landscapes both in apatinib-resistant and non-resistant HepG2 cells. Differential expression, ATAC-seq, and proteomic data analyses were performed. We found that the cell cycle related protein RB1 may play an essential role in the process of apatinib resistant to hepatocarcinoma. Moreover, there were extensive variations at the transcriptome, epigenetic, and proteomic level. Finally, quantitative PCR (qPCR) and western blot analysis showed that expression level of RB1 in apatinib-resistant cell as well as the samples of patients in progressive disease were significantly lower than that in controls. Those results also showed that the RB1 pathway inhibitors CDK2-IN-73 and Palbociclib could relieve the resistance of apatinib resistant cells. Our results further enhance our understanding of the anti-tumorigenic and anti-angiogenic efficacy of apatinib in liver cancer and provide a novel perspective regarding apatinib resistance. Furthermore, we proved that CDKN2B inhibition of RB1 signaling promoted apatinib resistance in hepatocellular carcinoma. Those findings have greatly important biological significance for the resistance of apatinib and the treatment of liver cancer.
Collapse
Affiliation(s)
- Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Sanqi An
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Fei Liu
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Ye Chen
- Department of Critical Care Medicine, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
24
|
Hao Y, Zhao L, Zhao JY, Han X, Zhou X. Unveiling the potential of mitochondrial dynamics as a therapeutic strategy for acute kidney injury. Front Cell Dev Biol 2023; 11:1244313. [PMID: 37635869 PMCID: PMC10456901 DOI: 10.3389/fcell.2023.1244313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Acute Kidney Injury (AKI), a critical clinical syndrome, has been strongly linked to mitochondrial malfunction. Mitochondria, vital cellular organelles, play a key role in regulating cellular energy metabolism and ensuring cell survival. Impaired mitochondrial function in AKI leads to decreased energy generation, elevated oxidative stress, and the initiation of inflammatory cascades, resulting in renal tissue damage and functional impairment. Therefore, mitochondria have gained significant research attention as a potential therapeutic target for AKI. Mitochondrial dynamics, which encompass the adaptive shifts of mitochondria within cellular environments, exert significant influence on mitochondrial function. Modulating these dynamics, such as promoting mitochondrial fusion and inhibiting mitochondrial division, offers opportunities to mitigate renal injury in AKI. Consequently, elucidating the mechanisms underlying mitochondrial dynamics has gained considerable importance, providing valuable insights into mitochondrial regulation and facilitating the development of innovative therapeutic approaches for AKI. This comprehensive review aims to highlight the latest advancements in mitochondrial dynamics research, provide an exhaustive analysis of existing studies investigating the relationship between mitochondrial dynamics and acute injury, and shed light on their implications for AKI. The ultimate goal is to advance the development of more effective therapeutic interventions for managing AKI.
Collapse
Affiliation(s)
- Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Yu Zhao
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, China
| |
Collapse
|
25
|
Sun MY, Ye HJ, Zheng C, Jin ZJ, Yuan Y, Weng HB. Astragalin ameliorates renal injury in diabetic mice by modulating mitochondrial quality control via AMPK-dependent PGC1α pathway. Acta Pharmacol Sin 2023; 44:1676-1686. [PMID: 36859596 PMCID: PMC10374896 DOI: 10.1038/s41401-023-01064-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes mellitus, and oxidative stress and mitochondrial dysfunction play an important role in this process. It has been shown that aldose reductase (ALR2) catalyzes NADPH-dependent reduction of glucose to sorbitol, resulting in oxidative stress and mitochondrial dysfunction in diabetic patients. Astragalin (AG), a flavonoid extracted from Thesium chinense Turcz., shows an inhibitory activity on ALR2. In this study, we investigated the therapeutic effects of AG against renal injury in streptozocin (STZ)-induced diabetic mouse model. Diabetic mice were orally administered AG (5, 10 mg·kg-1·d-1) for 4 weeks. We showed that AG treatment greatly improved the proteinuria and ameliorated renal pathological damage without affecting the elevated blood glucose in diabetic mice. Furthermore, AG treatment significantly suppressed highly activated ALR2, and reduced oxidative stress in the kidney of diabetic mice and in high glucose and lipids-stimulated HK2 cells in vitro. We demonstrated that AG treatment modulated mitochondrial quality control and ameliorated apoptosis, boosting mitochondrial biogenesis, maintaining mitochondrial dynamic homeostasis, and improving energy metabolism disorder in vivo and in vitro. In high glucose and lipids-stimulated HK2 cells, we found that AG (20 μM) restored the phosphorylation level of AMPK, and upregulated the expression and transcriptional activity of PGC1α, whereas treatment with H2O2, blockade of AMPK with Compound C or knockdown of AMPKα with siRNA abolished the protective effect of AG on mitochondrial function, suggesting that antioxidant effects and activation of AMPK-dependent PGC1α pathway might be the molecular mechanisms underlying the protective effects of AG on mitochondrial quality control. We conclude that AG could be a promising drug candidate for the treatment of diabetic renal injury through activating AMPK.
Collapse
Affiliation(s)
- Meng-Yao Sun
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hui-Jing Ye
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chen Zheng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zi-Jie Jin
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yan Yuan
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hong-Bo Weng
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
26
|
Fu T, Ma Y, Li Y, Wang Y, Wang Q, Tong Y. Mitophagy as a mitochondrial quality control mechanism in myocardial ischemic stress: from bench to bedside. Cell Stress Chaperones 2023; 28:239-251. [PMID: 37093549 PMCID: PMC10167083 DOI: 10.1007/s12192-023-01346-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Myocardial ischemia reduces the supply of oxygen and nutrients to cardiomyocytes, leading to an energetic crisis or cell death. Mitochondrial dysfunction is a decisive contributor to the reception, transmission, and modification of cardiac ischemic signals. Cells with damaged mitochondria exhibit impaired mitochondrial metabolism and increased vulnerability to death stimuli due to disrupted mitochondrial respiration, reactive oxygen species overproduction, mitochondrial calcium overload, and mitochondrial genomic damage. Various intracellular and extracellular stress signaling pathways converge on mitochondria, so dysfunctional mitochondria tend to convert from energetic hubs to apoptotic centers. To interrupt the stress signal transduction resulting from lethal mitochondrial damage, cells can activate mitophagy (mitochondria-specific autophagy), which selectively eliminates dysfunctional mitochondria to preserve mitochondrial quality control. Different pharmacological and non-pharmacological strategies have been designed to augment the protective properties of mitophagy and have been validated in basic animal experiments and pre-clinical human trials. In this review, we describe the process of mitophagy in cardiomyocytes under ischemic stress, along with its regulatory mechanisms and downstream effects. Then, we discuss promising therapeutic approaches to preserve mitochondrial homeostasis and protect the myocardium against ischemic damage by inducing mitophagy.
Collapse
Affiliation(s)
- Tong Fu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Brandeis University, Waltham, MA, 02453, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yan Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yingwei Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
27
|
Zhou H, Dai Z, Li J, Wang J, Zhu H, Chang X, Wang Y. TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury. Metabolism 2023; 140:155383. [PMID: 36603706 DOI: 10.1016/j.metabol.2022.155383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The regulatory mechanisms involved in mitochondrial quality control (MQC) dysfunction during septic cardiomyopathy (SCM) remain incompletely characterized. Transmembrane BAX inhibitor motif containing 6 (TMBIM6) is an endoplasmic reticulum protein with Ca2+ leak activity that modulates cellular responses to various cellular stressors. METHODS In this study, we evaluated the role of TMBIM6 in SCM using cardiomyocyte-specific TMBIM6 knockout (TMBIM6CKO) and TMBIM6 transgenic (TMBIM6TG) mice. RESULTS Myocardial TMBIM6 transcription and expression were significantly downregulated in wild-type mice upon LPS exposure, along with characteristic alterations in myocardial systolic/diastolic function, cardiac inflammation, and cardiomyocyte death. Notably, these alterations were further exacerbated in LPS-treated TMBIM6CKO mice, and largely absent in TMBIM6TG mice. In LPS-treated primary cardiomyocytes, TMBIM6 deficiency further impaired mitochondrial respiration and ATP production, while defective MQC was suggested by enhanced mitochondrial fission, impaired mitophagy, and disrupted mitochondrial biogenesis. Structural protein analysis, Co-IP, mutant TMBIM6 plasmid transfection, and molecular docking assays subsequently indicated that TMBIM6 exerts cardioprotection against LPS-induced sepsis by interacting with and preventing the oligomerization of voltage-dependent anion channel-1 (VDAC1), the major route of mitochondrial Ca2+ uptake. CONCLUSION We conclude that the TMBIM6-VDAC1 interaction prevents VDAC1 oligomerization and thus sustains mitochondrial Ca2+ homeostasis as well as MQC, contributing to improved myocardial function in SCM.
Collapse
Affiliation(s)
- Hao Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China; Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Zhe Dai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jialei Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China
| | - Hang Zhu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
28
|
Li JJ, Wang YJ, Wang CM, Li YJ, Yang Q, Cai WY, Chen Y, Zhu XX. Shenlian extract decreases mitochondrial autophagy to regulate mitochondrial function in microvascular to alleviate coronary artery no-reflow. Phytother Res 2023; 37:1864-1882. [PMID: 36740450 DOI: 10.1002/ptr.7703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/31/2022] [Accepted: 11/19/2022] [Indexed: 02/07/2023]
Abstract
Shenlian (SL) extract has been proven to be effective in the prevention and treatment of atherosclerosis and myocardial ischemia. However, the function and molecular mechanisms of SL on coronary artery no-reflow have not been fully elucidated. This study was designed to investigate the contribution of SL extract in repressing excessive mitochondrial autophagy to protect the mitochondrial function and prevent coronary artery no-reflow. The improvement of SL on coronary artery no-reflow was observed in vivo experiments and the molecular mechanisms were further explored through vitro experiments. First, a coronary artery no-reflow rat model was built by ligating the left anterior descending coronary artery for 2 hr of ischemia, followed by 24 hr of reperfusion. Thioflavin S (6%, 1 ml/kg) was injected into the inferior vena cava to mark the no-reflow area. Transmission electron microscopy was performed to observe the cellular structure, mitochondrial structure, and mitochondrial autophagy of the endothelial cells. Immunofluorescence was used to observe the microvascular barrier function and microvascular inflammation. Cardiac microvascular endothelial cells (CMECs) were isolated from rats. The CMECs were deprived of oxygen-glucose deprivation (OGD) for 2 hr and reoxygenated for 4 hr to mimic the Myocardial ischemia-reperfusion (MI/R) injury-induced coronary artery no-reflow in vitro. Mitochondrial membrane potential was assessed using JC-1 dye. Intracellular adenosine triphosphate (ATP) levels were determined using an ATP assay kit. The cell total reactive oxygen species (ROS) levels and cell apoptosis rate were analyzed by flow cytometry. Colocalization of mitochondria and lysosomes indirectly indicated mitophagy. The representative ultrastructural morphologies of the autophagosomes and autolysosomes were also observed under transmission electron microscopy. The mitochondrial autophagy-related proteins (LC3II/I, P62, PINK, and Parkin) were analyzed using Western blot analysis. In vivo, results showed that, compared with the model group, SL could reduce the no-reflow area from 37.04 ± 9.67% to 18.31 ± 4.01% (1.08 g·kg-1 SL), 13.79 ± 4.77% (2.16 g·kg-1 SL), and 12.67 ± 2.47% (4.32 g·kg-1 SL). The extract also significantly increased the left ventricular ejection fraction (EF) and left ventricular fractional shortening (FS) (p < 0.05 or p < 0.01). The fluorescence intensities of VE-cadherin, which is a junctional protein that preserves the microvascular barrier function, decreased to ~74.05% of the baseline levels in the no-reflow rats and increased to 89.87%(1.08 g·kg-1 SL), 82.23% (2.16 g·kg-1 SL), and 89.69% (4.32 g·kg-1 SL) of the baseline levels by SL treatment. SL administration repressed the neutrophil migration into the myocardium. The oxygen-glucose deprivation/reoxygenation (OGD/R) model was induced in vitro to mimic microvascular ischemia-reperfusion injury. The impaired mitochondrial function after OGD/R injury led to decreased ATP production, calcium overload, the excessive opening of the Mitochondrial Permeability Transition Pore, decreased mitochondrial membrane potential, and reduced ROS scavenging ability (p < 0.05 or p < 0.01). The normal autophagosomes (double-membrane vacuoles with autophagic content) in the sham group were rarely found. The large morphology and autophagosomes were frequently observed in the model group. By contrast, SL inhibited the excessive activation of mitochondrial autophagy. The mitochondrial autophagy regulated by the PINK/Parkin pathway was excessively activated. However, administration of SL prevented the activation of the PINK/Parkin pathway and inhibited excessive mitochondrial autophagy to regulate mitochondrial dysfunction. Results also demonstrated that mitochondrial dysfunction stimulated endothelial cell barrier dysfunction, but Evans blue transmission was significantly decreased and transmembrane resistance was increased significantly by SL treatment (p < 0.05 or p < 0.01). Carbonylcyanide-3-chlorophenylhydrazone (CCCP) could activate the PINK/Parkin pathway. CCCP reversed the regulation of SL on mitochondrial autophagy and mitochondrial function. SL could alleviate coronary artery no-reflow by protecting the microvasculature by regulating mitochondrial function. The underlying mechanism was related to decreased mitochondrial autophagy by the PINK/Parkin pathway.
Collapse
Affiliation(s)
- Jing-Jing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing, China
| | - Ya-Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing, China
| | - Chun-Miao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing, China
| | - Yu-Jie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing, China
| | - Wei-Yan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing, China
| | - Xiao-Xin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing, China
| |
Collapse
|
29
|
Lai X, Zhang Y, Wu J, Shen M, Yin S, Yan J. Rutin Attenuates Oxidative Stress Via PHB2-Mediated Mitophagy in MPP +-Induced SH-SY5Y Cells. Neurotox Res 2023; 41:242-255. [PMID: 36738374 DOI: 10.1007/s12640-023-00636-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 02/05/2023]
Abstract
Oxidative stress plays a crucial role in the occurrence and development of Parkinson's disease (PD). Rutin, a natural botanical ingredient, has been shown to have antioxidant properties. Therefore, the aim of this study was to investigate the neuroprotective effects of rutin on PD and the underlying mechanisms. MPP+(1-methyl-4-phenylpyridinium ions)-treated SH-SY5Y cells were used as an in vitro model of PD. Human PHB2-shRNA lentiviral particles were transfected into SH-SY5Y cells to interfere with the expression of Prohibitin2 (PHB2). The oxidative damage of cells was analyzed by detecting intracellular reactive oxygen species (ROS), malondialdehyde (MDA), and mitochondrial membrane potential (MMP). Western blotting was used to detect the protein expression of antioxidant factors such as nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NADPH quinone oxidoreductase-1 (NQO-1), and mitophagy factors PHB2, translocase of outer mitochondrial membrane 20 (TOM20), and LC3II/LC3I (microtubule-associated protein II light chain 3 (LC3II) to microtubule-associated protein I light chain 3 (LC3I)). In addition, we also examined the expression of PHB2 and LC3II/LC3I by immunofluorescence staining. MPP+ treatment significantly increased the generation of ROS and MDA and the level of MMP depolarization and decreased the protein expression of Nrf2, HO-1, NQO1, TOM20, PHB2, and LC3II/LC3I. In MPP+-treated SH-SY5Y cells, rutin significantly decreased the generation of ROS and MDA and the level of MMP depolarization and increased the protein expression of Nrf2, HO-1, NQO-1, TOM20, PHB2, and LC3II/LC3I. However, the protective role of rutin was inhibited in PHB2-silenced cells. Rutin attenuates oxidative damage which may be associated with PHB2-mediated mitophagy in MPP+-induced SH-SY5Y cells. Rutin might be used as a potential drug for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Yongjiang Zhang
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Mengmeng Shen
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Shiyi Yin
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China
| | - Junqiang Yan
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, People's Republic of China. .,Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| |
Collapse
|
30
|
Wang L, Tang XQ, Shi Y, Li HM, Meng ZY, Chen H, Li XH, Chen YC, Liu H, Hong Y, Xu HH, Liu L, Zhao L, Han WN, Liu X, Zhang Y. Tetrahydroberberrubine retards heart aging in mice by promoting PHB2-mediated mitophagy. Acta Pharmacol Sin 2023; 44:332-344. [PMID: 35948750 PMCID: PMC9889783 DOI: 10.1038/s41401-022-00956-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
Heart aging is characterized by left ventricular hypertrophy and diastolic dysfunction, which in turn induces a variety of cardiovascular diseases. There is still no therapeutic drug to ameliorate cardiac abnormities in heart aging. In this study we investigated the protective effects of berberine (BBR) and its derivative tetrahydroberberrubine (THBru) against heart aging process. Heart aging was induced in mice by injection of D-galactose (D-gal, 120 mg · kg-1 · d-1, sc.) for 12 weeks. Meanwhile the mice were orally treated with berberine (50 mg · kg-1 · d-1) or THBru (25, 50 mg · kg-1 · d-1) for 12 weeks. We showed that BBR and THBru treatment significantly mitigated diastolic dysfunction and cardiac remodeling in D-gal-induced aging mice. Furthermore, treatment with BBR (40 μM) and THBru (20, 40 μM) inhibited D-gal-induced senescence in primary neonatal mouse cardiomyocytes in vitro. Overall, THBru exhibited higher efficacy than BBR at the same dose. We found that the levels of mitophagy were significantly decreased during the aging process in vivo and in vitro, THBru and BBR promoted mitophagy with different potencies. We demonstrated that the mitophagy-inducing effects of THBru resulted from increased mRNA stability of prohibitin 2 (PHB2), a pivotal factor during mitophagy, thereby upregulating PHB2 protein expression. Knockdown of PHB2 effectively reversed the antisenescence effects of THBru in D-gal-treated cardiomyocytes. On the contrary, overexpression of PHB2 promoted mitophagy and retarded cardiomyocyte senescence, as THBru did. In conclusion, this study identifies THBru as a potent antiaging medicine that induces PHB2-mediated mitophagy and suggests its clinical application prospects.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue-Qing Tang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Shi
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hui-Min Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zi-Yu Meng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Han Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yong-Chao Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Heng Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Hong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Heng-Hui Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ling Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Limin Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei-Na Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, 150081, China.
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, 150081, China.
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150081, China.
| |
Collapse
|
31
|
Li MZ, Dai XY, Zhao YX, Li XW, Zhao Y, Li JL. Lycopene Attenuates Di(2-ethylhexyl) Phthalate-Induced Mitochondrial Damage and Inflammation in Kidney via cGAS-STING Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:569-579. [PMID: 36583613 DOI: 10.1021/acs.jafc.2c08351] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a highly harmful and persistent environmental pollutant. Due to its unique chemical composition, it frequently dissolves and enters the environment to endanger human and animal health. Lycopene is a natural bioactive component that can potentially reduce the risk of environmental factor-induced chronic diseases. The present study sought to explore the role and underlying mechanism of lycopene (LYC) on DEHP-induced renal inflammatory response and apoptosis. In this study, mice were orally treated with LYC (5 mg/kg BW/day) and/or DEHP (500 or 1000 mg/kg BW/day) for 28 days. Our results indicated that LYC prevented DEHP-induced histopathological alterations and ultrastructural injuries, including decreased mitochondrial membrane potential (ΔΨm), PINK1/Parkin pathway-mediated mitophagy, and mitochondrial energetic deficit. When damaged mitochondria release mitochondrial DNA (mtDNA) into cytosol, LYC can alleviate inflammation and apoptosis caused by DEHP exposure by activating the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) signal pathway. Collectively, our data demonstrate that LYC can reduce mitophagy caused by DEHP exposure by activating the PINK1/Parkin pathway and then reduce renal inflammation and apoptosis through the cGAS-STING pathway.
Collapse
Affiliation(s)
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330029, Jiangxi, P. R. China
| | | | | | | | | |
Collapse
|
32
|
Ma J, Wang X, Xu M, Chang Y, Dong M, Sun C, Wang Y, Zhang J, Xu N, Liu W. Raspberry Ketone Protects Kidney Damage in Diabetic Nephropathy by Improving Kidney Mitochondrial Dysfunction. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221148619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress play essential roles in the pathogenesis of diabetic nephropathy (DN). The respiratory oxygen consumption and oxidative stress status of kidney mitochondria are closely associated with the development of DN. In this study, raspberry ketone (RK), the predominant bioactive component extracted from raspberry, was applied to treat the established DN mice model. This study investigated whether RK protects the kidneys of high-fat and high-sugar/streptozotocin (STZ)-induced diabetic rats by inhibiting oxidative stress and ameliorating mitochondrial dysfunction. Besides, the DN mice models were established by injecting high-fat and high-sugar/STZ (130 mg/kg, intraperitoneal injection). The animals were randomly divided into the control group (normal saline, ig), DN group (normal saline, ig), DN + RK group (200 mg/kg RK + normal saline, ig), DN + RK group (400 mg/kg RK + normal saline, ig), and DN + Metformin (Met) (200 mg/kg Met + normal saline, ig). Regular monitoring of fasting blood glucose (FBG) levels was observed in mice. After 10 weeks of drug treatment, the kidneys of mice in each group were analyzed using ultrasound, and the mice were euthanized humanely. Kidney weight (KW)/body weight (BW) and kidney injury, mitochondrial function, and oxidative stress indicators were determined. The histopathological changes in renal tissue were observed after hematoxylin and eosin (H&E) staining. The results recommended that RK has a renoprotective function on DN mice by improving mitochondrial dysfunction and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Jiawang Ma
- College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Xin Wang
- College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Meng Xu
- College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Ying Chang
- Teaching Affairs Office, Jilin Medical University, Jilin, PR China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Na Xu
- Teaching Affairs Office, Jilin Medical University, Jilin, PR China
| | - Wensen Liu
- College of Life Science, Jilin Agricultural University, Changchun, PR China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| |
Collapse
|
33
|
Li R, Dai Z, Liu X, Wang C, Huang J, Xin T, Tong Y, Wang Y. Interaction between dual specificity phosphatase-1 and cullin-1 attenuates alcohol-related liver disease by restoring p62-mediated mitophagy. Int J Biol Sci 2023; 19:1831-1845. [PMID: 37063418 PMCID: PMC10092755 DOI: 10.7150/ijbs.81447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Besides abstinence, no effective treatment exists for alcohol-related liver disease (ALD), a dreaded consequence of alcohol abuse. In this study, we assessed the roles on ALD of dual specificity phosphatase-1 (DUSP1), an hepatoprotective enzyme, and Cullin-1 (CUL1), a member of the E3 ubiquitin ligase complex that exerts also transcriptional suppression of mitochondrial genes. Alcohol treatment downregulated hepatic DUSP1 expression in wild-type mice. Notably, DUSP1 transgenic (Dusp1Tg ) mice showed resistance to alcohol-mediated hepatic dysfunction, as evidenced by decreased AST/ALT activity, improved alcohol metabolism, and suppressed liver fibrosis, inflammation, and oxidative stress. Functional experiments demonstrated that DUSP1 overexpression prevents alcohol-mediated mitochondrial damage in hepatocytes through restoring mitophagy. Accordingly, pharmacological blockade of mitophagy abolished the hepatoprotective actions of DUSP1. Molecular assays showed that DUSP1 binds cytosolic CUL1 and prevents its translocation to the nucleus. Importantly, CUL1 silencing restored the transcription of p62 and Parkin, resulting in mitophagy activation, and sustained mitochondrial integrity and hepatocyte function upon alcohol stress. These results indicate that alcohol-mediated DUSP1 downregulation interrupts DUSP1/CUL1 interaction, leading to CUL1 nuclear translocation and mitophagy inhibition via transcriptional repression of p62 and Parkin. Thus, targeting the DUSP1/CUL1/p62 axis will be a key approach to restore hepatic mitophagy as well as alleviate symptoms of ALD.
Collapse
Affiliation(s)
- Ruibing Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Zhe Dai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoman Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chunling Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jia Huang
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Ying Tong
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- ✉ Corresponding author: Yijin Wang, , School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan, Shenzhen, 518055, Guangdong Province, China
| |
Collapse
|
34
|
What does not kill mesangial cells makes it stronger? The response of the endoplasmic reticulum stress and the O-GlcNAc signaling to ATP depletion. Life Sci 2022; 311:121070. [DOI: 10.1016/j.lfs.2022.121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
|
35
|
Liu M, Wang Z, Li S, Deng Y, He N. Identification of PHB2 as a Potential Biomarker of Luminal A Breast Cancer Cells Using a Cell-Specific Aptamer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51593-51601. [PMID: 36346944 DOI: 10.1021/acsami.2c12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Precise diagnosis of breast cancer molecular subtypes remains a great challenge in clinics. The present molecular biomarkers are not specific enough to classify breast cancer subtypes precisely, which requests for more accurate and specific molecular biomarkers to be discovered. Aptamers evolved by the cell-systematic evolution of ligands by exponential enrichment (SELEX) method show great potential in the discovery and identification of cell membrane targets via aptamer-based cell membrane protein pull-down, which has been regarded as a novel and powerful weapon for the discovery and identification of new molecular biomarkers. Herein, a cell membrane protein PHB2 was identified as a potential molecular biomarker specifically expressed in the cell membranes of MCF-7 breast cancer cells using a DNA aptamer MF3Ec. Further experiments demonstrated that the PHB2 protein is differentially expressed in the cell membranes of MCF-7, SK-BR-3, and MDA-MB-231 breast cancer cells and MCF-10A cells, and the binding molecular domains of aptamer MF3Ec and anti-PHB2 antibodies to the PHB2 protein are different due to there being no obvious competitions between aptamer MF3Ec and anti-PHB2 antibodies in the binding to the cell membranes of target MCF-7 cells. Due to those four cells belonging to luminal A, HER2-positive, and triple-negative breast cancer cell subtypes and human normal mammary epithelial cells, respectively, the PHB2 protein in the cell membrane may be a potential biomarker for precise diagnosis of the luminal A breast cancer cell subtype, which is endowed with the ability to differentiate the luminal A breast cancer cell subtype from HER2-positive and triple-negative breast cancer cell subtypes and human normal mammary epithelial cells, providing a new molecular biomarker and therapeutic target for the accurate and precise classification and diagnostics and personalized therapy of breast cancer.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, P. R. China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Song Li
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Yan Deng
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
36
|
Peng X, Chen S, Wang Y, Jin M, Mei F, Bao Y, Liao X, Chen Y, Gong W. SGLT2i reduces renal injury by improving mitochondrial metabolism and biogenesis. Mol Metab 2022:101613. [PMID: 36241142 DOI: 10.1016/j.molmet.2022.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Despite advances in treatment, an effective therapeutic strategy for acute kidney injury (AKI) is still lacking. Considering the widely reported clinical benefits of canagliflozin in the kidneys, we assessed the effects of canagliflozin on AKI. METHODS Lipopolysaccharide was used to induce AKI in the presence of canagliflozin. RESULTS Canagliflozin treatment reduced blood urea nitrogen and serum creatinine levels and improved the renal tubular structure in mice with lipopolysaccharide-induced septic AKI. Canagliflozin also suppressed the inflammatory response, oxidative stress and tubular cell death in the kidneys during septic AKI. In vitro, canagliflozin supplementation maintained mitochondrial function in lipopolysaccharide-treated HK-2 cells by restoring the mitochondrial membrane potential, inhibiting mitochondrial reactive oxygen species production and normalizing mitochondrial respiratory complex activity. In HK-2 cells, canagliflozin stimulated the adenosine monophosphate-activated protein kinase catalytic subunit alpha 1 (AMPKα1)/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α)/nuclear respiratory factor 1 (NRF1) pathway, thus elevating the number of live and healthy mitochondria following lipopolysaccharide treatment. Inhibition of the AMPKα1/PGC1α/NRF1/mitochondrial biogenesis pathway abolished the protective effects of canagliflozin on renal cell mitochondria and tubular viability. Similarly, the protective effects of canagliflozin on kidney function and tubular structure were abrogated in AMPKα1-knockout mice. CONCLUSIONS Canagliflozin could be used to treat septic AKI by activating the AMPKα1/PGC1α/NRF1/mitochondrial biogenesis pathway.
Collapse
Affiliation(s)
- Xiaojie Peng
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China; Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou city, Guangdong province, China
| | - Shuze Chen
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University Guangzhou city, Guangdong province, China
| | - Ying Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Ming Jin
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; Integrative Microecology Center, Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Fen Mei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou city, Guangdong province, China
| | - Yun Bao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou city, Guangdong province, China
| | - Xixian Liao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou city, Guangdong province, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; Department of Gastroenterology, Nanfang Hospital, Southern Medical University Guangzhou city, Guangdong province, China; Integrative Microecology Center, Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China; The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
37
|
Chen Z, Liang W, Hu J, Zhu Z, Feng J, Ma Y, Yang Q, Ding G. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Prolif 2022; 55:e13296. [PMID: 35842903 PMCID: PMC9528772 DOI: 10.1111/cpr.13296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Increasing evidence suggests that mitochondrial dysfunction is the key driver of angiotensin II (Ang II)-induced kidney injury. This study was designed to investigate whether Sirtuin 6 (Sirt6) could affect Ang II-induced mitochondrial damage and the potential mechanisms. MATERIALS AND METHODS Podocyte-specific Sirt6 knockout mice were infused with Ang II and cultured podocytes were stimulated with Ang II to evaluate the effects of Sirt6 on mitochondrial structure and function in podocytes. Immunofluorescence staining was used to detect protein expression and mitochondrial morphology in vitro. Electron microscopy was used to assess mitochondrial morphology in mice. Western blotting was used to quantify protein expression. RESULTS Mitochondrial fission and decreased Sirt6 expression were observed in podocytes from Ang II-infused mice. In Sirt6-deficient mice, Ang II infusion induced increased apoptosis and mitochondrial fragmentation in podocytes than that in Ang II-infused wild-type mice. In cultured human podocytes, Sirt6 knockdown exacerbated Ang II-induced mitochondrial fission, whereas Sirt6 overexpression ameliorated the Ang II-induced changes in the balance between mitochondrial fusion and fission. Functional studies revealed that Sirt6 deficiency exacerbated mitochondrial fission by promoting dynamin-related protein 1 (Drp1) phosphorylation. Furthermore, Sirt6 mediated Drp1 phosphorylation by promoting Rho-associated coiled coil-containing protein kinase 1 (ROCK1) expression. CONCLUSION Our study has identified Sirt6 as a vital factor that protects against Ang II-induced mitochondrial fission and apoptosis in podocytes via the ROCK1-Drp1 signalling pathway.
Collapse
Affiliation(s)
- Zhaowei Chen
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Jijia Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Zijing Zhu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Jun Feng
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Yiqiong Ma
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Qian Yang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Guohua Ding
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
38
|
Chen X, Cao M, Wang P, Chu S, Li M, Hou P, Zheng J, Li Z, Bai J. The emerging roles of TRIM21 in coordinating cancer metabolism, immunity and cancer treatment. Front Immunol 2022; 13:968755. [PMID: 36159815 PMCID: PMC9506679 DOI: 10.3389/fimmu.2022.968755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif containing-21 (TRIM21), an E3 ubiquitin ligase, was initially found to be involved in antiviral responses and autoimmune diseases. Recently studies have reported that TRIM21 plays a dual role in cancer promoting and suppressing in the occurrence and development of various cancers. Despite the fact that TRIM21 has effects on multiple metabolic processes, inflammatory responses and the efficacy of tumor therapy, there has been no systematic review of these topics. Herein, we discuss the emerging role and function of TRIM21 in cancer metabolism, immunity, especially the immune response to inflammation associated with tumorigenesis, and also the cancer treatment, hoping to shine a light on the great potential of targeting TRIM21 as a therapeutic target.
Collapse
Affiliation(s)
- Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Menghan Cao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| |
Collapse
|
39
|
Dagar N, Kale A, Steiger S, Anders HJ, Gaikwad AB. Receptor-mediated mitophagy: An emerging therapeutic target in acute kidney injury. Mitochondrion 2022; 66:82-91. [PMID: 35985440 DOI: 10.1016/j.mito.2022.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Acute kidney injury (AKI) is a global health concern associated with high morbidity and mortality. AKI etiology is linked to mitochondrial dysfunction along with oxidative stress and inflammation. The defective mitochondria are removed via mitophagy for maintaining cellular integrity. The main regulatory mechanisms of mitophagy in response to different stressors are Phosphatase and tensin homolog-induced kinase 1 (PINK1)/Parkin and receptor-mediated. Receptors like B-cell lymphoma 2/adenovirus E1B-interacting protein (BNIP3), BNIP3L, prohibitin2, tacrolimus (FK506)-binding protein8 (FKBP8), autophagy-beclin1-regulator1 (AMBRA1) and SMAD-ubiquitination regulatory factor1 (SMURF1), etc. participate in receptor-mediated mitophagy. In recent studies, receptor-mediated mitophagy showed protective effects in AKI. This review summarizes the evidence related to mitophagy in AKI and outlines the significance of receptor-mediated mitophagy modulation as a possible therapeutic approach in AKI.
Collapse
Affiliation(s)
- Neha Dagar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Stefanie Steiger
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, University Hospital of the Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
40
|
Wang L, Lai S, Zou H, Zhou X, Wan Q, Luo Y, Wu Q, Wan L, Liu J, Huang H. Ischemic preconditioning/ischemic postconditioning alleviates anoxia/reoxygenation injury via the Notch1/Hes1/VDAC1 axis. J Biochem Mol Toxicol 2022; 36:e23199. [PMID: 35975741 DOI: 10.1002/jbt.23199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
Ischemic preconditioning (IPC), and ischemic postconditioning (IPost) have a significant protective effect on myocardial ischemia/reperfusion (MI/R) injury by alleviating oxidative stress and mitochondrial disturbances, although the underlying molecular mechanisms are unclear. The study was to demonstrate that cardioprotection against anoxia/reoxygenation (A/R) injury is transduced via the Notch1/Hes1/VDAC1 signaling pathway. Using mass spectrometry and tandem affinity purification (TAP), to screen for differentially expressed proteins associated with Hes1, followed by standard bioinformatics analysis. The co-immunoprecipitation (Co-IP) assay confirmed an interaction between Hes1 and VDAC1 proteins. H9c2 cells were transfected with Hes1 adenoviral N-terminal TAP vector (AD-NTAP/Hes1) and Hes1-short hairpin RNA adenoviral vector (AD-Hes1-shRNA) to establish A/R injury, IPC, and IPost models, respectively. The expression of Hes1 and VDAC1 proteins were measured by western blot analysis, while the levels of reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), and apoptosis were evaluated by flow cytometry. AD-NTAP/Hes1 can activate the exogenous protein expression of Hes1, thus decreasing creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) activity and promoting cell viability. The study found that VDAC1 was a potential target protein for Hes1 and the overexpression of Hes1 protein expression downregulated protein expression levels of VDAC1, reduced ROS production, stabilized ΔΨm, and inhibited apoptosis in H9c2 cells. Additionally, downregulation of Hes1 protein expression also upregulated VDAC1 protein expression, increased ROS production, imbalanced ΔΨm, promoted cell apoptosis, and attenuated the cardioprotection afforded by IPC and IPost. The Notch1/Hes1 signaling pathway activated by IPC/IPost can directly downregulate the protein expression of VDAC1 and consequently relieve A/R injury.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | - Huaxi Zou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xueliang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Wan
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yong Luo
- Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Qicai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jichun Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Cardiac Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huang Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
41
|
Cai C, Wu F, He J, Zhang Y, Shi N, Peng X, Ou Q, Li Z, Jiang X, Zhong J, Tan Y. Mitochondrial quality control in diabetic cardiomyopathy: from molecular mechanisms to therapeutic strategies. Int J Biol Sci 2022; 18:5276-5290. [PMID: 36147470 PMCID: PMC9461654 DOI: 10.7150/ijbs.75402] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Jiang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, Guangdong, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
42
|
Tan Y, Zhang Y, He J, Wu F, Wu D, Shi N, Liu W, Li Z, Liu W, Zhou H, Chen W. Dual specificity phosphatase 1 attenuates inflammation-induced cardiomyopathy by improving mitophagy and mitochondrial metabolism. Mol Metab 2022; 64:101567. [PMID: 35944900 PMCID: PMC9418987 DOI: 10.1016/j.molmet.2022.101567] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 10/30/2022] Open
Abstract
Objectives Methods Results Conclusion DUSP1 overexpression alleviates LPS-mediated myocardial inflammation. DUSP1 improves lipopolysaccharide-disrupted mitochondrial function. DUSP1 restores FUN14 domain-containing 1 (FUNDC1)-dependent mitophagy in SCM.
Collapse
|
43
|
Xie H, Shi Y, Zhou Y, Liu H. TMBIM6 promotes diabetic tubular epithelial cell survival and albumin endocytosis by inhibiting the endoplasmic reticulum stress sensor, IRE1α. Mol Biol Rep 2022; 49:9181-9194. [PMID: 35857174 DOI: 10.1007/s11033-022-07744-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
AIM Reduced albumin reabsorption in proximal tubular epithelial cells (PTECs), resulting from decreased megalin plasma membrane (PM) localization due to prolonged endoplasmic reticulum (ER) stress, potentially contributes to albuminuria in early diabetic kidney disease (DKD). To examine this possibility, we investigated the cytoprotective effect of TMBIM6 in promoting diabetic PTEC survival and albumin endocytosis by attenuating ER stress with an IRE1α inhibitor, KIRA6. METHODS AND RESULTS Renal TMBIM6 distribution and expression were determined by immunohistochemistry, western blotting, and qPCR, whereas tubular injury was evaluated in db/db mice. High-glucose (HG)-treated HK-2 cells were either treated with KIRA6 or transduced with a lentiviral vector for TMBIM6 overexpression. ER stress was measured by western blotting and ER-Tracker Red staining, whereas apoptosis was determined by performing TUNEL assays. Megalin expression was measured by immunofluorescence, and albumin endocytosis was evaluated after incubating cells with FITC-labeled albumin. Tubular injury and TMBIM6 downregulation occurred in db/db mouse renal cortical tissues. Both KIRA6 treatment and TMBIM6 overexpression inhibited ER stress by decreasing the levels of phosphorylated IRE1α, XBP1s, GRP78, and CHOP, and stabilizing ER expansion in HG-treated HK-2 cells. TUNEL assays performed with KIRA6-treated or TMBIM6-overexpressing cells showed a significant decrease in apoptosis, consistent with the significant downregulation of BAX and upregulation of BCL-2, as measured by immunoblotting. Both KIRA6 and TMBIM6 overexpression promoted megalin PM localization and restored albumin endocytosis in HG-treated HK-2 cells. CONCLUSION TMBIM6 promoted diabetic PTEC survival and albumin endocytosis by negatively regulating the IRE1α branch of ER stress.
Collapse
Affiliation(s)
- Huidi Xie
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Shi
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhou
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hongfang Liu
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Dongzhimen Hospital, Renal Research Institute of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, No. 5, Haiyuncang Alley, Dongcheng District, 100700, Beijing, China.
| |
Collapse
|
44
|
Cai C, Wu F, Zhuang B, Ou Q, Peng X, Shi N, Peng L, Li Z, Wang J, Cai S, Tan Y. Empagliflozin activates Wnt/β-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance against type-3 cardiorenal syndrome. Mol Metab 2022; 64:101553. [PMID: 35863636 PMCID: PMC9372775 DOI: 10.1016/j.molmet.2022.101553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives Cardiorenal syndrome type-3 (CRS-3) is an abrupt worsening of cardiac function secondary to acute kidney injury. Mitochondrial dysfunction is a key pathological mechanism of CRS-3, and empagliflozin can improve mitochondrial biology by promoting mitophagy. Here, we assessed the effects of empagliflozin on mitochondrial quality surveillance in a mouse model of CRS-3. Methods Cardiomyocyte-specific FUNDC1-knockout (FUNDC1CKO) mice were subjected to CRS-3 prior to assessment of mitochondrial homeostasis in the presence or absence of empagliflozin. Results CRS-3 model mice exhibited lower heart function, increased inflammatory responses and exacerbated myocardial oxidative stress than sham-operated controls; however, empagliflozin attenuated these alterations. Empagliflozin stabilized the mitochondrial membrane potential, suppressed mitochondrial reactive oxygen species production, increased mitochondrial respiratory complex activity and restored the oxygen consumption rate in cardiomyocytes from CRS-3 model mice. Empagliflozin also normalized the mitochondrial morphology, mitochondrial dynamics and mitochondrial permeability transition pore opening rate in cardiomyocytes. Cardiomyocyte-specific ablation of FUN14 domain-containing protein 1 (FUNDC1) in mice abolished the protective effects of empagliflozin on mitochondrial homeostasis and myocardial performance. Empagliflozin activated β-catenin and promoted its nuclear retention, thus increasing FUNDC1-induced mitophagy in heart tissues; however, a β-catenin inhibitor reversed these effects. Conclusions In summary, empagliflozin activated Wnt/β-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance, ultimately improving mitochondrial function and cardiac performance during CRS-3. Thus, empagliflozin could be considered for the clinical management of heart function following acute kidney injury. Empagliflozin reduces myocardial damage and improves myocardial function after CRS-3. Empagliflozin normalizes the mitochondrial structure in cardiomyocytes during CRS-3. Empagliflozin attenuates cardiomyocyte mitochondrial dysfunction during CRS-3. Empagliflozin activates FUNDC1-dependent mitophagy and preserves mitochondrial integrity in the heart during CRS-3. Loss of FUNDC1 abolishes the cardioprotective effects of empagliflozin during CRS-3.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bingjie Zhuang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lan Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China.
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
45
|
Prohibitins: A Key Link between Mitochondria and Nervous System Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7494863. [PMID: 35847581 PMCID: PMC9286927 DOI: 10.1155/2022/7494863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022]
Abstract
Prohibitins (PHBs) are conserved proteins in eukaryotic cells, which are mainly located in the inner mitochondrial membrane (IMM), cell nucleus, and cell membrane. PHBs play crucial roles in various cellular functions, including the cell cycle regulation, tumor suppression, immunoglobulin M receptor binding, and aging. In addition, recent in vitro and in vivo studies have revealed that PHBs are important in nervous system diseases. PHBs can prevent apoptosis, inflammation, mitochondrial dysfunction, and autophagy in neurological disorders through different molecules and pathways, such as OPA-1, PINK1/Parkin, IL6/STAT3, Tau, NO, LC3, and TDP43. Therefore, PHBs show great promise in the protection of neurological disorders. This review summarizes the relevant studies on the relationship between PHBs and neurological disorders and provides an update on the molecular mechanisms of PHBs in nervous system diseases.
Collapse
|
46
|
Huang C, Jiang S, Gao S, Wang Y, Cai X, Fang J, Yan T, Craig Wan C, Cai Y. Sirtuins: Research advances on the therapeutic role in acute kidney injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154122. [PMID: 35490494 DOI: 10.1016/j.phymed.2022.154122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Acute kidney injury (AKI), a common multidisciplinary diagnostic clinical critical illness, eventually causes end-stage renal disease (ESRD). Although many clinical measures have been taken to prevent or treat AKI, high morbidity and death rates were recorded. Therefore, in-depth pathogenesis study and search for new therapeutic targets are in demand. Interestingly, the suirtuins family showed a significant protective effect in AKI. Sirtuins (SIRT1-7) is a family of seven proteins with NAD+-dependent type III histone deacetylase activity. Sirtuins family members were involved by AKI, and regulation of sirtuins activities significantly improved AKI-induced renal injury. Therefore, the therapeutic role and molecular mechanisms of the sirtuins family in AKI has important research implications for clinical applications or basic research. PURPOSE This review summarizes recent advances in the roles and functions of the sirtuins family, discusses their therapeutic effects on AKI and related molecular mechanisms, and the mechanisms of action of small molecule specific activators or inhibitors sirtuins in the prevention and treatment of AKI were discussed. METHODS The data in this review were retrieved from various scientific databases (PubMed, Google scholar, Science Direct, and Web of Science), till December 2021. The keywords were used as follows: "Sirtuins", "Acute kidney injury", "AKI", "Sirtuins modulators" and "Histone deacetylation". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS Growing evidence indicates that members of the sirtuins family regulate the development and progression of different renal diseases, including AKI, through anti-inflammation, antioxidation, anti-apoptotic, and maintenance of mitochondrial homeostasis. The molecular mechanism of Sirtuins family on AKI mainly regulated NF-κB, JNK/ERK, and AMPK/mTOR signaling pathways, upregulated the expression of PGC-1α, HO-1, NRF2, Bcl-2, OPA1, and AMPK, and downregulated the expression of NRLP3, IL-1β, TNF-α, IL-6, ROS, MFF, Drp1, Bax, ERK, and mTOR. In addition, the active ingredients of herbs (resveratrol, thujaplicins, huperzine, and curcumin) could activate the activity of SIRT1 or SIRT3, thereby improving AKI. Meanwhile, the synthetic Sirtuins inhibitor (AK-1) inhibited SIRT2 activity, thus alleviating AKI. In the future, more specific modulators will remain needed to enhance the clinical therapeutic role of the Sirtuins family in AKI. CONCLUSION The sirtuins family is a promising type III histone deacetylase for AKI treatment. This review will provide insight into sirtuins family's therapeutic role in AKI and promote the clinical use of sirtuins modulators in AKI.
Collapse
Affiliation(s)
- Chaoming Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shisheng Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Junyan Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Tingdong Yan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PR China.
| | - Chunpeng Craig Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
47
|
Yang Z, Gao Z, Yang Z, Zhang Y, Chen H, Yang X, Fang X, Zhu Y, Zhang J, Ouyang F, Li J, Cai G, Li Y, Lin X, Ni R, Xia C, Wang R, Shi X, Chu L. Lactobacillus Plantarum-derived extracellular vesicles protect against ischemic brain injury via the microRNA-101a-3p/c-Fos/TGF-β axis. Pharmacol Res 2022; 182:106332. [PMID: 35779817 DOI: 10.1016/j.phrs.2022.106332] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Currently, the reported source of extracellular vesicles (EVs) for the treatment of ischemic stroke(IS)is limited to mammals. Moreover, these EVs are restricted to clinical translation by the high cost of cell culture. In this respect, Lactobacillus Plantarum culture is advantaged by low cost and high yield. However, it is poorly understood whether Lactobacillus Plantarum-derived EVs (LEVs) are applicable for the treatment of IS. Here, our results demonstrated that LEVs reduced apoptosis in ischemic neuron both in vivo and in vitro. As revealed by high-throughput sequencing, miR-101a-3p expression was significantly elevated by LEV treatment in OGD/R-induced neurons, as confirmed in the tMCAO mice treated with LEVs. Mechanistically, c-Fos was directly targeted by miR-101a-3p. In addition, c-Fos determined ischemia-induced neuron apoptosis in vivo and in vitro through the TGF-β1 pathway, miR-101a-3p inhibition aggravated ischemia-induced neuron apoptosis in vitro and in vivo, and miR-101a-3p overexpression produced the opposite results. Hsa-miR-101-3p was downregulated in the plasma of patients with IS but upregulated in the patients with neurological recovery after rt-PA intravenous thrombolysis. In conclusion, Our results demonstrated for the first time that LEVs might inhibit neuron apoptosis via the miR-101a-3p/c-Fos/TGF-β axis, and has-miR-101-3p is a potential marker of neurological recovery in IS patients.
Collapse
Affiliation(s)
- Zhang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China; Department of Translational Medicine Research Center,Guizhou Medical University, Guiyang, China
| | - Zidan Gao
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yifan Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Hongqun Chen
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Xuexia Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Xuming Fang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Yingwu Zhu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Jiayan Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Fu Ouyang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Jun Li
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Gang Cai
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Yuan Li
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Xiang Lin
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Ruihan Ni
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Chong Xia
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Ruihua Wang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Xiaofang Shi
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Lan Chu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China; Department of Translational Medicine Research Center,Guizhou Medical University, Guiyang, China
| |
Collapse
|
48
|
Ma L, Zou R, Shi W, Zhou N, Chen S, Zhou H, Chen X, Wu Y. SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways. Am J Cancer Res 2022; 12:5034-5050. [PMID: 35836807 PMCID: PMC9274739 DOI: 10.7150/thno.75121] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Given the importance of microvascular injury in infarct formation and expansion, development of therapeutic strategies for microvascular protection against myocardial ischemia/reperfusion injury (IRI) is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of the SGLT2 inhibitor dapagliflozin (DAPA) against cardiac microvascular dysfunction mediated by IRI. Methods: DAPA effects were evaluated both in vivo, in mice subjected to IRI, and in vitro, in human coronary artery endothelial cells (HCAECs) exposed to hypoxia/reoxygenation (H/R). DAPA pretreatment attenuated luminal stenosis, endothelial swelling, and inflammation in cardiac microvessels of IRI-treated mice. Results: In H/R-challenged HCAECs, DAPA treatment improved endothelial barrier function, endothelial nitric oxide synthase (eNOS) activity, and angiogenic capacity, and inhibited H/R-induced apoptosis by preventing cofilin-dependent F-actin depolymerization and cytoskeletal degradation. Inhibition of H/R-induced xanthine oxidase (XO) activation and upregulation, sarco(endo)plasmic reticulum calcium-ATPase 2 (SERCA2) oxidation and inactivation, and cytoplasmic calcium overload was further observed in DAPA-treated HCAECs. DAPA also suppressed calcium/Calmodulin (CaM)-dependent kinase II (CaMKII) activation and cofilin phosphorylation, and preserved cytoskeleton integrity and endothelial cell viability following H/R. Importantly, the beneficial effects of DAPA on cardiac microvascular integrity and endothelial cell survival were largely prevented in IRI-treated SERCA2-knockout mice. Conclusions: These results indicate that DAPA effectively reduces cardiac microvascular damage and endothelial dysfunction during IRI through inhibition of the XO-SERCA2-CaMKII-cofilin pathway.
Collapse
Affiliation(s)
- Li Ma
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rongjun Zou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wanting Shi
- Department of Paediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Na Zhou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shaoxian Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China.,✉ Corresponding authors: Hao Zhou, E-mail: ; Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China. Xinxin Chen, E-mail: ; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Yueheng Wu, E-mail: ; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinxin Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,✉ Corresponding authors: Hao Zhou, E-mail: ; Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China. Xinxin Chen, E-mail: ; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Yueheng Wu, E-mail: ; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China.,✉ Corresponding authors: Hao Zhou, E-mail: ; Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China. Xinxin Chen, E-mail: ; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Yueheng Wu, E-mail: ; Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
49
|
Wang Q, Xi Y, Chen B, Zhao H, Yu W, Xie D, Liu W, He F, Xu C, Cheng J. Receptor of Advanced Glycation End Products Deficiency Attenuates Cisplatin-Induced Acute Nephrotoxicity by Inhibiting Apoptosis, Inflammation and Restoring Fatty Acid Oxidation. Front Pharmacol 2022; 13:907133. [PMID: 35712715 PMCID: PMC9196246 DOI: 10.3389/fphar.2022.907133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is a widely used and potent anti-neoplastic agent, but severe and inescapable side effects in multiple normal tissues and organs limit its application, especially nephrotoxicity. Molecular mechanisms of cisplatin nephrotoxicity involve mitochondrial damage, oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, necroptosis, etc. Receptor of advanced glycation end products (RAGE) is a multiligand pattern recognition receptor, engaged in inflammatory signaling and mitochondrial homeostasis. Whether inhibition of RAGE alleviates cisplatin-induced nephropathy has not been investigated. Here, we revealed that RAGE deficiency attenuates cisplatin-induced acute nephrotoxicity, as evidenced by reduced apoptosis, inflammation, lipid accumulation, restored mitochondrial homeostasis and fatty acid oxidation in renal tubular epithelial cells (TECs). In vitro studies showed that, the RAGE-specific inhibitor FPS-ZM1 attenuated the cisplatin-induced decrease of cell viability and fatty acid oxidation in the normal rat renal TEC line NRK-52E cells. Taken together, RAGE knockout mitigated cisplatin-induced acute nephrotoxicity by inhibiting apoptosis, inflammation, and restoring fatty acid oxidation in TECs, suggesting that RAGE inhibition could be a therapeutic option for cisplatin-induced acute nephrotoxicity.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Yuemei Xi
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Hairong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Weidong Liu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Chenxi Xu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Translational Medicine for Nucleic Acid Metabolism and Regulation, Xiamen, China
| |
Collapse
|
50
|
The Regulation and Characterization of Mitochondrial-Derived Methylmalonic Acid in Mitochondrial Dysfunction and Oxidative Stress: From Basic Research to Clinical Practice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7043883. [PMID: 35656023 PMCID: PMC9155905 DOI: 10.1155/2022/7043883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 01/11/2023]
Abstract
Methylmalonic acid (MMA) can act as a diagnosis of hereditary methylmalonic acidemia and assess the status of vitamin B12. Moreover, as a new potential biomarker, it has been widely reported to be associated with the progression and prognosis of chronic diseases such as cardiovascular events, renal insufficiency, cognitive impairment, and cancer. MMA accumulation may cause oxidative stress and impair mitochondrial function, disrupt cellular energy metabolism, and trigger cell death. This review primarily focuses on the mechanisms and epidemiology or progression in the clinical study on MMA.
Collapse
|